On 2-microhyperbolicity at the boundary

Ву

Francesco TONIN and Giuseppe ZAMPIERI

§1. Statement of the result

Let M be a real analytic manifold, X a complexification of M, S a real analytic hypersurface of M, M^{\pm} the two open components of $M \setminus S$. Let T^*X denote the complex tangent bundle to X endowed with the canonical 1-form α and 2-form $\sigma = \mathrm{d}\alpha$, and let H be the Hamiltonian isomorphism. Let T^*X^R (resp. T^*X^I) denote the real underlying manifold to T^*X endowed with the forms $\alpha^R = \Re \alpha$ and $\sigma^R = \Re \sigma$ (resp. $\alpha^I = \Im \alpha$ and $\sigma^I = \Im \sigma$), and let H^R (resp. H^I) denote the corresponding Hamiltonian isomorphisms. Let V be a smooth regular (i. e. $\alpha|_V \neq 0$) involutive submanifold of $T^*_M X$ and denote by \widetilde{V} the union of the complexifications of the bicharacteristic leaves of V. Assume there are analytic functions r, s on $T^*_M X$ such that.

$$s|_{V} = r|_{S \times u.T \pm V} = 0$$
, $\{s, r\} \equiv 1$.

Let \widetilde{V}^{θ} be the union of the integral leaves of \Re $(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}H_{rc})$ issued from \widetilde{V} and let W denote the union of the leaves of \Re $(e^{\sqrt{-1}\frac{\pi}{2}}H_{rc})$ issued from V. Let $\mathscr{B}^{2,W}_{M^{\pm}|X}=\mathscr{B}^{2,W}_{M^{\pm}|X}$ be the complex of 2-hyperfunctions at the boundary along W in the sense of [U-Z]. Let \mathscr{M} be a coherent \mathscr{E}_{X} -module (a pseudo-differential system).

Theorem 1.1. Assume that there exists $\theta \in [-\pi, \pi]$, $\theta \neq \pm \frac{\pi}{2}$ such that

(1.1)
$$\pm \Re \left(e^{\sqrt{-1}\theta} H_{rc} \right) \notin C \left(\text{char } \mathcal{M}, \widetilde{V}^{\theta} \right)$$

(with $C(\cdot, \cdot)$ being the normal cone by [K-S]). Then

(1.2)
$$R\Gamma_{\pi^{-1}(S)}R\mathcal{H}om(\mathcal{M}, \mathcal{B}^{2}_{M^{*}|X}) = 0.$$

Remark that $\mathscr{C}_{M^{\pm}|X}|_{W} \to \mathscr{B}_{M^{\pm}|X}^{2}$ is injective when restriced to solutions of \mathscr{M} . In fact (1.1) implies non-characteristicity of S for the system \mathscr{M} , so that [U-Z] can be applied. This gives M^{\pm} -regularity in the sense of [S]:

Communicated by Prof. K. Ueno, April 22, 1996

Corollary 1.2. Let (1.1) hold with $\theta \neq \pm \frac{\pi}{2}$. Then

(1.3)
$$\Gamma_{\pi^{-1}(S)} \mathcal{H} om(\mathcal{M}, \mathcal{C}_{M^{\sharp}|X})|_{\mathbf{W}} = 0.$$

Example (a). Let $z = x + \sqrt{-1} y$ (resp. $(z, \zeta) = (x + \sqrt{-1} y, \xi + \sqrt{-1} \eta)$, resp. $(x, \sqrt{-1} \eta)$) be the variable in X (resp. T^*X , resp. T^*MX), and write also $z = (z_1, z', z'')$. Let $P(z, \frac{\partial}{\partial z})$ be a differential operator whose principal symbol $\sigma(P)$ is a quadratic form of the type:

(1.4)
$$\sigma(P) = \zeta_1^2 + A(z, \zeta') - B(z'', \zeta'')$$

with A, B homogeneous of degree 2 in ζ' and ζ'' respectively, B real on T_M^*X , $B \mid_{T_M^*X} \le 0$, $B \mid_{Z'=0} = 0$. Set $r = x_1$, $V = \{\eta_1 = \eta' = 0\}$. We claim that (1.1) holds. To see this, it is enough to show that for some positive constant c:

(1.5)
$$|\Re \zeta_1| \le_C [|\zeta'| + |\xi''| + |y''|] \text{ if } \sigma(P) = 0$$

In fact if $\xi'' = y'' = 0$ than $\Re \zeta_1^2 - \Im \zeta_1^2 + \Re A$ (z', x'', ζ') -B (x'', $\sqrt{-1}$ η'') $(=\Re \sigma(P)) = 0$ implies $|\Re \zeta_1| \leq |\Im \zeta_1| + c|\zeta'|$. If in addition one assumes $\zeta' = 0$ then $2\Re \zeta_1\Im \zeta_1(=\Im \sigma(P)) = 0$ implies $\Re \zeta_1 = 0$. By applying the local Bochner's tube theorem one then gets (1.5).

Thus for instance for $X={\bf C}^3$, $S=\{x_1=0\}$, $r=x_1$, $V=\{\eta_1=\eta_2=0\}$ and for $P(z,\frac{\partial}{\partial z})=\frac{\partial^2}{\partial z_1^2}\pm\frac{\partial^2}{\partial z_2^2}-z_3^2\frac{\partial^2}{\partial z_2^2}$, (1.1) is satisfied and then (1.2) follows for both M^\pm . In particular according to (1.3) the two traces over S of an analytic solution of P on M^\pm are microanalytic at $(0,\sqrt{-1}\ {\rm d} x_3)$.

Example (b). Let us write $\zeta = (\zeta_1, \zeta', \zeta'', \zeta''')$, set $C(\zeta_1, \zeta'') = -\zeta_1^4 + 4\sqrt{-1}\sum_i \zeta''_i^2 \zeta_1^2 + \sum_i \zeta''_i^4$, take any $D(z, \zeta')$ homogeneous (in ζ') of degree 4, and define:

$$\sigma(P) = C(\zeta_1, \zeta'') + D(z, \zeta')$$

By the change $w_1=e^{-\sqrt{-1}\frac{\pi}{4}}\zeta_1$, C becomes $w_1^4-4\sum_i\zeta_i^{"2}w_1^2+\sum_i\zeta_i^{"4}$. This polynomial is hyperbolic (irreducible) with distinct roots $w_1=\pm 2^{\frac{1}{2}}|\zeta''|$ $\left(1\pm\left(1-\frac{\sum_i\zeta_i^*}{4\left(\sum_i\zeta_i^*\right)^2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}$ (for real ζ'').

It follows that (1.1) is verified with $V = \{\eta_1 = \eta' = 0\}$ and $\theta = \frac{\pi}{4}$. In particular the four traces over S of any real analytic solution of Pu = 0 on M^{\pm} are microanalytic at any $p = (0, \sqrt{-1} \eta''')$. Note that for the above $\sigma(P)$ one could not apply neither [S-Z], [U-Z], nor [D'A-T-Z].

§2. Proof of Theorem 1.1

We take symplectic coordinates $(z, \zeta) = (x + \sqrt{-1}y; \xi + \sqrt{-1}\eta) \in T^*X$, $(x, \sqrt{-1}\eta) \in T^*MX$ such that $r = x_1$, $s = \eta_1$, $V: \eta_1 = \eta' = 0$. We put:

$$X = \mathbf{C} \times X' \times X''$$

$$M = \mathbf{R} \times M' \times M''$$

$$S = \{0\} \times M' \times M''$$

$$\widetilde{M} = \mathbf{C} \times X' \times M''$$

$$S^{\theta} = \mathbf{R} e^{\sqrt{-1} \theta} \times X' \times M''$$

$$\widetilde{M}_{1} = \mathbf{R} \times X' \times M''$$

$$\widetilde{S}_{1} = \{0\} \times X' \times M''.$$

We also set:

$$\widetilde{M}_{1}^{\pm} = \mathbf{R}^{\pm} \times X' \times M''$$

$$M^{\pm\theta} = (\widetilde{M} \setminus S^{\theta})^{\pm}.$$

It follows:

$$V = M \times_{\widetilde{M}} T_{\widetilde{M}}^* X$$

$$\widetilde{V} = T_{\widetilde{M}}^* X$$

$$W = M \times_{\widetilde{M}_1} T_{\widetilde{M}_1}^* X$$

$$\widetilde{V}^{\theta} = \left(\mathbf{C}_{z_1} \times \left(\Re e^{\sqrt{-1} \left(\frac{\pi}{2} + \theta \right)} \right)_{\zeta_1} \right) \times (X' \times \{0\}) \times T_{M}^* X''.$$

For a locally closed set $A \subseteq X$ and for the sheaf \mathcal{O}_X of holomorphic functions on X, we shall denote by $\mu_A\left(\mathcal{O}_X\right)$ the "microfunctions along A" in the sense of [K-S].

Theorem 2.1. Let (1.1) hold with $\theta \neq k\pi$, $k \in \mathbb{Z}$; then

$$(2.1) \qquad \qquad \mathsf{R}\mathcal{H}\mathit{om}(\mathcal{M},\,\mu_{\check{\mathcal{M}}_{1}}(\mathscr{O}_{X})) \cong \mathsf{R}\varGamma_{\pi^{-1}(\check{\mathcal{M}}_{1})}\mathsf{R}\mathcal{H}\mathit{om}(\mathcal{M},\,\mu_{\check{\mathcal{M}}}(\mathscr{O}_{X}))$$

(2.2)
$$R\mathcal{H}om(\mathcal{M}, \mu_{\tilde{S}_1}(\mathcal{O}_X) \cong R\Gamma_{\pi^{-1}(\tilde{S}_1)}R\mathcal{H}om(\mathcal{M}, \mu_{S^s}(\mathcal{O}_X))$$

whence

(2.3)
$$R\mathcal{H}om(\mathcal{M}, \mu_{\tilde{\mathcal{M}}}(\mathcal{O}_{X}) \cong R\Gamma_{\pi^{-1}(\tilde{\mathcal{M}})}R\mathcal{H}om(\mathcal{M}, \mu_{\mathcal{M}^{*,\bullet}}(\mathcal{O}_{X}))$$

Proof. According to [K-S, Th. 5.4.1] it is enough to prove that:

$$(2.4) H^{\mathbf{R}}(\pi^*\dot{T}_{\widetilde{M}}^*\widetilde{M}) \cap C(\operatorname{char} \mathcal{M}, T_{\widetilde{M}}^*X) = \emptyset$$

$$(2.5) H^{\mathbf{R}}(\pi^*\dot{T}_{\tilde{s}}^*S^{\theta}) \cap C(\text{char } \mathcal{M}, T_{\tilde{s}}^*X) = \emptyset$$

But (2.4) is equivalent for some c > 0 and for $(z, \zeta) \in \text{char } \mathcal{M}$ to:

(2.4')
$$|\eta_1| \le c [|\xi_1| + |\zeta'| + |\xi''| + |y''|];$$

(2.5) is equivalent to:

$$(2.5') \qquad |\Re\left(e^{\sqrt{-1}\theta}\bar{\zeta}_{1}\right)| \leq c \left[|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2} + \theta\right)}\bar{z}_{1}\right)| + |\zeta'| + |\xi''| + |u''|\right];$$

(1.1) is equivalent to:

$$(1.1') \qquad |\Re\left(e^{\sqrt{-1}\theta}\bar{\zeta}_{1}\right)| \leq c \left[\left|\zeta'\right| + \left|\xi''\right| + \left|y''\right|\right].$$

Obviously $(1.1') \Rightarrow (2.5')$. Finally $(1.1') \Rightarrow (2.4')$ due to the following Lemma (applied for $\psi = \frac{\pi}{2}$ and with $\theta \in [0,\pi[)$.

Lemma 2.2. Let $\psi \neq \theta \pm \frac{\pi}{2}$. Then (1.1') implies, for some c > 0 and for $(z, \zeta) \in \text{char } \mathcal{M}$:

$$|\Re e^{\sqrt{-1}\,\phi}\bar{\zeta}_1| \le c \left[|\Re e^{\sqrt{-1}\left(\frac{\pi}{2}+\phi\right)}\bar{\zeta}_1| + |\zeta'| + |\xi''| + |y''| \right].$$

Proof. We have

$$(2.6) \Re \left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\phi\right)}\overline{\zeta}_{1}\right) = \cos\left(\frac{\pi}{2}+\phi-\theta\right)\Re \left(e^{\sqrt{-1}\theta}\overline{\zeta}_{1}\right) + \sin\left(\frac{\pi}{2}+\phi-\theta\right)\Re \left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\overline{\zeta}_{1}\right) \\ = -\sin\left(\phi-\theta\right)\Re \left(e^{\sqrt{-1}\theta}\overline{\zeta}_{1}\right) + \cos\left(\phi-\theta\right)\Re \left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\overline{\zeta}_{1}\right) \\ = \cos\left(\phi-\theta\right)\left(\Re \left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\overline{\zeta}_{1}-\operatorname{tg}\left(\phi-\theta\right)\Re \left(e^{\sqrt{-1}\theta}\overline{\zeta}_{1}\right)\right)\right),$$

(the last equality follows from $\psi \neq \theta \pm \frac{\pi}{2}$). Assume that (1.1') is fulfilled. Let $|\Re (e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\bar{\zeta}_1)| \leq 2$ tg $(\psi-\theta)|\Re (e^{\sqrt{-1}\,\theta}\bar{\zeta}_1)|$; then $|\bar{\zeta}_1| \leq |\Re (e^{\sqrt{-1}\,\theta}\bar{\zeta}_1)| + |\Re (e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\bar{\zeta}_1)| \leq c [|\zeta'| + |\xi'| + |y''|]$. On the other hand assume $|\Re (e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\bar{\zeta}_1)| \geq 2$ tg $(\psi-\theta)|\Re (e^{\sqrt{-1}\,\theta}\bar{\zeta}_1)|$; then by (2.6):

$$|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\phi\right)}\overline{\zeta}_{1}\right)| \geq \frac{\cos\left(\phi-\theta\right)}{2}|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\overline{\zeta}_{1}\right)|,$$

which implies:

$$\begin{aligned} |\bar{\zeta}_{1}| &\leq |\Re\left(e^{\sqrt{-1}\theta}\bar{\zeta}_{1}\right)| + |\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2} + \theta\right)}\bar{\zeta}_{1}\right)| \\ &\leq_{c} \left[|\zeta'| + |\xi''| + |y''|\right] + \frac{2}{\cos(\phi - \theta)} |\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2} + \phi\right)}\bar{\zeta}_{1}\right)|. \end{aligned}$$

Let now $\widetilde{X} = (\mathbf{C} \times \mathbf{C}) \times X' \times X'' \ni (x_1^{\mathbf{C}}, y_1^{\mathbf{C}}, z', z'')$ be a partial complexification of X and let $T^*\widetilde{X} \ni (\widetilde{z}, \widetilde{\zeta}) = (x_1^{\mathbf{C}}, y_1^{\mathbf{C}}, z', z''; \xi_1^{\mathbf{C}}, \eta_1^{\mathbf{C}}, \zeta', \zeta'')$ be the cotangent bundle to \widetilde{X} . Let us cosider the embedding $j \colon X \hookrightarrow \widetilde{X}$ defined by $x_1 + \sqrt{-1} y_1 \mapsto (x_1, y_1)$ and the submersion $\phi \colon \widetilde{X} \to X$ defined by $(x_1^{\mathbf{C}}, y_1^{\mathbf{C}}) \mapsto x_1^{\mathbf{C}} + \sqrt{-1} y_1^{\mathbf{C}}$. We remark that $\phi \circ j = \mathrm{id}_X$ and that

$$j^{-1}\left(\mathcal{O}_{\widetilde{X}}^{\mathcal{M}} \otimes \tilde{\partial}_{z_{1}}\right) = \mathcal{O}_{X}^{\mathcal{M}}$$

and

(2.8) char
$$(\mathcal{M} \otimes \bar{\partial} z_1) = {}^{\mathrm{t}} \phi' \text{ char } (\mathcal{M})$$

$$= \{\,(\tilde{z},\,\tilde{\zeta}) \in T^*\tilde{X}; \ (x_1^{\rm C} + \sqrt{-1}y_1^{\rm C},\,z',\,z'';\,\xi_1^{\rm C},\,\zeta',\,\zeta'') \in \text{ char } \mathcal{M},\,\eta_1^{\rm C} = \sqrt{-1}\,\xi_1^{\rm C}\}.$$

Put

$$\widetilde{M}^{\theta} = \mathbf{C} (\cos \theta, \sin \theta) + \mathbf{R} (-\sin \theta, \cos \theta) \times X' \times M''$$

$$\widetilde{S}^{\theta} = \mathbf{C} (\cos \theta, \sin \theta) \times X' \times M''$$

$$\widetilde{M}^{\pm \theta} = (\widetilde{M}^{\theta} \setminus \widetilde{S}^{\theta})^{\pm}.$$

We have a commuting diagram

$$\begin{array}{ccc} X & \to & \widetilde{X} \\ \uparrow & & \uparrow \\ \widetilde{M} & \to & \widetilde{M}^{\theta} \\ \uparrow & & \uparrow \\ S^{\theta} & \to & \widetilde{S}^{\theta} \end{array}$$

where all the arrows are injective. Let $T^*X \stackrel{\rho}{\longleftarrow} X \times_{\widetilde{X}} T^*\widetilde{X} \stackrel{\overline{\omega}}{\longrightarrow} T^*\widetilde{X}$ be the mappings canonically associated to the embedding $X \hookrightarrow \widetilde{X}$. Note that ρ is injective over $\overline{\omega}^{-1}(\operatorname{char} \ \overline{\partial}_{n})$.

Theorem 2.3. Assume (1.1) holds with $\theta \neq k^{\frac{\pi}{2}}$, $k \in \mathbb{Z}$. Then

(2.9)

$$\mathbb{R}\mathcal{H}om(\mathcal{M}, \, \mu_{\tilde{\mathcal{M}}}(\mathcal{O}_{X})) \otimes or_{X|X}[-2] \cong \mathbb{R}\rho_{*}\overline{\omega}^{-1}\mathbb{R}\Gamma_{\pi^{-1}(\tilde{\mathcal{M}})}\mathbb{R}\mathcal{H}om(\mathcal{M} \otimes \bar{\partial}z_{1}, \, \mu_{\tilde{\mathcal{M}}^{\bullet}}(\mathcal{O}_{\tilde{X}}))$$
(2.10)

$$\mathbb{R}\mathcal{H}om(\mathcal{M}, \mu_{S^0}(\mathcal{O}_X)) \otimes_{\partial Y_{X^{|S|}}} [-2] \cong \mathbb{R}o_*\bar{\omega}^{-1}\mathbb{R}\Gamma_{\pi^{-1}(S^0)}\mathbb{R}\mathcal{H}om(\mathcal{M}\otimes\bar{\partial}_{Z_1}, \mu_{\tilde{S}^0}(\mathcal{O}_{\tilde{X}}))$$

which implies

(2.11)

$$\mathrm{R}\mathcal{H}\mathit{om}(\mathcal{M},\,\mu_{\mathcal{M}^{\mathrm{ad}}}(\mathcal{O}_{\mathbf{X}})\,)\otimes_{\mathit{OT}_{\mathbf{X}|\bar{\mathbf{X}}}}[-2] \cong \mathrm{R}\rho_{\mathbf{X}}\bar{\omega}^{-1}\mathrm{R}\varGamma_{\pi^{-1}(\widetilde{\mathbf{M}}_{\mathbf{I}})}\mathrm{R}\mathcal{H}\mathit{om}(\mathcal{M}\otimes\bar{\partial}z_{1},\,\mu_{\check{\mathcal{M}}^{\mathrm{ad}}}(\mathcal{O}_{\check{\mathbf{X}}})\,)\,.$$

Proof. We shall assume $\theta \in]0$, $\pi [$, $\theta \neq \frac{\pi}{2}$ in the proof. By [K-S, Th. 5.4.1] one needs to show that

$$(2.12) H^{\mathbf{R}}(\pi^*\dot{T}_{\tilde{M}}^*\tilde{M}^{\theta}) \cap C(\operatorname{char} \mathcal{M} \otimes \bar{\partial}_{z_1}, T_{\tilde{M}^{\theta}}^*\tilde{X}) = \emptyset$$

$$(2.13) H^{\mathbf{R}}(\pi^* \dot{T}_{\tilde{e}}^* \tilde{S}^{\theta}) \cap C(\operatorname{char} \mathcal{M} \otimes \bar{\partial} z_1, T_{\tilde{e}}^* \tilde{X}) = \emptyset.$$

But (2.12) is equivalent, for $(\widetilde{z}, \widetilde{\zeta}) \in \operatorname{char} (\mathcal{M} \otimes \overline{\partial} z_1)$, to:

(2.12')

$$\begin{aligned} &|\cos\theta\Im\xi_{1}^{\mathsf{C}} + \sin\theta\Im\eta_{1}^{\mathsf{C}}| \le c \left[|\cos\theta\Im\xi_{1}^{\mathsf{C}} + \sin\theta\Im\eta_{1}^{\mathsf{C}}| \right. \\ &+ \left| -\sin\theta\Im\xi_{1}^{\mathsf{C}} + \cos\theta\Im\eta_{1}^{\mathsf{C}}| + \left| -\sin\theta\Im x_{1}^{\mathsf{C}} + \cos\theta\Im y_{1}^{\mathsf{C}}| + \left| \zeta'' \right| + \left| y'' \right| \right], \end{aligned}$$

and (2.13) to:

(2.13')

$$\begin{aligned} &|\cos\theta\Im\xi_1^{\mathrm{C}} + \sin\theta\Im\eta_1^{\mathrm{C}}| \le c \left[|\cos\theta\Re\xi_1^{\mathrm{C}} + \sin\theta\Re\eta_1^{\mathrm{C}}| + \\ &|-\sin\thetax_1^{\mathrm{C}} + \cos\theta y_1^{\mathrm{C}}| + |\zeta'| + |\xi''| + |y''| \right]. \end{aligned}$$

Recall (2.8); in particular ξ_1^c and η_1^c are related by $\eta_1^c = \sqrt{-1} \xi_1^c$ and thus (2.12') is trivial. As for (2.13'), this easily follows from

$$(2.14) \pm \Re\left(e^{\sqrt{-1}(\frac{\pi}{2}-\theta)}\partial_{r}\right) \notin C\left(\operatorname{char} \mathcal{M}, T_{\widetilde{\alpha}}^{*}X\right)$$

which holds by Lemma 2.2 applied with $\theta \in [0, \pi[$ and for $\psi = \frac{\pi}{2} - \theta \neq \theta \pm \frac{\pi}{2}]$ (due to $\theta \neq 0, \frac{\pi}{2}$).

End of Proof of Theorem 1.1 (a) Let $\theta \in [0,\pi[$, $\theta \neq 0, \frac{\pi}{2}$. Using (2.3), (2.11) we get:

(2.15)

$$\mathbb{R}\mathcal{H}om(\mathcal{M}, \, \mu_{\tilde{\mathcal{M}}_{1}^{\pm}}(\tilde{\mathcal{O}}_{X})) \otimes_{OT_{X|\hat{X}}} [-2] \cong \mathbb{R}\rho_{*}\bar{\omega}^{-1}\mathbb{R}\Gamma_{\pi^{-1}(\tilde{\mathcal{M}}_{1})}\mathbb{R}\mathcal{H}om(\mathcal{M} \otimes \bar{\partial}z_{1}, \, \mu_{\tilde{\mathcal{M}}^{\pm\beta}}(\tilde{\mathcal{O}}_{\tilde{X}})).$$

On the other hand, set $\pm w = \pi^* \dot{T}_{\tilde{S}^{\theta}}^* \tilde{M}^{\theta}$; then we have:

(2.16)
$$H_{\mathbf{R}}(\pm w) \notin C(\operatorname{char} \mathcal{M} \otimes \bar{\partial} z_1, \operatorname{SS} \mathbf{Z}_{\tilde{M}^{\pm \delta}})$$

(with SS denoting the microsupport in the sense of [K-S]). In fact we have SS $\mathbf{Z}_{\tilde{M}^{\pm \theta}} = (T_{\tilde{M}^{\theta}}^{*}\tilde{X})^{\pm} \mp \mathbf{R}^{+}H^{\mathbf{R}}(w)$ where we have put $(T_{\tilde{M}^{\theta}}^{*}\tilde{X})^{\pm} \stackrel{\text{def.}}{=} \tilde{M}^{\pm \theta} \times_{\tilde{M}^{\theta}} T_{\tilde{M}^{\theta}}^{*}\tilde{X}$. On the other hand, if Γ is an open convex conic neighborhood of $H^{\mathbf{R}}(w)$ such that $((T_{\tilde{M}^{\theta}}^{*}\tilde{X})^{\pm} \mp \Gamma) \cap \text{char } (\mathcal{M} \otimes \bar{\partial}z_{1}) = \emptyset$, then also $(((T_{\tilde{M}^{\theta}}^{*}\tilde{X})^{\pm} \mp \mathbf{R}^{+}H^{\mathbf{R}}(w)) \mp \Gamma) \cap \text{char } (\mathcal{M} \otimes \bar{\partial}z_{1}) = \emptyset$ due to $\mathbf{R}^{+}H^{\mathbf{R}}(w) + \Gamma \subset \Gamma$.

By the theory of the propagation by [K-S] one gets from (2.16):

(2.17)
$$R\Gamma_{\pi^{-1}(\tilde{S}^{0})}R\mathcal{H}om(\mathcal{M}\otimes\bar{\partial}z_{1},\,\mu_{\tilde{M}^{z,0}}\mathcal{O}_{\tilde{X}})=\emptyset.$$

Thus applying the functor $R\Gamma_{\pi^{-1}(M)}(\cdot)\otimes or_{M|X}[n+2]$, using (2.15), and recalling that $\mathscr{B}^{2}_{M^{+}|X}\stackrel{\text{def.}}{=} R\Gamma_{\pi^{-1}(M)}\mu_{\tilde{M}_{1}}(\mathscr{O}_{X})\otimes or_{M|X}[n]$ one gets (1.2). (b) Let $\theta=0$ (cf. [U-Z]). By the theory of propagation of [K-S] we get immediately in this case:

$$\mathbf{R} \mathbf{\Gamma}_{\pi^{-1}(\widetilde{S}_1)} \mathbf{R} \mathcal{H}om(\mathcal{M}, \mu_{\widetilde{M}_{\overline{1}}}(\mathcal{O}_{\mathbf{X}})) = 0.$$

DIP DI MATEMATICA, UNIV. DI PADOVA, VIA BELZONI 7, 35131 PADOVA, ITALY

References

- [Kat] K. Kataoka, Microlocal theory of boundary value problems I, J. Fac. Sci. Univ. Tokyo Sect. 1A Math., 35 (1980), 355-399; II, ibid., 28 (1981), 31-56.
- [K] M. Kashiwara, Talks in Nice (1972).
- [K-S] M. Kashiwara, and P. Schapira, Microlocal study of sheaves, Astérisque, vol. 128 1985.
- P. Schapira, Front d'onde analytique au bord I and II, C. R. Acad. Sci. Paris, 302-10.
 (1986), 383-386; Sém. E. D. P. Ecole Polyt. Exp., 13 (1986).
- [Sj] J. Siöstrand Singularités Analytiques Microlocales, Astérisque, 95 (1982).
- [S-Z] P. Schapira and G. Zampieri, Regularity at the boundary for systems of microdifferential equations, Pitman Res. Notes in Math. 158 (1987), 186-201.
- [S-K-K] M. Sato, M. Kashiwara, and T. Kawai, Hyperfunctions and pseudodifferential equations, Springer Lecture Notes in Math. vol. 287, 1973, 265-529.

- [U-Z] M. Uchida, and G. Zampieri, Second microlocalization at the boundary and microhyperbolicity, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 26 (1990), 205-219.
- [D'A-T-Z] P. D'Ancona, N. Tose and G. Zampieri, Propagation of singularities up to the boundary along leaves, Comm. in Partial Differential Equations, 15-4 (1990), 453-460.