On 2-microhyperbolicity at the boundary

By
Francesco Tonin and Giuseppe Zampieri

§1. Statement of the result

Let M be a real analytic manifold, X a complexification of M, S a real analytic hypersurface of $M, M^{ \pm}$the two open components of $M \backslash S$. Let $T^{*} X$ denote the complex tangent bundle to X endowed with the canonical 1-form α and 2 -form $\sigma=\mathrm{d} \alpha$, and let H be the Hamiltonian isomorphism. Let $T^{*} X^{\mathbf{R}}$ (resp. $T^{*} X^{\mathbf{I}}$) denote the real underlying manifold to $T^{*} X$ endowed with the forms $\alpha^{\mathbf{R}}=\Re \alpha$ and $\sigma^{\mathbf{R}}=\mathfrak{\Re} \sigma$ (resp. $\alpha^{\mathfrak{I}}=\mathfrak{I} \alpha$ and $\sigma^{\mathfrak{I}}=\mathfrak{I} \sigma$), and let $H^{\mathbf{R}}$ (resp H^{I}) denote the corresponding Hamiltonian isomorphisms. Let V be a smooth regular (i. e. $\left.\alpha\right|_{V} \neq 0$) involutive submanifold of $T_{M}^{*} X$ and denote by \widetilde{V} the union of the complexifications of the bicharacteristic leaves of V. Assume there are analytic functions r, s on $T_{M}^{*} X$ such that.

$$
\left.s\right|_{V}=\left.r\right|_{S \times_{{ }_{W}} \tau_{\mu} X X}=0, \quad\{s, r\} \equiv 1 .
$$

Let \widetilde{V}^{θ} be the union of the integral leaves of $\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} H_{r c}\right)$ issued from \widetilde{V} and let W denote the union of the leaves of $\Re\left(e^{\sqrt{-1} \frac{\pi}{2}} H_{r}\right)$ issued from V. Let $\mathscr{B}_{M^{+} \mid X}^{2}=\mathscr{B}_{M^{*} \mid X}^{2}{ }^{W}$ be the complex of 2-hyperfunctions at the boundary along W in the sense of $[\mathrm{U}-\mathrm{Z}]$. Let \mathcal{M} be a coherent \mathscr{E}_{X}-module (a pseudo-differetial system).

Theorem 1.1. Assume that there exists $\theta \in[-\pi, \pi], \theta \neq \pm \frac{\pi}{2}$ such that

$$
\begin{equation*}
\pm \Re\left(e^{\sqrt{-1} \theta} H_{r} c\right) \notin C\left(\operatorname{char} \mathcal{M}, \widetilde{V}^{\theta}\right) \tag{1.1}
\end{equation*}
$$

(with $C(\cdot, \cdot$) being the normal cone by $[\mathrm{K}-\mathrm{S}])$. Then

$$
\begin{equation*}
\mathrm{R} \Gamma_{\pi^{-1}(S)} \mathrm{R} \mathscr{H} \circ m\left(\mathcal{M}, \mathscr{B}_{M^{+\mid X} \mid}^{2}\right)=0 . \tag{1.2}
\end{equation*}
$$

Remark that $\left.\mathscr{C}_{M^{ \pm} \mid X X}\right|_{W^{W}} \rightarrow \mathscr{B}_{M^{+} \mid X}^{2}$ is injective when restriced to solutions of \mathcal{M}. In fact (1.1) implies non-characteristicity of S for the system \mathcal{M}, so that [$\mathrm{U}-\mathrm{Z}$] can be applied. This gives $M^{ \pm}$-regularity in the sense of [S]:

Corollary 1.2. Let (1.1) hold with $\theta \neq \pm \frac{\pi}{2}$. Then

$$
\begin{equation*}
\left.\Gamma_{\pi^{-1}(S)} \mathscr{H} o m\left(\mathcal{M}, \mathscr{C}_{M^{+} \mid X}\right)\right|_{W}=0 . \tag{1.3}
\end{equation*}
$$

Example (a). Let $z=x+\sqrt{-1} y$ (resp. $(z, \zeta)=(x+\sqrt{-1} y$, $\xi+\sqrt{-1} \eta$), resp. $(x, \sqrt{-1} \eta)$) be the variable in X (resp. $T^{*} X$, resp. $\left.T_{M}^{*} X\right)$, and write also $z=\left(z_{1}, z^{\prime}, z^{\prime \prime}\right)$. Let $P\left(z, \frac{\partial}{\partial_{z}}\right)$ be a differential operator whose principal symbol $\sigma(P)$ is a quadratic form of the type:

$$
\begin{equation*}
\sigma(P)=\zeta_{1}^{2}+A\left(z, \zeta^{\prime}\right)-B\left(z^{\prime \prime}, \zeta^{\prime \prime}\right) \tag{1.4}
\end{equation*}
$$

with A, B homogeneous of degree 2 in ζ^{\prime} and $\zeta^{\prime \prime}$ respectively, B real on $T_{M}^{*} X, B$ $\left.\right|_{T_{H}^{*} X} \leq 0,\left.B\right|_{z^{*}=0}=0$. Set $r=x_{1}, V=\left\{\eta_{1}=\eta^{\prime}=0\right\}$. We claim that (1.1) holds. To see this, it is enough to show that for some positive constant c :

$$
\begin{equation*}
\left|\Re \zeta_{1}\right| \leq c\left[\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right] \text { if } \sigma(P)=0 \tag{1.5}
\end{equation*}
$$

In fact if $\xi^{\prime \prime}=y^{\prime \prime}=0$ than $\Re \zeta_{1}^{2}-\Im \zeta_{1}^{2}+\Re A\left(z^{\prime}, x^{\prime \prime}, \zeta^{\prime}\right)-B\left(x^{\prime \prime}, \sqrt{-1} \eta^{\prime \prime}\right)$ $(=\Re \sigma(P))=0$ implies $\left|\Re \zeta_{1}\right| \leq\left|\mathfrak{F} \zeta_{1}\right|+c\left|\zeta^{\prime}\right|$. If in addition one assumes $\zeta^{\prime}=0$ then $2 \Re \zeta_{1} \Im \zeta_{1}(=\mathfrak{F} \sigma(P))=0$ implies $\mathfrak{\Re} \zeta_{1}=0$. By applying the local Bochner's tube theorem one then gets (1.5).

Thus for instance for $X=\mathbf{C}^{3}, S=\left\{x_{1}=0\right\}, r=x_{1}, V=\left\{\eta_{1}=\eta_{2}=0\right\}$ and for $P\left(z, \frac{\partial}{\partial z}\right)=\frac{\partial^{2}}{\partial z_{2}^{2}} \pm \frac{\partial^{2}}{\partial z_{2}^{2}}-z_{3}^{2} \frac{\partial^{2}}{\partial z^{2}}$, (1.1) is satisfied and then (1.2) follows for both $M^{ \pm}$. In particular according to (1.3) the two traces over S of an analytic solution of P on $M^{ \pm}$are microanalytic at $\left(0, \sqrt{-1} \mathrm{~d} x_{3}\right)$.

Example (b). Let us write $\zeta=\left(\zeta_{1}, \zeta^{\prime}, \zeta^{\prime \prime}, \zeta^{\prime \prime \prime}\right)$, set $C\left(\zeta_{1}, \zeta^{\prime \prime}\right)=-\zeta_{1}^{4}+$ $4 \sqrt{-1} \sum_{i} \zeta^{\prime \prime}{ }_{i} \zeta_{1}^{2}+\sum_{i} \zeta^{\prime \prime}{ }_{i}{ }^{2}$, take any $D\left(z, \zeta^{\prime}\right)$ homogeneous (in ζ^{\prime}) of degree 4, and define:

$$
\sigma(P)=C\left(\zeta_{1}, \zeta^{\prime \prime}\right)+D\left(z, \zeta^{\prime}\right)
$$

By the change $w_{1}=e^{-\sqrt{-1} \frac{\pi}{4}} \zeta_{1}, C$ becomes $u_{1}^{4}-4 \sum_{i} \zeta_{i}^{\prime \prime}{ }_{i}^{2} w_{1}^{2}+\sum_{i} \zeta_{i}^{\prime \prime}{ }_{i}$. This polynomial is hyperbolic (irreducible) with distinct roots $w_{1}= \pm 2^{\frac{1}{2}}\left|\zeta^{\prime \prime}\right|$ $\left(1 \pm\left(1-\frac{\Sigma, \zeta_{1}^{\prime} i}{4\left(\Sigma \zeta^{2}\right)^{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\left(\right.$ for real $\left.\zeta^{\prime \prime}\right)$.
It follows that (1.1) is verified with $V=\left\{\eta_{1}=\eta^{\prime}=0\right\}$ and $\theta=\frac{\pi}{4}$. In particular the four traces over S of any real analytic solution of $P u=0$ on $M^{ \pm}$are microanalytic at any $p=\left(0, \sqrt{-1} \eta^{\prime \prime}\right)$. Note that for the above $\sigma(P)$ one could not apply neither $[S-Z],[U-Z]$, nor $\left[D^{\prime} A-T-Z\right]$.

§2. Proof of Theorem 1.1

We take symplectic coordinates $(z, \zeta)=(x+\sqrt{-1} y ; \xi+\sqrt{-1} \eta) \in T^{*} X$, $(x, \sqrt{-1} \eta) \in T_{M}^{*} X$ such that $r=x_{1}, s=\eta_{1}, V: \eta_{1}=\eta^{\prime}=0$. We put:

$$
\begin{aligned}
& X=\mathbf{C} \times X^{\prime} \times X^{\prime \prime} \\
& M=\mathbf{R} \times M^{\prime} \times M^{\prime \prime} \\
& S=\{0\} \times M^{\prime} \times M^{\prime \prime} \\
& \widetilde{M}=\mathbf{C} \times X^{\prime} \times M^{\prime \prime} \\
& S^{\theta}=\mathbf{R} e^{\sqrt{-1} \theta} \times X^{\prime} \times M^{\prime \prime} \\
& \widetilde{M}_{1}=\mathbf{R} \times X^{\prime} \times M^{\prime \prime} \\
& \widetilde{S}_{1}=\{0\} \times X^{\prime} \times M^{\prime \prime} .
\end{aligned}
$$

We also set:

$$
\begin{aligned}
& \widetilde{M}_{1}^{ \pm}=\mathbf{R}^{ \pm} \times X^{\prime} \times M^{\prime \prime} \\
& M^{ \pm \theta}=\left(\widetilde{M} \backslash S^{\theta}\right)^{ \pm}
\end{aligned}
$$

It follows:

$$
\begin{aligned}
& V=M \times \widetilde{H}_{M}^{*} X \\
& \widetilde{V}=T_{\tilde{M}}^{*} X \\
& W=M \times_{\tilde{M}_{1}} T_{M_{1}}^{*} X \\
& \widetilde{V}^{\theta}=\left(\mathbf{C}_{z_{1}} \times\left(\Re e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)}\right)_{\zeta_{1}}\right) \times\left(X^{\prime} \times\{0\}\right) \times T_{M}^{*} X^{\prime \prime}
\end{aligned}
$$

For a locally closed set $A \subset X$ and for the sheaf \mathscr{O}_{X} of holomorphic functions on X, we shall denote by $\mu_{A}\left(\mathscr{O}_{X}\right)$ the "microfunctions along A " in the sense of [$\mathrm{K}-\mathrm{S}$].

Theorem 2.1. Let (1.1) hold with $\theta \neq k \pi, \quad k \in \mathbf{Z}$; then

$$
\begin{align*}
& \operatorname{RHom}\left(\mathcal{M}, \mu_{\bar{M}_{1}}\left(\mathscr{O}_{X}\right)\right) \simeq \mathrm{R} \Gamma_{\pi^{-1}\left(\overline{\mathcal{M}}_{1}\right)} \mathrm{RH} \text { om }\left(\mathscr{M}, \mu_{\bar{M}^{(}}\left(\mathscr{O}_{X}\right)\right) \tag{2.1}\\
& \mathrm{R} \mathscr{H} \circ m\left(\mathcal{M}, \mu_{\tilde{S}_{1}}\left(\mathscr{O}_{X}\right) \leadsto \mathrm{R} \Gamma_{\pi^{-1}\left(\tilde{S}_{1}\right)} \mathrm{R} \mathscr{H} \circ m\left(\mathcal{M}, \mu_{S^{s}}\left(\mathscr{O}_{X}\right)\right)\right. \tag{2.2}
\end{align*}
$$

whence

$$
\begin{equation*}
\mathrm{R} \mathscr{H} \circ m\left(\mathcal{M}, \mu_{\tilde{M}_{\dot{H}}}\left(\mathscr{O}_{X}\right) \simeq \mathrm{R} \Gamma_{\pi^{-4}\left(\tilde{H}_{1}\right)} \mathrm{R} \mathscr{H} \circ m\left(\mathcal{M}, \mu_{\mathbb{M}^{\bullet 0}}\left(\mathscr{O}_{X}\right)\right)\right. \tag{2.3}
\end{equation*}
$$

Proof. According to $[\mathrm{K}-\mathrm{S}, \mathrm{Th} .5 .4 .1]$ it is enough to prove that:

$$
\begin{align*}
& H^{\mathbf{R}}\left(\pi^{*} \dot{T}_{M_{1}}^{*} \widetilde{M}\right) \cap C\left(\operatorname{char} \mathcal{M}, T_{M}^{*} X\right)=\varnothing \tag{2.4}\\
& H^{\mathbf{R}}\left(\pi^{*} \dot{T}_{S_{5}^{\prime}}^{*} S^{\theta}\right) \cap C\left(\operatorname{char} \mathcal{M}, T_{S^{*} X}^{*} X\right)=\varnothing \tag{2.5}
\end{align*}
$$

But (2.4) is equivalent for some $c>0$ and for $(z, \zeta) \in$ char \mathcal{M} to:

$$
\left|\eta_{1}\right| \leq c\left[\left|\xi_{1}\right|+\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right] ;
$$

(2.5) is equivalent to:

$$
\begin{equation*}
\left|\Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right| \leq c\left[\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} \overline{z_{1}}\right)\right|+\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right] ; \tag{2.5'}
\end{equation*}
$$

(1.1) is equivalent to:

$$
\begin{equation*}
\left|\Re\left(\mathrm{e}^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right| \leq c\left[\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right] . \tag{1.1'}
\end{equation*}
$$

Obviously $\left(1.1^{\prime}\right) \Rightarrow\left(2.5^{\prime}\right)$. Finally $\left(1.1^{\prime}\right) \Rightarrow\left(2.4^{\prime}\right)$ due to the following Lemma (applied for $\psi=\frac{\pi}{2}$ and with $\theta \in[0, \pi[$).

Lemma 2.2. Let $\phi \neq \theta \pm \frac{\pi}{2}$. Then (1.1') implies, for some $c>0$ and for $(z, \zeta) \in \operatorname{char} \mathcal{M}:$

$$
\left|\Re e^{\sqrt{-1} \psi} \bar{\zeta}_{1}\right| \leq c\left[\left|\Re e^{\sqrt{-1}\left(\frac{\pi}{2}+\varphi\right)} \bar{\zeta}_{1}\right|+\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right] .
$$

Proof. We have

$$
\begin{align*}
\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\varphi\right)} \bar{\zeta}_{1}\right) & =\cos \left(\frac{\pi}{2}+\phi-\theta\right) \Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)+\sin \left(\frac{\pi}{2}+\phi-\theta\right) \Re\left(e^{\sqrt{-1}}\left(\frac{\pi}{2}+\theta\right) \bar{\zeta}_{1}\right) \tag{2.6}\\
& =-\sin (\psi-\theta) \Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)+\cos (\psi-\theta) \Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} \bar{\zeta}_{1}\right) \\
& =\cos (\psi-\theta)\left(\Re\left(e^{\sqrt{-1}}\left(\frac{\pi}{2}+\theta\right) \bar{\zeta}_{1}-\operatorname{tg}(\phi-\theta) \Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right),\right.
\end{align*}
$$

(the last equality follows from $\psi \neq \theta \pm \frac{\pi}{2}$). Assume that (1.1') is fulfilled. Let $\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} \bar{\zeta}_{1}\right)\right| \leq 2 \operatorname{tg}(\psi-\theta)\left|\Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right|$; then $\left|\bar{\zeta}_{1}\right| \leq\left|\Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right|+$ $\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} \bar{\zeta}_{1}\right)\right| \leq_{c}\left[\left|\zeta^{\prime}\right|+\left|\xi^{\prime}\right|+\left|y^{\prime \prime}\right|\right]$. On the other hand assume $\left|\Re\left(e^{\sqrt{-1}}\left(\frac{\pi}{2}+\theta\right) \bar{\zeta}_{1}\right)\right| \geq 2 \operatorname{tg}(\psi-\theta)\left|\Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right| ;$ then by (2.6):

$$
\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\psi\right)} \bar{\zeta}_{1}\right)\right| \geq \frac{\cos (\psi-\theta)}{2}\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} \bar{\zeta}_{1}\right)\right|,
$$

which implies:

$$
\begin{aligned}
\left|\bar{\zeta}_{1}\right| & \leq\left|\Re\left(e^{\sqrt{-1} \theta} \bar{\zeta}_{1}\right)\right|+\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\theta\right)} \bar{\zeta}_{1}\right)\right| \\
& \leq c\left[\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right]+\frac{2}{\cos (\varphi-\theta)}\left|\Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}+\psi\right)} \bar{\zeta}_{1}\right)\right| .
\end{aligned}
$$

Let now $\widetilde{X}=(\mathbf{C} \times \mathbf{C}) \times X^{\prime} \times X^{\prime \prime} \ni\left(x_{1}^{\mathbf{c}}, y_{1}^{\mathrm{C}}, z^{\prime}, z^{\prime \prime}\right)$ be a partial complexification of X and let $T^{*} \tilde{X} \ni(\widetilde{z}, \tilde{\zeta})=\left(x_{1}^{\mathrm{C}}, y_{1}^{\mathrm{C}}, z^{\prime}, z^{\prime \prime} ; \xi_{1}^{\mathrm{C}}, \eta_{1}^{\mathrm{C}}, \zeta^{\prime}, \zeta^{\prime \prime}\right)$ be the cotangent bundle to \widetilde{X}. Let us cosider the embedding $j: X \hookrightarrow \widetilde{X}$ defined by $x_{1}+\sqrt{-1} y_{1} \mapsto\left(x_{1}\right.$, y_{1}) and the submersion $\phi: \widetilde{X} \rightarrow X$ defined by $\left(x_{1}^{\mathrm{C}}, y_{1}^{\mathrm{C}}\right) \mapsto x_{1}^{\mathrm{C}}+\sqrt{-1} y_{1}^{\mathrm{C}}$. We remark that $\phi \circ j=\mathrm{id}_{X}$ and that

$$
\begin{equation*}
j^{-1}\left(\mathscr{O}_{\bar{X}}^{\mu \otimes \bar{\alpha}_{1}}\right)=\mathscr{O}_{X}^{\mu} \tag{2.7}
\end{equation*}
$$

and
(2.8) $\operatorname{char}\left(\mathcal{M} \otimes \bar{\partial} z_{1}\right)={ }^{\mathrm{t}} \phi^{\prime} \operatorname{char}(\mathcal{M})$

$$
=\left\{(\tilde{z}, \tilde{\zeta}) \in T^{*} \tilde{X} ;\left(x_{1}^{\mathrm{C}}+\sqrt{-1} y_{1}^{\mathrm{C}}, z^{\prime}, z^{\prime \prime} ; \xi_{1}^{\mathrm{C}}, \zeta^{\prime}, \zeta^{\prime \prime}\right) \in \operatorname{char} \mathcal{M}, \eta_{1}^{\mathrm{C}}=\sqrt{-1} \xi_{1}^{\mathrm{C}}\right\}
$$

Put

$$
\begin{aligned}
& \widetilde{M}^{\theta}=\mathbf{C}(\cos \theta, \sin \theta)+\mathbf{R}(-\sin \theta, \cos \theta) \times X^{\prime} \times M^{\prime \prime} \\
& \widetilde{S}^{\theta}=\mathbf{C}(\cos \theta, \sin \theta) \times X^{\prime} \times M^{\prime \prime} \\
& \widetilde{M}^{ \pm \theta}=\left(\widetilde{M}^{\theta} \backslash \widetilde{S}^{\theta}\right)^{ \pm} .
\end{aligned}
$$

We have a commuting diagram

$$
\begin{array}{ccc}
X & \rightarrow & \widetilde{X} \\
\uparrow & & \uparrow \\
\widetilde{M} & \rightarrow & \widetilde{M}^{\theta} \\
\uparrow & & \uparrow \\
S^{\theta} & \rightarrow & \widetilde{S^{\theta}}
\end{array}
$$

where all the arrows are injective. Let $T^{*} X \stackrel{\rho}{\leftarrow} X \times \underset{\bar{x}}{ } T^{*} \tilde{X} \xrightarrow{\bar{\omega}} T^{*} \tilde{X}$ be the mappings canonically associated to the embedding $X \hookrightarrow \widetilde{X}$. Note that ρ is injective over $\bar{\omega}^{-1}\left(\right.$ char $\left.\quad \bar{\partial}_{2_{1}}\right)$.

Theorem 2.3. Assume (1.1) holds with $\theta \neq k \frac{\pi}{2}, \quad k \in \mathbf{Z}$. Then
 (2.10)
 which implies
(2.11)
$\mathrm{R} \mathscr{H}$ om $\left(\mathcal{M}, \mu_{\mathcal{M}^{*}}\left(\mathscr{O}_{X}\right)\right) \otimes_{o r_{X \mid X}}[-2] \leadsto \mathrm{R} \rho_{*} \bar{\omega}^{-1} \mathrm{R} \Gamma_{\pi^{-1}\left(\tilde{M}_{1}\right)} \mathrm{RH}$ om $\left(\mathcal{M} \otimes \bar{\partial} z_{1}, \mu_{\bar{M}^{+}}\left(\mathscr{O}_{\tilde{X}}\right)\right)$.
Proof. We shall assume $\theta \in] 0, \pi\left[, \quad \theta \neq \frac{\pi}{2}\right.$ in the proof. By [K-S, Th. 5.4.1] one needs to show that

$$
\begin{align*}
& H^{\mathbf{R}}\left(\pi^{*} \dot{T}_{M}^{*} \tilde{M}^{\theta}\right) \cap C\left(\operatorname{char} \mathcal{M} \otimes \bar{\partial} z_{1}, T_{\tilde{M}^{*}}^{*} \tilde{X}\right)=\not \varnothing \tag{2.12}\\
& H^{\mathbf{R}}\left(\pi^{*} \dot{T}_{S^{*}}^{*} \tilde{S}^{\theta}\right) \cap C\left(\operatorname{char} \mathcal{M} \otimes \bar{\partial} z_{1}, T_{S^{*}}^{*} \tilde{X}\right)=\not \subset . \tag{2.13}
\end{align*}
$$

But (2.12) is equivalent, for $(\widetilde{z}, \tilde{\zeta}) \in \operatorname{char}\left(\mathcal{M} \otimes \bar{\partial} z_{1}\right)$, to:

$$
\begin{gather*}
\left|\cos \theta \mathfrak{J} \xi_{1}^{\mathrm{C}}+\sin \theta \mathfrak{J} \eta_{1}^{\mathrm{C}}\right| \leq c\left[\left|\cos \theta \Re \xi_{1}^{\mathrm{C}}+\sin \theta \Re \eta_{1}^{\mathrm{C}}\right|\right. \tag{2.12'}\\
\left.+\left|-\sin \theta \Re \xi_{1}^{\mathrm{C}}+\cos \theta \Re \eta_{1}^{\mathrm{C}}\right|+\left|-\sin \theta \mathfrak{J} x_{1}^{\mathrm{C}}+\cos \theta \mathfrak{J} y_{1}^{\mathrm{C}}\right|+\left|\zeta^{\prime}\right|+\left|\zeta^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right]
\end{gather*}
$$

and (2.13) to:

$$
\begin{align*}
& \left|\cos \theta \mathfrak{J} \xi_{1}^{\mathrm{C}}+\sin \theta \mathfrak{J}_{1}^{\mathrm{C}}\right| \leq c\left[\left|\cos \theta \Re \xi_{1}^{\mathrm{C}}+\sin \theta \Re \eta_{1}^{\mathrm{C}}\right|+\right. \tag{2.13'}\\
& \left.\left|-\sin \theta x_{1}^{\mathrm{C}}+\cos \theta y_{1}^{\mathrm{C}}\right|+\left|\zeta^{\prime}\right|+\left|\xi^{\prime \prime}\right|+\left|y^{\prime \prime}\right|\right] .
\end{align*}
$$

Recall (2.8) ; in particular ξ_{1}^{C} and η_{1}^{C} are related by $\eta_{1}^{\mathrm{C}}=\sqrt{-1} \xi_{1}^{\mathrm{C}}$ and thus (2.12') is trivial. As for (2.13'), this easily follows from

$$
\begin{equation*}
\pm \Re\left(e^{\sqrt{-1}\left(\frac{\pi}{2}-\theta\right)} \partial_{\zeta_{1}}\right) \notin C\left(\operatorname{char} \mathcal{M}, T_{\tilde{M}}^{*} X\right) \tag{2.14}
\end{equation*}
$$

which holds by Lemma 2.2 applied with $\theta \in\left[0, \pi\left[\right.\right.$ and for $\psi=\frac{\pi}{2}-\theta \neq \theta \pm \frac{\pi}{2}$ (due to $\theta \neq 0, \frac{\pi}{2}$).

End of Proof of Theorem 1.1 (a) Let $\theta \in\left[0, \pi\left[, \theta \neq 0, \frac{\pi}{2}\right.\right.$. Using (2.3), (2.11) we get:
$\operatorname{RH} \operatorname{om}\left(\mathcal{M}, \mu_{\mathcal{M}_{\dot{*}}}\left(\mathscr{O}_{X}\right)\right) \otimes_{o r_{X \mid \dot{X}}}[-2] \simeq \mathrm{R} \rho_{*} \bar{\omega}^{-1} \mathrm{R} \Gamma_{\pi^{-1}\left(\tilde{M}_{i}\right)} \mathrm{RH}$ om $\left(\mathcal{M} \otimes \bar{\partial} z_{1}, \mu_{\tilde{\mathcal{M}}^{ \pm}}\left(\mathscr{O}_{\tilde{X}}\right)\right)$.
On the other hand, set $\pm w=\pi * \dot{T}_{\bar{S}^{\circ}}^{*} \tilde{M}^{\theta}$; then we have:

$$
\begin{equation*}
H_{\mathbf{R}}(\pm w) \notin C\left(\operatorname{char} \mathscr{M} \otimes \bar{\partial}_{z_{1}}, \operatorname{SS} \mathbf{Z}_{\tilde{M}^{+}}\right) \tag{2.16}
\end{equation*}
$$

(with SS denoting the microsupport in the sense of $[\mathrm{K}-\mathrm{S}]$). In fact we have
$\mathrm{SS} \mathbf{Z}_{\tilde{M}^{ \pm 0}}=\left(T_{\tilde{M}^{\circ}}^{*} \tilde{X}\right)^{ \pm} \mp \mathbf{R}^{+} H^{\mathbf{R}}(w)$ where we have put $\left(T_{\tilde{M}^{\prime}}^{*} \tilde{X}\right) \pm: \stackrel{\text { def. }}{=} \tilde{M}^{ \pm \theta} \times \tilde{M}^{0} T_{\tilde{M}^{0}}^{*} \tilde{X}$. On the other hand, if Γ is an open convex conic neighborhood of $H^{\mathbf{R}}(w)$ such that $\left(\left(T_{\tilde{\mathcal{M}^{\circ}}}^{*} \tilde{X}\right)^{ \pm} \mp \Gamma\right) \cap \operatorname{char}\left(\mathcal{M} \otimes \bar{\partial} z_{1}\right)=\varnothing$, then also $\left(\left(\left(T_{\tilde{M}^{2}}^{*} \tilde{X}\right)^{ \pm} \mp \mathbf{R}^{+} H^{\mathbf{R}}(w)\right)\right.$ $\mp \Gamma) \cap \operatorname{char}\left(\mathcal{M} \otimes \bar{\partial} z_{1}\right)=\varnothing$ due to $\mathbf{R}^{+} H^{\mathbf{R}}(w)+\Gamma \subset \Gamma$.

By the theory of the propagation by $[\mathrm{K}-\mathrm{S}]$ one gets from (2.16):

$$
\begin{equation*}
\mathrm{R} \Gamma_{\pi^{-1}\left(\widetilde{S}^{9}\right)} \mathrm{R} \mathscr{H} \circ m\left(\mathcal{M} \otimes \bar{\partial}_{z_{1}}, \mu_{\bar{M}^{+n}} \mathscr{O}_{\bar{X}}\right)=\varnothing . \tag{2.17}
\end{equation*}
$$

Thus applying the functor $\mathrm{R} \Gamma_{\pi^{-1}(M)}(\cdot) \otimes o r_{M \mid \dot{X}}[n+2]$, using (2.15), and recalling that $\mathscr{B}_{M^{+} \mid X}^{2} \stackrel{\text { def. }}{=} \mathrm{R} \Gamma_{\pi^{-1}(M)} \mu_{\bar{M}_{1}}\left(\mathscr{O}_{X}\right) \otimes_{o r_{M \mid X}}[n]$ one gets (1.2).
(b) Let $\theta=0(c f .[\mathrm{U}-\mathrm{Z}])$. By the theory of propagation of $[\mathrm{K}-\mathrm{S}]$ we get immediately in this case:

$$
\mathrm{R} \Gamma_{\pi^{-1}\left(\widetilde{S}_{1}\right)} \mathrm{RH} \operatorname{Om}\left(\mathcal{M}, \mu_{\bar{M}_{\dot{M}}}\left(\mathcal{O}_{X}\right)\right)=0
$$

Dip di Matematica, Univ. di Padova, Via Belzoni 7, 35131 Padova, ITALY

References

[Kat] K. Kataoka, Microlocal theory of boundary value problems I, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35 (1980). 355-399; II, ibid., 28 (1981). 31-56.
[K] M. Kashiwara, Talks in Nice (1972).
[K-S] M. Kashiwara, and P. Schapira. Microlocal study of sheaves, Astérisque, vol. 1281985.
[S] P. Schapira, Front d'onde analytique au bord I and II, C. R. Acad. Sci. Paris, 302-10. (1986), 383-386; Sém. E. D. P. Ecole Polyt. Exp., 13 (1986).
[Sj] J. Siöstrand Singularités Analytiques Microlocales. Astérisque, 95 (1982).
[S-Z] P. Schapira and G. Zampieri, Regularity at the boundary for systems of microdifferentialequations, Pitman Res. Notes in Math, 158 (1987), 186-201.
[S-K-K] M. Sato, M. Kashiwara, and T. Kawai, Hyperfunctions and pseudodifferential equations, Springer Lecture Notes in Math. vol. 287, 1973, 265-529.
[U-Z] M. Uchida, and G. Zampieri, Second microlocalization at the boundary and microhyperbolicity, Publications of the Research Institute for Mathematical Sciences, Kyoto University, 26 (1990), 205-219.
[D'A-T-Z] P. D'Ancona, N. Tose and G. Zampieri, Propagation of singularities up to the boundary along leaves, Comm. in Partial Differential Equations, 15-4 (1990), 453-460.

