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On 2-microhyperbolicity at the boundary
By

Francesco TONIN and Giuseppe ZAMPIERI

§1. Statement of the result

Let M be a real analytic manifold, X a complexification of M, S a real
analytic hypersurface of M, M* the two open components of M\S. Let T*X
denote the complex tangent bundle to X endowed with the canonical 1-form a
and 2-form ¢ =da, and let H be the Hamiltonian isomorphism. Let T*X®
(resp. T*X") denote the real underlying manifold to T*X endowed with the
forms a® =Ra and c*=Ro (resp. @'=Ta and ¢'=T0), and let H® (resp
H") denote the corresponding Hamiltonian isomorphisms. Let V be a smooth
regular (i. e. aly #0) involutive submanifold of THX and denote by V the
union of the complexifications of the bicharacteristic leaves of V. Assume

there are analytic functions #, s on ThX such that.
S|V=7’lsx.r;:x:0. {s, =1
Let V% be the union of the integral leaves of R (e‘/j(%”)H,c) issued from V

and let W denote the union of the leaves of R (e‘/‘_l%Hrc) issued from V. Let

%ﬁ:u:%ﬁif& be the complex of 2-hyperfunctions at the boundary along W in
the sense of [U-Z]. Let M be a coherent 8x-module (a pseudo- differetial
system).

Theorem 1.1. Assume that theve exists 0€ [—m, n], 0% * § such that

(11) +R (eV-1%H,c) & C (char A, V)
(with C(+,+) being the normal cone by [K-S]). Then
(12> an-l(s)R%Urn (./%, %%ﬂ,\) =0.

Remark that ‘€_w|x|w—*93§p|x is injective when restriced to solutions of (.
In fact (1.1) implies non-characteristicity of S for the system Jf, so that
[U-Z] can be applied. This gives M*-regularity in the sense of [S]:
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Corollary 1.2. Let (1.1) hold with 6% *%. Then
(13) Fn-l(s)yfom (./%, %Mﬂx) 'W"_-O

Example (a). Let z=x 4+ J/—1 y (resp. (g, ) = (x + J—1 v,
§+/———1n), resp. (x, ¥—117)) be the variable in X (resp. T*X, resp.
TEX), and write also z= (z1, 2/, 2). Let P (2, &) be a differential operator
whose principal symbol ¢ (P) is a quadratic form of the type:

(1.4) oP)=U+A(e, {)—B(", ()

with A, B homogeneous of degree 2 in " and {” respectively, B real on T#X, B
rux <0, Bl,=0=0. Setr=x, V={n,=n"=0}. We claim that (1.1) holds.
To see this, it is enough to show that for some positive constant ¢:

(1.5) IRGI<c LI+IET+]y"1if a(P) =0

In fact if & =y” =0 than RG —JG+NA (, 2. ) =B &, /=17")
(=Ro (P)) =0 implies |REG|<LISGI+clC|. If in addition one assumes =0
then 2RGIG (=J0(P)) =0 implies RE=0. By applying the local Bochner’s
tube theorem one then gets (1.5).

Thus for instance for X=C3 S={x,=0}, r=x1. V=An1=1.=0} and for

Plz, 2)= aa + :z 230 , (1.1) is satisfied and then (1.2) follows for both
M*. In particular accordmg to (1.3) the two traces over S of an analytic
solution of P on M* are microanalytic at (0, v/ —1 dxs).

Example (b). Let us write {=({, £, ¢, 7)), set C(&, ¢ =—C(i+

4 =1 203+ 20 take any D (2, {') homogeneous (in ') of degree 4,
and define;

cP)=C(,. U)+D(z C)

SV Cy, C becomes wi— 422;0 2wt + 22;C"f.  This

polynomial is hyperbolic (irreducible) with distinct roots w; = % 2- [ |
(1+( %%ﬁ)“) (for real {").

It follows that (1.1) is verified with V=1{n;=71"=0} and 6=%. In particular
the four traces over S of any real analytic solution of Pu =0 on M* are

microanalytic at any p= (0, ¥y —175""). Note that for the above o (P) one
could not apply neither [S-Z], [U-Z], nor [D'A-T-Z].

By the change w; = e

§2. Proof of Theorem 1.1

We take symplectic coordinates (z, {) = (x+/—1y; E+/—17) € T*X,
(. /—1 17n) ETHX such that r¥=x,, s=7,, V nr=n"=0. We put:
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X=CxX xXx"
M=RXM XM’
S={0} xM xM"
M=CXX XM
S”=ReﬁgXX’><M”
Mi=RXX XM’
S={0xXx' XM
We also set:
Mi=R*XX XM’
M= (M\So’) t

It follows:

V=MX3T$X

V=TEX

W=MX;T3X

o= (C,x (ReVTE)) ) x (0 x {01) X THX",

For a locally closed set A C X and for the sheaf Oy of holomorphic functions
on X, we shall denote by us (Ox) the “microfunctions along A” in the sense of
[K-S].

Theorem 2.1. Let (1.1) hold with 0%k, kEZ: then

(2.1) R om (M, py, (Ox) )= R iy RFE om (M, w1y (Ox) )

(2.2) RA om (M, ps,(Ox) = RIp-5yR¥ om (M, pg (Ox))

whence

(2.3) R#H om (M, pg: (Ox) = R -5y R om (M, py-(Ox))
Proof. According to [K-S, Th. 5.4.1] it is enough to prove that:

(2.4) H* (2*T% M) NC (char M, TEX) =9

(2.5) IR (T*TE S%) NClchar M, TEX) =0

But (2.4) is equivalent for some ¢>0 and for (z, {) € char /I to:

(2.4') Il <cU&lHICT+HET+1y 1

(2.5) is equivalent to:

(25) IR 708 | <e (1 ¥z |+ ]+l |+ y 10

(1.1) is equivalent to:

(L1) R (T <c C1+1ET+1y"D.
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Obviously (1.1)=>(2.5"). Finally (1.1')= (2.4’) due to the following Lemma
(applied for ¢=7% and with 6€ [0,z[).

Lemma 2.2.  Let ¢#0x%. Then (1.1") implies, for some ¢ >0 and for
(2, {) € char M:

[9e¥=Tog, <c RV EHIE + 1+l +ly 1.
Proof. We have
(2.6)
R (VT EIE) =cos (G+9—OREL) +sin (5 +¢—O)R (T (F+T)
= —sin(¢p— O R (¥°F) +cos (¢—O) R <e"‘—1(%”)§1)
=cos (¢—0) R E)—1g (p— )R (V1))
(the last equality follows from ¢ # 6% 5). Assume that (1.1°) is fulfilled.
Let % (V7 (5+) 1>|<z tg (9—6) IR 1T |; then [T, <R 79T [+
R (Vv VI (§+o)E + |y”]]. On the other hand assume
|R (V™ v=1(3 +0)C1)|22 tg (d)—@) R (ev‘_lac_l)|; then by (2.6):

IR (VTE 7| 2 ==t g (Y5497, |,

/

which implies:
|2 < IR VT8 [+ (V) |
< CHIE |+ ]+ = R VTG,

Let now X= (CXC) X X' X X" (x¥, 4§, 2, 2) be a partial complexification of
X and let T*X2 (7, &) = (xf, y¥, 2, 2"; &€, ¥, €. ) be the cotangent bundle
to X. Let us cosider the embedding j: X <X defined by 1+ =1y~ (1,

yy) and the submersion ¢: X— X defined by (xf, yf) —af +/—1yf We
remark that ¢oj=idx and that

2.7) U O4®%) =4

and
(2.8) char (M ®dz) ='¢ char (M)

={( O eT*x; S+/—1y$ 2. 2, &5 ¢, ) € char M, nf= =/-1£&%
Put

Me=C (cosf, sinf) + R (—sin6, cosf) X X' XM’
St=C (cosb, sinf) X X' X M"
0= (G -
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We have a commuting diagram

- X o>
! !
W - X oo

2
l

0 . @ ~
where all the arrows are injective. Let T*X <X X 5 T*X —T*X be the
mappings canonically associated to the embedding X < X. Note that o0 is

injective over @ '(char 0,).

Theorem 2.3. Assume (1.1) holds with 0%#k%, kE€EZ. Then

(2.9)

R# om (M, 1 (Ox)) @oryye[—2123 Rox@ 'R ey R om (M ® 0zy, 1y (O) )
(2.10) '

RA# omt (M, pts:(Ox) ) ®oryix[—2]= Ros@ ‘R g-1snRH om (M ® 0z1, s (O5) )

which implies
(2.11)
R# om (./”, y2ives (0){) ) ®07XIX [_2]'—\‘ Rp*cB"RF,,-n(_r,,)RB‘fDm (./” ®5Zl, Lt (@{) ) .

Proof. We shall assume 6 €]0, [, 6+ % in the proof. By [K-S, Th.
5.4.1] one needs to show that

(2.12) HR (z*TEM®) NC(char M ®dz;, TiX) =0
(2.13) HR (n*TES% NC (char M ®bz, TEX) =0
But (2.12) is equivalent, for (7, ) Echar (M ®3z), to:

(2.12)

lcos O EC+sinOIn§| <c [|cos ORES+sin R
+| —sinORES+cosORNE| +| —sinO3xE +cos O3y |+ ¢+

and (2.13) to:
(2.13)

Cl+1yl,

lcos &L +sin 00§l <c [lcos PRES +-sin6Rn§| +
| —sinOx$+cosOyS|+|C|+]E+|y"]].

Recall (2.8); in particular & and 7{ are related by ¥ =y —1€F and thus
(2.12') is trivial. As for (2.13’), this easily follows from

(2.14)

+R(V1F99,) €C (char M, TEX)
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which holds by Lemma 2.2 applied with 6€ [0, #[ and for ¢ =% — 0+ 0% ]
(due to 6#0, %).
End of Proof of Theorem 1.1 (a) Let 0€ [0,r[ , 6#0, 5. Using (2.3),
(2.11) we get:
(2.15)
R# om (M, pi: (Ox)) ®oryi[—2] = Rox@ 'R g3 R om (M ® 0z1, prye (O) ) .

[STE

On the other hand, set Tw=7*TEM? then we have:

(2.16) Hy(£w) €C (char M ®3z1, SS Zi-)

(with SS denoting the microsupport in the sense of [K-S]). In fact we have
SS Zi-~= (TEX)* FR*H® (w) where we have put (T%X) £ pre0 g ThX.
On the other hand, if I is an open convex conic neighborhood of H® (w) such
that ((TEX)*FI) N char (M ® 0z1) =9, then also (((TEX)* FRTH" (w))

FD) N char (M ®0z) =0 due to R*H® (w) +I'C T
By the theory of the propagation by [K-S] one gets from (2.16):

(2.17) RT - gy R om (M ® 52y, piels) =9 .
Thus applying the functor Ry (+) ®oryx [0 + 2], using (2.15), and

def.
recalling that B2y = Rt (Ox) @ormx[n] one gets (1.2).
(b) Let 8=0 (cf. [U-Z]). By the theory of propagation of [K-S] we get
immediately in this case:

RI g RA om (M, pr (Ox)) =0.
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