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Radiation condition for Dirac operators
By

Chris PLADDY, Yoshimi SaITO and Tomio UMEDA

1. Introduction

In the papers [6] and [7], results from the theory of pseudodifferential
operators and spectral analysis of Schrédinger operators were combined to
discuss the asymptotic properties of the Dirac operator

i O
H= zgla,-axj-l-ﬁ-l-Q(x). (1.1)

Here i=y—1, x= (x1, 22, x3) €ER® and a;, B are the Dirac matrices, i.e., 4 X4
Hermitian matrices satisfying the anticommutation relation

a;ak+akaj=25jk1, (], k=1, 2, 3, 4) (1-2)

with the convention as =B, 0;; being Kronecker's delta and I being the 4 X 4
identity matrix. The potential Q(x) = (gx(x)) is a 4 X 4 Hermitian
matrix-valued function. In this paper we assume that @ (x) is short-range in
the sense that each element gj; satisfies

Sup[(l+|.r|) “’E|q,~k (x)]]<e (xrER? i k=123, 4), (1.3)

ZER?
where € is a positive constant. The free Dirac operator Hy is defined by

3

Ho= —iza,.%w. (1.4)

j=1

The aim of this paper is to show how the Dirac operator and the
Schrodinger operator are related to each other and how some properties of the
Dirac operator and the solutions of the Dirac equation can be obtained from
the corresponding properties of the Schrodinger operator. Since we have
from the anticommutation relation (1.2)

(Hp)?=(—A+1)1, (1.5)

we can anticipate a close relationship between these two operators. We also
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want to show that some results from the theory of pseudodifferential
operators, which were used in [6] and [7], are useful in discussing our
problems.

Let Ro(z) = (Ho—2) 7! be the resolvent of the free Dirac operator Ho, and
let I';(2) be the resolvent of the Laplacian To=—A. Balslev-Helffer [2] gave

the formula for the extended resolvents R (1) ([2], Lemma 3.1):

RE(A) =lim Ry(A%in) = (Ho+ I (2=1) - (A>1), (1.6)

nlo (Ho+ DI (2—1) (a<-1),

where I'if (1) are the extended resolvents of Ty (for the exact definition of the
extended resolvent, see § 2). The formula was used to establish the limiting
absorption principle for the Dirac operator with a short-range potential ([2],
Theorem 3.9).

In this work, we are going to exchange the order of Ho+A and I'¢f (A2—1)
in the formula (1.6) to obtain more detailed similarities between Dirac
operators and Schrodinger operators (Propositions 2.1 and 2.2). Our
strategy is to combine a representation formula for the resolvent Ro(z), which
was originated in Yamada [13] and used in [6] and [7] with some known
results on Schrodinger operators to study some new properties of the
extended resolvent R* (1) of the Dirac operator H with a short-range potential
Q. Let

REQ)f(x) ="' (wf (@), v5 (x), v§ (x), v¥ (x)), (1.7)

where ‘A is the transposed matrix (or vector) of A, and
fEL(R?, (1+]x|?)? dx) (1.8)

with a fixed constant 6 satisfying 6>1/2. In order to simplify the
description, here we assume that A>1. After giving a proof of the limiting
absorption principle for the Dirac operator (1.1), we are going to prove the
following:

(1) Each element v¥ (x),j=1, 2, 3, 4, satisfies the radiation condition
vEE€L,(R?, (1+]x?) % dx),
(0, Fi/A22—=1F)vF €L, (R?, (1+|z|?) % dx),

where =1, 2, 3, 3,=0/0x,, £1=x./|x|, and 1/2<6<1.

(2) v =R*(A) f is characterized as a unique solution of the equation
(H—2)v=f with the radiation condition (1.9)

(3) Each element vf (x),j=1, 2, 3, 4 satisfies the asymptotic behavior

1.9)

vE(re) ~c (A, f)r etV 17 in L,(S?) (1.10)

as r = |x|— o0, where S? is the unit sphere in R® and ¢ (4, f) € L,(S?) is
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determined by A and f.

We now introduce the notation which will be used in this paper. Letn
be a positive integer. For x= (x1, x2 ,***, xn) €ER”, |x| denotes the Euclidean
norm of x and

@ =1+l (1.11)

For s € R and a positive integer k, we define the weighted Hilbert spaces
L2s(R") and H%(R") by

Las(R") ={f: @°fEL,(R")}, (1.12)
and
H.ls‘(R”)Z{f <x>sa£(f€L2(Rn)' |a|£k}, (1.13)
where a= (a1, as, ***, @) is a multi-index, |a|=a;+az+ -+ +ay, and
alal 9
fa= (a.:_’ =12 . n). .
T MO ge g U R n> (1.14)

The inner products and norms in Lys(R”) and H%(R") are given by

I(f. 9= @%@,
Ifls= 006l

(1.15)

and

Qes= [ @ T {og7 - 02g
(. 9us= [ @* (05 080 -

If lles= (S f) s

respectively. For n=3 we set

Lz,s (R3> =L2.Sy
(1.17)
H(R?) =HE,
Then the spaces ¥2,s and #*% are defined by
Los=[Lasl?,
I 2,8 2,8 (1 . 18)
Hk=[HE]",

i.e, £2s and K¢ are direct sums of the Hilbert spaces L,s and H¥, respectively.

The inner products and norms in ¥, and #* are also denoted by (, ) || |
and (, )us | les, respectively. When s=0, we simply write

{-(gzzfz.o.

1.19
HE=HE. ( )



570 Chris Pladdy, Yoshimi Saito and Tomio Umeda

Let S(R") be the set of all rapidly decreasing functions on R”. We set
[S=S(R3),
S=[S]*

For f="'(f1, fa, fs, f1) € ¥s, the Fourier transform Ff (&) =f(£) is defined
by

(1.20)

‘w(s) =f(&)="(1(8),5:(8). &), fu(8)),
(1.21)

() =lim, fR e (x)dr (j=1,2,3,4).

The inverse Fourier transform will be denoted by ..
For a pair of Hilbert spaces X and Y, B(X, Y) denotes the Banach space
of all bounded linear operators from X to Y, equipped with the operator norm

I T lx.n="sup | Tz lly/ll x lx, (1.22)
zeX\{0}
where | |[xand | |y are the norms in X and Y. We set B(X) =B (X, X).

Let us sketch the contents of the paper. In §2, starting with a
representation formula of the resolvent R, (z) of the free Dirac operator Ho, we
shall establish the above results for the free Dirac operator. The general
Dirac operator with a short-range potential @ will be discussed in § 3.

The present work was done while the last author (T.U.) was visiting the
Department of Mathematics of the University of Alabama at Birmingham for
the 1992-93 academic year. He would like to express his sincere gratitude to
the members of the department for their warm hospitality. He also would like
to thank Himeji Institute of Technology for allowing him to take a year's leave
of absence.

2. The free Dirac operator H,

Let H be the differential expression given by (1.1) which satisfies (1.2)
and (1.3). It is known (e.g., Kato [5], Chapter V, §5) that H restricted on

[C7 (R®)]* is essentially selfadjoint in ¥, The selfadjoint realization, which
has the domain #*, will be denoted again by H which is the Dirac operator
with a short-range potential Q. Similarly, the selfadjoint realization of the
expression (1.4) will be denoted again by Hy which is the free Dirac operator.
The operator Ho has the same domain #' as H. Thus, as selfadjoint
operators, Hv and Hov are well-defined only for v € #'. When H and H, are
applied to a locally #* function v, they should be interpreted as differential
operators rather than selfadjoint operators. The resolvents of H and H, will
be denoted by R (z) and R, (z), respectively, i.e.,

R(z)=H—2" (EP,H),
Ro(2) = (Ho—2) ' (2€ P(H,)),

(2.1)
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where P (H) and P (H,) are the resolvent sets of H and Ho, respectively. Let
—~ 3
Lo(&) = _Zlaj&i“'.B (E=(&, &, &)) (2.2)
j=

where aj, B are as in (1.2). The 4 X 4 matrix Io(&) is the “Fourier
transform” of the operator Hy in the sense that :

F(Hof) (&) =Lo(O)FF(E) (rEHY). (2.3)
It follows from the anticommutation relation (1.2) that
(Lo(8)2= (|&P+1)1 (2.4)
(cf. (1.5)).
Similarly, consider the Schrédinger operator T = — A + V(x) with a
short-range potential V(x), and the free Schrodinger operator To = — A.

Here — A is the Laplacian on R” and V(x) is a real-valued, measurable
function on R” such that

sup [(1+|z) v (@) [] <eo, (2.5)
ZER"
where €¢> 0. The restrictions of T and T, on C§(R") are essentially
selfadjoint, and the selfadjoint realizations in L, (R") will be denoted again by
T and T, respectively. The resolvents of T and T, will be denoted by

[F(z)=(T—z)" (ze (1)),
Io(z) =(To—2) (2€ P(Ty)),
where £ (T) and P (T,) are the resolvent sets of T and T, respectively.

In this section, we shall start with a representation formula for the

resolvent Ry(z) of the free Dirac operator Hy. Let 1<a<b<oo. We define
K=K, by

(2.6)

2__
k={z=1+ineC: asl2I<o, InIS@]. 2.7)
Then it is easy to see that
2__
ZEK= O<M£Re(z2—l) <p?—1. (2.8)

Let a, b, K be as above. Then let 7x be a real-valued function in C% (R})
satisfying

1 (JB(aZ—l) Sl&lSB‘/b;_l),

7x(§) = (2.9)
0 <OS|§|£—"3(‘1;_1), |§|zz,/b2—1).
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In order to express Ro(z) in terms of the resolvent Io(z) of the free
Schrodinger operator, we introduce simple pseudodifferential operators: For
each z€K, we define

A f=2+F 1O L(O1FF (€4,
(2.10)

_ g | (A= 7k (€ )Lo(&)
Buas=g [ g7 (res).

We note that

i%(az—l) if zEK and E€supp[1—7x],

| 1EP— (2—1)|= l|§|2 . 3\/1)2?1 (2.11)
2 2

if zZEK and |&=>

Proposition 2.1. Let K be as above. Then for zEK with Im z#0
Ro(2)f=T0(—1) Ak f+Box f (fE€Y). (2.12)

Here, for a vector valued-function g(x) = '(g1(x), g2(x), gs(x), ga(x)) on R®,
I (2) g(x) should be interpreted as

I (2)gl) =T (2) g1 (x), To(2) g2 (x), I(2) g3(x), I6(2) ga(x)).  (2.13)
Proof. It follows from (2.3) that

Ro(2)f=(27) _3fwe“”'e (Lo (&) —2) Y (&) dE. (2.14)

Then, using (2.4), we see that
iz. M 7

Ro(z)f=(27)"~ f G{IEIZ 1) ]f(E)dE. (2.15)
Since we have

Lo(®) +2= [z 7k (E) Lo (&) + (1—7x(8)) Lo (&), (2.16)
and

2__ — -3 ix 5_9_5___
Iy—1)g=(27) Lflw e (2.17)

(2.12) follows from (2.15).

On the operators A,k and Bz x we have

Proposition 2.2. Let K=Kay be as in (2.7) and let Az x and B.x as
(2.10). Let s=20. Then

(i) Foreach z€EK, A,k can be uniquely extended to a bounded linear operator
on fZ,&
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(1) For each z € K, Bk can be uniquely extended to a bounded linear
operator on L5 to H:.  Moreover, theve exists a constant C=Csx >0 such that

“ (Bz,,K_Bzz,K)f "1,sgc|zl_32|“f”s (fe-d) (218)

for all z;, 2, €K.

Proof. Since each component of 7x (&) Lo (£) belongs to S3o, conclusion
(i) follows directly from [7, Lemma 5.7]. (For the definition of S%o, see [7,
section 5]).

Noting (2.11), we see that for any multi-index « there corresponds a
constant Cax >0 such that

‘( ) [@‘z_l_&)_[lo(é)]lgcax<§>_l_la| (2.19)

for all zEK, where <& =, 1+]€?2. Then by [7, Lemma 5.8], we can deduce

that B,k can be extended to a bounded operator from %25 to #i. Moreover,
using the identity

1 . 1 _ (21— 22) (z1t22)
€2 — (z2—1)  [&P— (22—1) &= (z*— D)} {|&f— (z2—1))’
(2.20)
we have for any a
0 €3] x(§)
|< ) {|§|TTK—1)LO €9 FL——LO (S)H
SC(:(K |21_ZZ| <E>_1_|a| (21. ZzeK). (2.21)

Hence, appealing to [7, Lemma 5.8], we get (2.18)

In the rest of the paper the extensions of A,k and B,k of which existence
has been guaranteed by Proposition 2.2, will be denoted again by A,x and B,k
respectively. Then it is clear that A,x is a B (%) -valued continuous
function on K and B, is a B (¥, #!)-valued continuous function on K.

Now we are in a position to summarize the known results on the limiting
absorption principle for the Schrodinger operator with a short-range
potential. For 0<a<p<o0 and 0<¢<oo, L*=L*(a, b, ¢) are defined by

={z=k+it:a<k<b, 0t 7<), (2.22)

Theorem 2.3 (Agmon [1], Ikebe-Saito [3], Jager [4], Saito [8]-[12]).
Let n=2 and 1/2<0=<1. Let T =To+ V be the Schridinger operator which
satisfies (2.5). Let I'(z) be the resolvent of T.

(i) (Existence of the boundary value of I'(z) ). Let £>0. Then there exist
the limits
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I'* (k) =lim I'(txit) n B(Lys H%s). (2.23)
tl0
(ii) (Continuity of I'(2)). Set
I'g)=TI*(k) (k€la,b]CLY), (2.24)
[07
I'e)=r-(k) (k€la, b]CL). (2.25)

Then I'(z) is a B (Lys, H%5) -valued, continuous function on L* [or L7].
(i1i) (Radiation condition and uniqueness). For k>0 and f €L, s, set

Iu(/c+iz',f) =u (-, ktit, /)= (g+it)f (c#0),
u*(k, ) =u*(-, k, ) =T*(K)f.
Let L¥*=L%(a, b, ¢) be as in (2.22). Then there exists a positive constant C =
C(a, b, ¢) such that

[ll(aj—wm‘rf,)u<x+ir,f>||a_lsc||fllo (r#0),

1@, Fivez;) u* (g, Alls1<Clf s

for any f€ Ly 5 (R") and any k+itELYUL™. Here the branch of Yk+it is taken
so that Imy/k+it 20.

Conversely, u*(k, f), £> 0, is characterized as a unique solution of the
equation

(2.26)

(2.27)

(=A+V(x) —K)u=f,
€Ly —5 (R") NHE(R") joc, (2.28)
(0, FivEZ)uELps-1(R")  (=1,2, -+, n).

(iv) (Compactness). (a) Let L* =L* (a, b, ¢c) be as above. Then there
exists a positive constant C=C (a, b, ¢) such that

[l|u(x+i1‘, Ao, CA+n) =22 £l (z#0), (2.29)

lut (k, ) l-5.8,<C QA7) =12 £ |5
for any f€Lys (R™) and any k+it€ELYUL™, where E,= (x ER": |x|>7}, and

loloss=| [, @ Hlg @) az] ™ (2.30)

) I'(k+it) (>0, #0) and I'* (k) (£>0) are compact operators from
ng (R”) mto Lz . 3 (Rn)

(v) (Asymptotic behavior of u* (/c, f)). Suppose, in addition, that the
potential V salisfies

Viz)=0(x]"2) (x|—). (2.31)
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Let u® (k, f) be given by (2.26). Then for £>0 and f€ L1 (R"), there exists the
limit

¢ (&, f) =lim TV =Dz (L ) in Ly(S™Y), (2.32)

r—o0

where S"! is the unit spheve in R, and u*(r * | k, f) should be interpreted as the
trace of u* (k, f) on the sphere S, with center at the origin and radius 7.

These results on the Schroédinger operator are combined with
Propositions 2.1 and 2.2 to investigate the resolvent Ro(z) of the free Dirac
operator Hy,. First we are going to give another proof of the limiting
absorption principle.

Theorem 2.4 (Limiting absorption principle for Hp) . Let Hy be the
free Divac operator satisfying the anticommutation relation (1.2). Let 0 be such
that 1/2<0<1.

(i) Then, for A€ (—oo, —1) U (1, o), there exists the limits

RE(A) =limRo(Atin) (2.33)

nio
in B (L5, #Ls), and

I (A2—1)Ax+Bix (1>1),
IFA*—1) Ak +Bix (A<—1),

where K=Kga is taken as in (2.7) such that 1<a<|A|<p< oo,

(ii) The operator Ry(z) is a B(Las #H's)-valued, continuous function on
JFF={=A+in |2A|>1, =20} and J-={z=A+in: |A|>1, n<0}). Here the
boundary value of Ro(z) on the boundary (— oo, —1) U (1, o) is defined by
either R§ (2) or Ry () according to (2.34).

Proof. Noting that, for z=A+in, Im(22—1) =24n, we have (i) and (ii)
directly from Propositions 2.1, 2.2 and (i), (ii) of Theorem 2.3.

R* Q) = (2.34)

The following theorem gives a characterization of R#(A) through the
Dirac equation with the radiation condition.

Theorem 2.5 (Radiation condition for Hy). Let Ho and & be as above.
Let A€ (—oo, —1) U (1, ) and fEL,s. Set
v(4 +i77,f) =Ry (/z"'iﬂ)f:' (Ul. V3, Vs, v4) (77 *0)'

(2.35)
vE(4, ) =R§ () f="(vf, v}, v3, v%).

(1) Let K=K, be as in (2.7). Then there exists a positive constant C =
C(K) such that, for fE L35 and z=A+in €K,
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(10, —iv/22—15)v; (2 Allsr <Clflls  (z=A+in, n#0),

[ (@FivA2=12)vE (A, ) s <Cl £ s

(7=1,2,3,4, 1=1,2,3, 1<agi<p<oo),
3 (2.36)

or

1@, £iv 22=1&)vF (A, s <l £ lls
L (j=1,2,3,4, 1=1,2,3, —oo<—p<A<—g<—1).

(ii) Conversely, v¥ (A, f) is determined as a unique solution of the equation
(H 0o /1) v=f,
Uegz.—d n yflloc,

(antiv Xz_lfl)UiELz,a—l
(A>1,j=1,2,3,4 and I=1, 2, 3), (2.37)

or

(01 %iv A2—1%1)v;E Lys1
(A<—1,7=1,2,3,4and =1, 2, 3).

Proof. (i) directly follows from (i) of Theorem 2.4 and the first half of
(iii) of Theorem 2.3 by noting that B, x,fE#" by (ii) of Proposition 2.2. Let
us prove (ii). We may consider only the case of v* (4, f) with A>1, since
other cases can be treated in a quite similar manner. Thus we have only to
prove that if v satisfies

(Ho_/Z)’UZO,
vEY, sN Kl (2.38)
(al_i\/ lz—lf,)ijLz,a_l (]=]., 2, 3, 4, l:]., 2, 3),

then v is identically zero. In fact, from the first relation of (2.38) and (1.5)
it follows that

(=A+1—2%)v=0, (2.39)

i.e., (each component of) —Av is locally Ly, and hence we have v€E #%.. Thus
we see that each component v; of v satisfies

(=A—(2=1))v;=0,
V;€Ly 5 N leocy (2 40)
(3,—1\/ /22_151)1);6[,2,6_1 (l=1, 2, 3),
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which is combined with the uniqueness result of the Schrédinger operator
((iii) of Theorem 2.3) to give that each v; is identically zero, i.e. v is
identically zero.

Theorem 2.6 (Asymptotic behavior of v*(4, f)) .  Let Ho, 0 and
vE(A, f) be as above, where A€ (—oo, —1) U (1, ©) and fE Ls1. Then there
exist the limits

lim eiFi A2—1

yor(re, A f) (1>1),

dA.n= lim eV 1y 0¥ (v + |, A, f) (1<—-1). 2.41)

¥—oo

To prove the above theorem we need the following lemma.

Lemma 2.7. Let gEHL(R") with s>1/2. Then we have

fsrlg(r) [PdaS=0("2)  (r—00), (2.42)

where S, is the spheve with center at the ovigin and radius v, dS =7"'dw, and

dw is the area element on S*7 1.

Proof. Let us first assume that g€Cy (R"). Then, since

o g

lg rw)

<| 0g (tw)
ot

)—ZSdt

= @s—1) (40 [ |Qﬂ(t—| 1405 dr,  (2.43)
it follows that

190w) 1< (25— 1) 71 (1) syt [ ”lMQH» 2541

< (25— 1) (1405 [ (Vg) (t) 1+ P
(2.44)
Integrating the both sides of (2.44) over S? we obtain

[ lo@Pas< es—) = a4+n-=lgks >0, (2.45)

Let us next assume that ¢ € H:(R"). Then, since the trace is continuous on
HL(R") and C3(R*) is dense in HI(R"), we see that the inequality (2.45)
holds for general g, which completes the proof.

Proof of Theorem 2.6. Suppose that A>1. Let K=K,; as in (2.7) such
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that 1<a<A<p<oo, Set

g(l)=t (gl(l)' gz(l)' 93(1). g4(1)) :Al,Kf,

g(2)=t (gl(Z), g2(2)’ 93(2), g4(2)) =Bix/. (2.46)
Then it follows from (2.34) that
REQ) =T (22—1) gV +g®. (2.47)

Applying (i) of Proposition 2.2 with s=1 to g, we see that gV E€%,,, and

hence it follows from (v) of Theorem 2.3 that there exists

cF(A, ) =lim F V1 TE (22 —1) gV (re) . (2.48)

y—oo

in L, (S?) for j=1, 2, 3, 4. On the other hand, from (ii) of Proposition 2.2 we
have ¢® €#!, and hence we can apply Lemma 2.7 to see

lim e*™V 217 4g@ (y+) =0 (in L,(S?)), (2.49)

r—oo

which is combined with (2.48) to give (2.41) for A>1. The case that 1<
—1 can be treated in quite a similar way.
Finally we shall prove the compactness of the resolvent Ro(z) and the

extended resolvent RE (4).

Theorem 2.8 (Compactness of Ro(2) and RE(A)).  Let Ho and 0 be as
above, and let K=K, be as in (2.7).

(i) Then theve exists a positive constant C=C (K) such that, for fE L, 5 and
z=Atin €K,

vz )ll-s.6, <C(AH+1)"CV2| £, (2=24in, n#0),
” vE(4, f) ||—5,E,SC(1+V) _(J_I/Z)Hf "a

where v (z, f) and v: (R, f) are as in (2.35), and E, and [ ||—6,Er are as m (iv) of
Theorem 2.3 with n=3.

(i) Ro(A+in) (A|>1, n#0) and RE(A) (A|>1) are compact operators
from L, into Lo,

Proof.  We shall show (i) for z=A+inEK=K,; with n#0. The case
that z=A€ [a, b] can be treated in the same way. It follows from
Propositions 2.1 and 2.2 that

Ro) f=To(2—1)A.x f+Box f=/1Hfa (2.51)

Note that it follows from Proposition 2.2 that A,x and B,x are B(%,;)
-valued, continuous function on K. Therefore, it is easy to see that

Ifil-smr <4221l (G=1,2), (2.52)

(2.50)
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where we have also used (a) of Theorem 2.3, (iv) to evaluate fi. This
completes the proof of (i).

Let us turn to the proof of (ii). We give the proof only for Ro(z) with
z=A+in, n#0. The proof for R¥ (1) can be done in exactly the same way.
Let {f»} be a bounded sequence in €35 Then for any >0, we have

f| w1y 12 |0°R () f (2) Fdz < (1497) I Ro (2) fom [ -s.
With this inequality, we see that {Ro(z)fn}, together with their first
derivatives, is ¥;-bounded on any compact set in R®. We now appeal to the
Rellich selection theorem to deduce that there exists a subsequence {fn} of
{fm} such that {Ro(2)fm} is locally ¥5-convergent. Combining this fact with
(2.50), we see that { Ro(z)fm} converges in ¥2_5. This completes the proof
of (ii).

3. The Dirac operator H with a short-range potetial

Let H be given at the beginning of § 2, i.e., H is the selfadjoint realization
of the Dirac operator with a short-range potential. We have H=H,+Q. On
the potential @ we assume the following:

Assumption 3.1. The potential Q (x) = (gjx(x)) is a 4 X 4 Hermitian
matrix-valued function satisfying (1.3). Further, each component gj; is a C'
function on R? except at a finite number of singularities, and there exists Ro>
0 such that

3
sup (X|0ugjx (@)|) <o (5, k=1, 2,3, 4). (3.1)
Z|>Ro I=1
Then we have
Proposition 3.2 (Yamada [13], Proposition 2.5) . Let H satisfy

Assumption 3.1 and (1.2). Then theve are no eigenvalues of H on (—o0, —1) U
(1, o).

We set
F(2)=QRo(z)  (z=2A+in, |A|>1, n#0),

(3.2)
F*(Q) =QR§(2) (A€ (=00, =1 U (1, ®)),

where Ro(z) and RE (1) are the resolvent and the extended resolvents of the
free Dirac operator H,, respectively. It follows from (iii) of Theorem 2.8
that F(z) and F*(1) are compact operators on 35 where d satisfies
1+e]

1/2<5Smin{1, o

We start with the proof of the invertibility of the operators I+F(z) and I+

(3.3)
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F*(A), where I is the identity operator in %as.

Proposition 3.3. Let H satisfy Assumption 3.1 and (1.2), and let O be
as in (3.3). Let F(z) and F*(A) be as above.

(i) Then F (2) and F* (1) do not have the eigenvalue — 1, and hence we
have

(I+F @)™ U+FtQQ))'€B(L,y,). (3.4)

(ii) The operator (I+F(2)) 'is a B(%,s) -valued, continuous function on
Jr={z=2+in: [2A|>1, n=20) and ] ={&=A+in: |A|>1, n<0}. Here the
boundary value of (I+F (2)) ! on the boundary (—oo, —1) U (1, ) is defined

by either I+F*(2)) Yor U+F (A)) ! according as A is supposed to belong to
the boundary of J* or J”.

Proof. Since the proof of (i) for F(z) is trivial, we shall give the proof
for F* (4o) with 2o>1. Suppose that go€ £, %0 such that

(I+F* (o)) go=0. (3.5)
Set vo=R{ (1) go so that we have from (3.5)

voefz,-a n yflloc»

(3.6)
(Hy+Q— A0) vo=0.

Then we can follow the arguments in the proof of Theorem 4.1 in Yamada
[13] to prove that vo € ¥, #0, which contradicts Proposition 3.2. In fact, we
have only to set A, = A+1i/n, g, = go, and u, = Ro(A,) go in the arguments in
Yamada [13], p.570-p.573. This completes the proof of (i). Now we are
going to prove the continuity of (I + F(z)) ' on J* and, for the sake of
simplicity of the notation, set F(4) = F*(4). Since it follows from (ii) of
Theorem 2.4 that F(z) is a B(%,s) -valued, continuous function on J*, the
continuity follows from the relation

(I+F(2) ' —(U+F(z0) '=—(U+F(2) " (F(2) —F (20)) U+F(20)) 7",
(3.7)

or

(I+F (@) U+ (F(z) =F(20)) U+F(20)) 1= (U+F(20)) " (3.8)

for z, 20€J*. In fact, if |z— zo| is sufficiently small, then so is F (z) —F (z0),
and hence the inverse [I +(F(z) — F(z0)) (I + F(z20))7']7! exists and is
bounded in a neighborhood of z,. This guarantees the local boundedness of
(I+ F(z) " on J*. Once the local boundedness is established, then the
continuity follows directly from (3.7) and the continuity of F(z), which
completes the proof of (ii).
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The main result of this paper follows from the above proposition.

Theorem 3.4 (Limiting absorption principle for H) . Let the Dirac
operator H satisfy Assumption 3.1 and (1.2), and let 0 be as in (3.3). Let R (2) be
the resolvent of H. Let F (z) and F*() be as in (3.2).

(i) (Cf. Balslev-Helffer [2].) Let z = A+in with |A|>1 and 7 # 0.
Then we have

R(z) =Ro(z) I+F(z)) 7, (3.9)

where Ry(2) be the resolvent of the free Dirac operator Ho. Further, there exist the
limits

R*(A) =lim R (Axin) in B(%Lss #Ls) (3.10)
nlo
for |A|>1, where the extended resolvents R* (1) of H ave given by
RE(A) =RE(A) U+F*(2)) ! (3.11)

with the extended resolvents RE(A) of the free Divac operator Hy. The operator
R(z) is a B (%5 #H's)-valued continuous function on J* and ], where the
boundary value of R (z) on the boundary (—oo, —1) U (1, o) is defined by either
R*(A) or R~ (A) according as A belongs to the boundary of J* or J.
(i) (a) Let A€ (—oo, —1)U (1, ) and fELss. Set

v(A+in, /) =RQA+in)f="(v1, vs, v3, va)  (nF0),

v* (A, /) =R* Q) f="1, v, v, vi).
Let K=K, be as in (2.7). Then there exists a positive constant C= C(K) such

that the vadiation condition estimates (2.39) hold for fE ¥, and z=A+in EK.
(b) Conmversely, vE (A, f) is determined as a unique solution of the equation

[ (H=)v=F,
ve-(gz,—é nyflloc,

{ (OFiy22—=1%)v;E Ly 51 (3.13)
(A>1,j=1,2,3,4and =1, 2, 3),

(3.12)

or
| (0,21 22— 1%) v; € L5
(A<—1,j=1,2,3,4 and I=1, 2, 3).

(iii) Let v: (A, f) be as abovve, where A€ (—oo, —1) U (1, ) and fE L.
Then there exist the limits

lim e¥ V2 E (v, A, f) (A>1),

FAnN={"" (3.14)
lim e*Y* (e, A, f) (A<—1).

y—o0
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(iv) Let K=Kgap be as in (2.7), and let K* be as in (2.54). Let v(z, f) and

vE(A, f) be as above. Then (i) and (i1) of Theorem 2.8 with Ho replaced by H

holds. Thus R(A+in) (A]>1, n#0) and R* (1) (|2|> 1) ave compact operators
from La5 into La,-s.

Proof. Let z=A+in with |[2]>1 and p#0. Then, since we have
R(z) —Ro(z) = —R(2) QRo(2) = —R (2) F (2), (3.15)

(3.9) follows from (i) of Proposition 3.3. Using the continuity of F(z) ((ii)
of Proposition 3.3), we easily see that (3.10) and (3.11) hold. The
continuity of R (z) on J* follows from the continuity of F(z) and Ro(z) ((ii) of
Theorem 2.4), which completes the proof of (i). (ii) - (a), (iii), (iv) can be
easily proved from (3.9), (3.11), Proposition 3.3 and Theorems 2.4, 2.5, 2.6
and 2.8.

Let us prove (ii) - (b). We shall prove the case that vo="{(vo1, voz, Vo3,
vos) satisfies

(H—l)vo=0
VoE Lo _s N Ko,
0 2,-6 i (3.16)
(01— i/ 2= 1% vo;E Lz 51
(A>1,j=1,2,3,4and I=1, 2, 3)
with A>1. The other cases can be treated similarly. Then, since
(Ho— A)vo= —Quo=— (Ho— A) R§ (2) Quo, (3.17)

we have (Ho—A) (vo+ R (A1) Quo) =0, ie., w=vo+R¢ (1) Quo is a solution of the
homogeneous equation (Hy— A) v = 0. Noting that w satisfies the radiation
condition, too, we see from (ii) of Theorem 2.5 that w=0, i.e.,

(I+R3 () Q)vo=0. (3.18)
Let f€E¥%,5. Then we have from (3.18)

0= (I+RE () Q) v, f)

= lim ((I+Ro(A+i/m) Q)va, /) (3.19)

= lim (Uo, (1+QR0(/{_i/m))f)

= (vo, U+F(A))f),

where ( , ) is the inner product of &, i.e.

G.0=3 @e&a (3.20)

wi(th){(.r) ='"(filx), f2(x), f3(x), fo(x)) and glx) ="(q1(x), ¢ (), g5(x),
gs\x)).
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It follows from (i) of Proposition 3.3 that (/+F~(2)) is onto %24, and
hence (3.19) implies that vo=0. This completes the proof.
Remark 3.5. It follows from (3.11) and (2.37) that, for f€ %,

IEA2—1)AxT+FEQQ) Bk U+F*(2)) 7Y (A>1),
IF (A2 =1 A U+F* Q)" +Bux U+FE(Q) Y (A<—1),
(3.21)

where 0 is as above, K = K, is taken so that a <|A|<b. Since the term

Bix I+F*(A))~'f belongs to #3, the “main” part of R*(2)f is the solution v
of the equation

R*(A)f=

(—A— (B2—1))v=AxI+FE(A))"Y (3.22)

with an appropriate radiation condition.
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