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1. Introduction

We consider a linear evolution equation in a Banach space X, of order n:

(1.1) Z AD" () =f(1), 0<t<T,
' j=0

D" u0)=x;, j=1,..n,

where A4;, j=1,...,n, are linear continuous operators from Banach spaces X; to X,
respectively and A, is the identity operator in X,,. X are assumed to be continuously
embedded into X;_, for j=1,....n.

In this paper we intend to solve (1.1) in the intersection of X;-valued Besov
spaces with exponents n—j+0, j=0,1,...,n, which we denote by

(1.2) () Bi:i*%0,T; X).
j=0

In [25] we showed that when n=1, the equation (1.1) has a unique solution in (1.2)
for every data (f, x,)e B‘,’,,q(O, T; X,) X X, with suitable compatibility relations if and
only if (1.1) is a parabolic equation in X,. A similar result on solvability
is expected for a class of parabolic equations of order n. In this paper we impose
a condition for parabolicity on the operator pencil £7_,4""/4;. See the hypothesis
(H) in Section 6. Such a condition was introduced by Dubinskii [8] to study the
equation with zero initial condition.

Under the assumptions above (1.1) is solved as follows. By introducing unknown
functions u;=D," Ju, j=1,...,n, the equation (I.1) is written as a system of first
order equations. We show that in a certain Banach space the system is realized
as a parabolic equation. Then the above result for the case n=1 is applicable to
the system. The Banach space that we introduce is given in a definite way by using
the functionals of Brézis and Fraenkel [3]. We shall study in detail the functionals,
the operator pencil and the relation between them.
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Our result applies to the initial boundary value problem of a parabolic equation
in the sense of Petrovskii with boundary condition not containing derivatives in
t. With a suitable choice of the spaces X; our condition on the operator pencil
holds true of certain partial differential operators. See Tanabe [22], [23]. Lagnese
[13] handled this problem in a way similar to ours. It seems that in [13] the system
has not been reduced to a parabolic equation in an appropriate space yet. For
other applications we refer the reader to Favini and Obrecht [9], and Favini and
Tanabe [10].

There are several papers treating an equation of the form (1.1) with operators
depending on 7. Methods of constructing a fundamental solution to such a problem
are discussed by Obrecht [18], [19] and Tanabe [22], [23]. In [23] a partial
differential equation with boundary condition variable in ¢ is considered. Our
method of reduction to a system would not apply to this problem, since the variation
of boundary operators causes complicated relations of the derivatives of solutions.

The plan of this paper is as follows. In Section 2 after giving the notation
we shall collect definitions and certain properties of Besov spaces. In the next
three sections we shall study the functionals of Brézis and Fraenkel and the operator
pencil. In Section 6 we shall describe compatibility relations between data of (1.1)
and then state our main result. In Section 7 we shall reduce (1.1) to a parabolic
equation of first order and solve the problem in (1.2).

2. Notation and preliminaries

R and C denote the fields of real and complex numbers, respectively. Z, is
the set of nonnegative integers. Let E and F be Banach spaces. Z(E,F) is the
space of bounded linear operators from E to F with uniform operator norm
Il o@Er- We write simply L(E E)=%(E). For a lincar operator A in E we
denote the domain of A by 2(A).

For 1<p<oo, 0<a<b<oo and leZ,, set E-valued function spaces as
follows. 2'(a,b;E) is the space of distributions on (a,b). The derivatives of
f€2'(a,b;E) are denoted by D/f. LFa,b;E) and L%a,b;E) are the L? spaces
with respect to the Lebesgue measure dr and the measure (~'di on (a,b),
respectively. For an interval I=(a,b), (a,b], [a,b) or [a,b], C'(I;E) is the space
of I times continuously differentiable functions on /. In the notation above we
omit the symbol E when E=R or C.

Assume 1<p<oo, 1<g<o0, 0<l<oo, 0<T<o0. Set m=[0]+1, where [0]
is the largest integer which does not exceed 0. For a strongly measurable function
f on (0,7) with values in E put

(- 1)"'""('Z>f(' +kh)
k=0

|y
LA b 0.1 = ' h LP(0,T ~ mhiE) L0, T/m):

We define the subspaces B’,’,_q(O, T;E) and Bf,_q(O, T;E) of L?(0,T;E), called the Besov
spaces, as follows:
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(1) felL”0,T;E) belongs to B (0, T;E) if [/1sg c0.7::) < 0
(2) feL"0,T;E) belongs to B (0,T;E) if

fe Bﬁ,q(O,TQE) and VI_olflLP(O.h;E)ng(O.T)<OO'
The spaces B (0,T;E) and B‘,’,'q(O, T;E) are equipped with the norms

[/ 13e (O,T;E}=|f|LP(O.T:E)+ [f]B". (0.T;E) »
pP.q p.q
-0
|f|izg'q(o,r;5)=|h |f|Lp(o,h;E>|Lg(o.T)+ lleg‘q(O.T;E)v

respectively and become Banach spaces. We shall collect several properties of Besov
spaces. For details, we refer the reader to Triebel [24]. In the following proposition
B(0,p,q) stands for B (0,T;E) or B} (0,T;E).

Proposition 2.1. Assume 1<p, p'<oo, 1<q, ¢'<o0, 0<0, ('<oo, 0<T<o0.
Let us express 0 as [ +o with leZ, and a€(0,1].  Then (1)}-(5) hold.

(1) B(0,p.q) < B(0',p,q'), when 0>0'.
(2 B0.p.q) = BO—p~'+p~'p'.q), when p'=p, ¢ =q, 0>p~'—p'~".
(3) For feB(0,p.q), if T<oo, we have [}, f(s)dse B(1+0,p,q).

(4) For feB(0,p,q) we have D}f e B(0—k,p,q), k=0,...,1L

(5) B 0.T:E)={feB (0,T;E),

DXf(0)=0 for k=0,....,I—1, D'fe B3 (0,T; E)}.

1

When o —p~' is not an integer, we have

Br (0,T;E)

_ {Bz.q(os T;E), whena —p~ ' <0,
~ {feBL 0, T;E);f(0)=0},  wheno—p~'>0.

Finally, we give two notations of frequent use. A sum Xj_.a, of a sequence in a
vector space always means zero if i>j. We use the notation even if some of the terms
a, are not defined in advance. Let f and g be two functions defined on a set &
with values in [0,00)uU{o0}. By “f(x)~g(x)” we mean the equivalence relation
between f and g that there exist positive constants ¢; and ¢, independent of xe &
such that ¢, f(x)<g(x)<c,f(x) holds for all xe&.

3. Functionals L;

Let X, be a complex vector space and X;, j=1,...,n, linear subspaces of X,
satisfying the inclusion relations X; = X;_,,j=1,...,n. Let|-|; be seminormson X;.

In this section we introduce a functional on X; with a positive parameter and
study certain intermediate spaces between X, and X, relative to the functional.

n
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For 1>0, xeX;, j=0,1,...,n, and ¢ € X, put

J . n .
Lit,x;¢)=) 7 x—li+ Y 174l
1=0 I=j+1
The functional Lft,x) on X; with a positive parameter ¢ is given by taking the
infimum of L{t,x;¢) over ¢peX,:

L{t,x)=inf L{t,x;¢).

feXn

Obviously, we have L,(t,x)=0. For each >0, L{t,x) gives a seminorm on X;. The
functional L;, together with the functional L given in Section 4, was introduced by
Brézis and Fraenkel [3], although the definition of L; was not explicitly presented
there. They used the functionals to describe the spaces of the traces at =0 of
functions belonging to Nj_,C" ¥([0,1];X,), where X;, j=0,1,...,n, were assumed
to be Banach spaces with respective norms |-[;. We shall give a brief comment
on their result later on.

The following two lemmas contain some basic properties of the functional L;.

Lemma 3.1. (1) For t>0, xeX;, j=0,...,n—1, and ¢ € X, we have

Jj

(3.1) Lit,x)< z 79|,
1=0

(32) Lid< Y Al
1=j+1

(2) For t>0 and xe X;, 0<k<j<n, we have

J .
(3.3;0 Lk(t,x)Stj_"<LJ(t, X+ Y t"’lxl,).
I=k+1
(3) For t>0 and xe X,, 0<j<k<n, we have
. k .
(34, Lk(t,x)st’_k<LJ(l,x)+ Y t"f|x|,).
I=j+1

Proof. For e X, in Case (1) we have

Lit,x;¢)< Ejj

n
tl—l|x|1+ z tl—lW’h,
1=0 =0

n

Litd:n< Y g+ S A Ip—v.

I=j+1
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In Case (2) we have

Lt x; -m<zt' Hx—ylt Y L S 4 Hx,

I=j+1 I=k+1

=t""‘<LI{t,x;tp)+ i t’"’]xl,)

I=k+1
and in Case (3) we have

Jj
Wt x59) < Zt’ Ye—ylt Y 0Hyl+ Z £~ x],

I=j+1 I=j+1

=tj""<LJ(t,x;|//)+ i I'_j|x|,>.

I=j+1

Taking the infimum over Y € X,, we obtain the inequalities (3.1)+3.4).

Lemma 3.2. For t>0, s>0 and xe X;, j=0,...,n—1, we have

(3.5)) S'L(s,x) <max{l,s/1}"0L{t,x).

Proof. Notice that for ¢ e X, we have an inequality

s’Ls,x; ¢)—Z(S/t)'f|x o+ Z (s/0't19l,

I=j+1

<max{l,s/t}"0L{t,x; p).

It follows from (3.5)) that for each xe X;, j=0,...,n—1, the function tl-—)lej(t, X)
is nondecreasing and continuous.
Using the functional L;, we define the subspace Y; of X; as follows:

(3.6)) Yj={xer; sup L](t,x)<oo}, j=0,1,...,n

0<t<w

The seminorm [-|; on Y; is given by

(3.7) Ixl;=1x];+[x];, where [x];= sup L{t,x)

0<t<oo

Obviously, we have Y, =X, and |x|,=|x|, for xe ¥,. The inequality (3.1,) implies that
Y, =X, holds with equlvalent seminorms. By (3.1,_,) and (3.3, ;,_,) we obtain the
inclusion relations Yo Yy, j=1,..,n

Let us now mention the result of Brézis and Fraenkel [3]. They proved that
there exists a function uenj_,C" /([0,1]; X)) with D" /u(0)=x;e X;, j=0,1,...,n,
if and only if limLf#,x)=0, j=0,1,....n, holds. This condition has another

t—0
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expression that for each j=0,1,...,n, x; belongs to the closure of X, in ¥;. We
remark that when X;, j=0,1,...,n, are Banach spaces, so are Y, ; with respective
norms |-|;.

We have just presented the procedure for making from a set of subspaces {X,
|'1;;/=0,1,...,n} of X, another set of subspaces {v;, [5 j=0,1,...n} of
Xo(=7Y,). An iteration of the procedure yields the same set of subspaces of X, as
{Y;, I"l;; j=0,1,...,n} with equivalent seminorms. Let us prove this fact. For
t>0, xeY;, j=0,1,...,n, and ¢pe Y, put

j . " .
Litx;d)=Y 7 x—oli+ 3 ¢l
!

=0 I=j+1

Let us define the functional L(1,x) on Y; by

Li{t, x)= inf L{t,x; ).

deY,

Then we have the following proposition.

Proposition 3.1. For 0<0<1 and xeY;, j=0,...,n—1, we have

(3.8) 1t LA, X)| Lo(0,00) < (2R + 1) [t TP L1, X) |00, c0) -
The inequality (3.8) with 0=0 shows what we have claimed above.

Proof. First let us prove the following inequalities, for 1>0, xe ¥;,j=0,...,n—1,
and ¢eV,:

(39) [x—dle<t K Ir L1, X) oo,y F LAL X3 9),  0<k <),

(3.10) [¢LSH—%mwaN%ﬂhwmm+£ﬁhm¢n J<k<n-—1.

Proof of (3.9): For s>0, by (3.3;,) and (3.2;) we have

(3.11) Lk(s,x—¢)$sj_"<LJ{s,x—¢)+ i s'_"lx—(j)l,)

I=k+1

) J )
ss""(L,(s,x)+L,(s,¢)+ > S"’Ix—¢>|,>
) " ) J )
Ss""(LJ{s,x)+ Y sl + sSTx—¢|, ).
I=j+1 I=k+1
Therefore, for 0 <s<t, we have

(.12) Ls,x—¢)
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- B noo j »
<v k<le|" oLj("axHLw(o,:)‘*“ Z 'l + z ¢ ’Ix—d)l,).

1=j+1 I=k+1

On the other hand, for s>1t, by (3.1,) we have
k k
Lis,x—¢)< Y s Hx—glh< Y 7 Mx— ).
1=0 1=0

Combining the estimates above, we obtain for all s>0,
Li(s,x— ) < )r " Lr, x) | Lwgo. + LAt X; D).

The inequality (3.9) is a consequence of taking the supremum over s>0.

Proof of (3.10):: For s>0, by (3.4;,) and (3.1)) we have

(3.13) Lk(s,¢>s.sf—k<L,<m¢)+ > s"f|¢|,)

1=j+1

<s <,(s x)+ Lfs,x— @)+ z st~ ’|¢|>

I=j+1

sw( A5, %)+ Z Slx—glt Y s ’l¢|:>

I=j+1
Therefore, noting that j—k +0<0, for s>t we have
Ly(s, p)<t’~ "<t"|'_"L,{' X) Lo,y Z 7 — gl + Z f- ’I¢I)
I=j+1

On the other hand, for 0 <s<¢, by (3.2,) we have

n

Lisd< 3 sHoh< Y 04l

I=k+1 I=k+1

The subsequent argument is the same as that of the proof of (3.9).
Let us prove the inequality (3.8). For >0, xeY; and ¢€VY,, by (3.9) and
(3.10) we have

Lyt x:) < | OLr X) oo, + (14 DL AL X )

Taking the infimum over ¢ € Y,(=X,), we obtain (3.8).

When 0<0<|1, the inequality (3.8) is generalized in such a way that the L®
norms of t"’L,{t,x) and t“’L;{t,x) are replaced by the L? norms with respect to
the measure dt/t. We shall prove a seemingly complicated version of this fact.
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Proposition 3.2. Assume 1<p<oco, 1<g<co, 0<0<1. For xeY;, j=0,...,
n—1, we have

—@-p-1 12 -9 —p—
(3.14) [h=°"" ILj(’a-x)|Ll’(0‘h)|Lg(0.oo)Sleh o=r lIL,(tsx)|Ln(o,h)|Lg(o.ao),

where C; are constants depending only on n, 0 and j.
The inequality (3.14) with p=gq is nothing but what we have claimed above.

Proof.  As in the proof of (3.8) we first show the following inequalities analogous
to (3.9) and (3.10), for t>0, xe Y;, j=0,..,n—1, and ¢€Y,:

(3.15) [x—qs]ks(n—k)frf—kL,(r,x).d’f+tf—kL,(z.x;¢), 0<k<j,
. . ,

* dr
. ¥

(3.16) [d)]"SkJ rj_"Lj(r,x)—'+tj_"Lj(t,x;d)), j<k<n—1.
We first notice the estimates

(3.17) .vj_kLJ(.s,x)s(n—k)Jt‘f_"Lj(r',x)dTr, k=0,...,n—1,
0

. ® dr
(.18) .v’""L,(s,x)gkj rf‘"L,(r,x)T', k=1,...n.

s

These are obtained respectively by integrating over (0,s) and (s, o0) with respect to
the measure dr/r the both sides of the following inequality due to (3.5)):

(s/r)* - j—k
TR (s, x) < TR () X).
max{1,s/r}" ) o)

For 0<s<t, by (3.11) and (3.17) we have

t . n Jj
Lk(s,x—¢>)3(n~k)jr’"‘L,(r,x)d'+ Y e+ Y TMx—l, 0<k<).
0

3 1=j+1 I=k+1
Using this estimate in place of (3.12), we obtain the inequality (3.15) in the same
manner as in the proof of (3.9). Similarly, (3.13) together with (3.18) implies the
inequality (3.16).
Let us prove the inequality (3.14). For¢>0,xe Y;and ¢ € Y,, by (3.15) and (3.16)
we have

Lit,x;¢)< i (n—k) f (/) ILAr, X)d—r
k=0 0 r
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£k m(l/r)“"'Ll(r,x)?+(n+I)Lj(t,x;tﬁ).

k=j+1 t

Taking the infimum over ¢ € Y, (=X,), we obtain
j t . dr
L{t,x)< Y, (n—k)J (t/r)ILLr, x)—
k=0 0 r

+ Z kj (t/n* LY, x)—+(n+l)L{t x)

k=j+1

j 1
=) (n—k)J r""‘f’L,(tr,x)ﬂ
k=0 0 r
n—1 © k= dr
+ Y k| r % ALer,x)—+(n+ LA X).
k=j+1 1 r

Notice that r~*~7=9e L1(0, 1) for k<j, and that r~*~~®¢e L!(1, 00) for k>j. Then
an application of Young’s inequality gives (3.14).

The following proposition is useful for representing the spaces of the traces
of functions belonging to (1.2) by means of the real interpolation method.

Proposition 3.3. For t>0 and xeY;, j=0,...,n—1, put
(3.19) K”,(t,X)=¢inf (Ix—l;+ tll; 1)
€Y+

Assume 1<p<o0, 1<q<o0, 0<O0<I. For xeY;, j=0,...,n—1, we have

—f—-p-1 —
lh=0~" |Lj(tax)lLP(O,h)lLf(O,oo)~It oLj(tax)lLf(O.oo)
—0-p Yy - '
~|h=er |L,(f»x)|Lp(o,h)|Lg(o,ao)~|t oL,(t,x)|Lg(0.oo)

—9—p—1 - ’
~h=%r |K}(tyX)|Lp(o,h)|l,g(o.oo)~|t on(tsx)ll,g(O.oo)'

If p=q=o00, the assertion is valid also for 0=0 or 0=1.
Proof. We first prove the following lemma.

Lemma 3.3. For 1>0, xeY;, j=0,...,n—1, we have

Kj(t, x)~ L{t, x).

Proof. 1t is easy to see that Kj(t,x)<L(t,x), since we have an inequality

Kit.x)<|x—lj+1Uolj < Li(t,x: ), ¢eY,
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To obtain an upper bound of L(t,x) we first notice that

¢;= sup Lftx), j=0,1,...n,
0<t<oo
|xlj=<1

are finite by Proposition 3.1. For ¢e ¥;,,, by (3.3;,, ;) we have
Lt ) S Li{t.x— )+ Li(1, §)
SLift,x— @)+ U(Lj+ (1, d)+ ;4 1)
SCj|x—¢|}+f(cj+l +1)|¢|;'+1
<max{c;, ¢;qy + (=@l +tll; )

Taking the infimum over ¢ € Y;,,, we obtain a desired estimate.

We return to a proof of Proposition 3.3. By Proposition 3.1, Proposition 3.2
and Lemma 3.3 we have only to show that

|h_o_p"1|K}(t,x)|Lp(o,h)|Lg(0,oo)~|t_oK}(f,x)|Lg<o,oo)-
This is a consequence of the inequality
min{1,¢/h}K;(h, x) < Kj(t, x) <max{1, t/h}K(h, x),

due to Lemma 3.2 with n=1.

Remark 3.1. For xeX;, j=0,...,n—1, the condition
|h=6-r" 1|L,{t, x)lLP(O,h)lLf(O,oo) <
implies that xe Y;, since by (3.5;) we have
P L s, x) < {pln =)} ILAL Doy hZ5>0,
and hence we obtain
sTOLs, )< {p(—))}" {g(0+p~ )} ™" IL {8, X) oo Late, o0

4. Functional L

Let {Xj, [1;5 j=0,1,...,n} be a set of complex vector spaces and seminorms
satisfying the hypotheses of Section 3. For t>0, {eC with [{|=1, x;eX;,
j=0,...n—1, and ¢€ X, put

n

-1
(1) “Ix;— (1) 7" | -
j=1 1

L(t’Cvav"'ﬂxn—l;d)): Z
=0
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The functional L(t,{,x,,...,X,_,) on the product space X,x --- x X, _, with two
parameters ¢ and { is defined by taking the infimum of L(t,{,x,,...,x,_,;¢) over
PeX,:

L(t,,xg,....x,_1)=1inf L(t,{,xq, ..., X,_1; D).
deX

The definition of L(t, 1, x,, ...,x,_,) is due to Brézis and Fraenkel [3]. We introduce
a new parameter { for technical reasons. The functional gives a seminorm on
Xox -+ x X, _,, while for each ({,x,,...,x,_,) the function ¢+ L(t,{, x4, ..., x,_) is
upper semicontinuous. In this section we shall observe several properties of the
functional L. Also the relation between the functionals L and L; is studied. Some
of the results are given by Brézis and Fraenkel.

Lemmad.l. Fort>0,{eCwith|{|=1,A>0andx;e X;,j=0,...,n—1, we have

@.1) L(t,0, X, ... Mx;

-1
e AT X, y)

<max{L, A"} LAt/ 2, {,Xg s ooy Xy ooy Xy = y).

Proof. For ¢eX,, by definition the left-hand side of (4.1) dose not exceed

Z L {z (zc/i)'-fx,~—<zm)'-"r"¢}‘ ‘

j=1
This is bounded from above by
max{1, A"} L(t/A,{,xo, ... X}, .. Xy 5 A7 D).
Taking the infimum over ¢ € X,, we obtain the inequality (4.1).
Lemma 4.2. For t>0, (e C with |{|=1 and x;e X;, j=0,...,n—1, we have
L(t,(,0,...,x;,...,0)=L{t,x)).
Proof. Notice that for ¢ € X,, we have an equality

L(t,C,O, ...,xj, ...,O;¢)=Lj([7xj;(t4')j—n¢).

Let 4., k=0,...,n— 1, be distinct positive numbers. For j=0,...,n— 1, we define
the numbers a;, k=0,...,n—1, by the roots of the system

n—1
Z /{kldjk=5ﬂ, l=0,...,n—],
k=0

where 6, is Kronecker’s symbol. By Lemma 4.2 we have
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n—1

n—1
L{t,x) (I L, Z AjpXo s or 3, Aox; oy Y Ak""‘ocjkx,,_,)
k=0 k=0
n—1 .
<Y ol LG Xo s oo Adx gy 2" ).
k=0

Hence it follows from Lemma 4.1 that

n—1
4.2) L{t,x)< Y, max{1, 3" ot L(t/ A £, X vy Xy vy X ).
k=0

On the other hand, Lemma 4.2 implies that
4.3) L(t,{,xg, -0y Xp— ) Z L{t,x)).

Combining (4.2) and (4.3), by Proposition 3.3 we obtain the following proposition.

Proposition 4.1. Assume 1<p<oo, 1<qg<o0, 0<0<1. For {eC with |{|=1
and x;eY;, j=0,..,n—1, we have

—Q—-—p—1 —
|h 0-p |L(I’Cvx0an-»xn—1)|Lt'(0.h)‘Lg(0,oo)~|t OL(IsCsXO""’xn—I)lLf(O,oo)
—0—p-1 ' _
~h=0r |L(’aC’x0’~"’xn—l)lLP(O,h)ng(O,oo)'\'I’ oLl(’ﬁCs-x07-'wxn-l)ng(O.oo)

n—1 n—1
—9-p-! -0
~ z |h r |L,(’»xj)|Lp(o,h)|Lg(o,oo)" Z |t Lj(t’xj)lLf(O,oo)
j=0

j=0

n—1

n—1
—g—p-1 ’ —Q7y
~ Z lh=e=e |Lj(’*xj)lLP(o‘h)|Lg(0.oo)~ Z |t LJ(I’xj)ILf(O.w)

Jj=0 j=0
n—1 . n—1
—9-p- -9
~ Z lh=0-r |K}(faXj)|LP¢0.h)|Lg<o.ao)~ Z |t K}(”xj)hg(o,oop
j=0 j=0

where L'(t,{,x,,...,X,_) is the functional on Yyx --- x Y,_, given by

4.4) L't xy,....x,—y)=inf Z Z () Ix;— () "

fev,1=0] j=1
If p=q=00, the assertion is valid also for 0=0 or 0=1.
Remark 4.1. For x;e X;, j=0,...,n—1, by Remark 3.1 the condition
=07 P L, C X s s X o0l 30,000 < 00

implies that x;e Y;, j=0,....n—1.
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5. Operator pencils

Let {X;, |'|;; j=0,1,..,n} be a set of complex vector spaces and seminorms
satisfying the hypotheses of Section 3. Let 4;, j=1,....n, be linear operators from

X; to Xo. For a complex parameter A let us define the linear operators Pf4),
Jj=0,1,...,n, from X; to X, by

j
P()=Y W*4,,
k=0

where A4, is the identity operator in X,. We call the operators P(1) operator
pencils. In this section we make the following hypotheses.

Hypotheses. There exists a constant { € C with |{|=1 such that P,(J) are bijective

Sfor Ae R .(={t{;te R}, where R, is the set of positive real numbers. There exist
positive constants M; and N; such that we have

(5.1) [P X< M)A "xlp, AeRLL  xe€Xy, j=0,1,...n,
(5.2) |4 xlo < Njlxl;, xeX;, j=0,1,...n

In this section we shall first show that the functionals L; and L are approximated
well by means of the operator pencils. We shall then show that inequalities similar
to (5.1) and (5.2) hold with the seminorms |-|; given by (3.7)). Finally, we shall study
a matrix of operators describing a certain system of first order equations.

Lemma 5.1. For AeR,({ and xe X;, j=0,...,n—1, we have

J . n
LA™Y x)~ _Z ATNPATIPAX = AT+ Y AT IPL(A) T PYA)xX],

1=j+1

~i A" P PR — M) + Z A" P4 P2,
1=1

I=j+1

~i AP P Ax — 27X, + Z AP P (A,
1=0

1=j+1

Proof. We begin with a proof of the first equivalence relation. By definition
it is clear that L(|A|™",x) does not exceed

LA™ x5 2" 7P (A) ™ P{A)x)

J n
Z AP T PAx =2+ Y AP TP() T P LA,

I=j+1

Since for ¢ € X, we have an equality
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PP =2 = F TP ()Y I A,
k=j+1
for 0</<j we obtain

[P P(A)x— 7",

<[P, (D)7 P x = @)+ " —ply+ (27| P

Al 2: ln kAk¢

k=j+1

and for j</<n we obtain

|1ﬂil)—lfvﬁnxh

n

PN Y A"-kAk¢| .

k=j+1

<IPA) TP YA — D)y + 1AV bl + 2P

By (5.1) and (5.2) the right-hand sides of these estimates do not exceed

J n
V»l“"{ 2 Gu+MNJW Hx—dl+ Y (5k1+M1Nk)|7»|j_k|¢|k}~
k

=0 k=j+1

Therefore we have

J
Z A" 1P AT P 2 — A" + E A" PA) T PAA)x,

I=j+1

s(1+ Y. M, max Nk>Lj(|/1|-1,x;¢).

1=0 O0<k<n

Taking the infimum over ¢ € X,, we obtain the first equivalence relation.

In order to prove the second equivalence relation it suffices to show that the
first summand of the second term is estimated from above by the sum of the
others. This follows from the equality

(5.3) P,(A) ' PAAx— A= — 1 i W RAYP )T PA)x — A y)

k=1

n

=AY ATEAP (TP A)x.

k=j+1
For xe X,, by (5.1) and (5.2) we have
(5.4) x|, =1P,(A) "' P(A)x], < M, lim|P,(A)x]o = M |4,X]o
A=0

Hence the third equivalence relation follows from the equality

G5) AP P= — 3 I AP P — 1)

k=0
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n—1
— Y TKAP(D) TP A)x.

k=j+1

Lemma 5.2. For AeR.{ and x;e X;, j=0,...,n—1, we have

n—1

N PP — S

j=o j=t

L(W_ l’c—l,xo’ R Y Z Mln_l

1=0

~ Z Mln_l
1=1

n—1 n—1
.ZO P, (1)~ PfA)x;— -Z, M
ji= Ji=

~ Z Mln 1

Z (A)” ’P(l)x—ZA’ "x

j=0

1

Proof. Let us prove the first equivalence relation. By definition we have

L(M’l_lﬁc_lsxo, ...,xn_])

n—1
SL(IM_ L xgseen Xym s Y PYA)T 'P,{i)xj)
i=o

Y P)” 1P,.(x)x,—"f Py

Jj=0 ji=1

Z M-ln—l
1=0

Since for ¢ € X, we have an equality

n—1

S PPN = Y PN A, (Z W ey "¢> ¢,
k=0

j=0
we have
n—1 n—1
Z P,,(,{)“Pj(,l)x,— Z lj°"xj
i=0 j=1 1
<M|l n(M Z Nk Z /V k /1" k¢ /1" 'd)‘)
=0 i=

and hence we have

Z lln 1

n—1

Y PN P~ Z Mnx

ji=0

s(l + Y M, max N,,)L(Ml"‘,(",xo,...,x,,_, ;).

1=0 O0<k<n

Taking the infimum over ¢ € X,, we obtain the first equivalence relation.
By (5.3) and a simple calculation we have an equality



216 Yoshitaka Yamamoto
n—1

(PAD™ ' P{A)x;— ¥ 7"x,))

j=o0

= — XZi—kAk(
k=1

n

J

-1 n—1
PP A)x;— Y, Af_"xj>.
=0

j=k

This implies that the first summand of the second term is estimated from above
by the sum of the others. Thus the second equivalence relation is proved. From
(5.5) we can derive an equality

n—1 n—1 n—1 n—1
A, z P,,(,{)“P,{,{)xj= -y l"”‘A,(< Y P,,(l)"P,{/l)xj— Y )J""x,).
Jj=0 k=0 j=0 j=k

Using this together with (5.4), we obtain the third equivalence relation.

Lemma 5.3. There exist constants Mjand N;,j=0,1,...,n, such that we have
(5.6) [P 'X;< MW "Xy,  A€RL{,  xeY,, j=0,1,...n,

(5.7 |4 jxlo < Njlxlj, xeY;, j=0,1,...n

Proof. The estimate (5.7) is obvious in view of (3.1,) and the definition of

[-;. For xeVY;, j=0,..,n—1, by Lemma 5.1 we have an equivalence relation

J . n B
[x];~ sup <Z "~ 1P ()™ Ppx — T+ Y T Pk 'P,{lt)XI:)'
neR L \I=0 I=j+1

Therefore, to show (5.6) we have only to estimate each summand of

J .
(58) S PR P OPA) x— i PR X,
1=0
Y IR PPAA .
I=j+1

First, let us consider the case 0</<j. Since we have an equality

P PP x =W TP x= =P )7 Y W T AP,

k=j+1
for {u|>1A| we obtain
(5.9) IP()~ PP, (A) " ' x =1/ TP () ],

<l ="My Y Ndw/AWTHATTHPA) T i

k=j+1
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n .
<|u"Mymax N, Y 1ABTHP) T Xy
Jj<ks<n k=j+1

On the other hand, since we have an equality

P ()" "P{PA) x— TP X
J
= 3 WP AP+ P () (P =27
k=1

— TP (AT I =B A7)+ AT (P (1) P x — it~ "x),
for || <|4| we obtain

(5.10) 1P.(1) ™' PLROP (D)™ =T P (A)

J ) )
<l "M, Y, N/ AV AT HP L)
k=1
M APAPIP2) ™ x = A7
AT PA) T = Bgud ",
! APl () = S,
J
<[ M, max Ny Y 0 HPA) T x = Soud Ty
0<k<j k=0

+ |'u|l—"|/1|j—'|P"(l)— lx_ (SOIA'—"xh
1 AP T P T X = Sgupt X,

Next, let us consider the case j</<n. Since we have an equality

P() PP ) x= W TP X = P40 Y WPy,

k=j+1
for |ul=|4| we obtain

(5] I) |Pn(lt)_ ! Pj(:“)Pn(A)_ ]'\'ll
<l ™"/ AP TP X,
Hd 7MY N/ 2PTHAPTHPA) T
k=j+1

<|ul AP LA ],

' "My max N ) APTHP(A

j<k<n k=j+1

On the other hand, since we have an equality
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P, PP (27!

zj:;t’ P TAP(A)!

P07 (P (D)X= 27")+ AP (),
for |u|<|A] we obtain
(5.12) |Pu(k)™ " P(R)P(A)~ "X,

<|u'""M, ké Nilpt/ W42 HP 2™ X,
' "M PP AT = 27"l
+ i/ APIAP NP0 ),

LA
<Iu""M max Ny 3 1A HPA)” x—00u "Xy

0<k<j k=0

"l ) X

By virtue of (5.9) and (5.11), (5.8) dose not exceed

u|""'<l + Y M, max M) Y AP X,

1=0 j<k<n 1=j+1

when |u|>|4], and by virtue of (5.10) and (5.12), (5.8) dose not exceed

J
|'l|j_"< + Z M, max Nk) z M|"_'|P,l(,1)_lx—éo,/l_"xl,

=0 0<k<j 1=0

FHIATT Y TP ()™ x = dup "X,

=0

when |u|<[Al. Hence (5.8) is bounded from above by

|/1|J "<2+ Z M, max Nk) sup z "™ I|Pn(l1) X—0git” "x|;

1=0 O<k<n neR ¢ 1=
~|AP ™" x]o -

Thus we obtain a desired estimate of (5.8).

Let us now consider a matrix of operators
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(4, A, ... A,_, A,]
710 ... 0 0
(5.13) B= |0 —1"-. 0 0
L0 .. ~1 0]

The matrix B is regarded as an operator in E=X,x --- x X,_; with domain
DB)=X,x --- xX,. The following lemma is proved by a simple calculation.

Lemma 5.4. For AeR.( the operator A+ B is bijective. The inverse (A+ B)™!
is expressed as a matrix of operators the (i,j) components of which are given by

n—=i -1p. _qi—imt ..
(5.14) {’1 PP (A=A i<,

P ()P (), i>.

Let us give an approximation of the functional L by means of the operator
B. For (xg,....,x,- )€ E put

n—1
I(xov'-nxn—l)lE: Z |xj|j-
j=0
By Lemma 5.4 the /-th component of (A+B)™ "(x,,...,x,_ ) is
n—1 n—1 .
l""’( PN 'PAx;— 3, A""xj>.
i=0 j=1

Hence, for Ae R, { and x;e X;, j=0,..,n—1, by (5.4) we have

1 n—1
P PAx;— Y M,

j=o =t

n—

|BA+B) ™ "(xq, ..o Xu—1) g~ Z A=t
=1

!

This together with Lemma 5.2 proves the following lemma.
Lemma 5.5. For AeR,( and x;e X;, j=0,...,n—1, we have
IB()'+ B)_ “(xo, ...,x,,_ 1) |E~L(|'ll— I’C_ ]’xO ) ,.,,X"_ I)'

Let us now consider a restriction of the operator B. Let B be the operator
in E given by

(5.15) 2B)=Y;x .- xY,, Bx=Bx

As is easily seen, the range of B is included in E'=Yyx --- x Y,_;. Therefore we
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may regard B’ as an operator in E'. By A4}, j=0,1,....n, let us denote the restrictions
of the operators A; with domain @(47)=Y,, respectively. Then the matrix of
operators B’ corresponds to the operator pencil £j_,A"/4;. As Lemma 5.3 shows,
the operator pencil Xj_,1"77A; satisfies the same hypotheses as XI_,A"7I4;
dose. Hence, by Lemma 5.4 the operator A+ B’ is bijective for e R,{. The inverse
of A+ B’ is given by restricting the operator (A+B)~' onto E'. For (x,,...,x,_,)€E’
put

n—1
(X0 s s Xy ) g = Z x5 -
i=0

Let L'(t,{,xo,....,x,_{) be as in (44). For AieR.{ and x;eY;, j=0,...n—1, by
Lemma 5.5 we have

[B(A+B) "(xoy oo X ) e~ LA™ XX, ).

Recalling Proposition 4.1, we obtain the following lemma.

Lemma 5.6. There exists a constant C such that for AeR.{ and x;eY;,
j=0,...,n—1, we have

n—1
(5.16) IB(A+B) " "(xg,...o Xy ) <C Y. [x;];.
Jj=0

In particular, sup |B'(A+B) 'x|g is finite.

|x|g- <1
AeR . {

Remark 5.1. The assertion of Lemma 5.6 is not always true of the
operator B in E. Indeed, by Proposition 4.1, Remark 4.1 and Lemma 5.5,

sup |B(A+B) 'x|g is finite if and only if the following condition is satisfied:

Ixle<1
AR +{

Y;=X; and |x|j~[x;, xeV;, forj=0,1,...,n

J

This provides a delicate relation of the spaces X;, |-[;, j=0,1,...,n. In fact, when
X; are function spaces such as Sobolev spaces, the relation is sensitive to the orders
of the function spaces and the boundary conditions attached to the function
spaces. This subject will be discussed in [26].

6. Main results

Let X;,j=0,1,....n, be complex Banach spaces with norms |-|;. X are assumed
to be continuously embedded into X;_, for j=1,...,n. Let A;, j=1,...,n, be linear
continuous operators from X; to X,. In the sequel we follow the notation given
in the preceding sections. For instance, Y; are the subspaces of X; given by
(3.6)). With the hypotheses above Y;, j=0,1,...,n, become Banach spaces with
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respective norms |-[;.
Let us now consider a linear evolution equation in X, of order n:

Y AD )=/ (1), 0<t<T,
=0
(6.1) Dtn—ju(())zxﬁ j= 1’ Lan,

where A, is the identity operator in X,. We are concerned with a solution of
(6.1) satisfying

(6.2) ue () By, O.TiX),
e

In order that (6.1) has a solution u with (6.2) the data (f.x,,...,x,) must satisfy
suitable compatibility relations. This is based on the following fact.

Lemma 6.1. Assume 1<p<o, 1<q<oo, p '<O<l+4+p™' 0<T<o. If
ueni_oBy *%0,T; X)), then we have D"“ju(O)e(Yj,Yjﬂ),,_,,_lq (the real inter-
polatlon spaces between Y; and Y,.,) for j=0,...,n—1.

Proof. Let K(1, x) be the functional on Y; given by (3.19;).  Recall the definition
of the real interpolation space (¥;, Y, ),,. 0<n<l, 1<g<oo, due to Peetre:
(Y. Yo, ={xeY;i [17"K/(t, A)]L.,(O o) <00}

with norm
I'\/I;'-* ng = I’ N "K,{(t’ x)ll,g(o, o)

By Proposition 4.1 and Remark 4.1 we have only to show that

h? < 0.

L3(0.T)

I
L<t, L= Du(O), .., D,u(O))
n.

LP(0.h)

In the definition of L(1,1,x,,...,X,_,;¢) put

xj——]—D"’u(O) Jj=0,...n—=1,  ¢=u(t)—u(0).
(n—Jj)!

Since for /=0,...,n—1, we have an equality

n—1
.Z, T x == _i__l]il_)'f (1=5)" "' "D, "u(ts) — D,"~'u(0))ds,
F=

we obtain
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Take the norm in L?(0,4) and then, after multiplying the both sides by h~° take
the norm in L%(0, 7). By Young’s inequality the norm

h—o

1
L(t, L= Du(O), ... D,u(O))
n:

LP(0,h) Lz(O,T)

has an upper bound expressed as a linear combination of |h~ %D 'u(f)
—D,”"u(O)IL,,(O_,,;x,,ILg(O,T), 1=0,1,...,n. By Proposition 2.1 (5) this gives a desired

estimate.

Assume 1 <p<o0, 1<g<00,0<0<00,0<T<o0. Further assume that 0 —p~!
is not an integer. By 2, we denote the subspace of B (0,7;Xo)x Xo X -+ X X, _,
which consists of elements (f, x, , ..., x,) satisfying the conditions (1) and (2) below. Set
N=[0—p~']J+1. Put yo;=x;, j=1,...,n.

(1) If k<N, then y,;eX;, j=1,..,n. In this case put

DHO-3 A, J=1.
Vir 1= Vii-1> ) Jj=2,..,n.
(2 ynje(Yioy, Y)oop-141-ng» J=1..5n
We see that

63) € (Yickan-1>Yikano-p-141-ng» 1<jSn—N+k,
. Y Yn(zXn)’ n—N+k<an,

because by definition we have

y _{.;’Nj-HN» N—k<n—j,
K= .
! "k—j+nn> N_k>n_j

Hence the space 2, is equipped with the norm
N-1 n
lleg_q(O.T;Xo)"' Z [Vinln + Z |yNj|j+9—p"—N,q
k=0 j=1

and becomes a Banach space. For uen’i_,B;’*%0,T; X)) put
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M=

f= Athn_jueBz‘q(O,T;Xo), xJ'=D'"—ju(0)€X"_1, J= 1,...,”.

I

j=0

When N=0, that is, 0<0<p~"', we apply Lemma 6.1 to [ou(s)dse n]_ B /"' %0, T;
X)) and obtain (f,x,,...,x,)€D,. When N>1, differentiating f successively N—1
times in ¢ and then taking the traces at =0 of the derivatives, by Lemma 6.1 we
obtain (f,x;,...,x,)€2P,. Thus 9, may be understood as a space of data with
certain compatibility relations for (6.1) to have a solution u with (6.2).

We are now ready to state our main result. Define the linear operator P from

DP)=n"_oBs "0, T; X)) to 2, by

Pu= ( Y. A;D;" u, D" 'u(0),..., u(0)>, ue P(P).

Jj=0

Let us make the following hypothesis on the operator pencil X7_,A""/4;:

(H). The linear operators P,(A), Ae C, in X, given by

AP =X, Pfx=Y 1A

j=0

are bijective for LeX={1e C; |arg | <y} with a constant Y e(n/2,n). The following
estimates hold:

sup A" P A Newoxy<o, Jj=0,1,...,n
A€l

The following theorem is our main result.
Theorem. Under the hypothesis (H), the operator P is bijective.

In [25] we have studied in detail the operator P in the case n=1. For
convenience to the reader we summarize the results.

Proposition 6.1. Assume n=1. The operator P is bijective if and only if —A,
is a generator of an exponentially bounded analytic semigroup in X,.

A similar result is expected for an equation of order n. This subject will be
discussed elsewhere.

Here we recall an exponentially bounded analytic semigroup in a complex
Banach space and its generator. Such a semigroup has already been studied by [6]
and [20]. Let X be a complex Banach space. A mapping S:(0,00) - £L(X) is
called an exponentially bounded analytic semigroup in X, if S satisfies the following
conditions (1)3):
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(1) S is analytic. S has an analytic continuation to a sectorial region {te C;
larg 7| < ¢} with a constant ¢€(0,m/2). The continuation, also denoted by
S, satisfies the growth condition

I;x‘ps ¢Ile"“’S(t)Ily(x> <o
with a constant weR.
(2) For ¢y, t,>0 we have S(¢; +1,)=5(t,)S(z,).
(3) For xeX, if S()x=0, >0, holds, then we have x=0.
For S a linear operator in X is uniquely determined by the condition

2(G)={xe X; ye X exists such that D S()x—S(1)y=0, >0, holds},
Gx=y.

The correspondence S+ G is shown to be one-to-one. The operator G is called
the generator of S. Let G be a linear operator in X. There exists an exponentially
bounded analytic semigroup in X with generator G, if and only if G satisfies the
following conditions (1) and (2):

(1) The operator A—G is bijective for ie C satisfying |arg(d—@)| <y with
constants @e R and € (n/2, ).

(2) The following estimate holds:

sup ||()v_(f))(l—G~)_l||y(X)<°o-

larg(2 — @)| <y

In this case a semigroup with generator G is given by the inverse Laplace transform
of (A—G)~ ..

We shall sketch a proof of the theorem. A detailed proof will be given in the
next section. Introducing unknown functions u;=D," u, j=1,...,n, we write (6.1)
as a system of equations

Du()+ Y Aufn=f().  0<i<T,
i=1

(64) Duft)—u;_,(t)=0, j=2....n, 0<t<T,

u0)=x;, j=1,..,n

To prove that P is surjective we regard the system (6.4) as an equation in E’
=Y, % -+ x Y,_; rather than in E=X,x --- x X, _, and seeck a solution of (6.1) in

A"_oB17*%0, T; Y). The injectivity of P follows from the uniqueness of rather
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weak solutions to (6.4) regarded as an equation in E.

7. Proof of Theorem

Proof of surjectivity of P. Let B be the linear operator in E'=Yyx - x Y, _,
given by (5.15).  Since the inequality (5.1) holds for every { e C with |{|=1, |arg{| <,
so dose (5.16). This implies that — B’ is a generator of an exponentially bounded
analytic semigroup in E’.

By 9, we denote the subspace of B (0.T;E’)x E' which consists of elements
(f; X) satisfying the conditions (1) and (2) below. Put %,=*.

(1) If k<N, then %, €2(B). In this case put X,,,=D*l0)—B'%,
(2) Xye(E, DBo-p-1+1-Nyg-
Repeating the argument of Section 6 for the equation

{D,ﬁ+B’ﬁ=ﬂ 0<t<T,
#0) =%,

we may define the linear operator P by
B‘*"(O T:E)n B (0.T; 2(B)) - Do, i (Dgi+ B'ii, ii(0)).

By Proposition 6.1 we see that P is bijective.

For (f,X{,...x,)€D, put f='(£.0,...,0) and ¥='(x,,...,x,). Since we have
(Yo, Yo—p-141-ngX o X (Yoo ts Yidop-141-ng=(E D(B)g-p-141-n,, it follows
from (6.3) that $e€E’ and (f,%)e%P,. Hence there exists a unique function
i€ By %0, T; E'Yn B (0, T; 2(B)) such that Pi=(f,%). Letu,be the n-th component
of 4. It is easy to see that u, belongs to Nj_,B}, ’*"(0 T;Y; and satisfies
Pu,=(f,x(,...,x,). We conclude that P is surjective.

Proof of injectivity of P. Let B be the linear operator in E=Xyx --- x X, _,

given by (5.13). Writing (6.1) as (6.4), we may deduce the injectivity of P from the
following proposition.

Proposition 7.1.  For ue C%(0,T); E)n2'(0, T;2(B)), if Du+ Bu=0 in 2'00,T;
E) and if lim u(t)=0 in E, then we have u=0 on (0,T).

t—0

Proof. Let y be a contour running in £ from e ¥~ oo to eV~ ¥oo. For (>0
we define the linear operator S(f)e #(F) by

(1.1) S(t)= Je"(/l +B)"'di.

b4 —_
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The restriction of S(f) onto E’ gives an exponentially bounded analytic semigroup
in E’ with generator —B'. Hence, for xe E’, if S(f)x=0 holds for some >0, then
we have x=0. Put X;=X,,j>n+1. For ueX and meZ,, by (5.14) the operator
(u+B)~! maps X, x - X Xp1p_y into X, 4y % -+ x X,.,,. Hence (u+B)™" maps
Einto X, x --- x X, < E’. Noting that (u+ B)™" commutes with S(#), we obtain the
following lemma.

Lemma 7.1. For xekE, if S(t)x=0 holds for some t>0, then we have x=0.

We return to a proof of the proposition. Using (7.1) and the equation
Du+Bu=0, we can prove that for each t>T, D(S(t—1#u())=0 holds in

2'(0,T;E). This implies that S(t—u(f)=0, 0<t<T, since limu()=0 in E. By
t—0
Lemma 7.1 we conclude that u(f)=0, 0<t<T.
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