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Solutions in Besov spaces of a class of abstract
parabolic equations of higher order in time
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1. Introduction

We consider a  linear evolution equation in  a  Banach space X0 o f  order n:

(1.1)
E A ; D i n - iii(o=f(t),

i=o
0<t< T,

iu(0)= x i , j=1,...,n,

where A i , j=  1, ...,n , are linear continuous operators from Banach spaces X i to  X 0 ,
respectively and A, is the identity operator in X0 . Xi  are assumed to be continuously
embedded into X i _ , for j=  1, n.

In  this paper we intend to solve (1.1) in the intersection of Xi -valued Besov
spaces with exponents n — j+ 0, j=0, 1,...,n, which we denote by

(1.2) n 13"„-:q i "(0, T ; X i ).
pc,

In [25] we showed that when n=1, the equation (1.1) has a unique solution in (1.2)
for every data ( f,x 1 )E f rp ,q (0, T; X0 ) x X0 with suitable compatibility relations if and
o n ly  i f  (1.1) i s  a  parabolic equation i n  X , .  A  sim ilar resu lt o n  solvability
is expected for a class of parabolic equations of order n. In  this paper we impose
a condition for parabolicity on the operator pencil El'  0 .1n- jA i . See the hypothesis
(H) in Section 6. Such a condition was introduced by Dubinskii [8] to study the
equation with zero initial condition.

Under the assumptions above (1.1) is solved as follows. By introducing unknown
functions tri ----D riu ,  j=  1, ...,n , the  equation (1.1) is w ritten a s  a  system o f  first
order equations. W e show tha t in a certain Banach space the system is realized
as a  parabolic equation. Then the above result for the case n=1 is applicable to
the system . The Banach space that we introduce is given in a definite way by using
the functionals of Brézis and Fraenkel [3]. We shall study in detail the functionals,
the operator pencil and the relation between them.
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Our result applies to the initial boundary value problem of a parabolic equation
in  the  sense of Petrovskii with boundary condition not containing derivatives in
t. W ith a  suitable choice of the spaces Xi  o u r  condition on the operator pencil
holds true of certain partial differential operators. See Tanabe [22], [23]. Lagnese
[13] handled this problem in a way similar to o u r s .  It seems that in [13] the system
has not been reduced to a  parabolic equation in  a n  appropriate space yet. F o r
other applications we refer the reader to Favini and Obrecht [9], and Favini and
Tanabe [10].

There are several papers treating an equation of the form (1.1) with operators
depending on t. Methods of constructing a fundamental solution to such a problem
are  discussed by Obrecht [18], [19] and  T anabe  [22 ], [23 ]. In  [23] a  partia l
differential equation with boundary condition variable in t  is considered. Our
method of reduction to a system would not apply to this problem, since the variation
of boundary operators causes complicated relations of the derivatives of solutions.

The plan of this paper is as follow s. In Section 2 after giving the notation
we shall collect definitions and certain properties of Besov spaces. In  th e  next
three sections we shall study the functionals of Brézis and Fraenkel and the operator
p en c il. In Section 6 we shall describe compatibility relations between data of (1.1)
and then state our m ain result. In Section 7 we shall reduce (1.1) to a  parabolic
equation of first order and solve the problem in (1.2).

2. Notation and preliminaries

R  and C  denote the fields of real and complex numbers, respectively. Z ,  is
the set of nonnegative in tegers. Let E  and F  be B anach spaces. Y (E, F) is  the
space o f  bounded linear operators from  E  t o  F  with uniform operator norm
11'11 Y (E ,F ) •  W e write simply Y (E ,E )= Y (E ). F o r  a  linear operator A  in  E  we
denote the domain of A  by 9(A).

For 1<p <  oo, 0  <a <b <  co  and 1E Z ,  s e t  E - v a lu e d  function spaces as
follows. '(a, h; E) i s  th e  space of d istribu tions on  (a, b). T h e  derivatives of
f  E g'(a,b ; E) are  denoted by D i ' L P (a,b  ; E )  a n d  LP,(a,b ; E) are  the  L P spaces
w ith  respect t o  the L ebesgue measure d t  a n d  th e  m easure I - 1 d t  o n  (a,1)),
respectively. F o r an  interval I = (a, b), (a, b], [a,b) o r  [a,b], ;  E )  is  the  space
o f I  times continuously differentiable functions o n  I. In  the notation above we
omit the symbol E  when E =R  o r  C

Assume 1 < p < oo , 1 < q < oo , 0 < 0 < oo , 0 < T < co . Set m = [0] + 1, where [0]
is the largest integer which does not exceed O. For a strongly measurable function
f  on (0, T ) with values in E  put

Efiln . q (0 .T;E ) - h - E ( -
k 0

 1 r  - k (
m

) f  (  •  +  k h )
= k LP(0,T — mh;E) 14(0, Thn)•

     

We define the subspaces BL(0, T ;E) and T; E) of LP(0, T; E), called the Besov
spaces, as follows:



A bstract parabolic equations 203

(1) fe LP(0,T ; E) belongs to 14,4 (0,T ; E) if  LI1B, q (0.T;E)< G° •
(2) f  L P(0 ,T ;E )  belongs to /4 .q (0, T; E) if

8 , q (0, T; E) a n d  I I f.h l 4., (o.h; E)ILa(0.T) < Co.

The spaces B7,,,,(0, T; E) and .ffp ,q (0, T; E) are equipped with the norms

1.1. 1.6?,,,( 0,T;E) -IfIL p (0.7-x) + E f ln .,(0,T;E),

If lin , (0,T;E)=Ih 1.1 - 1Lp(0,1,;E)1L2 (0 .T )+  f in , (0 ,T;E) ,

respectively and become Banach spaces. We shall collect several properties of Besov
spaces. For details, we refer the reader to Triebel [24]. In the following proposition
B(0, p, q) stands for Lep . q (0, T ; E) o r  kp ,q(0, T; E).

Proposition 2.1. A ssum e 1<p, p' <oo, 1 <q, q' <co , 0 < 0, 0' <oo, 0 <  T< co.
L et us ex press 0 as l+o - w ith  le  Z , and crE (0,1]. Then (1)-(5) hold.

B (0,p,q)c B (0',p,q), when 0> 0'.

B (0,p,q)c B (0 -p - 1  +p ' - 1 ,p ',q ), when p' 0 >p -1  -p ' - 1 .

For f  E B(0,p,q), if  T < co, w e have 1f(s)ds E B(1 + 0, p,q).

For f  B (0 ,p ,q ) we have IV  f  e B(0 - k,p,q), k =0, I.

14,q (0, T; E)= If e  1440, T; E);

Dr
k f(0) = 0 for k  = 0, ..., 1 - 1, D, 1 f e  i , q (0, T; E)}.

When o- - p - 1  is  n o t an  integer, we have

krp . q (0, T ;E)

{

BPa (0,T• E) when a - < 0 ,
{ f; 13; 4 ( 0, ; E); f(0) = 01, w h e n  o - - p  1 >  0.

Finally, we give two notations of frequent use. A  sum El = i a, of a sequence in a
vector space always means zero if i > j .  We use the notation even if some of the terms
a, are not defined in  advance. Let f  and g  be two functions defined on  a  se t g
w ith values in [0, oo)u f o o l .  B y  "f (x )-g (x )"  w e m ean th e  equivalence relation
between f  and g  that there exist positive constants c ,  and c ,  independent of x e ‘
such that c,f (x ) g(x) c ,f (x )  holds for all x e g.

3. Functionals L ;

Let X , be a  complex vector space and X ,  j=  1, ...,n , linear subspaces of X ,
satisfying the inclusion relations X i  c Let I • 1; be seminorms on X .

In this section we introduce a  functional on  X;  w ith a positive parameter and
study certain intermediate spaces between X , a n d  X „ relative t o  the  functional.
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For t > 0, x e Xi , j=  0, 1, n, and 4)e X  put

L i(t,x ;0)= E E tt - i 1011.
1= 01 = j +  1

The functional NI, x) on X i  w ith  a positive parameter t  is given by taking the
infimum of L i (t,x; 0) over 4)c

L i (t, x)= inf L i (t, x; 4)).
OeX„

Obviously, we have L„(t,x)._ O. For each t > 0, Li (t,x) gives a seminorm on X . T h e
functional L i , together with the functional L  given in Section 4, was introduced by
Brézis and Fraenkel [3], although the definition of L i  was not explicitly presented
there . T hey  used  the functionals to describe the spaces of the traces a t  t = 0 of
functions belonging to n'i !, 0 C" i([0, 1] ; Xi ), w here X , j = 0, 1, n, were assumed
to  b e  Banach spaces with respective norms HiI .  W e  sh a ll g iv e  a brief comment
on their result later on.

The following two lemmas contain some basic properties of the functional L i .

Lemma 3.1. (1) F or t > 0, x e X , j= 0, n — 1, and OeX „ we have

L i ( i,x )< E
,=0

(3.2) E

(2) For t >0  and x eX i , 0 <k <j<n , we have

(3.3,A)
i

L k (t, x )  t i—  k ( Li(t, .X )4-  E  ti
1=k+1 — 

i lX11) •

(3) For t >0  and x e Xk , 0 <j<k <n , we have

P ro o f  For tif X „  in Case (1) we have

, ;  tfr) E t11 4 +  E
,=. I=0



A bstract parabolic equations 205

In Case (2) we have

t l-k. x _ -kLk(i, x ;  10  E I In+ E tl i x iiE
1=0 1=j+1 1=1+1

=ti - k (L » ,x ;1 0 +  E

and in Case (3) we have

1,k(t,X;0)._ E  t i - k 1X- 0 , +  E t` - kitmi+ E
1=0 1= j+1 1= j+1

k
= i i  (  L i(i, X ; 0 +  E P- iixii)•i=i+1 

Taking the infimum o v e r  e X„, we obtain the inequalities (3.1)-(3.4).

Lemma 3.2 . For t >0 , s>0  and xe  X , j=0, n - 1, we have

(3.5i ) s Li (s, m ax il,s/tIntiL i (t,x).

P ro o f  Notice tha t for e X „ we have an inequality

siq s ,x ;0 )=  E o p y t i l x — d ) i i+ ( s m i t t i o i ,
1=0

< max{1,s/t}ntiLi (t, x; 0).

It follows from (3.5i ) that for each xe X»  j= 0, ..., n - 1, the function tiL i (t,x)
is nondecreasing and continuous.

Using the functional L i , we define the subspace Yi  o f  Xi  a s  follows:

{Yi = x e Xi ; s u p  L i (t, x)< , j= 0, 1, ..., n.}  
o<f<0.,

The seminorm H i'  o n  Yi  is given by

(3.7j ) 14 = + [x] i  , w h e r e  [ x ] =  s u p  L i (t, x).
o<t<03

Obviously, we have Y„=X„ and lx1:,= ki n for x e Y„. The inequality (3.10 ) implies that
Yo =X 0  holds with equivalent seminorms. By (3.1i _,) and ,) we obtain the
inclusion relations Yi  c , 1, ...,n.

Let us now mention the result of Brézis and Fraenkel [3 ] .  They proved that
there exists a  function ue n7= 0 C" - i([0 ,1 ]; X ) with D t"- iu(0)=x i e X i , j = 0, 1, ...,n,

i f  a n d  o n ly  i f  lim L i (t,x i )=0 , j=0,1,...,n, h o ld s . T h is  condition has another
t-o

1=k+1

(3.6i )
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expression tha t for each j=0, 1, ...,n , xj  belongs to  the closure of X„ in Y .  W e
rem ark that when X j , j=0, 1, n , are Banach spaces, so are Yi  w ith  respective
norm s I Ij'

We have just presented the procedure for making from a set of subspaces {Xj ,
.;j=0, 1, ..., n} o f  X0 a n o t h e r  se t o f subspaces { Y , I  ' I;; j--0 , 1, ..., n} of

X0 (= Y0 ). An iteration of the procedure yields the same set of subspaces of X0 as
{Yi , j = 0 ,  1 ,  . . . ,  n }  with equivalent seminorms. Let us prove this fact. F o r
t >0, xe  Y , j=0,1, ...,n , and 0 e Y„ put

L (t,x ;0)--• E E t (n •
1=0 1= j+1

Let us define the functional L'i (t,x ) on Yi  by

1,;(t, )= infL(t,x; 0).
OeY„

Then we have the following proposition.

Proposition 3.1. For 0<0<1  and xe Yj , j= 0, ..., n- 1, we have

(3.8) I 9 /4t, x)IL - co,.) < (2n + 1) I t 'Lj(t,x)11, - (0,.)•

The inequality (3.8) with 0 = 0  shows what we have claimed above.

Pro o f . First let us prove the following inequalities, for t> 0, XE Yi ,j=0, ...,n—  1
and 0 E Y„ :

(3.9) [x— 0] k < ir-8 Li (r,x)I L , ( 0 ,c o ) -E Lit, X ; 0), 0  k

(3.10) [ 0 ] kx 1 6 , 0 . 0 0 +  L i (t,x ; 0)), j <k <n — 1.

Proof  of  (3.9): For s > 0, by  (3.3i ,k) and (3.2j ) we have

(3.11) L k (s, x — k  L i (s, x — 0)+ E  s ilx -0 1 1

1=k+1

_si - k(L i (s,x )+L i ( s ,0 ) + E st-ilx— 011)
1=k+1

(
.

< s " L .A s ,x1 +  E s'1 1 1 +  E s' - 'ix-01

Therefore, for 0 <s< t, we have

1=j+1 1=k+1

(3.12) Lk (s, x — 4))
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)tilx —( 7 - i1 ,-1- E 011 •< t i —k  eV - °L i (r, x) IL.(0,0 ti 0+ 

O n the other hand, for s> t, by (3.1k) we have

k(S, X — (I)) E E
1=0 1=0

Combining the estimates above, we obtain for all s>0,

L k(s, x — 0 )  11- k (el x) + L j (t, x; 0)).

The inequality (3.9) is a  consequence of taking the supremum over s>0.

Proof  of  (3.10): For s> 0 , by (3.4,,k) and (3.1 j ) we have

(3.13) L k(s, 0) si -k (L,{s, +  E

)(G Si  — k NS, X ) + L P , X  —  0 ) +  E st - iioi,

( J , 011+ E s'101, •
ki

G S "  1-(s x )+ E sllx —

Therefore, noting that j— k  +0<0, for s >t ,  we have

(
k

I, k(S , (I)) G ti  — k t e lr ' L i(r,x )11,...0 , ) E  ti - i l x - 0 0 -  E t"1011).
1=0 1— j-l- 1

O n the other hand, for 0 <s<1 , by (3.2,) we have

The subsequent argument is the same as that of the proof of (3.9).
L et us prove the  inequality (3.8). F o r  t >0, x E r j  a n d  0E n, by (3.9) and

(3.10) we have

L;(t,x ;(/))<nt ° I r'L (r, x )1 , 9 0 ,o 0 +(n +1)L i(t,x ; 0).

Taking the infimum over 0E Y„(=X,), we obtain (3.8).

When 0 < 0 < 1 , the  inequality (3.8) is generalized in  such a  w ay that the  L '
norms of t ' L ; (1,x) a n d  t - 6 / ( t , x )  are  replaced by the  L q norm s with respect to
the  measure d t l t .  W e shall prove a  seemingly complicated version of th is fact.

1= j+ 1 1=k+ 1

1 = j+  1

1=0 1= j+ 1
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Proposition 3.2. Assume 1< p < o o , 1 < q < c o , 0 < 0 < 1 . For x e j=0 ,. . . ,
n - 1 ,  we have

(3.14) Ih-°- P  l iq t,x )Icp I IL It, X) ILp( I0,h)

where C are constants depending only on n, 0 and j.

The inequality (3.14) with p =g  is nothing but what we have claimed above.

Pro o f  As in the proof of (3.8) we first show the following inequalities analogous
to  (3.9) and (3.10), for 1> 0, xe Y. ; , j= 0, ...,n  -  1, and 4E :

f(3.15)
dr

Ex - f l k _<_ ( n -  k )  t i•j -  k  Lk, x) - + ti -  k  Lit, x; 4)), 0 . k ._j,
o r

I(3.16) [0 ] ,  <k ri - k L i( r,x ) -
d r  

+ti - k 1.4t,x;4)), j < k _ n - 1 .
t r

We first notice the estimates

dr
(3.17) x ) < ( n  - k )  r i _k L x ) -J I

0
k = 0, ..., n - 1 ,

dr
(3.18) si - k L.(s

'
 x )<k ri - k L .(r, x )-, k =1 ,...,n .J J

These are obtained respectively by integrating over (0, ) and (s, co) with respect to
the measure dill - the both sides of the following inequality due to

(s1r)
max{1,s/r}n

Si  k  i ( S ,  X) i ( r ,  X).

For 0 t, by (3.11) and (3.17) we have

Crd r

I
Jo

i  t , x ) +  E  t i _ k i o i +  E  / 1 - lo x _

r I= j+ 1 1=k+ 1
I O lt, 0  <k <j.L k(s,x  - 4)) (n -k )  r i - k L (•

Using this estimate in place of (3.12), we obtain the inequality (3.15) in the same
ether with (3.18) implies themanner as in the proof of (3.9). Similarly, (3.13) tog

inequality (3.16).
Let us prove the inequality (3.14).

we have
For t > 0, x E Y, and 4ne , by (3.15) and (3.16)

- k ) (t111 - 4, ; (r,x )- 1-d •

o
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d
n E i

r
k (tIrriL4 r,x )— + (n + 1 )1 (t,x ;0 ).

k j + 1 t

Taking the infimum o v e r  e Y„(= X„), we obtain

E (n —k) (t Ir)k -  4(r, x)—
d r

k = 0 0

n — 1( ' c c d r+  E  k (t Ir)k -  L i (r , x) —r  +(n + 1)1,; (t,x)
k= j + 1 t

1

= E (n—k) (k— x)—
d r

k =0 0

n — 1 f c o dr+ E k r - ( k -  t)1(tr,x)—+(n+1)141,x).
k = j+ 1

Notice that r —(k—e  L ( 0 ,  1 )  for k <j, and that Y—(k( 3 )  E  L *1 (1, cc) for k > j .  Then
an application of Young's inequality gives (3.14).

The following proposition is useful for representing the spaces of the traces
of functions belonging to (1.2) by means of the real interpolation method.

Proposition 3 .3 .  For 1 >0  and xe Yi , j=0,...,n - 1, put

(3.19 K;(1,x)= inf (Ix — ckri + ti4)ri+ 1 ).
Oert

A ssume 1< p < c o ,1 < q o o ,0 < 0 < 1 .  For x e y i , j= 0 ,...,n -1 , we have

° - 1 ) ° I . ( t , x ) 1 1 1 ( 0 , )

-̂ 11 1 - ° - P  1 1qt, XALP(0,11)1.1,q(0,00) 11 —  4 ( t ,  X )11,1,(0,c0)

•̂-'1h — — X )IL , (0,h) ILn(0,co) ° K ; ( t , 411(0,co) •

If p = q=  co, the assertion is valid also f o r 0=0 or 0=1.

Pro o f . We first prove the following lemma.

Lemma 3 .3 .  For 1> 0, x e y i , j=0, ...,n —1, we have

K (t,x )-14 t,x ).

P ro o f  It is easy to see that Kj(t,x) L ir(t,x), since we have an inequality

(PG+ !kV; + E./0,x ; 4)), 4)e Y„.
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To obtain an  upper bound of Li (i,x) we first notice that

c =  s u p  L'i (t, x), j= 0, 1, n,
o <t <

are finite by Proposition 3.1. For  4) e Y , by (3.3 ; + w e  have

L'i (t, x — 4)) + 4))

< x — 01+ t(L; + 1 (t, +14)1' + 1 )

< c j lx — 4 + t(c ;± + 1 )10G+
< m a *  , c + 1 + 1}(x— 4 + tiOi; +

Taking the infimum o v e r  e Yi +  , w e  ob ta in  a  desired estimate.

W e return to a  proof of Proposition 3.3. By Proposition 3.1, Proposition 3.2
and Lemma 3.3 we have only to show that

1h— P  1 1Iqt X)1LP(0,h)11.1(0,00)''' It ,C)ILVO,x) •

This is a  consequence of the inequality

min{1, t/h}Ki(h, x) x) Lç.max11, t 111119h, x),

due to Lemma 3.2 with n= 1.

Remark 3.1. For x e X i , j= 0, n —1, the condition

1h P  1 L P  X ALP(0,h)17(000) <  X

implies that XE Y, since by (3.5 i ) we have

sP 114s, Ip(n x)ILp (0,h) ,

and hence we obtain

s -
g Li (s, x )  {p(n —j)}P {q(0 + 1 )}4°

4. Functional L

h>s>0,

Let {X ,  I; ; 0, 1, ...,n} be a  se t o f complex vector spaces and seminorms
satisfying th e  hypotheses o f  S e c t io n  3 .  F o r  t >  0 , ( EC with 141 = 1, x i  e Xi ,
j= 0, n — 1, and (fi e X„ put

x o , x„ _ ; 0)=.
t=o

n - 1E ( t c y - ix ;— (t ) l - n o
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The functional on  the  product space X 0  x • • • x X 1 w ith  tw o
parameters t a n d  is defined by taking the infimum of L (t ,(,x ...,x „ _ ,;0 ) over

X„ :

L(1,4,x0,...,x_1)= inf
0Es.

The definition of L(t,1,x,,...,x„_,) is due to Brézis and Fraenkel [3]. We introduce
a  new parameter fo r  technical reasons. T he  functional gives a seminorm on
X0  x • • • x X„_,, while for each (C, x 0 , x „ _  , )  the function i s
upper semicontinuous. In  this section we shall observe several properties of the
functional L .  Also the relation between the functionals L and L . is studied. Som e
of the results are given by Brézis and Fraenkel.

Lemma 4.1. For t > 0, e C with ICI = 1, A> 0 and x; , j  = 0, n — 1, we have

(4.1) L(t,C, x0 , ..., x ;  , A ' x„ _ ,)

P ro o f  For 4 e X„ , by definition the left-hand side of (4.1) dose not exceed

( n - 1

E (tuArixi —ociarn2- no}

This is bounded from above by

max11, AnIL(112, A- 110).

Taking the infimum over 0eX„, we obtain the inequality (4.1).

Lemma 4.2. For t> 0 , CeC with 1C1=1 and x; E X , j = 0 ,  . . . , n - 1 ,  we have

L(t,C, 0, ..., xi  , 0)— Lit,x ; ).

P ro o f  Notice that for X„ we have an  equality

L(t,C,0,...,x,...,0;0)=

Let i l k ,  k= 0, ..., n-1, be distinct positive numbers. For j= 0, n— 1, we define
the  numbers ai k  , k= O. .... n —1, by the roots of the system

n - 1

k=0

where (5 i , is Kronecker's sy m b o l. By Lemma 4.2 we have

1=0
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n -  I -  I -  I

1.1» , L(I, E cit x A jct. x. E -  I a ikx,jk  0  , •  •  • Au", E k j k  j
,
 • • •,

k = 0 k= 0 k = 0

n - 1

E loci/Jo ,  , x o , a k n - 1  x n _  1 ) .

k = 0

Hence it follows from Lemma 4.1 that

n -

(4.2) E max{ 1, }1 ). r2k" IL(// -k X0 , • • •, j ,  •  •  •, X n - 1 )•
k = 0

O n the other hand, Lemma 4.2 implies that

n -  1
(4.3) E

Combining (4.2) and (4.3), by Proposition 3.3 we obtain the following proposition.

Proposition 4.1. A ssum e 1<p<oo, 1<q<co, 0 < 0  <1 . For (E  C  with Ij = 1
and xi  e Yi , j= 0, ..., n -1 , w e  have

1 ) 1 1 , ( 0 , . )

l
h P  P  1 1

1
: ( 1,(, X0 , • • •, X n - 1 )1 L P (0 ,h )1 1 .1 (0 ,0 0 ) ' 'I l  

°
I . : ( 1 ,  C ,  X 0  ,  . . . ,X n _ 1)11,1 (0 .00 )

n - 1 n - 1

E °  P
X A L P ( 0 , h ) I L V 0 , v o r s '  E it oLp,x)IL 7(0,00)

j = 0 =

n -  1 n - 1
E E it °L,0,41,1(0,00)

j = 0i = 0

n - 1 n -  1

E1h- - 0  P E  -01h
i=o i=0

where LV ,C,x 0 ,...,x „_ i )  is the functional on Y, x • • • x Y,,_ given by

(4.4) ,...,x „_ ,)= inf E
meY„ / = 0

„-,
E ( t cy - ix i - 0 0 1 - 0

 

If p=q= oo, the assertion is valid also fo r  0=0  o r 0=1.

Remark 4.1. For x i  e ,  j= 0, ...,n — 1, by Remark 3.1 the condition

P,  •  •  • ,  X
II -  1 ) ILP(0 ,h)11,q(0..0) <

implies that x i  E Yi , j= 0, ..., n - 1 .
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5. Operator pencils

Let {Xi ,  Hi ; j= 0, 1, ..., n} be a  se t o f complex vector spaces and seminorms
satisfying the hypotheses of Section 3. Let Ai , j=  1, ...,n , be linear operators from
Xi  t o  X , .  F o r  a  complex parameter A  le t u s  define the  linear operators Po,

from X i  to  X 0 by

P i (1)= E
k= 0

where A o i s  th e  identity operator in X 0 . W e  c a l l  the  operators P i (A) operator
pencils. In  this section we make the following hypotheses.

Hypotheses. There exists a constant C with 1(1=1 such that P„(2) are bijective
for A e R „.(=ItC;t e /2+ 1, where R , is  the set of positive real num bers. There ex ist
positive constants Ali  and N i  such that w e have

(5.1) 1P„(2)-1 xi; A ER,C, x e X 0 , j=0, 1, ...,n,

(5.2) xe Xi , j= 0 ,1 , . . . ,n .

In this section we shall first show that the functionals L i  and L are approximated
well by means of the operator pencils. W e shall then show that inequalities similar
to (5.1) and (5.2) hold with the seminorms I given by (3.7 i ). Finally, we shall study
a  matrix of operators describing a certain system of first order equations.

Lemma 5.1. For A ER and x e Xi , j= 0, ..., n -1 , w e  have

i(121-  1 x) IIP„(2)- 1 P i(2 )X " x 11+  E 1,11"- '1P,P1r 1 P;(2)xli
1=0 1=j-1- I

— 12 1" - L IP Pr P ;(1)x  —  A " E
1=1 t= i+ i

n -  I

11 1" -  I IP„( 2 ) -  I  P D X  Aj - " Xl/ E
1=0 /=.j + I

P ro o f  We begin with a  proof of the first equivalence re la tio n . By definition
it is clear that L i (1A1- 1 ,x) does not exceed

L p r i , x ;  2" P „(1) -  ' P (2)x)

= ki n 1P „(/1) -  P 2-1 nx i i+  E IAI" - IP„(A) - iP; (2)xit.1=0 t=i+1

Since for q5 e X , we have an equality
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P P i (A)0 = Ai -  n — Ai-"P„() )-  1 E  An  - k  AO 5 ,
k = j+1

for 0<1</ we obtain

P P ; (1)x — E " x I

1 P „(A) -  P i(A)(x — 011 + 1 AI Ix—  01i + 1 AV -

 

P,( ' E  ,n_kA k l)
k = j + 1

and for j < 1 < n  we obtain

P n(A) -  1 3  i(A)xli

n(A) -  1  P ;(2)(x — 0)11+ 12 1i  "1011 + "

 

P „(1) -  E  2" ' A k 0
k = j+ 1

 

By (5.1) and (5.2) the right-hand sides of these estimates d o  not exceed

O k i Olk E (bki+miNk)121i - k14)14 •
k=0 k = j+ 1

Therefore we have

17

E 1 , 11"- 1̀Pn(ii) - P ; (2 )x —  ' 1 x11 + E 1/1"1 I)  n(2 ) -  P ;(2 )xli
1=

<  (I + E Ai, max Nk)Li (121- 1 ,x;d)).
1=0 05_k5.

Taking the infimum over r¢e X„, we obtain the first equivalence relation.
In order to prove the second equivalence relation it suffices to show tha t the

first summand of the second term  is estim ated from  above by th e  sum  of the
o th e rs . This follows from the equality

(5.3) P „(2) - 1 P i (1)x — " = P i (A)x —
k=1

— E  2" - k Ak P „(2) -  1  P i (2)x
k=j-i 1

For x e X„, by (5.1) and (5.2) we have

(5.4) lx1„ = IP„(A) - 1 P„(2)xj„ < = MnIA„xlo •

Hence the third equivalence relation follows from the equality

(5.5) A „P „(A) -  ' P 1( )x = — E 2" A k (P „(2) -  1  P i( )x —
k = 0
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n -  1_  E -  k A  k p  n ( A ) -  1  p  x

k=  j+ 1

Lemma 5.2. For A e R ,(  and x i e X , j= 0 , ..., n - 1 ,  we have

I I

L(121- 1, c-  i,x0, E
1= 0

n - 1 n - 1

E  Pn(A) 1 P,ox i—  E
i= 0 i = I

E

 

E  P „(2) -  P E 2i— .x
l

j= 0

      

n - 1 n_ 1

E  P „(A) -  P i (A)x E
j = 0 i=1

    

P r o o f  Let us prove the first equivalence re la tio n . By definition we have

L(1).1— 1 , xo xn —

(
n-t

1 , i Al -
 1 , C-  1  x 0 ..., x„- t ; E  P A -

 1 13 »1-)x;
i=o

n -  1 n - 1

E  P n(A) -  P .(A)x EJ x l
i= 0i =  I

 

Since for 4) E X„ we have an equality

n - 11 ( n -
E  p wn -  p i ( 2 ) x ,  E  p wn _tA k  E  A .,_kxj _ an_ko ) + 0 ,
J=0 k = 0 j= k

we have

E  P „(2) -  ' P(A)x E
i=1

1211 - "(m, E N k
k = 0

n -
E ) n - k o

j= k

and hence we have

n - 1 n -

E  P „(A) -  P  {A)Y.— EJ J
j= 0 i = l

 

< (1 + max Nk) LOAF 1, xo  • • •9 x„ - ; 4 4 .

Taking the in fim u m  over (/) E X„,  we obtain the first equivalence relation.
By (5 .3 ) and  a  simple calculation we have an equality



216 Y oshitaka Y amamoto

n—
E  (P„(A )' Pi (2)xi — » - "xi )

= — E k A k ( ' E P„(2) -  P •(2)x • — EJ J J •

11 1 -  I 11 - 1

This implies that the first summand of the second term is estimated from above
by the sum of the o thers. T hus the second equivalence relation is proved. From
(5.5) we can derive an  equality

n— I -  1 - 1 1 1  -

A,, E P(2) - P i (2)x = — E 2" -kA 
( 1 1

 k E P „(2) -  P i (1)x — E
j=0 k=0 j= 0 j=k

Using this together with (5.4), we obtain the third equivalence relation.

Lemma 5.3. There exist constants Mi and Ni ,j = 0, 1, n, such that we have

(5.6) 1P,,(2)-Ix Mj121i - "Ix1, 2ER , X E Yo , j=0, 1 , ...,n ,

(5.7) A x xe Y  , j =0, 1, n.

P ro o f  The estimate (5.7) is obvious in  view of (3.1 0 )  and  the  definition of
1'1;• F o r  x e  Y ,  j= 0,...,n— 1, by L em m a 5.1 w e h av e  an  equivalence relation

[x ] i — s u p  E  1 tiln 1  P  „ (P ) — 1 P j(I1)X n x 1 1 +  E ittin1Pnctir'P ,o)xi,
F. LER+ 1,0

Therefore, to show (5.6) we have only to estimate each summand of

(5.8) E xi,
i=o

+ E 'PkoP„(A )- 'xi,.
1=j+1

First, let us consider the case 0 < 1 < j .  Since we have an equality

11

Pn(p) - 1 1'.;(10P„(A) -  —  ji "Pn( 2 ) -  -7( = — P „GO-  1  E  1
i - kAkPn(2 ) -  I  X ,

j+ 1

for Ifil '1 2 1 we obtain

(5.9) 1P„1/0 P ;(10P„(A) -  x — t 1 "P „(2) -

E  NkItt/Arkl1rkIP.(A)-14,

k=1j = 0 j=k

k= j+ 1
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< kult - "/14, max N,, E 121i1P„(AY'xIk •
j<k <n k = j+ t

O n the other hand, since we have an equality

P n(1-1) -  P 140 P „(A) -  1  — " P „(A) -  1  x

= E f•ti - kP„(p) - 1  A kP „(A) -  1  +  P  „GO-  1 (P,(A) x — "x)
k= 1

"(P„(A) — ( " ft. 1 A-  "(P „Cu) - — 5 o hu-

for Im1 ..1/1.1 we obtain

(5.10) IP„1[0- 1 P i(ti)P„(A) -  x — tti - "P„(A) -

1/1 11- "Mt E N k lit iA r k iAr k lpn( 2 ) —

k=  1

+ 11 Al ilfind l IAIIP P r  x — A-  11 xlo

+11111 - "IIII Ali - UV - 1 1P „(A) - 412- xlt

+ "Ili 1 Ali lAli  "IA " „(fi) - x WI -  "xlt

" M  max N,, E iAli - k1P„(A) - 1 x — "XI,,
k=0

(50/A—"Xl/

P ( )  1 —  wit -  "xli

Next, let us consider the case j < l< n .  Since we have an equality

P „CO-  P ;COP „(2 ) -  =  - "Pn(A) -  x — 1 E A kp „() )- x ,

k= .j+ 1

for _1/1.1 we obtain

(5 .11 ) IP„(i0-1P.P0P„(2)-Ixii

+LICHA4/ E  Nklii/Ark lAr'IPPr'A ik
k= j+ 1

11(1 11P  „ ( 1 ) -  xlt

+ "M, max N k  E
.j <k_.5n k =j+1

O n the other hand, since we have an equality
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P n(10 -  P "OP n(A) -

= E p i — k p„ (p )_ iA k P n (2) —  x
k= 1

P„(2 ) —  (P „(2) -  x — 2 -  nx)+ itA -

for IA ,121 we obtain

(5.12) IP.(0 - 1 P; (p)P,.(2) - 'xIl

E
k= 1

+11111 - n  Al AVIAMP „(A) -  — n

+III 1 "I P „GO-

max N k  E kli — klP.(A)— x —  ok ) -  n

k=0

By virtue of (5.9) and (5.11), (5.8) dose not exceed

lAr n (
1+ M I max N k )  E 121— 1̀13„(2)— tx1,

1 11=0 j<k 1=j+

when 121, and by virtue of (5.10) and (5.12), (5.8) dose not exceed

11 1i - n ( 1E  / 1 4 ,  max Nk )  E 1,11- 113n(2)— 'x-6012— Hxli
1=0 0 -1 c .j 1=0

It

+11 1i - " E 1111- 1 1P,Apr'x-60iti — "xii
1=0

when IA Flence (5.8) is bounded from above by

(

1=0 0<k<n n E / 2 4  ,=-0
E Lui" — '1P„(0 — 'x-60/12— "xl,IV '  2+ E M 1 m ax N k  s u p

—1/1.1i - Ixio •

Thus we obtain a desired estimate of (5.8).

Let us now consider a matrix of operators
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(5.13) B =

A, A 2 ...

—I 0 ...
0 — I •

0 ...

A„_, A„

0 0
0 0

—I 0

T h e  m atrix  B  is regarded  a s  a n  operator i n  E= X 0  x  ••• x X , _  with domain
g (B )=X 1 x • •• x  X .  T h e  following lemma is proved by a simple calculation.

Lemma 5.4. For A E R + t, th e  operator A + B  is bijective. The inverse (A+ B) - '
is expressed as a m atrix  of  operators the (i, j) components o f  which are given by

LA"
 - P „(A) -  1  P _ ,(A)—

(5.14) -  p n ( 2)-1 pi  1 ( i>j.

L et us give an approximation of the functional L  by means of the operator
B .  For (x0 , . . . ,x n _ 1 )e E  put

n-1

Kx0,...,xn-01E= E ixi ij .
j=  0

By Lemma 5.4 the 14 h  component of (A+ B) "(x,„ , x , )  is

2 " I E P„(2) - 1Pox i - E
i=0 i=1

Hence, for 2. E R +  a n d  x j  X j , j = 0 , . . . , n - 1 ,  by (5.4) we have

1MA + BY  "(x0 x„ 1)1E ~ E
1=1

- n - t
E  P n(1) -  P i(A)x E

j=0 l= I

This together with Lemma 5.2 proves the following lemma.

Lemma 5 .5 .  For AER, 4 an d  xi e X , j= 0 ,  ...,n— 1, we have

Let us now consider a restriction of the operator B. Let B ' be the operator
in  E  given by

(5.15) g(B ')= Y 1 x • • • x Y „, B 'x =

As is easily seen, the range of B ' is included in E' Y  x  • • •  x  Y ,,_  .  Therefore we



220 Y oshitaka Y amamoto

may regard B' as an operator in E'. By Ai', j= 0, 1, ...,n, let us denote the restrictions
of the operators A i w ith  d o m a in  g(A i') = Y , respectively . T hen  the m atrix of
operators B' corresponds to the operator pencil A s. As Lemma 5.3 shows,
the opera to r pencil E7i = 0 2."- jA'i  sa tis f ie s  the sam e hypotheses as ri = „2" - 3 A ;

dose. Hence, by Lemma 5.4 the operator A+ B' is bijective for Ae The inverse
of A+ B' is given by restricting the operator (A+ B) -

 I  onto E'. For (x0 , ...,x„_ ,)EE'
put

E J  J  •
j= 0

Let L'(t,(, x 0 , ...,x „_,) b e  as in  (4.4). For A E and _vi e Y , j= 0, ....n— 1, by
Lemma 5.5 we have

Iff(1 + "(xo x„ - )1E, 01/1,1- x o  ,

Recalling Proposition 4.1, we obtain the following lemma.

Lemma 5.6. T here ex ists a constant C  such that f o r  AER + (  and x i c Y ,
j= 0, n — 1, we have

„-
(5.16) 18'(2+ [x

j  = 0

In particu lar, s u p  18'(.1.+B') -1 .KIE , is finite.
ix',  5_ 1
AER

Remark 5.1. The assertion of L em m a 5.6 is  n o t  a lw a y s  t r u e  of the
operator B  in  E .  Indeed, by Proposition 4.1, Remark 4.1 and Lem m a 5.5,

su p  18(2+8) -  I  xl E is finite if and only if the following condition is satisfied:
lx 1E 5_
AEI?

Y= X1 a n d  14-1x1 i , xEY , for j= 0, 1, ...,n.

This provides a delicate relation of the spaces Xi ,  H i , j= 0, 1, ...,n. In fact, when
Xi  are function spaces such as Sobolev spaces, the relation is sensitive to  the orders
o f  the function spaces and the boundary conditions a ttach ed  to  the function
spaces. This subject will be discussed in [26].

6. Main results

Let Xi , j= 0, 1, n, be complex Banach spaces with norms l• Xi are assumed
to be continuously embedded into Xi _ , for j =  1, ...,n. Let A i , j=1, ...,n, be linear
continuous operators from X i  t o  X , .  In  the sequel we follow the notation given
in the preceding sections. For instance, r i are the subspaces o f Xi  g iven by
(3.6i ). W ith the hypotheses above Y , j=  0, 1, n , become Banach spaces with
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respective norms
Let us now consider a  linear evolution equation in  X , of order n:

E AD  j U(1)= f(t), 0 <t<T ,
= o

D ," u(0) = x :I = 1 ,

where A , is  the  identity operator in X 0 . W e  a re  concerned with a solution of
(6.1) satisfying

H

(6.2) u e  n B
'

°(0, T• X.)1, 4  
j=  0

In  order that (6.1) has a solution u  with (6.2) the  data  (f, x i  , x„) m ust satisfy
suitable compatibility relations. This is based on the following fact.

Lemma 6.1. A ssum e 1 <p< co, 1  <q< oo, V ' <0 <1 + p - 1 ,  O<T<oo. If
u c  n  ,B (0, T; X i ), th e n  w e  hav e D i n-  lu(0)e(Y  , } 'i + ( t h e  real inter-
polation spaces between V i  and Y i + ,) f or j= 0, n - 1 .

P ro o f  Let Kj(t,x) be the functional on  r i given by (3.19j ). Recall the definition
of the real interpolation space ( o <  < 1, cc), due to  Peetre:

Y j  1)n,q = { X E Yj; WM, °01
with norm

IXI:j n,q
=  It j(fl X )11A(0, co) •

By Proposition 4.1 and Remark 4.1 we have only to show that

(6.1)

 

L (
1

t, 1, — D t "u(0), • • D  t u(0))
n! Ln(0.Io

< 0 5 ).

L:1(0, 7')

  

In the definition of L(t.,1, x0 , ..., x„ _ 1  0) put

1
x =  D r" 14(0), j = 0, ...,n — 1, (1) = u(t) — u(0).

(n —j)!

Since for 1= 0, ...,n — 1, we have an equality

n-1 1E - t '  - .0 - (I -'(D,"-Iu(ts)— D i "- i u(0))ds,
(n —1 —1)! o

we obtain
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L (t, 1 ,-
1

D,nu(0), . . D 1u(0))
n!

n - 1 1 f
< E  (1 —S) " - 1  i lD t

n  U (1 ,0  — 1)," - 1 11(0)I ids +1u(t)— u(0)i
n1= 0 ( n - 1 - 1 ) !  0

Take the norm  in LP(0, h) and then, after multiplying the both sides by take
the norm in L (0 ,  T). By Young's inequality the norm

L(t , 1 , 
1
— D1"u(0), , D ,u (0 ))
n!

h a s  a n  u p p e r b o u n d  ex p re ssed  a s  a  linear com bina tion  o f  Ih1 D 1" -
 tu(t)

—  -  I u(0) iLp (0,h;Xi)ILq(0,T), 1 =  0, 1, n. By Proposition 2.1 (5) this gives a desired

estimate.

Assume 1 <p < oo , 1 <q<oo, 0 < 0 <oo, 0<  T < ci. F u r th e r  assume that 0 — p -

is not an integer. B y 9, w e denote the subspace of B q (0, T; X 0 ) x X , x ••• x X„_
which consists of elements (f x, , ...,x„) satisfying the conditions (1) and (2) b e lo w . Set
N = [0 — p -  1 ] + 1. Put y o i =x ,, j = 1, ...,n.

(1)
 

If k <N, then y k i e Xi , j= 1, n. In this case put

LP(0,h ) L:(0,T)

NO)) —  E ALA I , j =
 1,

1=1
Yk+  1 j

Y k j-  1 j = 2, ..., n.

( 2 )  Y N j  ( Yj —  1 , Yj)0 —  p - + - N ,q j = 1, ...,n.

We see that

(6.3) Ykj 6
{( Y j - k  +  N -  1  ,  Yj - k + 00 - p  - 1 +  1 - N,q , 1< j< n — N + k ,

n — N + k < j< n ,

because by definition we have

Y k j=
Y N j-k + N ,

k- j+nn , N — k > n —j.

Hence the space 9, is equipped with the norm

N 1

IBo ,(0,T;Xo1 + E lyknin+ E lyNA+ 0 - p -  N,qp  

and becomes a Banach sp a c e . For u c n = "(0, T ;  J )  put

k = 0j = 1
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E A 1 /)," -  juE ffp . q (0,T; X 0 ), x i = .1)," -  iu(0)e , j = 1, ...,n.
i=o

When N = 0, that is, 0 < 0 < p -  ,  we apply Lemma 6.1 to l'o u(s)dse n .7=  o fInp :I i + 1 + 6 (0, T;
Xj ) and obtain (f, , x )  e 9 0 . When N  1, differentiating f  successively N -  1
times in t and then taking the traces a t  1=0  of the derivatives, by Lemma 6.1 we
obtain (f,x, , ...,x„)E9 0 . Thus 9 0  m ay be understood as a space of data with
certain compatibility relations for (6.1) to  have a solution u  with (6.2).

We are now ready to state our main result. D e f in e  the linear operator P from
9(P)=( -)11_ 0 13 (0, T ;X J )  to  9 , by

Pu=-(E Ai D," - iu , D1" - i u(0),...,u(0)), u E9(P).
i=o

Let us make the following hypothesis on the operator pencil E 11, 0 2" - iii i :

( H ) .  The linear operators P„(2), A eC, in X0  given by

g(P ,A )=  X ,  P „(2)X  = E -  1A 1x
j=o

are bijective for 1E E {A EC; larg /11 with a constant ip e (n/2, 7E). The following
estimates hold:

sup IlAn-iP(A)- 1 11.r(x x i) < j=0 , 1, n.
AEE

The following theorem is our main result.

Theorem . Under the hypothesis (H), the operator P is bijective.

In  [25] w e have studied in detail the operator P  in the case n = 1 . For
convenience to the reader we summarize the results.

Proposition 6.1. A ssume n = 1 .  The operator P is bijective if  and only i f  - A ,
is a generator of  an exponentially bounded analytic setnigroup in X o .

A similar result is expected for an equation of order n. This subject will be
discussed elsewhere.

H ere w e recall an exponentially bounded analytic semigroup in  a complex
Banach space and its generator. Such a semigroup has already been studied by [6]
and [20 ]. Let X  b e  a complex Banach sp a c e . A  mapping S:(0, ci) -+ Y(X) is
called an exponentially bounded analytic semigroup in X , if S  satisfies the following
conditions (1)-(3):



224 Y oshitaka Yamamoto

S  is analytic. S has an  analytic continuation to  a  sectorial region fie C;
larg ti <0} with a constant Oe(0,7r/2). The continuation, also denoted by
S , satisfies the growth condition

su p  Ile- "̀ S(t)11y ( x ) < 00
'a rg il .(1,

with a constant (fi E R.R.

F or 1,, 12>0 w e  have S(t1+ 12)=S( 11)S(12).

For x e  X , if S (t)x =0, t>0, holds, then we have x=0.

For S  a  linear operator in  X  is uniquely determined by the condition

g (G )=Ix E  X ; y E X  exists such that D,S(t)x —S (t)y =0, 1 >0 , holds},

The correspondence Si— G  is show n to be one-to-one. The operator G  is called
the generator of S .  Let 0 be a linear operator in X .  There exists an exponentially
bounded analytic semigroup in  X  with generator if and only if 0 satisfies the
following conditions (1) and (2):

(1) T h e  operator A- 6  i s  bijective for A EC  satisfying larg(2 —6)I tri with
constants óiE R  a n d  E (7E/2, rr).

(2) The following estimate holds:

sup 11(.1-65)(.1-6) -  119,00 < (po-
lar& — 6)1 I s '

In this case a semigroup with generator 0 is given by the inverse Laplace transform
of

We shall sketch a proof of the theorem . A detailed proof will be given in the
next sec tion . Introducing unknown functions ui =D riu ,  j= 1 ,. . . ,n ,  we write (6.1)
as a  system of equations

D ,u,(t)+ E A u (i)=f (t) , 0 < t < T,
i=

Dt uj (t) —  ui _ ,(t)-- 0, j= 2, , 0 < t < T,

u(0)= x i , j =1, ...,n .

T o p rove  tha t P  is  surjective w e regard the system (6.4) a s  a n  equation in  E'
=V o x ••• x  Y rather than in E= X o x  •-• x X „_ , and seek a solution of (6.1) in

Yi ). T he injectivity o f P  follows from the uniqueness o f rather

(1)

(2)

(3 )

(6.4)
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weak solutions to  (6.4) regarded as an equation in  E.

7. Proof of Theorem

Proof of surjectivity of  P. Let B' be the linear operator in E'= Y , x  • • •  x

given by (5.15). Since the inequality (5.1) holds for e v e ry  e C with ICI =1.1arg CI
so dose (5.16). This im plies that —B' is a  generator of an exponentially bounded
analytic semigroup in  E'.

By we denote the subspace of B0,4 0 ,  T; E') x  E ' which consists of elements
(1:.5e) satisfying the conditions (1) and (2) b e lo w . Put

(1) If k  <N , then i k e g (B ).  In  this case put .5c- k +  =  D,90)

(2) g N E ( E ' , p 1+ l -N . , .

Repeating the argument of Section 6 for the equation

{1),Ci + B' =1: 0  < t  <T ,

we may define the linear operator P by

P: B ip ; 
0(0, T; E')n B e

m (0, T; g(B'))—■ o ,— +( 1 3 ,-11+ a(0)).

By Proposition 6.1 we see that P is bijective.
F o r  (f,x i  , x n) e g o p u t  7= r(f, 0, ..., 0) and = 1(x 1 , ...,x„). Since we have

(Yo, Y1)0- p + 1 —  N ,q X  • • • X  ( Yn —  1 , 
Y ) 0 _ ++ 1 — N,q

=
(E ",

 g (
B

) )0  p  + 1  —  N ,q , it follows
from  (6.3) that l e  E ' and ( J , l ) e 0 .  H e n c e  th e re  e x is ts  a  u n iq u e  function

E B  : °(0, T; E')n B,„1(0,T; g(B')) such that Pa =(1.k ). Let Un be the n-th component
o f  i.  I t  is  e a s y  to  s e e  th a t  u„ b e lo n g s to  n'1= 0 B °(0, T ;y i )  a n d  satisfies
Pu„=(f, x  , x „ ) .  We conclude that P is surjective.

Proof  of  injectivity of  P. Let B  be the linear operator in  E= X , x  • • •  x  X„_,
given by (5.13). Writing (6.1) as (6.4), we may deduce the injectivity of P from the
following proposition.

Proposition 7.1. For ueC °((0, T );E)ng'(0,T;g(B )), if  D,u+ Bu -= 0 in '( 0 ,  T ;

E) and if  lim u(t)=0 in E, then we have u =0  o n  (0, T).

P ro o f  Let y be a contour running in I from to c / - ` " o o .  For t>0
we define the linear operator S(t)e 2(E) by

(7.1) S(t)=   f
27r.\ / — 1 y
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The restriction of S(t) onto E ' gives an exponentially bounded analytic semigroup
in E ' with generator — B'. Hence, for xeE ', if S (t)x =0 holds for some 1 >0, then
we have x = 0 .  Put X i = X „, j> n + I. F o r  [LEE and m e Z . + , by (5.14) the operator
(p+ B) m a p s  X„, x ••• x X ,,,,„_, into X„, + , x ••• x X,„+ „. Hence Cu+ Br " maps
E into X„ x • • • x X„ c  E'. Noting that Cu+ B r" commutes with S(t), we obtain the
following lemma.

Lemma 7.1. For xe E, if  S(1)x =0  holds f o r som e >0, then w e hav e x =0.

W e  re tu rn  to  a  p roof o f  th e  p ro p o sitio n . U sing (7.1) a n d  th e  equation
Di u + B u =0, w e  c a n  p r o v e  th a t  f o r  e a c h  2> T, AS(.1- — t)u(t)) = 0  h o ld s  in

T(0, T ; E ) . This implies that S(T— t)u(t)=0, 0 <  <T , since lim u(t)
i—o

=0  in  E. By

Lemma 7.1 we conclude that u(t)=0, 0< t <T.

D E P A R T M E N T  O F  A P P L I E D  P H Y S IC S ,

F A C U L T Y  O F  E N G IN E E R IN G ,

O S A K A  U N IV E R S IT Y
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