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The Neumann problem on wave propagation in a 2-D
external domain with cuts

By

P. A. KRUTITSKII

1. Introduction

The theory of boundary value problems for 2-D PDE’s mostly deals with
connected domains bounded by closed curves. A small number of investigations
are devoted to the problems outside cuts in the plane. There are almost no any
results concerning the well-posedness of classical problems in domains bounded by
closed curves and containing cuts. It seems, that the difficulties in the analysis of
these problems proceed from the different technique of the proof of the solvability
theorems for domains bounded by closed curves and for plane with cuts. It is
very likely, that there is no great difference between these problems in nature. In
the present note we try to overcome technical difficulties for the Helmholtz
equation in an external domain with cuts and therefore to suggest approach to the
analysis of similar problems.

The 2-D Neumann boundary value problem for the Helmholtz equation in a
multiply connected domain bounded by closed curves is considered in monographs
on mathematical physics, for instance in [l1]. The review on studies of the
Neumann problem for this equation in the exterior of cuts is given in [4]. The
present note is attempt to join these problems together and to consider both
internal and external domains containing cuts. From practical stand-point such
domains have great significance, because cuts model cracks, screens or wings in
physical problems. We consider the case, when the parameter in the Helmholtz
equation is not an eigenvalue for corresponding single connected internal domains.

The Dirichlet problem for the propagative Helmholtz equation in a 2-D
external domain with cuts has been studied in [6]. The Dirichlet problem for the
dissipative Helmholtz equation in both internal and external domains with cuts has
been investigated in [7]. The case of strongly dissipative Helmholtz equation has
been treated in [8] under weakened conditions.

The present paper is organized as follows. Formulation of the boundary
value problem and the uniqueness theorem are given in the section 2. With the
help of potential theory, the problem is reduced to the boundary integral equations
in the section 3. The Fredholm integral equation of the 2-nd kind is derived in
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Fig. 1. An external domain

the section 4. In this section we also prove the solvability of the integral
equations and formulate the existence theorem for the boundary value problem.

2. Formulation of the problem

In the plane x = (x1,x) € R? we consider the external multiply connected
domain bounded by simple open curves I'{,...,I'y € C** and simple closed
curves 1",2,...,1“,2\,2 e C"* 1 €(0,1], so that the curves do not have points in
common. We put

N\ N>
r'= U1 r), r*= Ul r: r=r'ur-
= n=

The external connected domain bounded by I'? will be called 2. We assume
that each curve I'* is parametricized by the arc length s:I'f={x:x=
x(s) (x.( ), xz(s)), se [a" bk]} n=1,...,Nx, k=1,2, so that a] <b} <--- <
ay <by <af <b} <---<ap, < bk, and the domain & is to the right when the
parameter s increases on [I',. 2 Therefore points x € I' and values of the parameter
s are in one-to-one correspondence except a2, b2, which correspond to the same
point x for n=1,...,N;. Below the sets of the intervals on the Os axis
N, 2
U[an’ Il l[an’ "] U

n= I n

k
an,b"

CZ

1

will be denoted by I'', I'? and I also.

The internal domain bounded by I ,f will be called 2,,, n=1,...,N,.

We consider I'' as a set of cuts. The side of I"' which is on the left, when
the parameter s increases will be denoted by (I'!)* and the opposite side will be
denoted by (I'')".

We put CO"(I'2) = {F(s) : F(s) € CO"[a2,b2], F(a?) = F(b2)}, re[0,1] and

C()r 1—v2 ﬂ C()r r2)

n=1
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The tangent vector to I” at the point x(s) we denote by 7, = (cos a(s),sina(s)),
where cosa(s) = x|(s), sina(s) = x5(s). Let ny = (sina(s), —cosa(s)) be a normal
vector to I at x(s). The direction of n, is chosen such that it will coincide with
the direction of 7, if m, is rotated anticlockwise through an angle of /2.

We say, that the function u(x) belongs to the smoothness class K if

1) ueC%2\r'ync*a\r',

2) Vue CY%@\I'>\X), where X is a point-set, consisting of the end-points
of I':

X = U (x(a}) Ux(B)))

n=1

3) in the neighbourhood of any point x(d) € X for some constants € > 0,
¢ > —1 the inequality holds

(1 Vu| < €|x - x(d)[",

where x — x(d) and d =a! or d=0b!, n=1,... N;.
Let us formulate the Neumann problem for the Helmholtz equation in the
domain 2\I'".

Problem U. To find a function u(x) of the class K which satisfies the
Helmholtz equation

(2a)  thyx, (X) + Uy (X) + fPu(x) =0, xeD\I'', f=const, >0,

the boundary conditions

(25) Q) ~ P, 2 ~ F (),
oy |xwer)” M |xo)e(rty
Ou(x) _ F(s)
ony x(syerl?
and the radiation conditions at infinity
_ -1/2 ou o _ -1/2 242
(20) u=0(|x|"""), P Pu=o(|x|"'7), |x|=1/xf+ x5 — c0.

All conditions of the problem U must be satisfied in the classical sense.
On the basis of the energy equalities and the Rellich lemma [1], we can easily
prove the following assertion.

Theorem 1. If I'' e C** I'’e C'“% Le (0, 1], then the problem U has at most
one solution.

We will prove the solvability theorem for the problem U under the additional
condition D.
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We say, that the condition D holds if B? is not an eigenvalue of the internal
Dirichlet problem

Uxix, (x) + Uxyx, (X) + ﬂzu(x) = 0» X € @”; u(x)lx(s) € 1"5 = 0’

for n=1....,N,.

It is well-known [1], that the condition D holds, if, for example, the diameter
of the each domain 2, (n=1,...,N;) is small enough. More precisely [1], the
condition D holds if

28%[exp(d,) — 1] < 1 forn=1,... Ny,

where d, is the diameter of the domain 2,.

3. Integral equations at the boundary

Below we assume that
(3) Ft(s), F(s)eC™YI"),  F(s)e Co%(r?), ie(0,1].

If #,(I'"), %8,(I'?) are Banach spaces of functions given on I'! and I'?, then
for functions given on I' we introduce the Banach space %,(I"') N %,(I'?) with the

norm |||l g riynarzy = 1la, ) + 1 gy
We consider the angular potential from [3], [4] for the equation (2a) on I

i
@) il =5 [ WV x0)do.
rl
The kernel ¥ (x,0) is defined on the each curve I'), n = 1,... N, by the formula

Vo) = || (Bl = y O A oela. bl

where %g')(z) is the Hankel function of the first kind

. . \—1/2
(., _ V2exp(iz - ”1/4)Joo a2 i
Hy (z) = y: . exp(—1)t l+2z dr,

y=y(&) = (&) »n@&), Kx-x»&Ol= \/(xn = 7)) + (2 = y2(E)*.

Below we suppose that u(g) belongs to the Banach space CJ’(I" ), we (0,1],
g€ [0,1) and satisfies the following additional conditions

b,
(5) J wo)de =0, n=1,... N
a)
We say, that u(s) e CO(I'") if

Ny
u(s) [Tls—aplls = by1* e ™),

n=1
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where C®“(I'!) is a Holder space with the index w and

N,
s = o T b= bl = i

Co.m(rl)

As shown in [3], [4] for such u(o) the angular potential w;[x](x) belongs to the
class K. In particular, the inequality (1) holds with e = —gq, if g€ (0,1). More-
over, integrating w;[u(x) by parts and using (4) we express the angular potential
in terms of a double layer potential

) i) = =5 [ plo) 50" (Blx = y(e)) do,

with the density

a

P(0)=J wé)dé, oelal,bl], n=1,....Ny.

1
day,

Consequently, wy[u](x) satisfies both equation (2a) outside I I and the conditions
at infinity (2¢).

Let us construct a solution of the problem U. This solution can be obtained
with the help of potential theory for the Helmholtz equation (2a). We seek a
solution of the problem in the following form

() W v, ul(x) = oi[V)(x) + wlg](x),

where
bl = 3| | @A Bl = st do

(8) wlul (x) = wi[)(x) + wa[u](x),

i

() = 5| | o) # (Bl y(e)) do.

and wi[y(x) is given by (4), (6).
By [r+...do we mean

Ni bk
ZJ ...do.

k
n=1 vy

We will look for v(s) in the space COA(I'!).

We will seek u(s) from the Banach space C(I'')NC*¥2(I?), w e (0,1],
ge0,1) with the norm ||~[|C;u(r|)nco.;/z(r:) = ”'”C;"(F') + Il co.r2r2y-  Besides,
u(s) must satisfy conditions (5).

It follows from [3], that for such u(s), v(s) the function (7) belongs to the class
K and satisfies all conditions of the problem U except the boundary condition (2b).

To satisfy the boundary condition we put (7) in (2b), use the limit formulas
for the angular potential from [3] and arrive at the integral equation for the



444 P. A. Krutitskii

densities u(s), v(s):

00) 45000 +5| )5 AL (Blx(s) - y(o)) do

L[ oy Slets1 )
r

0
o T Ao+, 1) 7 V6 0o

43| 10 s A Blxts) = o) do = F2(9), st

i

©08) 5| )z A Blx) o) d

I sin po(x(s), (@) , i P |
— EL, (o) T(gs‘)wda + ZJrl #(G)a—nx Vo(x(s),0) do — i’u(s)

+ Z Jrz u(a)a—ixé”(mx(s) = y(@))do =F(s), sel?

where

g

Vo(x,0) = Jla h(Blx — y(&)]) d¢, ae[n, n] n=12,... Ny,

h(z) = #O(z) - 2 “ln ;

By ¢y(x,y) we denote the angle between the vector xy and the direction of the
normal n,. The angle ¢y(x,y) is taken to be positive if it is measured anti-
clockwise from n, and negative if it is measured clockwise from n,. Besides,
@o(x, y) is continuous in x,ye I’ if x # y.

Equation (9a) is obtained as x — x(s) € (I'')* and comprises two integral
equations. The upper sign denotes the integral equation on (I'')*, the lower sign
denotes the integral equation on (I'')”.

In addition to the integral equations written above we have the conditions (5).

Subtracting the integral equations (9a) we find

(10) v(s) = (F*(s) — F~(s)) e CO*(I™).

We note that v(s) is found completely and satisfies all required conditions.
Hence, the potential v,[v](x) is found completely as well.
We introduce the function f(s) on I" by the formula

(1) f(s)=F<s)—§jr,<F+<o) F (o) o o (BIx() = yo))do, sel
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where

F(s) =3(F*(s)+ F(s)), sel.

As shown in [4], if se I'', then f(s) e C%*(I''). Hence, f(s) e COXTI).
Adding the integral equations (9a) and taking into account (9b) we obtain the
integral equation for u(s) on I’

1 sin gy (x(5), ¥0)
(12) szrn @) — o) “

n er (o) 5o Vo(x(6).0) do = 5(5)uls)

43| Lulo) s A Bix(o) - st do = 1(5). s
r: Ny
where d(s) = 0 if se I'' and d(s) = 1 if se I'?, f(s) is given in (11).
Let us show that any integrable on I'' and continuous on I'? solution of
equation (12) belongs to C*#2(I'?). Indeed, it follows from [3], [4] that if s € I"2,
then the kernel of the integral term in (12) can be expressed in the form

Iy(s,
————-O(S 9 + I (s,0),
s—0

where Iy(s,0) € CO4(I'? x I'), I)(s,0) € CO*2(I'* x I') and Iy(s,s) = 0. From [5]
we obtain

L(s,0)

= l—l_m+ I (s, 0),

$§—0 s—0

where L (s,0) € C*#2(I'? x I').  In accordance with [5], due to this representation
the integral term from (12) belongs to C®*2(I'?) in 5. Since f(s) € C®*(I'?), the
solution u(s) of (12) belongs to C%#2(I?).

Thus, if u(s) is a solution of equations (5), (12) from the space
Corhync(r?), we(0,1], gel0,1), then u(s)e Co(r'yNC***(r?) and the
potential (7) satisfies all conditions of the problem U.

The following theorem holds.

Theorem 2. If I'' € C** I'? e C“* conditions (3) hold and the system of
equations (12), (5) has a solution u(s) from the Banach space C;’(Fl)ﬂCO(FZ),
we (0,1], g€ [0,1), then a solution of the problem U is given by (7), where v(s) is
defined in (10).

Below we look for u(s) in the Banach space C;’(F')OCO(FZ).
If s € I'?, then (12) is an equation of the second kind. If se I'', then (12) is a
singular equation [5].
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Our further treatment will be aimed to the proof of the solvability of the
system (5), (12) in the Banach space C2’(I'') N C*(I'?). Moreover, we reduce the
system (5), (12) to a Fredholm equation of the second kind, which can be easily
computed by classical methods.

Equation (12) on I 2 we rewrite in the form

(13) us) + [r#(U)Az(& o)do = ~2f(s). seT?,

where

0

A2(5»0)=—{é(1—5(0))% V{x(s). ) + 50() 5= S (Blx(s) - y(am}

]2(57 O')
= m + 1i(s,0),

V(x,0) is the kernel of the angular potential (4) and Ii(s,0) € CO¥*(I'? x I),
j=1,2, as shown above.
It can be easily proved that
Sin(pO(x(S)‘ y(U)) _ 1 e CO,}.(FI x rl)
[x(s) = y(o)]  o-2

(see [3], [4] for details). Therefore we can rewrite (12) on I"' in the form

(14) o[ wo) ot | Yo de = <279, ser,

where

_ 1 [/ singy(x(s), y(o)) 1 i 0
v = {0 o0 (RS )~ )

- 30(0) o 3 (Blx(s) - ()|)}ec°»”°(r‘xr>,

po=4if 0<A<1 and py=1—¢g for any g e (0,1) if A= 1.

4. The Fredholm integral equation and the solution of the problem

Inverting the singular integral operator in (14) we arrive at the following
integral equation of the second kind [5]:

Ni-1

1 . n
(15) u(s) +er (0)A4o(s, 0) da+ Z Gys

n=0

dy(s), sel'
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where
1 Y, 0
Aols.) = ——[ €2 01(e) e,
n -
s—aly/bl —s|sign(s — a}),
1 2
ais) - L[ 2200,
. o-—s
Go, ..., Gy,—1 are arbitrary constants.
To derive equations for Gy,...,Gy,-; we substitute u(s) from (15) in the
conditions (5), then we obtain
Ni—1
(16) J w(o)l,(o)da + Z B.,,G,=H, n=1,... Ny,
m=0
where
I(o) = —J Ql_'(s)Ao(s, o) ds,
1
(17) By = '_J QI_I(S)S'" dS,

H, = —J 01" (s)Po(s) ds.
r,

By B we denote the Ny x N; matrix with the elements B, from (17). As shown
in [4], the matrix B is invertible. The elements of the inverse matrix will be called
(B“)"m. Inverting the matrix B in (16) we express the constants Gy, ..., Gy,—1 in
terms of u(s)

N,

Gi=> (B ) [H - Jr ()] (a) da].

m=1

We substitute G, in (15) and obtain the following integral equation for u(s) on I'!

1 1
8 — 1
(18) u(s) + 00 Jr o)A (s,0)do 0:0) D(s), sel",
where
Ni-1
A\(s,0) = Ayp(s.0) Z "Z(B D)ot (@)
n=0 m=1
N-1 N

(D (D()(S‘ Z ”Z(B_ nm m

n=0 m=
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It can be shown using the properties of singular integrals [2], [5], that @y(s),
Ao(s,o) are Holder functions if se I'', g e I'. Therefore, ®,(s), A4(s,0) are also
Holder functions if se I'', o e I Consequently, any solution of (18) belongs to
C,“;Z(F') and below we look for u(s) on I'' in this space.

We put

O(s) = (1 = 6(s5)) Qu(s) +d(s). sel.

Instead of u(s) € C{),(I" YN (r?) we introduce the new unknown function
w,(s) = pu(s)Q(s) e CO(r'yNC®(r?) and rewrite (13), (18) in the form of one
equation

(19) 1)+ | 1()0" @ A(s0)do = 0(s). ser

where
A(s,0) = (1 = 5(s))A4:(s,0) + d(s)A2(s, 5),
D(s) = (1 - (s))D1(s) — 25(s) 1 (s)-

Thus, the system of equations (12), (5) for p(s) has been reduced to the
equation (19) for the function g, (s). It is clear from our consideration that any
solution of (19) gives a solution of system (12), (5).

As noted above, ®;(s) and A,(s,o) are Holder functions if se I'', eI
More precisely (see [4], [5]), @i(s)e CO*?(I'"), p=min{1/2,4} and A(s.0)
belongs to C%?(I'') in s uniformly with respect to o€ I

We arrive at the following assertion.

Lemma. If I''eC** TI?eC'* 1e(0,1], &(s)e COP(I'")NC(I?),
p=min{A,1/2}, and u,(s) from C°(I') satisfies the equation (19), then u,(s) e
cor(ryn co(r?).

The condition @(s) e C*P(I''YN C%(I'?) holds if f(s) e C**(I).

Hence below we will seek u,(s) from C°(I).

Since A;(s,0) € CO(I'' x I') and due to the special representation for A,(s, o)
from (13), the integral operator from (19):

A, = jr 1.(0)0" (0)A(s, ) do

is a compact operator mapping C°(I') into itself. Therefore, (19) is a Fredholm
equation of the second kind in the Banach space C°(I).

Let us show that homogeneous equation (19) has only a trivial solution.
Then, according to Fredholm’s theorems, the inhomogeneous equation (19) has a
unique solution for any right-hand side. We will prove this by a contradiction.
Let x%(s) e C°(I') be a non-trivial solution of the homogeneous equation (19).
According to the lemma u°(s) e CO?(I'"YNC®(I'?), p = min{4,1/2}. Therefore
the function u°(s) = u%(s)Q'(s) € Cl”/z(l“')ﬂ C%(I'?) converts the homogeneous
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equations (13), (18) into identities. Using the homogeneous identity (18) we
check, that u°(s) satisfies conditions (5). Besides, acting on the homogeneous
identity (18) with a singular operator with the kernel (s — 7)™ we find that z°(s)
satisfies the homogeneous equation (14). Consequently, u’(s) satisfies the
homogeneous equation (12). On the basis of theorem 2, W0, 1% (x) = w[’](x)
is a solution of the homogeneous problem U. According to theorem 1:
w[®)(x) =0, xe Z\I''. Using the limit formulas for tangent derivatives of an
angular potential [3], we obtain

. 0 . 0
lim  —w[u)(x) - lim  —w[)(x) =u’(s) =0, sel.
xox(s)e(ry* 0Ty vox(s)e (") 0Ty
Hence, w[u](x) = wy[u®](x) =0, xe 2, and 1'(s) satisfies the following
homogeneous equation

(20) - lﬂ"(s) + ﬂr: 10(o) ai_\. A (BIx(s) — (o)) do =0, sel?

2

The Fredholm equation (20) is well-known in classical mathematical physics.
We arrive at (20) when solving the Neumann problem for the Helmholtz equation
(2a) in the domain 2 by the single layer potential. According to [1], if the
condition D holds, then the equation (20) has only the trivial solution x°(s) = 0 in
C(r?). To prove this we note, that w[u’](x) satisfies the following Dirichlet
problem

) .
A\i’z + /}_\1'2 =0 ,@n\ 1%

2 =0.

for n=1..... N>. where 4 is Laplacian. If the condition D holds, then
wa[ff)(x)=0in 2, (n=1,..., N>) and due to the jump of the normal derivative
of the single layer potential w,[°](x) on I'* we obtain x°(s) =0, se I'%.

Consequently, if se I', then u(s) =0, u(s) = u°(s)Q'(s) = 0 and we arrive
at the contradiction to the assumption that u’(s) is a non-trivial solution of the
homogeneous equation (19). Thus, the homogeneous Fredholm equation (19) has
only a trivial solution in C°(I).

We have proved the following assertion.

Theorem 3. If I'' e C** I'?’eC"* 1e(0,1], then (19) is a Fredholm
equation of the second kind in the space C°(I").  Moreover, if the condition D holds,
then equation (19) has a unique solution y,(s) € C*(I') for any ®(s) e C*(I).

As a consequence of the theorem 3 and the lemma we obtain the corollary.

Corollary. If I''e C** I?eC"* 1e(0.1], the condition D holds and
&(s) e COP(I"YN COT?), where p = min{A, 1/2}. then the unique solution of (19)
in C™(I"). ensured by theorem 3, belongs to C™r(I''yN C(I?).

We recall that @(s) belongs to the class of smoothness required in the
corollary if f(s) e C®*(I'). As mentioned above, if s, (s) € CO?(I'"YN C*(I?) is
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a solution of (19), then u(s) = u.(s)Q7'(s) e Cf/z(Fl)ﬂCO(FZ) is a solution of
system (12), (5). We obtain the following statement.

Proposition. If I'' e C** TI?eCl* f(s)e COXI), Ae(0,1] and the
condition D holds, then the system of equations (12), (5) has a solution u(s) e
Cf’/z(Fl)ﬂCo(Fz), p =min{l/2 1}, which is expressed by the formula p(s) =
w1, ()07 (s), where u,(s) € COP(I''YN CO(I'?) is the unique solution of the Fredholm
equation (19) in C°(I).

We remind, that if conditions (3) hold, then f(s)e C®*(I') and the solu-
tion of equations (5), (12) ensured by the proposition belongs to Cf/z(l" hn
C%#2(r'?). On the basis of the theorem 2 we arrive at the final result.

Theorem 4. If I'' € C** I'> € C'“* and conditions (3) and D hold, then the
solution of the problem U exists and is given by (7), where v(s) is defined in (10) and
u(s) is a solution of equations (12), (5) from C‘l”/z(Fl)ﬂCO(Fz), p =min{1/2,}
ensured by the proposition. More precisely, u(s) € C7(I" hnco42(r2).

It can be checked directly that the solution of the problem U satisfies
condition (1) with ¢ = —1/2. Explicit expressions for singularities of the solution
gradient at the end-points of the open curves can be easily obtained with the help
of formulas presented in [4].

Theorem 4 ensures existence of a classical solution of the problem U when
I'e C**, Ir?e C"* and conditions (3) and D hold. The uniqueness of the
classical solution follows from the theorem I. On the basis of our consideration
we suggest the following scheme for solving the problem U. First, we find the
unique solution ,(s) of the Fredholm equation (19) from C°(I"). This solu-
tion automatically belongs to C*?(I'')NC%I'?), p=min{A.1/2}. Second, we
construct the solution of equations (12), (5) from C{’/Z(F')OCO(I"Z) by the
formula u(s) = u,(s)Q '(s). This solution automatically belongs to Cf/Z(F')ﬂ
C%*2(r?). Finally, substituting v(s) from (10) and u(s) in (7) we obtain the
solution of the problem U.

Modern methods for numerical analysis of integral equations with singular
integrals are presented in [9].
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