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A  coupling of infinite particle systems II

By

E. ANDJEL and T . MOUNTFORD *

This paper follows a n  earlier work by the second au thor [ M ] .  Its purpose
is to point out some simple consequences of the first work, both general and specific.

In  the first section we adopt a  general setting for interacting particle systems
(I.P.S.), we suppose that the state space for our system is Dz  where D is a finite set. We
suppose th a t the  process is o f finite range and tha t a ll f lip  rates are uniformly
bounded over configurations. The following was shown in  [M ]:

Theorem 0 .1 .  Let be an  I.P.S. satisfy ing the above conditions. T hen, any
weakly covergent subsequence o f  has an invariant measure as  its limit.

Theorem 0 .2 .  S uppose a l l  t h e  hy pothesis o f  T heorem  0 .1 .  hold. T h e n ,
'If   C (D z ), T, ô >0, ] t o s.t. f o r any  initial condition

IE V (0 ) —  E4(f(r+r))1< 65 V  t  to

Although Theorem 0 .2  is  n o t  explicitely stated in  [ M ] ,  it follows from  the
arguments g iven there . More precisely from the following observation: Lemma 1.2
and Proposition 2.1 in  that paper say that certain probabilities converge to  1, but
the proofs given there show  in fact that both these convergences are uniform in
the initial configuration.

A simple consequence is that to show a measure y is an invariant distribution
it is only necessary to show that P i*v=v for a single strictly positive t, rather than
for a ll t, as the  definition of invariant distribution a priori requ ires. In Section
1 w e show  tw o  m ore  results, which a re  to  our best know ledge, n e w . In  th e
sequel we denote by S  the set of translation invariant probability measures on
Dz a n d  by  /  the set of stationary measures for the  process. The extreme points
of a set A  of probabilities measures will be called A ,.

Theorem 1.1. Suppose the above hypotheses are  true and in addition that our
process is translation invariant. Then,
a) A ny element of  (In S ), is ergodic with respect to  translations on Z

and
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b )  any element of  (I) e n S  is m ix ing w ith respect to translations on Z.

This Theorem partially answers some questions raised in  [A ] where a  counter
example to this result when processes o n  T z a re  allowed is given.

It is w ell know n and  follows from the genera] theory (see Theorem 3.3.2 in
[A G ]) that if  a  measure j.i is  extremal invariant, then under P" R i 0<t <co}  is
ergodic w ith respect to  shifts in  tim e . T h is  does not im ply that our process is
mixing. W e show

Theorem 1.2. U nder th e  above hypothesis, i f  It i s  a n  extremal invariant
distribution for ( )  then E'lf( o )g(0— f><it,g> 0 as t o o  Vf, g E L2 .

The second section is given over to the treatment of 1-dimensional voter model
like processes.

I t  is  p ro m p te d  b y  a conjecture b y  [D ]  a n d  by  resu lts  o f  [A L M ]. [D ]
considered spin systems w h e r e  the flip rate  C (x ,)=f (D „)  fo r a  function f  with
f(0)=0, where D,=.14 ( „) , 4 ( „_, ) +14 ( „) # 4 , 4.1 ) i s  the number of nearest neighbours in
disagreement. For a translation invariant initial distribution it w as show n that
Vx O y  P (,(x ) r(y)) — > 0 as t o o .  It was conjectured that for any initial 4  , and
x  y

is'40( t(x) 10))) 0 as co.

If f(2 )>f(1 ), then the process is attractive and arguments given in [ALM] can easily
be adapted to show this result.

In  fact we are able to  solve a  considerable generalization of the conjecture:

Theorem 2.1. L et the spin system have f l i p  function C (x ,)  which is
(i) Translation invariant.
(ii) C (x , )= 0 D„=0.
(iii) Is finite range.

Then V x y, P 40 ( (x) t(y)) —> 0 as t co.

It sh o u ld  b e  n o ted  th a t u n lik e  the  vo ter m odel, the  flip  ra te  may make
distinctions between Fs and 0 ' and between right and left neighbors. Given that
the process is finite range, there exists a constant S> 0 so that C (x , )> 6 if Dx >1.

We can also generalise the conjecture in another direction. Say a process L is
voter model like if

(i)' The flip function C ( x ,  has a finite range m and is translation invariant.
0 0 '  a ) O x, )=  0 i f f  Eo < I, - yI < „ hoo= (y) > "

i
'

b) there exists c > 0  such that C (x , )=c  if either

(x+1)=  (x+2)= =  (x+ ,»)=  1 — (x) or

(x -1 )=  (x -2 )=  • •  = 1 —  (x)
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Theorem 2.2. Under hypotheses (i)' and (ii)' f o r any  configuration 4  and any
x  y — > 0 as  t co..

This was proven in [A LM ] for the threshold voter model, that is when

C(x, ) = 1 if E 14(.)= 4(Y)
0<lx-yl,sm

=0 otherwise.

Section 1. Under the usual discrete product topology Dz  is  a compact metric
space. Therefore P(D z )  under the weak topology is also a compact metric space,
whose distance we denote by d, and I is a closed (therefore compact) subset of P(D z ).

Lemma 1.1. V 5 > 0  an< co, .1; e C(Dz ), E, , ›  0 ,  t ,  j =
 1, • • • ,n  so  that f o r any

LE P(Dz )

Ktiji> —  <tt, ei Vi=

P ro o f  The set of probability measures which are at least distance at least
from I  is a  closed and therefore compact subset of P(D z ). If it satisfies d(p,I)>S,
then by definition of I , 3t, f,e>0, so that

1<tt, f> — OA, P tf>I> c.

By compactness we can find a  finite collection of open sets

{II I <P, f )  — Pt if>1 >cil s.t.

If t : d(p, I)> Sl g u U i

Lemma 1.2. If  p is an extremal invariant distribution for and ge L 2 (p), then
Pig <ft,g) in ,u probability  as  t —> co.

P ro o f  If not then there exists r>0  a n d  t„ 00 so that

(*) IP ,2 0 -0 2 ,g> 1 > E  w ith  I I  probability at least E.

But p= fp(d)P,*„S by definition of invariance, and by Theorem 0.1 d(P r*A, I)  tends
to z e ro . I f  we define a  measure Ai n  o n  P(D z )  by A,n (A )=  p ({: P i*n c5 4 e A}), then any
limit probability measure of Ai n  is a  probability measure on I. Since Vn, ji 41,,,(tiv)v,
Ai n  m ust tend to  Si n  b y  extremality of it, but this violates (*).

Proof  of  Theorem  1.1. a) L et it be  in  ( I n S ) , .  As it  is  translation invariant
it can be written as a mixture of ergodic translation invariant measures
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II = TYchl(Y).

Now P7p= p= P,*ydA(y) Vt.
Let A, be the image of A under P,*:

A,(A)= 1(y : P,*(y)c A)

then

P7p =  p =  P r*ydA(y)= fychi t(y), Vt.

B y Theorem  0 .2  a n d  L em m a 1.1, V6 > 0, 3t 0  s . t .  Vt>t o ,  A , concentrates on
ly :d (y ,I)_61 . S o  a n y  lim it p o in t  o f  A, (a s  t co) m u st be concentrated on
I n S .  Since p  is extremal o n  tha t set, any limit point of A, m ust b e  5 . H e n c e ,
P 7 : S  S  converges in A measure, as t goes to infinity, to the point mass at measure
p. Therefore, for some subsequence t„, P (y ) converges A ac .  t o  p and the result
follows from part i) of Theorem 1.4 in [A] (condition 1.5 in that theorem is satisfied
for particle systems, as explained in Section 3 of that paper).

b) is an immediate consequence of Lemma 1.2 and part ii) of Theorem 1.4 in [A].

Proof of Theorem 1.2. As E' lf(0 )g (1 )=  EP(f(o )Ptg(o)) the desired result follows
from Lemma 1.2.

Section 2. In  this section D  is always equal to {0,1 }. We first consider spin
systems satisfying

(a) C (x ,) = 0 -4.> (x — 1) = (x)= (x + 1).

(b) If C (x ,) 0 0 C(x, Co > O.

(c) C(x, 0  is translation invariant and bounded.

N ote  that these systems include all the  systems considered by Theorem 2.1.
I n  v iew  o f  th is  a n d  o f  Theorem  0.1, Theorem  2.1 i s  a  consequence of the
following proposition:

Proposition 2.1. A  system satisfying the above conditions adm its no nontrivial
stationary distributions.

W e d o  th is in  tw o  stages; first we show there a re  n o  nontrivial translation
invariant stationary distributions, then we show there are  no  nontrivial stationary
distributions a t  all.

Lemma 2.2 is essentially that on page 48 of [D ] and so is not proven here.

Lemma 2.2. T he abov e sy stem  adm its n o  nontriv ial translation invariant
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stationary distributions.

Proof  of Proposition 2.1. Let y be an invariant measure and consider

1 " 1 -1
y n —  E Oiy y — n=  E oi y .

n i - in  _ „

Since any weak limit of these sequences is stationary and translation invariant, it
follows from Lemma 2.2 that for all E >0 there exists m  =m(e) such that:

T{Wm)0 +  < 6

and

y {(( —0 )} <6

Let fm( )=E xm= _m / 4 0 0 1 )  and A O =  _çk 1)* 4(0) # 4( 1 )  and denote by L  the generator
of the process, then

LfOdy =0

Since f m ( )  c a n  o n ly  in c r e a s e  w h e n  e i th e r  the coo rd ina te  f lip s  and
( -117)0 — 1) o r  th e  in  coordinate flips a n d  (tri) 0 ( i r i  + 1) w e ge t tha t the

integral of the positive terms of Lf,„() with respect to  y is bounded above by 2cK
where K  is  a n  upper bound fo r C(x , ). B u t  t h e  negative terms o f L f ,g ) are in
absolute value bounded below by 2g()C 0  , therefore

2g()dy 2cK,

since E is arbitrary, we have

fg(Ody =O.

Similarly 1)# (k)#4(k+1)61Y = 0  and a  sim ple  inductive argum ent show s that
(k) # 4(m )* (II)dy=0 for any k < n < m . Therefore y concentrates on configurations

which are either constant or change only o n c e . However if (x) changes its value only
once, the site at which this change takes places evolves a s  a  random walk o n  Z ,
therefore any weak limit of m u s t  be a  linear combination of 6 0  and  ô ,  hence
y must also be a  linear combination of 6 0  a n d  S i .

Next we consider a  different generalization of non-linear voter models: we call
a spin system c on 10, ll z  a voter model like process if it satisfies conditions (i)' and (ii)'.
L e t co = inf c(0,) where the infim um  is over all s . t .  E „  < „,/ ( j ) =4 0,0  l e t
C, = sup C(0, w h e r e  the supremum is over all and let c be as in part b) of (ii)'.
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Properties (i)' and (ii)' imply that c o > 0 and that C o is finite.

Lemma 2.5. Let a=inf{t:c  i s  n o t  constant on [—m,m]}, then there ex ists a
constant k>0 so that V  c o n s ta n t  on [—m,m] we have

P4a>t)>—
t  

Vt>1.

P ro o f  Define

rt .= supin : t (i) =  ,(0) V  0  i n}

and 4 = infl/ : U i) = ,(0) V —  i — 11.

Then on  [0, a], r, jum ps up at least 1 a t rate c, and jum ps down 1 a t rate c if

Ur, + 1)= ,(r, + 2) • • • Ur,+m)= 1 —

and a t  rate 0 otherwise. Similarly with  i .
Thus on  [0, a],

r, =Si(At)+Vt

—I,=S 2 (B,)+U,

where

fA,— .1-4s0.0 =1 _4so.s 4 .0 ; _,,...,,,„ds,
Jo

I=  IB tG o o =  1 _ 4s ,4  _ 0 , ,
o

U  a n d  V a re  increasing jum p processes such that 110 = V ,=0 , S , a n d  S2 are
independant random walks jumping up  o r down 1 a t rate c. So

P(o- > 1)> P (inf S I (s) S O ), inf S 2 (s) S2 (0))
s• t s5t

= P (inf S (0))P  (inf  52 (5) S2 (0))

> —  for some k and all t> I.

Lemma 2.6. L e t  = inftt >0 : t (i) = U0) Vie [ —  m, in]}. T hen there ex ists a
r.v. X with some exponential moments so that Vt, 134°(T>t)<P(X>t).



Infinite particle systems 641

P ro o f  It follows from the lemma in Section 2 of [A LM ] that 3 integer k(m)
so that V4, • ••, ,  r< k (m ) with the following properties

a) except for one site in [-m,m]
b) is constant on [ - m ,m ]
c) jumps to a t a  strictly positive rate.

From  this it is clear that if Z  is  a  Markov chain o n  0, k(m)} with jump rates

= c 0 , q x ,0 =4mC x= {0, 1, 2, • ••}

and if p= inf{t : Z ,= k (m )} . Then V4, PNT> t)<P ° (p> t).

Lemma 2.7. If  X ,, X 2 , •••  are iid  r .v . with distribution equal to that of  r.v.X  in
Lemma 2.6 and if  Y 1 , Y 2  are  iid , positive r .v . w ith P(Y,> t)> 1- f o r t> 1  and some
k>0.

Then

—> 0. a.s.

P ro o f  Simply the S.L.L.N.

Proof  of  Theorem  2.2. Define the sequence of stopping times CTi,T1 by

(1) T i  = in f { t is constant on [ - tn ,m ]} .
(2) cri =inflt>t i : is no t constant on [-p i, i n ] l  for i > 1
(3 )

 
Ti +  = i n f l t >  o-

i : is constant on [ - t n ,m ]} fo r  i >1.

Then by Lem m a 2.6. Ti , 22 — 0"1 , T3 • is stochastically dominated by a
sequence X ,, X2 • •• of iid r.v. of distribution X  described in  th e  proof of Lemma
2.6. By Lemma 2.5 (a1- T1)  stochastically dominates sequence of Y 1 , Y 2  of iid r.v.
satisfying P(Y 1 > 1)>L; , t> 1  (it should be understood that if for some i, — T i=  0 0

then the r.v. ai - t i , Ti— (Ti_ 1 , i> i are taken to be iid r.v. of appropriate distributions
independent of O.

By Lemma 2.7 we have (uniformly in  4)

1 f
- /34 °( IL m, is not c o n s ta n t o n  -,111 ])d s ->  0.
t o

Thus for any measure p o n  0, 11'

1 ft- P11( s is  n o t c o n s ta n t o n  - tn, tn])ds 0.
t o

Hence the only invariant distribution for our process p satisfies

it(R : is nonconsant o n  - tp, = 0.
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T h is  clearly implies that any in v a r ia n t measure is t r iv ia l  a n d  therefore, by Theorem
o n e  o f  [M ] , t h a t  V ,  x < y

P N t(x )0 t(Y ) ) —
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