The torsion group of a certain numerical Godeaux surface

By
Masaaki Murakami*

Abstract

We compute the torsion part of the Picard group of a numerical Godeaux surface Y which was constructed by Stagnaro [7] as a double cover of \mathbb{P}^{2} branching along a curve of degree 10 . We show that this surface is a classical Godeaux surface whose universal cover is the Fermat quintic in \mathbb{P}^{3} (cf. [1, p.170]).

Introduction

E. Stagnaro [7] constructed a numerical Godeaux surface Y as a double plane by giving a degree-ten plane curve C_{10} having certain singularities. Here by a numerical Godeaux surface we mean a minimal surface Y of general type having invariants $p_{g}(Y)=0,\left(K_{Y}^{2}\right)=1$, where $p_{g}(Y), K_{Y}$ are the geometric genus and a canonical divisor of Y, respectively. The curve C_{10} is irreducible, and has five $[3,3]$ points (for the definition see Notation and Terminology below) and a quadruple point. In this paper, we show that the torsion group $\operatorname{Tor}(\operatorname{Pic}(Y))$ is $\mathbb{Z} / 5 \mathbb{Z}$, and show that the universal cover \widetilde{Y} of Y corresponding to $\operatorname{Tor}(\operatorname{Pic}(Y))$ is a degree-five surface in \mathbb{P}^{3} of Fermat type.

Numerical Godeaux surfaces are classified with respect to their torsion parts of the Picard groups. We have $\sharp \operatorname{Tor}(\operatorname{Pic}(Y)) \leq 5$ and $\operatorname{Tor}(\operatorname{Pic}(Y)) \nsucceq$ $\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$ for a numerical Godeaux surface $Y([2, \mathrm{p} .155-160])$. Any cyclic group G of order ≤ 5 indeed appears as the torsion group of a numerical Godeaux surface (see for example [1, p.237]). Complete description of numerical Godeaux surfaces with $\operatorname{Tor}(\operatorname{Pic}(Y)) \simeq \mathbb{Z} / 5 \mathbb{Z}$ are given by Miyaoka in [3].

One of effective methods to obtain a surface of general type with $p_{g}=$ 0 is to take a double cover of \mathbb{P}^{2} branched along a plane curve of degree ten. Several examples of surfaces are obtained by this method (see [1, p.237]). In most cases, the branch curves are reducible. We deal with an irreducible branch curve in this paper. It is difficult in this case to find torsion divisors, or to find good curves in the pluri-canonical systems.

[^0]In Ssection 1, we recall the construction of the curve C_{10}, and study geometry of desingularization Y of the double cover of \mathbb{P}^{2} branched along C_{10}. In Section 2, we show that the torsion group of Y is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$. Finally in Section 3, we show that the unramified cover \widetilde{Y} of Y corresponding to $\operatorname{Tor}(\operatorname{Pic}(Y))$ is a quintic surface in \mathbb{P}^{3} of Fermat type. Throughout this paper we work over the complex number field \mathbb{C}.

Acknowledgements. The author expresses gratitude to Professor Ezio Stagnaro for generously allowing him to use his results before they were published.

Notation and Terminology. Let S be a compact complex manifold of dimension two. We set $\operatorname{Tors}(S)=\operatorname{Tor}(\operatorname{Pic}(S))$ to be the torsion part of the Picard group of S. We use the symbols $q(S), p_{g}(S)$ and K_{S} for the irregularity, the geometric genus and a canonical divisor of S respectively. Let C be a curve on a surface S, and P a triple point of the curve C. The triple point P is called a $[3,3]$ point, if C has three distinct smooth branches at P which intersect one another with multiplicity exactly two.

1. Construction of the numerical Godeaux surface

The curve C_{10} of Stagnaro [7] is the plane curve defined by the following equation:

$$
\begin{align*}
& -8 x^{5} y^{5}+2 y^{10}+10(\sqrt{5}-1) x^{3} y^{6}+(11 \sqrt{5}-25) x^{6} y^{2} \tag{1}\\
& -4 \sqrt{5} x y^{7}+10(7 \sqrt{5}-15) x^{4} y^{3}+10(2 \sqrt{5}-5) x^{2} y^{4} \\
& +8(17 \sqrt{5}-38) x^{5}+2(3 \sqrt{5}-5) y^{5}+20(4 \sqrt{5}-9) x^{3} y \\
& +2(11 \sqrt{5}-25) x y^{2}+(-3 \sqrt{5}+7)=0
\end{align*}
$$

We denote by $f_{10}(x, y)$ the degree-ten polynomial of the left hand side of the equation (1). Let $\varepsilon=\exp (2 \pi \sqrt{-1} / 5)$ be a primitive 5 th root of unity, and φ_{0} an automorphism of \mathbb{P}^{2} given by

$$
\varphi_{0}:(x, y) \mapsto\left(\varepsilon x, \varepsilon^{2} y\right)
$$

Then, the cyclic group $I_{5}=\left\langle\varphi_{0}\right\rangle \simeq \mathbb{Z} / 5 \mathbb{Z}$ generated by φ_{0} acts on the complex projective plane \mathbb{P}^{2}. Since we have $f_{10}\left(\varepsilon x, \varepsilon^{2} y\right)=f_{10}(x, y)$, the degree-ten plane curve C_{10} is invariant under the action of I_{5}. We set $q=(\sqrt{5}-1) / 2$. We denote by $(X: Y: Z)$ the homogeneous coordinates of the projective plane satisfying $x=X / Z, y=Y / Z$.

Proposition 1 (Stagnaro). (i) The curve C_{10} has a quadruple point at $P_{6}=(1: 0: 0)$. This quadruple point is a union of two cusps, and the cuspidal lines (i.e. tangent cones) are $Y=0$ and $Z=0$ respectively.
(ii) C_{10} has a [3, 3] point at $P_{i}=\left(\varepsilon^{i-1}, \varepsilon^{2(i-1)} q\right)$ for $1 \leq i \leq 5$. The (tangent) singular line t_{i} at P_{i} is given by $y-\varepsilon^{2(i-1)} q+\varepsilon^{(i-1)}\left(x-\varepsilon^{(i-1)}\right)=0$ for $1 \leq i \leq 5$.
(iii) The above six singularities $P_{1}, \ldots P_{6}$ do not lie on a conic.

Note that the set of five points $\left\{P_{1}, \ldots P_{5}\right\}$ is an orbit of the action of I_{5}.
Proposition 2 (Stagnaro). The curve C_{10} is irreducible, and it has no singularities other than those mentioned above. The desingularization of C_{10} is a non-singular rational curve.

For a proof of these facts, see [7].
Remark 1. The defining equation in [7] of the curve $C_{10}=C_{10}^{(A, B)}$ contains apparent two parameters A and $B \in \mathbb{C}^{*}$. Setting f to be an automorphism of \mathbb{P}^{2} given by $f(x, y)=(A x / B, y / B)$, we have $f\left(C_{10}^{(A, B)}\right)=C_{10}^{(1,1)}$. Thus any two curves $C_{10}^{(A, B)}$ and $C_{10}^{\left(A^{\prime}, B^{\prime}\right)}$ are biholomorphically mapped onto each other by a plane projective transformation.

Now let us consider the numerical Godeaux surface due to Stagnaro. We obtain this surface as a desingularization of the double cover of \mathbb{P}^{2} branched along C_{10}.

Proposition 3. Let V be the double cover of \mathbb{P}^{2} branched along C_{10}. Then the minimal desingularization of V is a numerical Godeaux surface.

This proposition is a direct consequence of [4, Proposition 2.1]. We shall give an explicit construction. Let $p_{1}: X_{1} \rightarrow \mathbb{P}^{2}$ be the blowing up of \mathbb{P}^{2} at the six points P_{1}, \cdots, P_{6}, and s_{i} the exceptional curve appearing by the blowing up at P_{i}. The strict transform $p_{1}^{-1}\left[C_{10}\right]$ has an ordinary triple point on the curve s_{i} for each $1 \leq i \leq 5$. Blowing up at these five ordinary triple points, we get a surface X with a holomorphic map $p: X \rightarrow \mathbb{P}^{2}$.

We also use the same symbol s_{i} for the strict transform on X of the curve s_{i}, and denote by s_{i}^{\prime} the exceptional curve appearing by the blowing up at the ordinary triple point of $p_{1}^{-1}\left[C_{10}\right]$ on the curve s_{i}. Let $p^{-1}\left[C_{10}\right]$ be the strict transform on X of the curve C_{10}. The reduced curve

$$
\begin{equation*}
\Gamma=p^{-1}\left[C_{10}\right]+\sum_{i=1}^{5} s_{i} \tag{2}
\end{equation*}
$$

has no singularity. Moreover we have

$$
\begin{equation*}
\Gamma \sim 2 B, \quad B=p^{*}(5 H)-\sum_{i=1}^{5}\left(s_{i}+3 s_{i}^{\prime}\right)-2 s_{6} \tag{3}
\end{equation*}
$$

where H is a line on \mathbb{P}^{2}, and the symbol \sim means the linear equivalence. Thus we have the double cover $r: Z \rightarrow X$ branched along Γ with smooth Z . We have

$$
r^{*}\left(p^{-1}\left[C_{10}\right]\right)=2 \overline{C_{10}}, \quad r^{*}\left(s_{i}\right)=2 \overline{s_{i}}, \quad 1 \leq i \leq 5
$$

for certain curves $\overline{C_{10}}$ and $\overline{s_{1}}, \ldots, \overline{s_{5}}$ on Z. The curves $\overline{s_{1}}, \ldots, \overline{s_{5}}$ are exceptional curves of the first kind. Blowing down $\overline{s_{i}}$ for $1 \leq i \leq 5$, we obtain a smooth surface Y and the following commutative diagram:

This surface Y is the minimal desingularization of the double cover V.
Proposition 4. The surface Y is a numerical Godeaux surface, that is, a minimal surface of general type with $p_{g}(Y)=0,\left(K_{Y}^{2}\right)=1$, where $p_{g}(Y), K_{Y}$ are the geometric genus and a canonical divisor of Y respectively.

Corollary 1.1. \quad The n-th pluri- genus $P_{n}(Y)$ is given by $P_{n}(Y)=\left(n^{2}-\right.$ $n+2) / 2$ for $n \geq 2$. In particular we have $P_{2}(Y)=2$ and $P_{3}(Y)=4$.

2. The torsion group

In this section, we compute the torsion group $\operatorname{Tors}(Y)$ of the numerical Godeaux surface Y constructed in Section 1. We use the following Theorem. For a proof of this theorem, see [3, Theorem 2'] and [2, p. 159 Proposition 3].

Theorem 2.1 (Miyaoka). Let Y be a numerical Godeaux surface. Then $\left|3 K_{Y}\right|$ has no fixed components, and the number b of the base points is given as follows:

$$
b= \begin{cases}0 & \text { if } \operatorname{Tors}(Y)=0 \text { or } \mathbb{Z} / 2 \mathbb{Z} \\ 1 & \text { if } \operatorname{Tors}(Y)=\mathbb{Z} / 3 \mathbb{Z} \text { or } \mathbb{Z} / 4 \mathbb{Z} \\ 2 & \text { if } \operatorname{Tors}(Y)=\mathbb{Z} / 5 \mathbb{Z}\end{cases}
$$

We first give two explicit bicanonical curves of our surface Y. Since we have

$$
\begin{equation*}
K_{Z} \sim r^{*}\left(K_{X}+B\right) \sim r^{*}\left(p^{*}(2 H)-\sum_{i=1}^{5} s_{i}^{\prime}-s_{6}\right), \tag{5}
\end{equation*}
$$

this is done by finding suitable plane quartic curves. Consider two polynomials of degree four depending on two coefficients respectively:

$$
f_{4}(x, y)=a x y^{3}+x^{2}+b y, \quad g_{4}(x, y)=x^{2} y^{2}+c y^{3}+d x .
$$

The polynomials f_{4} and g_{4} define plane quartics C_{4} and D_{4}, respectively. Since we have equalities

$$
f_{4}\left(\varepsilon x, \varepsilon^{2} y\right)=\varepsilon^{2} f_{4}(x, y), \quad g_{4}\left(\varepsilon x, \varepsilon^{2} y\right)=\varepsilon g_{4}(x, y)
$$

two curves C_{4} and D_{4} are both stable under the action of I_{5}. It is easy to show the following:

Lemma 2.1. Let C_{4} and D_{4} be the quartic curves as above, and (X : $Y: Z)$ the homogeneous coordinates of \mathbb{P}^{2} s.t. $x=X / Z, y=Y / Z$. If $a \neq 0$, then the curve C_{4} has a cusp at P_{6}, and its cuspidal line at P_{6} is $Z=0$. If $d \neq 0$, then the curve D_{4} has a cusp at P_{6}, and its cuspidal line at P_{6} is $Y=0$.

We choose four coefficients a, \cdots, d in such a way that both C_{4} and D_{4} pass through P_{1} and are tangent to t_{1} at P_{1}. Then we get

$$
\begin{aligned}
& C_{4}:-(2+\sqrt{5}) y+x^{2}+\frac{(7+3 \sqrt{5}) y^{3} x}{2}=0 \\
& D_{4}: x^{2} y^{2}-\frac{(\sqrt{5}-1) y^{3}}{2}-(\sqrt{5}-2) x=0
\end{aligned}
$$

Since C_{4} and D_{4} are invariant under I_{5}, they are tangent to t_{i} at P_{i} for $1 \leq$ $i \leq 5$.

Lemma 2.2. The quartic curves C_{4} and D_{4} have no singularities other than P_{6}. The strict transforms $p^{-1}\left[C_{4}\right]$ and $p^{-1}\left[D_{4}\right]$ are both non-singular curves of genus 2 .

Proof. Let us first show the irreducibility of C_{4}. Since C_{4} has a cusp at P_{6}, we only need to show that C_{4} does not split into a line C_{1} and an irreducible cubic C_{3}. If this happens, then C_{1} must be invariant under I_{5}, hence one of the following three lines: $L_{X}: X=0, L_{Y}: Y=0$ or $L_{Z}: Z=0$, which is clearly imposed in view of the equation. Since the virtual genus of a plane quartic is 3 , the irreducibility of C_{4} implies that C_{4} has at most three singularities. Thus C_{4} has no singularities outside $P_{6}=(1: 0: 0), P_{7}=(0: 1: 0)$ and $P_{8}=(0: 0: 1)$. This proves the statement for C_{4}. In the same way, we can show the statement for D_{4}.

$$
\text { Put } \overline{C_{4}}=r^{*}\left(p^{-1}\left[C_{4}\right]\right) \text { and } \overline{D_{4}}=r^{*}\left(p^{-1}\left[D_{4}\right]\right) \text {. Then by (5) we have }
$$

$$
\begin{equation*}
2 K_{Y} \sim \widetilde{C_{4}} \sim \widetilde{D_{4}}, \tag{6}
\end{equation*}
$$

where we set $\sigma\left(\overline{C_{4}}\right)=\widetilde{C_{4}}$ and $\sigma\left(\overline{D_{4}}\right)=\widetilde{D_{4}}$.
Let us survey the geometry of two bicanonical curves $\widetilde{C_{4}}$ and $\widetilde{D_{4}}$. Since σ maps $\overline{C_{4}}$ and $\overline{D_{4}}$ biholomorphically onto $\widetilde{C_{4}}$ and $\widetilde{D_{4}}$, it is enough to survey the geometry of two curves $\overline{C_{4}}$ and $\overline{D_{4}}$.

Computation of the intersection multiplicity gives

$$
\begin{align*}
& \Gamma \cdot p^{-1}\left[C_{4}\right]=2 Q_{1}, \quad \Gamma \cdot p^{-1}\left[D_{4}\right]=2 Q_{2}, \tag{7}\\
& p^{-1}\left[C_{4}\right] \cdot p^{-1}\left[D_{4}\right]=P_{7}+P_{8},
\end{align*}
$$

where Q_{1} and Q_{2} are points on the exceptional curve s_{6}. Thus if we put $\overline{Q_{i}}=r^{-1}\left(Q_{i}\right)$ for $i=1,2$, the curve $\overline{C_{4}}$ has a node at $\overline{Q_{1}}$ and that $\overline{Q_{1}}$ is the only singularity of $\overline{C_{4}}$. Also $\overline{D_{4}}$ has a node at $\overline{Q_{2}}$, which is the only singularity of $\overline{D_{4}}$.

Lemma 2.3. Both $\overline{C_{4}}$ and $\overline{D_{4}}$ are reducible.

Proof. Let $r_{1}^{\prime}: C_{4}{ }^{\prime} \rightarrow \overline{C_{4}}$ and $r_{2}^{\prime}: D_{4}{ }^{\prime} \rightarrow \overline{D_{4}}$ be the desingularization of $\overline{C_{4}}$ and $\overline{D_{4}}$ respectively. The mapping $r \circ r_{1}^{\prime}$ of $C_{4}{ }^{\prime}$ onto $p^{-1}\left[C_{4}\right]$ and the mapping $r \circ r_{2}^{\prime}$ of D_{4}^{\prime} onto $p^{-1}\left[D_{4}\right]$ are both unramified mappings of degree two. We denote by $[B]$ the line bundle associated with the divisor B, and denote by $\left.[B]\right|_{p^{-1}\left[C_{4}\right]}$ its restriction to $p^{-1}\left[C_{4}\right]$. The surface Z is a complex submanifold in the line bundle $[B]$ over X. Then $\overline{C_{4}}$ is a subspace of $\left.[B]\right|_{p^{-1}\left[C_{4}\right]}$. Denoting by S_{0} the zero-section of the line bundle $\left.[B]\right|_{p^{-1}\left[C_{4}\right]}$, we easily infer from (7) that S_{0} meets each of the two branches of $\overline{C_{4}}$ transversally at $\overline{Q_{1}}, \overline{Q_{1}}$ is a unique common points of S_{0} and $\overline{C_{4}}$. Let L_{X}, L_{Y} and L_{Z} be the lines on \mathbb{P}^{2} given by $L_{X}: X=0, L_{Y}: Y=0, L_{Z}: Z=0$. Using the equivalence

$$
\begin{equation*}
5 H \sim D_{4}+C_{2}+L_{Z}-L_{X}-L_{Y} \tag{8}
\end{equation*}
$$

we infer from (3) the following:

$$
\begin{equation*}
B \sim p^{-1}\left[D_{4}\right]+p^{-1}\left[C_{2}\right]+p^{-1}\left[L_{Z}\right]-p^{-1}\left[L_{X}\right]-p^{-1}\left[L_{Y}\right]+\sum_{i=1}^{5} s_{i} . \tag{9}
\end{equation*}
$$

On the other hand we have

$$
\begin{array}{lrl}
p^{-1}\left[C_{4}\right] \cdot p^{-1}\left[D_{4}\right]=P_{7}+P_{8}, & p^{-1}\left[C_{4}\right] \cdot p^{-1}\left[C_{2}\right]=P_{7}+2 P_{8}, \tag{10}\\
p^{-1}\left[C_{4}\right] \cdot p^{-1}\left[L_{Z}\right]=P_{7}+Q_{1}, & p^{-1}\left[C_{4}\right] \cdot p^{-1}\left[L_{X}\right]=3 P_{7}+P_{8} \\
p^{-1}\left[C_{4}\right] \cdot p^{-1}\left[L_{Y}\right]=2 P_{8}, & p^{-1}\left[C_{4}\right] \cdot s_{i}=0 & 1 \leq i \leq 5 .
\end{array}
$$

Thus by (9) and (10), the point Q_{1} on $p^{-1}\left[C_{4}\right]$ gives an effective divisor corresponding to the line bundle $\left.[B]\right|_{p^{-1}\left[C_{4}\right]}$. This implies the existence of a non-zero holomorphic section of $\left.[B]\right|_{p^{-1}\left[C_{4}\right]}$ which vanishes simply at Q_{1} and does not vanish at any other points on $p^{-1}\left[C_{4}\right]$. We take one of such non-zero sections and denote it by θ. Take any point p on $C_{4}{ }^{\prime} \backslash r_{1}^{-1}\left(\overline{Q_{1}}\right)$. Since $r_{1}(p)$ and $\theta\left(r \circ r_{1}(p)\right)$ lie over the same point $r \circ r_{1}(p)$ on $p^{-1}\left[C_{4}\right]$, and since θ vanishes at no points other than Q_{1}, a constant $u(p)$ satisfying the following condition is uniquely determined:

$$
r_{1}(p)=u(p) \cdot \theta\left(r \circ r_{1}(p)\right) .
$$

$u(p)$ extends to a holomorphic function on the whole curve $p^{-1}\left[C_{4}\right]$, because the multiplicity of θ at Q_{1} is equal to one. Thus u is constant on each component of $C_{4}{ }^{\prime}$. Now for a pair (p, q) of distinct points on $C_{4}{ }^{\prime}$ with $r \circ r_{1}(p)=r \circ r_{1}(q)$, we have $r_{1}(p)=-r_{1}(q)$. Thus the equality $u(p)=-u(q)$ holds for such p, q. This proves that $\overline{C_{4}}$ has at least two components.

In the same way, we can prove that $\overline{D_{4}}$ is reducible. In this case we use

$$
5 H \sim C_{4}+C_{2}+L_{Y}-L_{X}-L_{Z}
$$

in place of the equivalence (8).

We set $\widetilde{Q_{1}}=\sigma\left(\overline{Q_{1}}\right)$ and $\widetilde{Q_{2}}=\sigma\left(\overline{Q_{2}}\right)$. By the above lemma, the bicanonical curve $\widetilde{C_{4}}$ is a union of two non-singular curves of genus 2 meeting transversally at $\widetilde{Q_{1}}$. Also the curve $\widetilde{D_{\nless}}$ is a union of two non-singular curves of genus two meeting transversally at $\widetilde{Q_{2}}$. The point $\widetilde{Q_{1}}$ is the unique singularity of $\widetilde{C_{4}}$, and $\widetilde{Q_{2}}$ is the only singularity of $\widetilde{D_{4}}$. We are now ready to compute the torsion group of our surface Y.

Proposition 5. Let Y be the numerical Godeaux surface constructed in Section 1. Then the torsion group $\operatorname{Tors}(Y)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$.

Proof. Let $\pi^{\prime}: \underline{Y}^{\prime} \rightarrow Y$ be the blowing up of Y at $\widetilde{Q_{1}}$, and E the exceptional curve over $\widetilde{Q_{1}}$. By Lemma 2.3, the strict transform $C_{4}^{\prime}=\pi^{\prime-1}\left[\widetilde{C_{4}}\right]$ is a disjoint union of two non-singular curves of genus 2. Consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{Y^{\prime}}\left(-C_{4}^{\prime}\right) \rightarrow \mathcal{O}_{Y^{\prime}} \rightarrow \mathcal{O}_{C_{4}^{\prime}} \rightarrow 0 \tag{11}
\end{equation*}
$$

Then from the associated exact cohomology sequence, we infer equality $H^{1}\left(C_{4}^{\prime}, \mathcal{O}_{C_{4}^{\prime}}\right) \simeq H^{2}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(-C_{4}^{\prime}\right)\right)$. On the other hand, the curve C_{4}^{\prime} is a disjoint union of two non-singular curves of genus 2 . Thus we have $\operatorname{dim} H^{2}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(-C_{4}^{\prime}\right)\right)=4$. The duality theorem and equivalence (6) assert that

$$
\begin{aligned}
H^{2}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(-C_{4}^{\prime}\right)\right)^{*} & \simeq H^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(K_{Y^{\prime}}+C_{4}^{\prime}\right)\right) \\
& \simeq H^{0}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(\pi^{\prime *}\left(3 K_{Y}\right)-E\right)\right)
\end{aligned}
$$

Thus $H^{2}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(-C_{4}^{\prime}\right)\right)^{*}$ is the space of global sections of $3 K_{Y}$ which vanish at $\widetilde{Q_{1}}$. Comparing $\operatorname{dim} H^{2}\left(Y^{\prime}, \mathcal{O}_{Y^{\prime}}\left(-C_{4}^{\prime}\right)\right)=4$ with $P_{3}(Y)=4$, we see that $\widetilde{Q_{1}}$ is a base point of $\left|3 K_{Y}\right|$.

Replacing the curve $\widetilde{C_{4}}$ by $\widetilde{D_{4}}$, we see in the same way that $\widetilde{Q_{2}}$ is also a base point of $\left|3 K_{Y}\right|$. Thus $\left|3 K_{Y}\right|$ has at least two base points. Then by virtue of Theorem (2.1), we see that $\operatorname{Tors}(Y)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$.

3. The universal cover

In this section, we shall show that the universal cover of the surface Y constructed in Section 1 is a quintic surface in \mathbb{P}^{3} of Fermat type. We start with a preparation.

Definition 3.1. Let X and Z be connected complex manifolds, r a surjective holomorphic mapping of Z to X, and G a group acting on X. We say that an action of G on Z is a lifting of the action on X, if the action on Z is compatible with the projection r, that is, $r(\varphi \cdot z)=\varphi \cdot r(z)$ for every element φ in G and every point z on Z.

Assume that X is a compact connected complex manifold, and that Γ is a non-singular reduced curve on X which is linearly equivalent to $n B$ for a
non-trivial divisor B on X with an integer $n \geq 2$. We have $\Gamma-n B=(f)$ for an meromorphic function f on X. Let $r: Z \rightarrow X$ be an n-ple cover of X branched along Γ. Furthermore, we assume that a finite group G acts on X.

Lemma 3.1. Assume that both Γ and B are invariant under G as divisors. Then $\varphi \mapsto c_{\varphi}=\varphi^{*} f / f$ gives a charactor c of G. Let $\operatorname{Char}(G)$ be the character group of G and Ψ be an endomorphism of $\operatorname{Char}(G)$ given by $\Psi: \psi \mapsto n \psi$. Then the action of G on X lifts to a one on Z, if and only if $c \in \operatorname{Im} \Psi$. If a lifting of the action of G to Z exists, there exist exactly $\sharp(\operatorname{ker} \Psi)$ liftings.

Lemma 3.2. If $\Gamma=\emptyset$, the cover $Z \rightarrow X$ corresponding to B is unramified. Assume that $G=\langle\iota\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$ and that $\iota^{*} B=-B$ as divisors. Then there exist exactly n liftings of the action of $\langle\iota\rangle$.

A proof of the two lemmas above is by direct computation with writing down defining equations of X in the total space of the line bundle $[B]$. We do not show it here. For a proof of the following lemma, see for example [2, p.158, Lemma].

Lemma 3.3 (Reid). Let Y be a numerical Godeaux surface.
(1) For any $g \neq 0 \in \operatorname{Tors}(Y)$, we have $\operatorname{dim}\left|K_{Y}+g\right|=0$.
(2) We denote by D_{g} the only curve in $\left|K_{Y}+g\right|$. Then, D_{g} and $D_{g^{\prime}}$ have no common components, if g and g^{\prime} are distinct.

The following Theorem is Miyaoka's result reformulated by Reid. For a proof of this theorem, see [5].

Theorem 3.1 (Miyaoka, Reid). Let Y be a numerical Godeaux surface with Tors Pic $(Y) \simeq \mathbb{Z} / 5 \mathbb{Z}$, and g a generator of $\operatorname{Tors}(Y)$. Let $\phi: \widetilde{Y} \rightarrow Y$ be the unramified cover of degree five corresponding to $\operatorname{Tors}(Y)$. We denote by ξ_{i} a non-zero holomorphic 1-form of \tilde{Y} coming from $H^{0}\left(Y, \mathcal{O}_{Y}\left(K_{Y}-i g\right)\right)$ for each $1 \leq i \leq 4$.
(i) The holomorphic 1-forms ξ_{1}, \cdots, ξ_{4} form a base of $H^{0}\left(\widetilde{Y}, \mathcal{O}_{\widetilde{Y}}\left(K_{\tilde{Y}}\right)\right)$, and the canonical system $\left|K_{\tilde{Y}}\right|$ has no base points. The mapping $\Phi: p \mapsto$ $\left(\xi_{1}(p): \cdots \xi_{4}(p)\right)$ of $\tilde{Y} \rightarrow \mathbb{P}^{3}$ gives the canonical model of \tilde{Y}.
(ii) Let $\left(X_{1}: \cdots: X_{4}\right)$ be a homogeneous coordinate of \mathbb{P}^{3}. We can set ξ_{1}, \cdots, ξ_{4} in such a way that the defining equation of $\Phi(\tilde{Y})$ is of the following form:

$$
\begin{align*}
& F\left(X_{1}, \cdots, X_{4}\right)=X_{1}^{5}+X_{2}^{5}+X_{3}^{5}+X_{4}^{5} \tag{12}\\
& \quad+a_{1} X_{1}^{3} X_{3} X_{4}+a_{2} X_{2}^{3} X_{1} X_{3}+a_{3} X_{3}^{3} X_{2} X_{4}+a_{4} X_{4}^{3} X_{1} X_{2} \\
& \quad+b_{1} X_{3}^{2} X_{4}^{2} X_{1}+b_{2} X_{1}^{2} X_{3}^{2} X_{2}+b_{3} X_{2}^{2} X_{4}^{2} X_{3}+b_{4} X_{1}^{2} X_{2}^{2} X_{4}=0
\end{align*}
$$

Remark 2. For a properly chosen generator ϕ_{0} of the Galois group $\operatorname{Gal}(\widetilde{Y} / Y)$ we have $\phi_{0}^{*}\left(\xi_{i}\right)=\varepsilon^{i} \xi_{i}$, where we set $\varepsilon=\exp (2 \pi \sqrt{-1} / 5)$. Thus
the automorphism of $\Phi(\widetilde{Y})$ induced by ϕ_{0} is given by $\left(X_{1}: \cdots: X_{4}\right) \mapsto$ $\left(\varepsilon X_{1}: \varepsilon^{2} X_{2}: \varepsilon^{3} X_{3}: \varepsilon^{4} X_{4}\right)$. We use the same symbol ϕ_{0} for this induced automorphism of $\Phi(\widetilde{Y})$.

In what follows, We let Y denote the numerical Godeaux surface constructed in Section 1, and show that the unramified cover \widetilde{Y} is of Fermat type. Let $\pi: Y \rightarrow \mathbb{P}^{2}$ be the morphism given in (4), and ι the involution determined by π.

Lemma 3.4. The action of $I_{2}=\langle\iota\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$ on Y lifts to a one on \tilde{Y}, where \widetilde{Y} is as in Theorem 3.1.

Proof. First note that the action of I_{2} on $\operatorname{Tors}(Y)$ is non-trivial. Indeed if this action is trivial, the action of I_{2} on Y lifts to a one on \widetilde{Y} by Lemma 3.1. In this case the induced involution of \mathbb{P}^{2} is given by $\left(X_{1}, \cdots, X_{4}\right) \mapsto$ $\left(\alpha_{1} X_{1}, \cdots, \alpha_{4} X_{4}\right)$, where $\alpha_{1}, \cdots, \alpha_{4} \in \mathbb{C}^{*}$. However this is impossible since by (12) we would have $\alpha_{1}=\cdots=\alpha_{4}$. Thus we have $\iota^{*} D_{g}=D_{4 g}$ and $\iota^{*} D_{2 g}=$ $D_{3 g}$. By $D_{3 g}-D_{2 g} \sim g$ and Lemma 3.2, the action lifts to a one on \tilde{Y}.

We fix an action of I_{2} on \widetilde{Y}. By (12) and the proof of the lemma above, the automorphism of \mathbb{P}^{2} induced by ι is given by

$$
\begin{equation*}
\left(X_{1}: X_{2}: X_{3}: X_{4}\right) \mapsto\left(X_{4}: X_{3}: X_{2}: X_{1}\right) \tag{13}
\end{equation*}
$$

for suitable ξ_{1}, \cdots, ξ_{4}. Then we have

$$
\begin{equation*}
a_{1}=a_{4}, \quad a_{2}=a_{3}, \quad b_{1}=b_{4}, \quad b_{2}=b_{3}, \tag{14}
\end{equation*}
$$

where $a_{1}, \cdots, a_{4}, b_{1} \cdots b_{4}$ are the coefficients defined in (12). We set $x_{i}=$ X_{i} / X_{4} for each $1 \leq i \leq 3$. Then the defining equation of $\Phi(\widetilde{Y})$ is $F\left(x_{1}, x_{2}, x_{3}, 1\right)$ $=0$. We denote by $f\left(x_{1}, x_{2}, x_{3}\right)$ the left hand side of this equation. Let ϕ_{0} be the induced automorphism of $\Phi(\widetilde{Y})$ defined in Remark 2. Then ϕ_{0} is given by

$$
\begin{equation*}
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\varepsilon^{2} x_{1}, \varepsilon^{3} x_{2}, \varepsilon^{4} x_{3}\right) \tag{15}
\end{equation*}
$$

Let X and Z be as in Section 1. By Lemma 3.1 together with (2) and (3), the action of $I_{5}=\left\langle\varphi_{0}\right\rangle$ on \mathbb{P}^{2} uniquely lifts to a one Z, hence to a one on Y. The group I_{5} acts trivially on $\operatorname{Tors}(Y)$. Thus the divisor $D_{3 g}-D_{2 g}$ is invariant under I_{5}. Computing the multiplicity of torsion divisors at a fixed point of action of I_{5}, we see by Lemma 3.1 that there exist exactly five liftings to the action of I_{5} on the surface \widetilde{Y}. We fix one of these five liftings, and denote by φ both a generator of the group of induced automorphisms of \widetilde{Y} and that of the group of induced automorphisms of $\Phi(\widetilde{Y})$. Since we have $\varphi^{*}\left(\phi^{*} D_{i g}\right)=\phi^{*} D_{i g}$ for each $1 \leq i \leq 5$, the 1-forms ξ_{1}, \cdots, ξ_{4} are eigenvectors of the automorphism φ^{*}, where we set φ^{*} to be the automorphism of $H^{0}\left(\widetilde{Y}, \mathcal{O}_{\widetilde{Y}}\left(K_{\widetilde{Y}}\right)\right)$ induced by the analytic automorphism φ. Thus the induced automorphism φ of $\Phi(\widetilde{Y})$ is given by $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\varepsilon^{k_{1}} x_{1}, \varepsilon^{k_{2}} x_{2}, \varepsilon^{k_{3}} x_{3}\right)$, where k_{1}, k_{2}, k_{3} are certain integers.

Lemma 3.5. Let l_{1}, l_{2}, l_{3} be integers and ψ an automorphism of $\Phi(\widetilde{Y})$ given by $\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(\varepsilon^{l_{1}} x_{1}, \varepsilon^{l_{2}} x_{2}, \varepsilon^{l_{3}} x_{3}\right)$. Assume that at least one of the four constants $a_{1} a_{4}, a_{2} a_{3}, b_{1} b_{4}, b_{2} b_{3}$ does not vanish. Then the automorphism ψ is induced by an element in $\operatorname{Gal}(Y / Y)$.

Proof. Assume $a_{1} a_{4}$ does not vanish. Then comparing the coefficients of $\psi^{*} f\left(x_{1}, x_{2}, x_{3}\right)$ with those of $f\left(x_{1}, x_{2}, x_{3}\right)$, we have $3 k_{1}+k_{2} \equiv 0$, and $k_{1}+k_{2} \equiv 0$ $\bmod 5$. This implies $\psi=\phi_{0}^{3}$, where the automorphism ϕ_{0} is given in (15). Thus ψ is induced by an element in $\operatorname{Gal}(\tilde{Y} / Y)$. For the remaining cases, we can give a proof in the same way.

Our automorphism φ of $\Phi(\widetilde{Y})$ is not induced by an element in $\operatorname{Gal}(\widetilde{Y} / Y)$. By the equalities (14) and the Lemma above, we see that all of the eight coefficients $a_{1}, \cdots, a_{4}, b_{1}, \cdots, b_{4}$ are equal to zero. Thus we have the following:

Proposition 6. Let Y be the numerical Godeaux surface constructed in Section 1, and Φ the mapping as in Theorem 3.1. Then the mapping $\Phi: \widetilde{Y} \rightarrow$ \mathbb{P}^{3} gives an embedding of Y. The surface \widetilde{Y} is given by $X_{1}^{5}+X_{2}^{5}+X_{3}^{5}+X_{4}^{5}=0$ in \mathbb{P}^{3}. Thus the surface Y is nothing but the Godeaux surface given in $[1$, p.170].

Remark 3. The curve $\widetilde{C_{10}}=\sigma\left(\overline{C_{10}}\right)$ is a one-dimensional component of the fixed locus of the involution ι. Thus by (13), the Stagnaro's curve C_{10} is corresponding to the curve in \mathbb{P}^{2} given by

$$
\widetilde{C}=\left\{\left(X_{1}: X_{2}: X_{3}: X_{4}\right) \in \mathbb{P}^{3}: X_{1}+X_{4}=0, X_{2}+X_{3}=0\right\} .
$$

See also [6].
Remark 4. Actually, we have $\left\{\widetilde{C_{4}}, \widetilde{D_{4}}\right\}=\left\{D_{g}+D_{4 g}, D_{2 g}+D_{3 g}\right\}$, where $\widetilde{C_{4}}$ and $\widetilde{D_{4}}$ are the curves as in Section 2. Indeed, two points $D_{g} \cap D_{4 g}$ and $D_{2 g} \cap D_{3 g}$ are the base points of $\left|3 K_{Y}\right|$ (see [3]). Thus, counting the intersection numbers, we have the assertion.

Department of Mathematics Fuculty of Science Kyoto University Kyoto 606-8502 Japan e-mail: murakami@kusm.kyoto-u.ac.jp

References

[1] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Springer-Verlag, 1984.
[2] I. Dolgachev, Algebraic surfaces with $q=p_{g}=0$, Algebraic surfaces, C. I. M. E., Cortona-Varenna 1977, Liguore ed. Napoli, 1979.
[3] Y. Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math., 34 (1976), 99-111.
[4] F. Oort and C. Peters, A Campedelli surface with torsion group $\mathbb{Z} / 2$, Indagationes Math., 43 (1981), 399-407.
[5] M. Reid, Surfaces with $p_{g}=0, K^{2}=1$, Journ. Fac. Sc. Univ. of Tokyo, 25 (1978), 75-92.
[6] M. Reid, Campedelli versus Godeaux, in "Problems in the theory of surfaces and their classification (Cortona, 1988)", Academic Press (1991), 309-365.
[7] E. Stagnaro, On Campedelli branch loci, Ann. Univ. Ferrara -Sez. VII -Sc. Mat., 43 (1997), 1-26.

[^0]: Communicated by Prof. K. Ueno, April 17, 1999
 Revised September 22, 2000
 *The author was partially supported by JSPS Reserch Fellowship for Young Scientists.

