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The torsion group of a certain numerical
Godeaux surface

By

Masaaki Murakami∗

Abstract

We compute the torsion part of the Picard group of a numerical
Godeaux surface Y which was constructed by Stagnaro [7] as a double
cover of P

2 branching along a curve of degree 10. We show that this
surface is a classical Godeaux surface whose universal cover is the Fermat
quintic in P

3 (cf. [1, p.170]).

Introduction

E. Stagnaro [7] constructed a numerical Godeaux surface Y as a double
plane by giving a degree-ten plane curve C10 having certain singularities. Here
by a numerical Godeaux surface we mean a minimal surface Y of general type
having invariants pg(Y ) = 0, (K2

Y ) = 1, where pg(Y ), KY are the geometric
genus and a canonical divisor of Y , respectively. The curve C10 is irreducible,
and has five [3, 3] points (for the definition see Notation and Terminology be-
low) and a quadruple point. In this paper, we show that the torsion group
Tor(Pic(Y )) is Z/5Z, and show that the universal cover Ỹ of Y corresponding
to Tor(Pic(Y )) is a degree-five surface in P3 of Fermat type.

Numerical Godeaux surfaces are classified with respect to their torsion
parts of the Picard groups. We have �Tor(Pic(Y )) ≤ 5 and Tor(Pic(Y )) ��
Z/2Z ⊕ Z/2Z for a numerical Godeaux surface Y ([2, p.155–160]). Any cyclic
group G of order ≤ 5 indeed appears as the torsion group of a numerical
Godeaux surface (see for example [1, p.237]). Complete description of numerical
Godeaux surfaces with Tor(Pic(Y )) � Z/5Z are given by Miyaoka in [3].

One of effective methods to obtain a surface of general type with pg =
0 is to take a double cover of P2 branched along a plane curve of degree ten.
Several examples of surfaces are obtained by this method (see [1, p.237]). In
most cases, the branch curves are reducible. We deal with an irreducible branch
curve in this paper. It is difficult in this case to find torsion divisors, or to find
good curves in the pluri-canonical systems.
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324 Masaaki Murakami

In Ssection 1, we recall the construction of the curve C10, and study ge-
ometry of desingularization Y of the double cover of P2 branched along C10.
In Section 2, we show that the torsion group of Y is isomorphic to Z/5Z. Fi-
nally in Section 3, we show that the unramified cover Ỹ of Y corresponding to
Tor(Pic(Y )) is a quintic surface in P3 of Fermat type. Throughout this paper
we work over the complex number field C.

Acknowledgements. The author expresses gratitude to Professor Ezio
Stagnaro for generously allowing him to use his results before they were pub-
lished.

Notation and Terminology. Let S be a compact complex manifold of
dimension two. We set Tors(S) = Tor(Pic(S)) to be the torsion part of the
Picard group of S. We use the symbols q(S), pg(S) and KS for the irregularity,
the geometric genus and a canonical divisor of S respectively. Let C be a curve
on a surface S, and P a triple point of the curve C. The triple point P is called
a [3, 3] point, if C has three distinct smooth branches at P which intersect one
another with multiplicity exactly two.

1. Construction of the numerical Godeaux surface

The curve C10 of Stagnaro [7] is the plane curve defined by the following
equation:
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5 − 25

)
xy2 +

(
−3

√
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)
= 0.

We denote by f10(x, y) the degree-ten polynomial of the left hand side of the
equation (1). Let ε = exp(2π

√−1/5) be a primitive 5th root of unity, and ϕ0

an automorphism of P2 given by

ϕ0 : (x, y) �→ (εx, ε2y).

Then, the cyclic group I5 = 〈ϕ0〉 � Z/5Z generated by ϕ0 acts on the complex
projective plane P2. Since we have f10(εx, ε2y) = f10(x, y), the degree-ten
plane curve C10 is invariant under the action of I5. We set q = (

√
5 − 1)/2.

We denote by (X : Y : Z) the homogeneous coordinates of the projective plane
satisfying x = X/Z, y = Y/Z.

Proposition 1 (Stagnaro). (i) The curve C10 has a quadruple point at
P6 = (1 : 0 : 0). This quadruple point is a union of two cusps, and the cuspidal
lines (i.e. tangent cones) are Y = 0 and Z = 0 respectively.
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(ii) C10 has a [3, 3] point at Pi = (εi−1, ε2(i−1)q) for 1 ≤ i ≤ 5. The
(tangent) singular line ti at Pi is given by y − ε2(i−1)q + ε(i−1)(x− ε(i−1)) = 0
for 1 ≤ i ≤ 5.

(iii) The above six singularities P1, . . . P6 do not lie on a conic.

Note that the set of five points {P1, . . . P5} is an orbit of the action of I5.

Proposition 2 (Stagnaro). The curve C10 is irreducible, and it has no
singularities other than those mentioned above. The desingularization of C10

is a non-singular rational curve.

For a proof of these facts, see [7].

Remark 1. The defining equation in [7] of the curve C10 = C
(A,B)
10 con-

tains apparent two parameters A and B ∈ C∗. Setting f to be an automorphism
of P

2 given by f(x, y) = (Ax/B, y/B), we have f(C(A,B)
10 ) = C

(1,1)
10 . Thus any

two curves C(A,B)
10 and C(A′,B′)

10 are biholomorphically mapped onto each other
by a plane projective transformation.

Now let us consider the numerical Godeaux surface due to Stagnaro. We
obtain this surface as a desingularization of the double cover of P2 branched
along C10.

Proposition 3. Let V be the double cover of P2 branched along C10.
Then the minimal desingularization of V is a numerical Godeaux surface.

This proposition is a direct consequence of [4, Proposition 2.1]. We shall
give an explicit construction. Let p1 : X1 → P2 be the blowing up of P2 at the
six points P1, · · · , P6, and si the exceptional curve appearing by the blowing
up at Pi. The strict transform p−1

1 [C10] has an ordinary triple point on the
curve si for each 1 ≤ i ≤ 5. Blowing up at these five ordinary triple points, we
get a surface X with a holomorphic map p : X → P2.

We also use the same symbol si for the strict transform on X of the curve
si, and denote by s′i the exceptional curve appearing by the blowing up at the
ordinary triple point of p−1

1 [C10] on the curve si. Let p−1[C10] be the strict
transform on X of the curve C10. The reduced curve

Γ = p−1[C10] +
5∑

i=1

si(2)

has no singularity. Moreover we have

Γ ∼ 2B, B = p∗(5H) −
5∑

i=1

(si + 3s′i) − 2s6,(3)

where H is a line on P2, and the symbol ∼ means the linear equivalence. Thus
we have the double cover r : Z → X branched along Γ with smooth Z. We have

r∗(p−1[C10]) = 2C10, r∗(si) = 2si, 1 ≤ i ≤ 5
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for certain curves C10 and s1, . . . , s5 on Z. The curves s1, . . . , s5 are exceptional
curves of the first kind. Blowing down si for 1 ≤ i ≤ 5, we obtain a smooth
surface Y and the following commutative diagram:

Z
σ−−−−→ Y

r

� �π

X
p−−−−→ P2.

(4)

This surface Y is the minimal desingularization of the double cover V .

Proposition 4. The surface Y is a numerical Godeaux surface, that is,
a minimal surface of general type with pg(Y ) = 0, (K2

Y ) = 1, where pg(Y ), KY

are the geometric genus and a canonical divisor of Y respectively.

Corollary 1.1. The n-th pluri- genus Pn(Y ) is given by Pn(Y ) = (n2−
n+ 2)/2 for n ≥ 2. In particular we have P2(Y ) = 2 and P3(Y ) = 4.

2. The torsion group

In this section, we compute the torsion group Tors(Y ) of the numerical
Godeaux surface Y constructed in Section 1. We use the following Theorem.
For a proof of this theorem, see [3, Theorem 2’] and [2, p.159 Proposition 3].

Theorem 2.1 (Miyaoka). Let Y be a numerical Godeaux surface. Then
|3KY | has no fixed components, and the number b of the base points is given as
follows :

b =


0 if Tors(Y ) = 0 or Z/2Z;
1 if Tors(Y ) = Z/3Z or Z/4Z;
2 if Tors(Y ) = Z/5Z.

We first give two explicit bicanonical curves of our surface Y . Since we
have

KZ ∼ r∗(KX +B) ∼ r∗
(
p∗(2H) −

5∑
i=1

s′i − s6

)
,(5)

this is done by finding suitable plane quartic curves. Consider two polynomials
of degree four depending on two coefficients respectively:

f4(x, y) = axy3 + x2 + by, g4(x, y) = x2y2 + cy3 + dx.

The polynomials f4 and g4 define plane quartics C4 and D4, respectively. Since
we have equalities

f4(εx, ε2y) = ε2f4(x, y), g4(εx, ε2y) = εg4(x, y),

two curves C4 and D4 are both stable under the action of I5. It is easy to show
the following:



�

�

�

�

�

�

�

�

The torsion group of a certain numerical Godeaux surface 327

Lemma 2.1. Let C4 and D4 be the quartic curves as above, and (X :
Y : Z) the homogeneous coordinates of P2 s.t. x = X/Z, y = Y/Z. If a �= 0,
then the curve C4 has a cusp at P6, and its cuspidal line at P6 is Z = 0. If
d �= 0, then the curve D4 has a cusp at P6, and its cuspidal line at P6 is Y = 0.

We choose four coefficients a, · · · , d in such a way that both C4 and D4

pass through P1 and are tangent to t1 at P1. Then we get

C4 : −
(
2 +

√
5
)
y + x2 +

(
7 + 3

√
5
)
y3x

2
= 0,

D4 : x2y2 −
(√

5 − 1
)
y3

2
−
(√

5 − 2
)
x = 0.

Since C4 and D4 are invariant under I5, they are tangent to ti at Pi for 1 ≤
i ≤ 5.

Lemma 2.2. The quartic curves C4 and D4 have no singularities other
than P6. The strict transforms p−1[C4] and p−1[D4] are both non-singular
curves of genus 2.

Proof. Let us first show the irreducibility of C4. Since C4 has a cusp at
P6, we only need to show that C4 does not split into a line C1 and an irreducible
cubic C3. If this happens, then C1 must be invariant under I5, hence one of the
following three lines: LX : X = 0, LY : Y = 0 or LZ : Z = 0, which is clearly
imposed in view of the equation. Since the virtual genus of a plane quartic is 3,
the irreducibility of C4 implies that C4 has at most three singularities. Thus C4

has no singularities outside P6 = (1 : 0 : 0), P7 = (0 : 1 : 0) and P8 = (0 : 0 : 1).
This proves the statement for C4. In the same way, we can show the statement
for D4.

Put C4 = r∗(p−1[C4]) and D4 = r∗(p−1[D4]). Then by (5) we have

2KY ∼ C̃4 ∼ D̃4,(6)

where we set σ(C4) = C̃4 and σ(D4) = D̃4.
Let us survey the geometry of two bicanonical curves C̃4 and D̃4. Since σ

maps C4 and D4 biholomorphically onto C̃4 and D̃4, it is enough to survey the
geometry of two curves C4 and D4.

Computation of the intersection multiplicity gives

Γ · p−1[C4] = 2Q1, Γ · p−1[D4] = 2Q2,(7)

p−1[C4] · p−1[D4] = P7 + P8,

where Q1 and Q2 are points on the exceptional curve s6. Thus if we put
Qi = r−1(Qi) for i = 1, 2, the curve C4 has a node at Q1 and that Q1 is the
only singularity of C4. Also D4 has a node at Q2, which is the only singularity
of D4.
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Lemma 2.3. Both C4 and D4 are reducible.

Proof. Let r′1 : C4
′ → C4 and r′2 : D4

′ → D4 be the desingularization
of C4 and D4 respectively. The mapping r ◦ r′1 of C4

′ onto p−1[C4] and the
mapping r◦r′2 of D4

′ onto p−1[D4] are both unramified mappings of degree two.
We denote by [B] the line bundle associated with the divisor B, and denote by
[B]|p−1[C4] its restriction to p−1[C4]. The surface Z is a complex submanifold in
the line bundle [B] over X. Then C4 is a subspace of [B]|p−1[C4]. Denoting by
S0 the zero-section of the line bundle [B]|p−1[C4], we easily infer from (7) that
S0 meets each of the two branches of C4 transversally at Q1. Q1 is a unique
common points of S0 and C4. Let LX , LY and LZ be the lines on P2 given by
LX : X = 0, LY : Y = 0, LZ : Z = 0. Using the equivalence

5H ∼ D4 + C2 + LZ − LX − LY ,(8)

we infer from (3) the following:

B ∼ p−1[D4] + p−1[C2] + p−1[LZ ] − p−1[LX ] − p−1[LY ] +
5∑

i=1

si.(9)

On the other hand we have

p−1[C4] · p−1[D4] = P7 + P8, p−1[C4] · p−1[C2] = P7 + 2P8,(10)

p−1[C4] · p−1[LZ ] = P7 +Q1, p−1[C4] · p−1[LX ] = 3P7 + P8,

p−1[C4] · p−1[LY ] = 2P8, p−1[C4] · si = 0 1 ≤ i ≤ 5.

Thus by (9) and (10), the point Q1 on p−1[C4] gives an effective divisor corre-
sponding to the line bundle [B]|p−1[C4]. This implies the existence of a non-zero
holomorphic section of [B]|p−1[C4] which vanishes simply at Q1 and does not
vanish at any other points on p−1[C4]. We take one of such non-zero sec-
tions and denote it by θ. Take any point p on C4

′ \ r−1
1 (Q1). Since r1(p) and

θ(r ◦ r1(p)) lie over the same point r ◦ r1(p) on p−1[C4], and since θ vanishes
at no points other than Q1, a constant u(p) satisfying the following condition
is uniquely determined:

r1(p) = u(p) · θ(r ◦ r1(p)).
u(p) extends to a holomorphic function on the whole curve p−1[C4], because the
multiplicity of θ at Q1 is equal to one. Thus u is constant on each component
of C4

′. Now for a pair (p, q) of distinct points on C4
′ with r ◦ r1(p) = r ◦ r1(q),

we have r1(p) = −r1(q). Thus the equality u(p) = −u(q) holds for such p, q.
This proves that C4 has at least two components.

In the same way, we can prove that D4 is reducible. In this case we use

5H ∼ C4 + C2 + LY − LX − LZ

in place of the equivalence (8).
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We set Q̃1 = σ(Q1) and Q̃2 = σ(Q2). By the above lemma, the bicanonical
curve C̃4 is a union of two non-singular curves of genus 2 meeting transversally
at Q̃1. Also the curve D̃4 is a union of two non-singular curves of genus two
meeting transversally at Q̃2. The point Q̃1 is the unique singularity of C̃4, and
Q̃2 is the only singularity of D̃4. We are now ready to compute the torsion
group of our surface Y .

Proposition 5. Let Y be the numerical Godeaux surface constructed in
Section 1. Then the torsion group Tors(Y ) is isomorphic to Z/5Z.

Proof. Let π′ : Y ′ → Y be the blowing up of Y at Q̃1, and E the ex-
ceptional curve over Q̃1. By Lemma 2.3, the strict transform C ′

4 = π′−1[C̃4]
is a disjoint union of two non-singular curves of genus 2. Consider the exact
sequence

0 → OY ′(−C ′
4) → OY ′ → OC′

4
→ 0.(11)

Then from the associated exact cohomology sequence, we infer equal-
ity H1(C ′

4,OC′
4
) � H2(Y ′,OY ′(−C ′

4)). On the other hand, the curve C ′
4

is a disjoint union of two non-singular curves of genus 2. Thus we have
dimH2(Y ′,OY ′(−C ′

4)) = 4. The duality theorem and equivalence (6) assert
that

H2(Y ′,OY ′(−C ′
4))

∗ � H0(Y ′,OY ′(KY ′ + C ′
4))

� H0(Y ′,OY ′(π′∗(3KY ) − E)).

Thus H2(Y ′,OY ′(−C ′
4))∗ is the space of global sections of 3KY which vanish

at Q̃1. Comparing dimH2(Y ′,OY ′(−C ′
4)) = 4 with P3(Y ) = 4, we see that Q̃1

is a base point of |3KY |.
Replacing the curve C̃4 by D̃4, we see in the same way that Q̃2 is also a

base point of |3KY |. Thus |3KY | has at least two base points. Then by virtue
of Theorem (2.1), we see that Tors(Y ) is isomorphic to Z/5Z.

3. The universal cover

In this section, we shall show that the universal cover of the surface Y
constructed in Section 1 is a quintic surface in P3 of Fermat type. We start
with a preparation.

Definition 3.1. Let X and Z be connected complex manifolds, r a
surjective holomorphic mapping of Z to X, and G a group acting on X. We
say that an action of G on Z is a lifting of the action on X, if the action on Z
is compatible with the projection r, that is, r(ϕ · z) = ϕ · r(z) for every element
ϕ in G and every point z on Z.

Assume that X is a compact connected complex manifold, and that Γ is
a non-singular reduced curve on X which is linearly equivalent to nB for a
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non-trivial divisor B on X with an integer n ≥ 2. We have Γ − nB = (f)
for an meromorphic function f on X. Let r : Z → X be an n-ple cover of X
branched along Γ . Furthermore, we assume that a finite group G acts on X.

Lemma 3.1. Assume that both Γ and B are invariant under G as di-
visors. Then ϕ �→ cϕ = ϕ∗f/f gives a charactor c of G. Let Char(G) be
the character group of G and Ψ be an endomorphism of Char(G) given by
Ψ : ψ �→ nψ. Then the action of G on X lifts to a one on Z, if and only if
c ∈ ImΨ. If a lifting of the action of G to Z exists, there exist exactly �(kerΨ)
liftings.

Lemma 3.2. If Γ = ∅, the cover Z → X corresponding to B is unram-
ified. Assume that G = 〈ι〉 � Z/2Z and that ι∗B = −B as divisors. Then
there exist exactly n liftings of the action of 〈ι〉.

A proof of the two lemmas above is by direct computation with writing
down defining equations of X in the total space of the line bundle [B]. We do
not show it here. For a proof of the following lemma, see for example [2, p.158,
Lemma].

Lemma 3.3 (Reid). Let Y be a numerical Godeaux surface.
(1) For any g �= 0 ∈ Tors(Y ), we have dim |KY + g| = 0.
(2) We denote by Dg the only curve in |KY + g|. Then, Dg and Dg′ have

no common components, if g and g′ are distinct.

The following Theorem is Miyaoka’s result reformulated by Reid. For a
proof of this theorem, see [5].

Theorem 3.1 (Miyaoka, Reid). Let Y be a numerical Godeaux surface
with Tors Pic (Y ) � Z/5Z, and g a generator of Tors(Y ). Let φ : Ỹ → Y be
the unramified cover of degree five corresponding to Tors(Y ). We denote by ξi
a non-zero holomorphic 1-form of Ỹ coming from H0(Y,OY (KY −ig)) for each
1 ≤ i ≤ 4.

(i) The holomorphic 1-forms ξ1, · · · , ξ4 form a base of H0(Ỹ ,OeY (KeY )),
and the canonical system |KeY | has no base points. The mapping Φ : p �→
(ξ1(p) : · · · ξ4(p)) of Ỹ → P3 gives the canonical model of Ỹ .

(ii) Let (X1 : · · · : X4) be a homogeneous coordinate of P
3. We can set

ξ1, · · · , ξ4 in such a way that the defining equation of Φ(Ỹ ) is of the following
form:

F (X1, · · · , X4) = X5
1 +X5

2 +X5
3 +X5

4(12)

+ a1X
3
1X3X4 + a2X

3
2X1X3 + a3X

3
3X2X4 + a4X

3
4X1X2

+ b1X
2
3X

2
4X1 + b2X

2
1X

2
3X2 + b3X

2
2X

2
4X3 + b4X

2
1X

2
2X4 = 0.

Remark 2. For a properly chosen generator φ0 of the Galois group
Gal(Ỹ /Y ) we have φ∗0(ξi) = εiξi, where we set ε = exp(2π

√−1/5). Thus
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the automorphism of Φ(Ỹ ) induced by φ0 is given by (X1 : · · · : X4) �→
(εX1 : ε2X2 : ε3X3 : ε4X4). We use the same symbol φ0 for this induced
automorphism of Φ(Ỹ ).

In what follows, We let Y denote the numerical Godeaux surface con-
structed in Section 1, and show that the unramified cover Ỹ is of Fermat type.
Let π : Y → P

2 be the morphism given in (4), and ι the involution determined
by π.

Lemma 3.4. The action of I2 = 〈ι〉 � Z/2Z on Y lifts to a one on Ỹ ,
where Ỹ is as in Theorem 3.1.

Proof. First note that the action of I2 on Tors(Y ) is non-trivial. Indeed
if this action is trivial, the action of I2 on Y lifts to a one on Ỹ by Lemma
3.1. In this case the induced involution of P2 is given by (X1, · · · , X4) �→
(α1X1, · · · , α4X4), where α1, · · · , α4 ∈ C∗. However this is impossible since by
(12) we would have α1 = · · · = α4. Thus we have ι∗Dg = D4g and ι∗D2g =
D3g. By D3g − D2g ∼ g and Lemma 3.2, the action lifts to a one on Ỹ .

We fix an action of I2 on Ỹ . By (12) and the proof of the lemma above,
the automorphism of P2 induced by ι is given by

(X1 : X2 : X3 : X4) �→ (X4 : X3 : X2 : X1).(13)

for suitable ξ1, · · · , ξ4. Then we have

a1 = a4, a2 = a3, b1 = b4, b2 = b3,(14)

where a1, · · · , a4, b1 · · · b4 are the coefficients defined in (12). We set xi =
Xi/X4 for each 1 ≤ i ≤ 3. Then the defining equation of Φ(Ỹ ) is F (x1, x2, x3, 1)
= 0. We denote by f(x1, x2, x3) the left hand side of this equation. Let φ0 be
the induced automorphism of Φ(Ỹ ) defined in Remark 2. Then φ0 is given by

(x1, x2, x3) �→ (ε2x1, ε
3x2, ε

4x3).(15)

Let X and Z be as in Section 1. By Lemma 3.1 together with (2) and (3),
the action of I5 = 〈ϕ0〉 on P

2 uniquely lifts to a one Z, hence to a one on Y . The
group I5 acts trivially on Tors(Y ). Thus the divisor D3g − D2g is invariant
under I5. Computing the multiplicity of torsion divisors at a fixed point of
action of I5, we see by Lemma 3.1 that there exist exactly five liftings to the
action of I5 on the surface Ỹ . We fix one of these five liftings, and denote by ϕ
both a generator of the group of induced automorphisms of Ỹ and that of the
group of induced automorphisms of Φ(Ỹ ). Since we have ϕ∗(φ∗Dig) = φ∗Dig

for each 1 ≤ i ≤ 5, the 1-forms ξ1, · · · , ξ4 are eigenvectors of the automorphism
ϕ∗, where we set ϕ∗ to be the automorphism of H0(Ỹ ,OeY (KeY )) induced by the
analytic automorphism ϕ. Thus the induced automorphism ϕ of Φ(Ỹ ) is given
by (x1, x2, x3) �→ (εk1x1, ε

k2x2, ε
k3x3), where k1, k2, k3 are certain integers.
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Lemma 3.5. Let l1, l2, l3 be integers and ψ an automorphism of Φ(Ỹ )
given by (x1, x2, x3) �→ (εl1x1, ε

l2x2, ε
l3x3). Assume that at least one of the

four constants a1a4, a2a3, b1b4, b2b3 does not vanish. Then the automorphism
ψ is induced by an element in Gal(Ỹ /Y ).

Proof. Assume a1a4 does not vanish. Then comparing the coefficients of
ψ∗f(x1, x2, x3) with those of f(x1, x2, x3), we have 3k1+k2 ≡ 0, and k1+k2 ≡ 0
mod 5. This implies ψ = φ3

0, where the automorphism φ0 is given in (15). Thus
ψ is induced by an element in Gal(Ỹ /Y ). For the remaining cases, we can give
a proof in the same way.

Our automorphism ϕ of Φ(Ỹ ) is not induced by an element in Gal(Ỹ /Y ).
By the equalities (14) and the Lemma above, we see that all of the eight coef-
ficients a1, · · · , a4, b1, · · · , b4 are equal to zero. Thus we have the following:

Proposition 6. Let Y be the numerical Godeaux surface constructed in
Section 1, and Φ the mapping as in Theorem 3.1. Then the mapping Φ : Ỹ →
P3 gives an embedding of Ỹ . The surface Ỹ is given by X5

1 +X5
2 +X5

3 +X5
4 = 0

in P
3. Thus the surface Y is nothing but the Godeaux surface given in [1,

p.170].

Remark 3. The curve C̃10 = σ(C10) is a one-dimensional component
of the fixed locus of the involution ι. Thus by (13), the Stagnaro’s curve C10

is corresponding to the curve in P
2 given by

C̃ = {(X1 : X2 : X3 : X4) ∈ P
3 : X1 +X4 = 0, X2 +X3 = 0}.

See also [6].

Remark 4. Actually, we have {C̃4, D̃4} = {Dg+D4g, D2g+D3g}, where
C̃4 and D̃4 are the curves as in Section 2. Indeed, two points Dg ∩ D4g and
D2g∩D3g are the base points of |3KY | (see [3]). Thus, counting the intersection
numbers, we have the assertion.
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