
�

�

�

�

�

�

�

�

J. Math. Kyoto Univ. (JMKYAZ)
41-2 (2001), 285–302

The hyperbolic metric and spherically convex
regions
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Abstract

There are a number of characterizations of convex subregions Ω
of the complex plane C in terms of the density λΩ(w) of the hyper-
bolic metric λΩ(w)|dw| for Ω. We derive analogous characterizations for
spherically convex regions Ω on the Riemann sphere P in terms of the
spherical density µΩ(w) = (1 + |w|2)λΩ(w) of the hyperbolic metric. A
proper subregion Ω of P is spherically convex if for all pairs A, B of points
in Ω the spherical geodesic (the shorter arc of the great circle) joining
A and B lies in Ω. As a limiting case of our results we obtain known
characterizations of convex regions in C.

1. Introduction

Characterizations of convex regions Ω in the complex plane C in terms
of analytic or geometric properties of the density λΩ of the hyperbolic metric
λΩ(w)|dw| on Ω are known ([H], [KM], [MW], [Y1], [Y2], [Y3]). For example, Ω
is convex if and only if 1/λΩ is concave. Some of these characterizations were
originally obtained separately; a unified, geometric approach to some of them
occurs in [KM].

We obtain analogous characterizations of regions Ω on the Riemann sphere
P that are convex relative to spherical geometry. A region Ω on P is called
spherically convex if for all pairs A, B of distinct points in Ω the spherical
geodesic (the shorter arc of the great circle) joining A and B lies in Ω. The
Riemann sphere P is spherically convex. In the following we only consider
proper subregions of P which are spherically convex. A standard example of
a spherically convex region is a hemisphere; for instance, the unit disk D is
spherically convex. When considering regions Ω on P it is natural to consider
the so-called spherical density µΩ(w) = (1+|w|2)λΩ(w) of the hyperbolic metric
[M1]. By using a systematic approach we derive a number of characterizations
of spherically convex regions in terms of the spherical density. For example, Ω
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is spherically convex if and only if 1/µΩ is spherically concave. This means that
if γ : w = w(s) is any arc of a great circle in Ω that is parametrized by spherical
arclength and if v(s) = 1/µΩ(w(s)), then v satisfies the differential inequality
v′′(s)+4v(s) ≤ 0. The significance of the factor 4 in this differential inequality
is that the spherical metric has curvature 4. Also, if Ω is a hemisphere and γ is
any great circular arc passing through the spherical center of the hemisphere,
then v′′(s) + 4v(s) = 0. A consequence is that in any spherically convex region
Ω the spherical density µΩ attains its minimum value at a unique point.

An important tool in our approach is the use of certain natural differential
operators. These operators are natural for hyperbolic or spherical geometry in
the sense that they are essentially invariant under isometries of the geometry.
The use of these differential operators greatly simplifies calculations and makes
possible the concise expression of our results. These operators should be of
independent interest.

Finally, we indicate how corresponding characterizations of euclidean con-
vex regions in C can be viewed as limiting cases of our results. The use of
differential operators makes this connection with euclidean results easy to see.

2. Hyperbolic and spherical geometry

We recall basic facts about some standard conformal metrics.
The hyperbolic metric on the unit disk is λD(w) = |dw|/(1 − |w|2). It has

curvature −4:

κ(w, λD) = −∆ log λD(w)
λD(w)2

= −4,

where ∆ is the Laplacian. A region Ω on the Riemann sphere is called hyper-
bolic if P\Ω contains at least three points. The hyperbolic metric λΩ(w)|dw|
on Ω is uniquely determined from f∗(λΩ(w)|dw|) = λD(z)|dz|, where w = f(z)
is any meromorphic universal covering projection of D onto Ω and

f∗(λΩ(w)|dw|) = λΩ(f(z))|f ′(z)||dz|.

The hyperbolic metric on D is invariant under Aut(D), the group of confor-
mal automorphisms of D. This means that if T (z) = eiθ(z−a)/(1−az), where
a ∈ D and θ ∈ R, then T ∗(λD(w)|dw|) = λD(z)|dz|. In other words, Aut(D)
is the isometry group for λD(w)|dw|. For A, B ∈ Ω the hyperbolic distance
between A and B is

dΩ(A, B) = inf
∫

γ

λΩ(w)|dw|,

where the infimum is taken over all paths γ in Ω joining A and B. For the unit
disk

dD(A, B) = arctanh
∣∣∣∣ A − B

1 − AB

∣∣∣∣ .
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For a hyperbolic region Ω ⊂ C the (euclidean) density of the hyperbolic metric
is

λΩ(w) =
λΩ(w)|dw|
λC(w)|dw| ,

where λC(w)|dw| = 1|dw| denotes the euclidean metric on C. The density λΩ

is a smooth function on Ω which is invariant under euclidean motions; that is,
if T (z) = eiθ(z − a), where a ∈ C and θ ∈ R, then λT (Ω)(T (z)) = λΩ(z).

The spherical metric on P is λP(w)|dw| = |dw|/(1+ |w|2). It has curvature
+4. The spherical metric is invariant under the group of rotations of P; that is
for any rotation T , T ∗(λP(w)|dw|) = λP(z)|dz|. A rotation of P has the form
T (z) = eiθ(z − a)/(1 + az), where a ∈ P and θ ∈ R. The spherical distance
between A, B ∈ P is

dP(A, B) = inf
∫

γ

λP(w)|dw|,

where the infimum is taken over all paths γ connecting A and B. The explicit
formula for spherical distance is

dP(A, B) = arctan
∣∣∣∣ A − B

1 + AB

∣∣∣∣ .

Spherical distance is invariant under rotations; that is, if T is any rotation of
P, then dP(T (A), T (B)) = dP(A, B). Geometrically, dP(A, B) is one-half of the
angle subtended at the center of the sphere by any geodesic arc joining A and
B. A path δ joining A and B is called a spherical geodesic if

dP(A, B) =
∫

δ

λP(w)|dw|.

For distinct A, B ∈ P spherical geodesics always exist. The spherical geodesic
is the shorter arc between A and B of the unique great circle determined by
A and B. Note that dP(A, B) ≤ π/2 with equality if and only if A, B are
antipodal.

For a hyperbolic region Ω on P it is natural to consider the spherical density

µΩ(w) =
λΩ(w)|dw|
λP(w)|dw| = (1 + |w|2)λΩ(w)

of the hyperbolic metric. This defines a function µΩ on Ω which is invariant
under rotations of P. The spherical density of the hyperbolic metric was used
in [M1] and [MO]. In [MO] it was noted that µΩ(w) → ∞ whenever w → ∂Ω.
This implies that µΩ always attains a minimum value on Ω. If f : D → Ω is a
meromorphic universal covering, then

µΩ(f(z)) =
1 + |f(z)|2

(1 − |z|2)|f ′(z)| =
1

(1 − |z|2)f �(z)
,
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where f �(z) = |f ′(z)|/(1 + |f(z)|2) denotes the spherical derivative of f .
We require some additional information about the spherical density on

spherically convex regions. If Ω is spherically convex, then Ω is contained in a
hemisphere. For the unit disk, µD(w) = (1+ |w|2)/(1−|w|2) ≥ 1 with strict in-
equality unless w = 0, so µΩ ≥ 1 for any hemisphere since the spherical density
is rotationally invariant. Because the hyperbolic metric depends monotonically
on the region, it follows that the spherical density also depends monotonically.
Thus, Ω ⊂ ∆ implies µΩ ≥ µ∆ with strict inequality unless Ω = ∆. Since each
spherically convex region Ω is contained in a hemisphere, we conclude that
µΩ(w) ≥ 1, w ∈ Ω, with strict inequality unless Ω is a hemisphere and w is the
spherical center of the hemisphere.

3. Invariant differential operators

We make use of several differential operators that are (essentially) invari-
ant with respect to isometries of either hyperbolic or spherical geometry. A
number of analytic results can be expressed concisely in terms of these dif-
ferential operators. Computations that are lengthy without these operators
become quite manageable by making use of them. Also, their use makes ev-
ident the similarities between the known euclidean results and our spherical
results.

We start by recalling basic (euclidean) differential operators and their in-
variance properties.

3.1. The euclidean differential operators

Suppose Ω is a region in C and r : Ω → R is of class C2. Then for w = u+iv

∂r =
∂r

∂w
=

1
2

(
∂r

∂u
− i

∂r

∂v

)
,

∂2r =
∂2r

∂w2
= ∂(∂r),

and

∆r =
∂2r

∂u2
+

∂2r

∂v2
= 4

∂2r

∂w∂w
.

If T (z) = eiθ(z − a) is any euclidean motion of C, then

∂(r ◦ T ) = eiθ(∂r) ◦ T = T ′[(∂r) ◦ T ],
∂2(r ◦ T ) = (eiθ)2(∂2r) ◦ T = (T ′)2[(∂2r) ◦ T ],
∆(r ◦ T ) = (∆r) ◦ T.

Thus, the Laplacian ∆ is invariant under euclidean motions. Since |∂(r ◦T )| =
|∂r| ◦ T and |∂2(r ◦ T )| = |∂2r| ◦ T , the absolute values |∂r| and |∂2r| are
invariant under euclidean motions.
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3.2. The hyperbolic differential operator

We define analogous differential operators relative to hyperbolic geometry
on D. For a C2 function r : D → R set

∂hr =
∂r

λD

,

∂2
hr =

1
λ2

D

[∂2r − 2(∂ log λD)(∂r)],

∆hr =
∆r

λ2
D

.

The operator ∆h is the invariant Laplacian relative to the hyperbolic metric.
At the origin each of these hyperbolic differential operators coincides with the
corresponding euclidean differential operator; for example, ∂hr(0) = ∂r(0). If
T (z) = eiθ(z − a)/(1 − az) is an isometry of the hyperbolic metric on D, then
it is straightforward to verify that

∂h(r ◦ T ) =
T ′

|T ′| [(∂hr) ◦ T ],

∂2
h(r ◦ T ) =

(
T ′

|T ′|
)2

[(∂2
hr) ◦ T ],

∆h(r ◦ T ) = (∆hr) ◦ T.

The quantities |∂hr| and |∂2
hr| are invariant under hyperbolic isometries since

|∂h(r ◦ T )| = |∂hr| ◦ T and |∂2
h(r ◦ T )| = |∂2

h| ◦ T . Unlike the euclidean setting,
∂2

h is not equal to ∂h ◦ ∂h, but there is a simple relationship between these two
operators:

∂2
hr(w) = ∂h(∂hr(w)) − w∂hr(w).

It is elementary to verify that the product rule is valid for ∂h.

3.3. The spherical differential operator

There are analogous differential operators relative to spherical geometry.
Suppose Ω is a region on P and r : Ω → R is of class C2. Set

∂sr =
∂r

λP

,

∂2
sr =

1
λ2

P

[∂2r − 2(∂ log λP)(∂r)],

∆sr =
∆r

λ2
P

.

∆sr is the spherical Laplacian. At the origin all of these coincide with the
corresponding euclidean differential operators. If T (z) = eiθ(z − a)/(1+ az), is
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an isometry of the spherical metric or equivalently, a rotation of P, then

∂s(r ◦ T ) =
T ′

|T ′| [(∂sr) ◦ T ],

∂2
s (r ◦ T ) =

(
T ′

|T ′|
)2

[(∂2
sr) ◦ T ],

∆s(r ◦ T ) = (∆sr) ◦ T.

Hence, the spherical Laplacian is invariant under rotations of the sphere, and
it follows from the preceding identities that |∂sr| and |∂2

sr| are invariant under
spherical isometries. Analogous to the hyperbolic situation,

∂2
sr(w) = ∂s(∂sr(w)) + w∂sr(w)

and the product rule is valid for ∂s.

3.4. The differential operators Dj (j = 1, 2, 3)

Now we introduce the differential operators Dj (j = 1, 2, 3) which give

D3f(z)
D1f(z)

− 3
2

(
D2f(z)
D1f(z)

)2

= (1 − |z|2)2Sf (z),

where

Sf =
f ′′′

f ′ − 3
2

(
f ′′

f ′

)2

is the Schwarzian derivative of f . Sf are defined and continuous at simple
poles. For a meromorphic function f : D → Ω set

D1f(z) =
(1 − |z|2)f ′(z)

1 + |f(z)|2 ,

D2f(z) =
(1 − |z|2)2f ′′(z)

1 + |f(z)|2 − 2z(1 − |z|2)f ′(z)
1 + |f(z)|2

−2(1 − |z|2)2f(z)f ′(z)2

(1 + |f(z)|2)2

and

D3f(z) =
(1 − |z|2)3f ′′′(z)

1 + |f(z)|2 − 6(1 − |z|2)3f(z)f ′(z)f ′′(z)
1 + |f(z)|2

−6z(1 − |z|2)2f ′′(z)
1 + |f(z)|2 +

6z2(1 − |z|2)f ′(z)
1 + |f(z)|2

+
12z(1 − |z|2)2f(z)f ′(z)2

(1 + |f(z)|2)2 +
6(1 − |z|2)3f(z)

2
f ′(z)3

(1 + |f(z)|2)3 .
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The reader should note that Djf has a different meaning in [KM]. Note that if
f(0) = 0, then Djf(0) = f (j)(0) (j = 1, 2, 3). These differential operators were
employed in [MM] and are invariant in the sense that |Dj(R◦f ◦T )| = |Djf |◦T
(j = 1, 2, 3), whenever T is a conformal automorphism of D and R is a rotation
of P. Note that if f : D → Ω is a covering, then µΩ ◦ f = 1/|D1f |. In case f
has a pole at a point z, we set Djf(z) = (Dj(1/f))(z) (j = 1, 2, 3). Then Djf
(j = 1, 2, 3) is not continuous at a simple pole while |Djf | is. We also define

Qf (z) =
D2f(z)
D1f(z)

= (1 − |z|2)f ′′(z)
f ′(z)

− 2z − 2(1 − |z|2)f(z)f ′(z)
1 + |f(z)|2

3.5. Chain rules

There are simple chain rules relating to hyperbolic and spherical differential
operators when a function r : Ω → R, where Ω ⊂ P, is composed with a
meromorphic function f : D → Ω. The chain rules are:

∂h(r ◦ f) = [(∂sr) ◦ f ]D1f,(1)

∂2
h(r ◦ f) = [(∂2

sr) ◦ f ](D1f)2 + [(∂sr) ◦ f ]D2f.(2)

These are exact analogs of the usual chain rules,

∂(r ◦ f) = [(∂r) ◦ f ]f ′,

∂2(r ◦ f) = [(∂2r) ◦ f ](f ′)2 + [(∂r) ◦ f ]f ′′.

From (1) and (2) we obtain

[(∂2
sr) ◦ f ](D1f)2 = ∂2

h(r ◦ f) − ∂h(r ◦ f) · Qf .(3)

4. Characterizations of spherically convex regions

Now we are in a position to obtain a number of characterizations of spher-
ically convex regions. An important ingredient in our proofs is the application
of some of the results in the preceding section to the specific function r = 1/µΩ.
If Ω is a hyperbolic region on P and f : D → Ω is a meromorphic universal
covering projection, then (1/µΩ) ◦ f = |D1f |. We note that

∂h|D1f | =
1
2
|D1f |Qf ,(4)

and

∂2
h|D1f | =

1
2
|D1f |

[
D3f

D1f
− 1

2

(
D2f

D1f

)2
]

.(5)

The identity (4) is straightforward to verify while (5) can be obtained as follows.

∂2
h|D1f(z)| = ∂h(∂h|D1f(z)|) − z∂h|D1f(z)|

= ∂h

(
1
2
|D1f(z)|Qf (z)

)
− z

1
2
|D1f(z)|Qf (z)

=
1
2
Qf (z)∂h|D1f(z)| + 1

2
|D1f(z)|∂hQf (z) − 1

2
z|D1f(z)|Qf (z).
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Direct calculation gives

∂hQf (z) =
D3f(z)
D1f(z)

−
(

D2f(z)
D1f(z)

)2

+ zQf (z),

so (5) now follows.

We also need the following identities to shorten the lengthy calculations in
the proof for the characterizations of spherical convexity.

Lemma 1. Let Ω be a hyperbolic region on P and f : D → Ω a mero-
morphic universal covering projection. Then we obtain the following identities.∣∣∣∣∂s

1
µΩ

∣∣∣∣ ◦ f =
1
2
|Qf |,(6)

∣∣∣∣ 1
µΩ

(
∂2

s

1
µΩ

)∣∣∣∣ ◦ f =
1
2

∣∣∣∣∣D3f

D1f
− 3

2

(
D2f

D1f

)2
∣∣∣∣∣ ,(7)

∆s

(
1

µΩ

)
= 4µΩ

[∣∣∣∣∂s
1

µΩ

∣∣∣∣
2

− 1
µ2

Ω

− 1

]
.(8)

Proof. The chain rule (1) and (4) give[(
∂s

1
µΩ

)
◦ f

]
D1f = ∂h|D1f | =

1
2
|D1f |Qf

so that we obtain (6).
Similarly, (3), (4) and (5) give[(

∂2
s

1
µΩ

)
◦ f

]
(D1f)2 = ∂2

h|D1f | − ∂h|D1f | · Qf

=
1
2
|D1f |

[
D3f

D1f
− 3

2

(
D2f

D1f

)2
]

,

so we have (7).
The identity (8) can be demonstrated as follows. Since λP(w)|dw| has

curvature 4 and λΩ(w)|dw| has curvature −4,

∆s log µΩ =
1
λ2

P

∆ log µΩ

=
1
λ2

P

[∆ log λΩ − ∆ log λP]

=
1
λ2

P

[4λ2
Ω + 4λ2

P]

= 4[µ2
Ω + 1].
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Also,

∆s log µΩ =
1
λ2

P

∆ log µΩ =
4
λ2

P

∂2

∂w∂w
log µΩ

=
4
λ2

P

∂

∂w

[
∂µΩ
∂w

µΩ

]
=

4
λ2

P

∂

∂w

[
−µΩ

∂

∂w

(
1

µΩ

)]

= −4µΩ

λ2
P

∂2

∂w∂w

(
1

µΩ

)
− 4

λ2
P

∂µΩ

∂w

∂

∂w

(
1

µΩ

)

= −µΩ∆s

(
1

µΩ

)
+

4µ2
Ω

λ2
P

∂

∂w

(
1

µΩ

)
· ∂

∂w

(
1

µΩ

)

= −µΩ∆s

(
1

µΩ

)
+ 4µ2

Ω

∣∣∣∣∂s

(
1

µΩ

)∣∣∣∣
2

.

The desired identity (8) follows from our two expressions for ∆s log µΩ.

Earlier, we noted that µΩ(w) ≥ 1, w ∈ Ω, if Ω is spherically convex. If
f : D → Ω is a covering, this is equivalent to |D1f(z)| ≤ 1. Now, we give
characterizations for spherically convex regions on P.

Theorem 1. Suppose Ω is a hyperbolic region on P and µΩ denotes the
spherical density of the hyperbolic metric. The following are equivalent :

(i) Ω is spherically convex,

(ii)
∣∣∣∣∂s

1
µΩ

∣∣∣∣
2

≤ 1 − 1
µ2

Ω

,

(iii)
1

µΩ

∣∣∣∣∂2
s

1
µΩ

∣∣∣∣ +
∣∣∣∣∂s

1
µΩ

∣∣∣∣
2

≤ 1 − 1
µ2

Ω

,

(iv) ∆s
1

µΩ
≤ − 8

µΩ
.

Proof. Let f : D → Ω be a meromorphic universal covering projection.
Then

1
µΩ(f(z))

= |D1f(z)|,∣∣∣∣
(

∂s
1

µΩ

)
(f(z))

∣∣∣∣ =
1
2
|Qf (z)| ,

1
µΩ(f(z))

∣∣∣∣
(

∂2
s

1
µΩ

)
(f(z))

∣∣∣∣ =
1
2
(1 − |z|2)2|Sf (z)|.

(i) ⇐⇒ (ii) Note that (ii) is equivalent to

|Qf (z)|2 ≤ 4(1 − |D1f(z)|2),
or

|Qf (z)|2 + 4|D1f(z)|2 ≤ 4.
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This inequality is equivalent to Ω = f(D) being spherically convex [MM,
Theorem 4].

(i) ⇐⇒ (iii) Similarly, (iii) is equivalent to

(1 − |z|2)2|Sf (z)| + 1
2
|Qf (z)|2 ≤ 2(1 − |D1f(z)|2),

or

(1 − |z|2)2|Sf (z)| ≤ 2
(

1 − |D1f(z)|2 − 1
4
|Qf (z)|2

)
,

which is equivalent to Ω = f(D) being spherically convex ([W], [MM, Theorem
6]).

(ii) ⇐⇒ (iv) From (6) we see that condition (iv) is equivalent to

∣∣∣∣∂s
1

µΩ

∣∣∣∣
2

− 1
µ2

Ω

− 1 ≤ − 2
µ2

Ω

,

or ∣∣∣∣∂s
1

µΩ

∣∣∣∣
2

≤ 1 − 1
µ2

Ω

,

which is (ii).

Remark. We recall the euclidean analogs for the parts of Theorem 1. A
hyperbolic region Ω in C is convex if and only if |∂(1/λΩ)| ≤ 1 ([H], [Y1]). Nec-
essary and sufficient for the convexity of Ω is (1/λΩ)|∂2(1/λΩ)|+|∂(1/λΩ)|2 ≤ 1
([KM], [Y1]). Finally, Ω is convex if and only if 1/λΩ is superharmonic; that
is, ∆(1/λΩ) ≤ 0 [Y3].

Next, we compute derivatives of a function along paths parameterized by
spherical arclength by the use of spherical differential operators and then we
introduce “spherical concavity” for a real-valued function.

Lemma 2. Assume Ω is a region on P and r : Ω → R. Suppose γ : w =
w(s) is a spherical geodesic in Ω that is parametrized by spherical arclength.
Let v(s) = r(w(s)). Then

v′(s) = 2 Re{eiθ(s)(∂sr)(w(s))},(9)

and

v′′(s) = 2 Re{e2iθ(s)∂2
sr(w(s))} +

1
2
∆sr(w(s))(10)

where eiθ(s) is a unit tangent vector for γ at w(s).
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Proof. Since γ is parametrized by spherical arclength, w′(s) = (1 +
|w(s)|2)eiθ(s). r is real-valued and so

v′(s) =
∂r

∂w
(w(s))w′(s) +

∂r

∂w
(w(s))w′(s)

= 2 Re
{

∂r

∂w
(w(s))w′(s)

}

= 2 Re
{

(1 + |w(s)|2) ∂r

∂w
(w(s))eiθ(s)

}
,

or

v′(s) = 2 Re{eiθ(s)(∂sr)(w(s))}.

Calculation of v′′(s) involves the spherical curvature of γ. Recall that the
spherical curvature of γ at the point w(s) is

κs(w(s), γ) =
κe(w(s), γ) + 2 Im

{
∂ log λP

∂w (w(s)) w′(s)
|w′(s)|

}
λP(w(s))

= (1 + |w(s)|2)κe(w(s), γ) − 2 Im{w(s)eiθ(s)},

where

κe(w(s), γ) =
Im

{
w′′(s)
w′(s)

}
|w′(s)| =

Im
{

w′′(s)
w′(s)

}
1 + |w(s)|2

is the euclidean curvature of γ at w(s) (see [MM] or [M2]). Thus,

Im
{

w′′(s)
w′(s)

}
= κs(w(s), γ) + 2 Im{w(s)eiθ(s)}.

From w′(s) = (1 + |w(s)|2)eiθ(s) we get

Re
{

w′′(s)
w′(s)

}
= 2 Re{w(s)eiθ(s)}.

Hence,

w′′(s)
w′(s)

= 2w(s)eiθ(s) + iκs(w(s), γ)

and so

w′′(s) = 2w(s)(1 + |w(s)|2)e2iθ(s) + i(1 + |w(s)|2)κs(w(s), γ)eiθ(s).
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Now,

v′′(s) = 2 Re
{

∂2r

∂w2
(w(s))w′(s)2

}
+ 2 Re

{
∂r

∂w
(w(s))w′′(s)

}

+2
∂2r

∂w∂w
(w(s))|w′(s)|2

= 2 Re
{[

(1+|w(s)|2)2 ∂2r

∂w2
(w(s))+2w(s)(1+|w(s)|2) ∂r

∂w
(w(s))

]
e2iθ(s)

}

+2(1 + |w(s)|2)2 ∂2r

∂w∂w
(w(s))

−2κs(w(s), γ) Im
{

(1 + |w(s)|2) ∂r

∂w
(w(s))eiθ(s)

}

so that

v′′(s) = 2 Re
{

e2iθ(s)∂2
sr(w(s))

}
+

1
2
∆sr(w(s))

−2κs(w(s), γ) Im{eiθ(s)∂sr(w(s))}.
γ is a spherical geodesic and hence κs(w(s), γ) = 0. Therefore we obtain

v′′(s) = 2 Re{e2iθ(s)∂2
sr(w(s))} +

1
2
∆sr(w(s)).

Now we introduce the notion of “spherical concavity” for a real-valued
function before stating our next result. For a positive function this is stronger
than the usual notion of concavity. Suppose Ω is a region on P and r : Ω → R is
of class C2. The function r is called spherically concave if v′′+4v ≤ 0 whenever
γ : w = w(s) is a spherical geodesic arc in Ω that is parametrized by spherical
arclength and v(s) = r(w(s)). The factor “4” in the definition of spherical
concavity is due to the fact that the spherical metric has curvature 4. Relative
to euclidean geometry a function is concave if v′′ ≤ 0; that is, v′′ + 0v ≤ 0 and
the coefficient 0 of v is the curvature of the euclidean metric.

It is easy to find an equivalent description of spherical concavity. For
v(s) = r(w(s)), formula (10) yields

v′′(s) + 4v(s) = 2 Re
{
e2iθ(s)∂2

sr(w(s))
}

+
1
2
∆sr(w(s)) + 4r(w(s)).

Through every point w ∈ Ω there is a spherical geodesic in each direction; that
is, given any unit vector at w there is a spherical geodesic through w with the
given vector as tangent vector at w. Therefore, v′′ + 4v ≤ 0 along all spherical
geodesic arcs in Ω if and only if

2|∂2
sr(w)| + 1

2
∆sr(w) + 4r(w) ≤ 0, w ∈ Ω.

(Relative to the euclidean geometry a function r is concave if and only if
|∂2r(w)| ≤ −(1/4)∆r(w), w ∈ Ω [KM].)

It is known that a hyperbolic region Ω in C is convex if and only if 1/λΩ

is concave ([KM], [MW]). We now give a spherical analog.
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Theorem 2. Suppose Ω is a hyperbolic region on P. Ω is spherically
convex if and only if 1/µΩ is spherically concave.

Proof. The function 1/µΩ is spherically concave precisely when

2
∣∣∣∣∂2

s

1
µΩ

∣∣∣∣ +
1
2
∆s

1
µΩ

+
4

µΩ
≤ 0

on Ω. By making use of the identity (8) we see that the preceding inequality
is equivalent to part (iii) of Theorem 1. Thus, Theorem 2 gives a geometric
interpretation of Theorem 1 (iii).

Corollary 1. Suppose Ω is a spherically convex region. Then µΩ at-
tains its minimum value at a unique point of Ω.

Proof. It is known that µΩ always attains its minimum value on any
hyperbolic region [MO]. Suppose Ω is spherically convex and µΩ attained its
mininum value at two distinct points A, B ∈ Ω. Then 1/µΩ has a maximum
value at both A and B. Let γ : w = w(s) be the spherical geodesic arc
from A to B parametrized by spherical arclength. Then γ lies in Ω because
Ω is spherically convex and v(s) = 1/µΩ(w(s)) satisfies v′′(s) + 4v(s) ≤ 0,
or v′′(s) ≤ −4v(s) < 0, along γ. Thus, v is strictly concave along γ which
is inconsistent with the assumption that v attains its maximum value at the
endpoints A and B. In other words, µΩ must attain its minimum value at a
unique point of Ω.

The euclidean analog of the Corollary is not so simply stated. The density
λΩ of the hyperbolic metric on a hyperbolic region Ω ⊂ C need not attain a
minimum value even if Ω is convex. For example, if H = {w : Im(w) > 0},
then λH(w) = 1/[2 Im(w)] does not attain a minimum value on H. But on any
bounded convex region Ω, the density λΩ does attain its minimum value at a
unique point of Ω [MW]. Minimum points and critical points of the density of
the hyperbolic metric have been investigated in [CO], [COP], [MO] and [Y4].

Yamashita [Y3] proved that a region Ω in C is convex if and only if∣∣∣∣ 1
λΩ(A)

− 1
λΩ(B)

∣∣∣∣ ≤ 2|A − B|

for all A, B ∈ Ω. The next result is a spherical analog.

Theorem 3. Let Ω be a hyperbolic region on P. Then Ω is spherically
convex if and only if∣∣∣∣arcsin

(
1

µΩ(A)

)
− arcsin

(
1

µΩ(B)

)∣∣∣∣ ≤ 2dP(A, B)
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for all A, B ∈ Ω.

Proof. First, suppose Ω is spherically convex. Fix A, B ∈ Ω. Let γ :
w = w(s), 0 ≤ s ≤ L, be the spherical geodesic from A to B parametrized by
spherical arclength. Then γ ⊂ Ω and L = dP(A, B). If v(s) = 1/µΩ(w(s)),
then formula (9) gives

|v′(s)| ≤ 2
∣∣∣∣∂s

1
µΩ

(w(s))
∣∣∣∣ .

By making use of Theorem 1 (ii) we obtain

|v′(s)| ≤ 2

√
1 − 1

µ2
Ω(w(s))

= 2
√

1 − v2(s),

or

−2 ≤ v′(s)√
1 − v2(s)

≤ 2.

By integrating these inequalities over [0, L] we obtain

|arcsin v(L) − arcsin v(0)| ≤ 2L,

or ∣∣∣∣arcsin
(

1
µΩ(B)

)
− arcsin

(
1

µΩ(A)

)∣∣∣∣ ≤ 2dP(A, B).

Next, we demonstrate that if the preceding inequality holds for all A, B ∈
Ω, then Ω is spherically convex. Note that in order for this inequality to make
sense we must have µΩ ≥ 1. We show that this inequality implies

∣∣∣∣∂s
1

µΩ

∣∣∣∣
2

≤ 1 − 1
µ2

Ω

and so Ω is spherically convex by Theorem 1. Fix w0 ∈ Ω. Let γ : w = w(s) be
a spherical geodesic arc parametrized by spherical arclength on some interval
containing 0 with w0 = w(0) and

Re
{

eiθ(0)∂s
1

µΩ
(w0)

}
=

∣∣∣∣∂s
1

µΩ
(w0)

∣∣∣∣ ;
of course, γ is assumed to be parametrized by spherical arclength. If v(s) =
1/µΩ(w(s)), then we have

|arcsin v(s) − arcsin v(0)| ≤ 2dP(w(s), w(0)) = 2s
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for all s sufficiently small. If we divide by s and let s tend to 0, we obtain

|v′(0)|√
1 − v2(0)

≤ 2.

From formula (9)

v′(0) = 2 Re
{

eiθ(0)∂s
1

µΩ
(w0)

}
= 2

∣∣∣∣∂s
1

µΩ
(w0)

∣∣∣∣ ,
so ∣∣∣∣∂s

1
µΩ(w0)

∣∣∣∣ ≤
√

1 − 1
µ2

Ω(w0)
,

which implies that Ω is spherically convex.

5. Connection with euclidean convexity

We now indicate how our results for spherical convexity contain the corre-
sponding results for euclidean convexity as limiting cases. In order to do this
we consider a one-parameter family

σR(w)|dw| =
R2|dw|

R2 + |w|2
of conformal metrics defined for R > 0. The spherical metric corresponds to
R = 1 while the euclidean metric arises as the limiting case R → ∞. Our
results for spherical convexity are readily translated into corresponding results
for convexity relative to σR(w)|dw| for R > 0. Since there is no real difference
between the special case R = 1 and the general case R > 0, we felt it was
better to consider only the case R = 1 in the earlier parts of the paper in order
to simplify the exposition. But to show that our results contain the euclidean
results as a limiting case it is now necessary to consider arbitrary R > 0.
By considering arbitrary R > 0 we can see how the euclidean results which
sometimes seem quite different from the spherical results are really limiting
cases. Loosely speaking, the differences are due to the curvature of the metrics
involved.

The metric σR(w)|dw| arises from stereographically projecting a sphere
of radius R/2 that is tangent to the complex plane C at the origin. The
metric σR(w)|dw| has curvature 4/R2. The isometries of the metric are T (z) =
eiθR2(z − a)/(R2 + az), where a ∈ P and θ ∈ R. The associated distance
function is

dR(A, B) = R arctan
R|A − B|
|R2 + AB| .

The “density” of the hyperbolic metric relative to σR(w)|dw| is

µR(w) =
λΩ(w)|dw|
σR(w)|dw| .
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Note that µR → λΩ when R → ∞. Differential operators relative to σR(w)|dw|
are defined by

∂Rr =
∂r

σR
,

∂2
Rr =

∂2r − 2(∂ log σR)(∂r)
σ2

R

,

∆Rr =
∆r

σ2
R

.

Although we do not explicitly state them, we remark that these differential
operators have the same type of invariance properties relative to the isome-
tries of σR(w)|dw| that the spherical differential operators have relative to the
isometries of the spherical metric. When R → ∞ these differential operators
tend to the corresponding euclidean differential operators.

Next, we make precise the relationship between σR(w)|dw| and λP(w)|dw|.
If hR(z) = z/R, then

h∗
R(RλP(w)|dw|) = σR(z)|dz|.

In words, hR is an isometry from P with the conformal metric σR(z)|dz| to P

with the conformal metric RλP(w)|dw|. This makes it easy to determine the
geodesics relative to σR(w)|dw|. Note that RλP(w)|dw| and λP(w)|dw| have
the same geodesics. Therefore, a region is convex relative to RλP(w)|dw| if and
only if it is convex relative to λP(w)|dw|. A path γ is a geodesic relative to
σR(z)|dz| if and only if hR ◦ γ is a spherical geodesic. Hence, a region Ω on P

is convex relative to σR(z)|dz| exactly when hR(Ω) = ΩR is spherically convex.
In order to translate our theorems on spherical convexity to results on

convexity relative to σR(w)|dw| we need to indicate the connection between
spherical differential operators and our new differential operators. It is not
difficult to check that µΩR

◦ hR = RµR, or

1
µR

=
R

µΩR

◦ hR.

Also,

∂R
1

µR
=

(
∂s

1
µΩR

)
◦ hR,

∂2
R

1
µR

=
1
R

(
∂2

s

1
µΩR

)
◦ hR,

1
µR

∂2
R

1
µR

=
(

1
µΩR

∂2
s

1
µΩR

)
◦ hR,

∆R
1

µR
=

1
R

∆s
1

µΩR

.

Now, we can reformulate Theorem 1.
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Theorem 4. Suppose Ω is a hyperbolic region on P and µR is the den-
sity of the hyperbolic metric relative to σR(w)|dw|. The following are equivalent :

(i) Ω is convex relative to σR(w)|dw|,
(ii)

∣∣∣∣∂R
1

µR

∣∣∣∣
2

≤ 1 − 1
R2µ2

R

,

(iii)
1

µR

∣∣∣∣∂2
R

1
µR

∣∣∣∣ +
∣∣∣∣∂R

1
µR

∣∣∣∣
2

≤ 1 − 1
R2µ2

R

,

(iv) ∆R
1

µR
≤ − 8

R2µR
.

Before translating Theorem 2, we need to define the appropriate notion
of concavity. A function r : Ω → R is called concave relative to σR(w)|dw|
if v′′ + (4/R2)v ≤ 0 whenever γ : w = w(s) is a geodesic arc relative to
σR(w)|dw| in Ω that is parametrized by arclength relative to σR(w)|dw| (that
is, σR(w(s))|w′(s)| = 1) and v(s) = r(w(s)). We find that 1/µR is concave
relative to σR(w)|dw| if and only if

2R

∣∣∣∣∂2
R

1
µR

∣∣∣∣ +
R

2
∆R

1
µR

+
4

R µR
≤ 0,

or equivalently,

2
∣∣∣∣∂2

R

1
µR

∣∣∣∣ +
1
2
∆R

1
µR

+
4

R2µR
≤ 0.

For R → ∞ we obtain the usual euclidean notion of concavity (v′′ ≤ 0).

Theorem 5. Suppose Ω is a hyperbolic region on P. Ω is convex relative
to σR(w)|dw| if and only if 1/µR is concave relative to σR(w)|dw|.

Theorem 6. Suppose Ω is a hyperbolic region on P. Ω is convex relative
to σR(w)|dw| if and only if∣∣∣∣R arcsin

(
1

R µR(A)

)
− R arcsin

(
1

R µR(B)

)∣∣∣∣ ≤ 2dR(A, B)

for all A, B ∈ Ω.

Of course, for R = 1 Theorems 4, 5 and 6 are just Theorems 1, 2 and 3.
If Ω ⊂ C, then the limiting cases (R → ∞) of Theorems 4, 5 and 6 are known
characterizations of euclidean convex regions in terms of the usual density λΩ

of the hyperbolic metric.
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