Hofer's symplectic energy and lagrangian intersections in contact geometry

By

Manabu Акано

Abstract

There is a version of Lagrangian intersection theory in contact geometry [2]. But it works well only with very restrictive contact manifolds. For example, it does not work well with overtwisted contact 3-manifolds. Here we show the following. If we have an estimate on Hamiltonian functions of contact flow, then we can apply the theory to a much wider class of contact manifolds.

1. Introduction

In this paper, we show a version of Lagrangian intersection theory in contact geometry. Especially under an estimate of Hamiltonian functions of contact flow, we can construct Floer homology. Then we can show a version of the Arnold conjecture in a wide class of contact manifolds under the new condition.

Let M be a (2n + 1)-dimensional contact manifold, i.e., M has a 1-form γ which satisfies the condition $\gamma \wedge (d\gamma)^n \neq 0$. For simplicity, we consider the case of a global 1-form γ . Then the hyperplane distribution, ξ , defined by the kernel of γ is called a *contact structure* on M, and the 1-form γ is called a *contact form*. For each contact form γ there is a unique vector field Y which satisfies the conditions $\iota(Y)\gamma = 1$ and $\iota(Y)d\gamma = 0$. We call this vector field Y the *Reeb* vector field of γ .

We may regard the distribution ξ as a rank 2 vector subbundle of TM, the tangent bundle of M. Then the restriction of $d\gamma$ on ξ , $d\gamma|_{\xi}$, defines a non-degenerate 2-form on ξ . Hence we can define a complex structure J and a Hermitian metric on ξ which has $d\gamma|_{\xi}$ as a fundamental 2-form.

Next we can associate a symplectic manifold with a contact manifold M, so called the *symplectization of* M. Consider a product $R \times M$. Denote the pull-back of γ by the projection from $R \times M$ to M, also by γ , and denote the coordinate of R by θ . Then a 2-form $d(e^{\theta}\gamma)$ is an exact symplectic form on $R \times M$. And we define an almost complex structure \tilde{J} on $R \times M$ by the following.

$$\tilde{J}|_{\xi} := J, \quad \tilde{J}\frac{\partial}{\partial\theta} := Y \quad \text{and} \quad \tilde{J}Y := -\frac{\partial}{\partial\theta},$$

Communicated by Prof. K. Fukaya, September 1, 2000

where the pull-backs by the projection are also denoted by the same notation.

Now we introduce some important objects in this paper. Let L_1 be an n-dimensional submanifold of M which satisfies the condition that the tangent bundle of L_1 is contained in the ξ , i.e., $TL_1 \subset \xi$. Then we call such a submanifold a Legandrian submanifold. It is easy to see that (n + 1)-dimensional submanifold $R \times L_1$ is a Lagrangian submanifold in the symplectization of M. Let L_0 be an (n + 1)-dimensional submanifold of M. If there is a Lagrangian submanifold \widehat{L}_0 of the $R \times M$ which satisfies the condition that \widehat{L}_0 is diffeomorphic to L_0 by the projection, then we call L_0 a pre-Lagrangian submanifold and call \widehat{L}_0 a Lagrangian lift of L_0 . A shift of the \widehat{L}_0 along the R-direction is also a Lagrangian lift of L_0 . Then we define the following quantity and call it the height of \widehat{L}_0 .

$$h_{\gamma}(\widehat{L_0}) :=] \max_{p \in \widehat{L_0}} \theta(p) - \min_{p \in \widehat{L_0}} \theta(p),$$

where θ is the coordinate of R of the symplectization $R \times M$. Moreover we put $h_{\gamma}(L_0)$ to be the infimum of $h_{\gamma}(\widehat{L_0})$ over the all Lagrangian lifts and call it the *height* of L_0 .

Here we fix a contact form γ of a contact structure ξ . For any function $H: M \to R$, there is a unique vector field X_H which satisfies the conditions

 $\iota(X_H)\gamma = -H$ and $\iota(X_H)d\gamma = dH - (\iota(Y)dH)\gamma$,

where Y is the Reeb vector field of γ . It is easy to see that the X_H is a contact vector field, i.e., the flow generated by X_H preserves the contact structure ξ . This map, from the space of functions to the space of contact vector fields, is bijective. Moreover it holds for time-dependent functions and time-dependent contact vector fields. Let X_{H_s} be the contact vector field generated by a timedependent function H_s . We define a function $e^{\theta}H_s : R \times M \to R$ by $(\theta, q) \mapsto$ $e^{\theta}H_s(q)$. Then the Hamiltonian vector field generated by the $e^{\theta}H_s$ on the symplectization of M is

$$(\iota(Y)dH)\frac{\partial}{\partial\theta} + X_{H_s},$$

where we regard X_{H_s} as a vector field on the symplectization of M which is constant along the R-direction.

Finally we introduce some quantities. Let γ be a contact form, Y the Reeb vector field of γ and L_1 a Legandrian submanifold. We put

$$\sigma_{\gamma} := \inf \left\{ \int_{l} \gamma \; \middle| \; l \text{ is a contractible closed orbit of } Y \right\}.$$

If there is no contractible closed orbit, we put $\sigma_{\gamma} := \infty$.

$$\sigma_{\gamma}(L_1) := \inf \left\{ \int_l \gamma \left| \begin{array}{c} l \text{ is an orbit of } Y \text{ which satisfies that } l(0), l(1) \in L_1 \\ \text{ and } l \text{ represents the zero element of } \pi_1(M, L_1) \end{array} \right\}.$$

If there is no such an orbit as above, we put $\sigma_{\gamma}(L_1) := \infty$. We put

$$C_{\gamma}(L_1) := \min \left\{ \sigma_{\gamma}, \sigma_{\gamma}(L_1) \right\}.$$

For time-dependent function H_s on M, we put

$$||H_s|| := \int_0^1 \left\{ \max_{p \in M} H_s(p) - \min_{p \in M} H_s(p) \right\} ds, d_{\gamma} := \max_{s \in [0,1], p \in M} |dH_s(Y)|,$$

where Y is the Reeb vector field of γ .

Theorem 1.1. Let M be a closed contact manifold with a contact form γ . Fix this contact form γ . Let L_0 be a closed pre-Lagrangian submanifold and L_1 a closed Legandrian submanifold which satisfy the conditions $L_0 \supset L_1$ and the boundary homomorphism $\pi_2(M, L_0) \rightarrow \pi_1(L_0)$ is trivial.

Let φ_1 be a time-1 map of the contact flow generated by a time-dependent function H_s such that $\varphi_1(L_1)$ intersects L_0 transversaly. Assume that the following estimate holds.

$$||H_s|| \cdot \exp\{2d_\gamma + h_\gamma(L_0) + \varepsilon\} < C_\gamma(L_1).$$

Then we obtain the following estimate.

$$\sharp \{L_0 \cap \varphi_1(L_1)\} \ge \operatorname{rank} H_*(L_1; Z_2).$$

Notice that we do not need a C^1 -small estimate of H_s except for the Reeb direction. Eliashberg, Hofer and Salamon constructed a version of Lagrangian intersection theory in contact geometry [2]. Their theorems work well only with restrictive contact manifolds. For example, overtwisted contact 3-manifolds are not suitable, see [2] and [4]. Their theorem is the case of $C_{\gamma}(L_1) = \infty$ in our theorem.

Theorem 1.2 (Eliashberg, Hofer and Salamon). Let M be a closed contact manifold with a contact form γ . Fix this contact form γ . Let L_0 be a closed pre-Lagrangian submanifold and L_1 a closed Legandrian submanifold which satisfy the conditions $L_0 \supset L_1$ and the boundary homomorphism $\pi_2(M, L_0) \rightarrow \pi_1(L_0)$ is trivial.

Let φ_1 be a time-1 map of the contact flow generated by a time-dependent function H_s such that $\varphi_1(L_1)$ intersects L_0 transversaly. Assume that there is no contractible closed orbit of the Reeb flow Y and there is no orbit of Y which satisfies that $l(0), l(1) \in L_1$ and l represents the zero element of $\pi_1(M, L_1)$. Then we obtain the following estimate.

$$\sharp \{L_0 \cap \varphi_1(L_1)\} \ge \operatorname{rank} H_*(L_1; Z_2).$$

The key points of the proof of our theorem is to show the compactness of the moduli space of pseudo-holomorphic disks with an estimate of the energy and to construct the homomorphism between Floer homologies of different contactomorphisms by using the technique of Chekanov [1].

2. Path spaces and functionals

In this section, we introduce path spaces and functionals. From now on, we denote the symplectization of a contact manifold M by P. Let $\widetilde{H}_s : [0,1] \times P \to R$ be a time-dependent function on P and $\widetilde{X}_{\widetilde{H}_s}$ the Hamiltonian venter field generated by the Hamiltonian function \widetilde{H}_s . Namely the vector field $\widetilde{X}_{\widetilde{H}_s}$ satisfies the condition that

$$d\widetilde{H}_s = \omega(\cdot, \widetilde{X}_{\widetilde{H}_s}),$$

where ω is the symplectic form on P. Moreover, we put $G^s: P \to P$ to be the time-s Hamiltonian flow generated by $\widetilde{X}_{\widetilde{H}_s}$. Namely G^s satisfies the condition that

$$\begin{cases} \frac{d}{ds}G^s &= \widetilde{X}_{\widetilde{H}_s} \circ G^s, \\ G^0 &= \text{ id.} \end{cases}$$

For a closed Lagrangian submanifold \widehat{L}_0 of P and a closed Legandrian submanifold L_1 of M satisfying that $\widehat{L}_0 \cap (R \times L_1)$ is not empty, we put

$$\Omega'_s := \left\{ l : [0,1] \to P \mid l(0) \in R \times L_1, \ l(1) \in G^s(\widehat{L_0}) \right\}.$$

Moreover we denote a component which contains a path $l(t) := G^{ts}(x_0)$, for $x_0 \in \widehat{L_0} \cap (R \times L_1)$, by Ω_s . Put $\Omega := \bigcup_{s \in [0,1]} (s, \Omega_s)$ and, for a fixed path $l_0 \in \Omega$,

$$\widetilde{\Omega} := \left\{ l_{\tau}(t) : [0,1] \times [0,1] \to P \left| \begin{array}{c} l_{\tau=0}(t) = l_0(t), \\ l_{\tau}(0) \in R \times L_1, \text{ and } l_{\tau}(1) \in G^{s(\tau)}(\widehat{L_0}) \end{array} \right\}.$$

Next we introduce a functional F on $\widetilde{\Omega}$. For $\widetilde{l} := l_{\tau}(t) \in \widetilde{\Omega}$, we put

$$F(\widetilde{l}) := \int_0^1 d\tau \int_0^1 dt \ \omega \left(\frac{\partial}{\partial t}l, \frac{\partial}{\partial \tau}l\right) - \int_{s(0)}^{s(1)} ds(\tau) \ \widetilde{H}_{s(\tau)}(l_{\tau}(1)).$$

Lemma 2.1. The value of F depends only on the homotopy type of l which fixes an end path. Namely, put $\tilde{l}_{\sigma} : [0,1] \mapsto \tilde{\Omega}; \sigma \to l(\sigma; \tau, t)$ which satisfies that $l(\sigma; 1, t) = l(\sigma'; 1, t)$, for any $\sigma, \sigma' \in [0,1]$, then $F(\tilde{l}_{\sigma=0}) = F(\tilde{l}_{\sigma=1})$.

Lemma 2.2. Let L_0 be a closed pre-Lagrangian submanifold of M with a Lagrangian lift $\widehat{L_0}$ and L_1 be a closed Legandrian submanifold of M. Suppose that L_1 is contained in L_0 , i.e., $L_1 \subset L_0$, and the boundary homomorphism $\pi_2(M, L_0) \to \pi_1(L_0)$ is trivial. Then, for $\tilde{l} \in \tilde{\Omega}$ which satisfies that $\tilde{l}_{\tau=1} = \tilde{l}_{\tau=0}$, we obtain $F(\tilde{l}) = 0$. From the above lemmas, we can regard the functional F on the Ω as a functional on the Ω , i.e., the value of F is determined by an end point $l_{\tau=1}$ and the base point l_0 . Note that the restriction of F on Ω_s coincides with the usual Floer's functional and denote $F|_{\Omega_s}$ by F_s .

3. Floer homology

In this section, let \tilde{J} be the almost complex structure on P as mentioned in introduction. To put it more precisely, we have to consider perturbations of almost complex structures. It is a little complicated. Hence we omit it here. See [2].

We define a metric on Ω_s by

$$(\xi_1, \xi_2) := \int_0^1 \omega(\xi_1(t), \tilde{J}\xi_2(t)) dt$$

where $\xi_1, \xi_2 \in T_l\Omega_s$. For this metric, the gradient vector field ∇F_s of the F_s is

$$\nabla F_s(l)(t) = J(l(t))l(t).$$

The set of critical points of F_s consists of the intersection points of $R \times L_1$ and $G^s(\widehat{L_0})$. Suppose that $G^s(\widehat{L_0})$ intersects $R \times L_1$ transversaly. For critical points x_+, x_- of F_s , we put the moduli space of descending gradient trajectories as

$$\mathcal{M}_s(x_-, x_+) \\ := \left\{ u: R \to \Omega_s \; \middle| \; \begin{array}{c} \frac{du(\tau)}{d\tau} = -\nabla F_s(u(\tau)), u \text{ is not constant and} \\ \lim_{\tau \to \pm \infty} u(\tau) = x_{\pm} \end{array} \right\}.$$

For a suitable perturbation of almost complex structures we can assume that the regularity condition holds and this space is a manifold, see [2]. And R acts on $\mathcal{M}_s(x_-, x_+)$ by translation, $u(\cdot) \mapsto u(\cdot + a), a \in R$. We denote the quotient by $\widehat{\mathcal{M}}_s(x_-, x_+)$.

From now on, let $\widehat{L_0}$ be the Lagrangian lift of a closed pre-Lagrangian submanifold L_0 with the condition $\min_{p \in \widehat{L_0}} \theta(p) = 0$ and L_1 be a closed Legandrian submanifold with the condition $L_1 \subset L_0$. Moreover assume that the boundary homomorphism $\pi_2(M, L_0) \to \pi_1(L_0)$ is trivial. From these assumptions we can say the followings. First we may regard the functional F on $\widetilde{\Omega}$ as a functional on Ω from Lemma 2.2. Second the bubbling off phenomena can't occur at the boundary points of pseudo-holomorphic disks. Because the symplectic form of P is exact the bubbling off phenomena always can't occur at the interior points of pseudo-holomorphic disks.

Fix constants b_- and C'. Let $p: R \to [b_-, b_- + C')$ be a projection. For a critical point x of F_s , we put $\widetilde{F}_s(x) := p \circ F_s(x)$. Next we put the length of a descending gradient trajectory u by

$$l(u) := -\int_{-\infty}^{\infty} u^* dF_s = \int_{-\infty}^{\infty} \left(\frac{du(\tau)}{d\tau}, \frac{du(\tau)}{d\tau}\right) d\tau > 0.$$

Then we define the moduli space of distinguished gradient trajectories by

$$\mathcal{M}_s^d(x_-, x_+) := \left\{ u \in \mathcal{M}_s(x_-, x_+) \mid l(u) = \widetilde{F}_s(x_-) - \widetilde{F}_s(x_+) \right\}$$

If $\widetilde{F}_s(x_-) - \widetilde{F}_s(x_+)$ is negative, then $\mathcal{M}_s^d(x_-, x_+)$ is empty. And the quotient of $\mathcal{M}_s^d(x_-, x_+)$ by the action of R is denoted by $\widehat{\mathcal{M}}_s^d(x_-, x_+)$.

Theorem 3.1. Assume that $C'e^{d+\varepsilon} < C_{\gamma}(L_1)$ for some positive number ε , where $d = \int_0^s \max_{p \in G^t(\widehat{L_0})} |d\theta(X_{\widetilde{H}_t})| dt$. Then the images of all distinguished gradient trajectories are contained in some compact set of P.

Corollary 3.2. There is no bubble in the distinguished gradient trajectories.

Corollary 3.3. The set of isolated points of $\widehat{\mathcal{M}}^d_s(x_-, x_+)$ is compact.

We show the proof of Theorem 3.1 in the last section. Owing to the compactness, we can define Floer homology. Let Y(s) be the set of critical points of F_s and C(s) be the vector space over Z_2 spanned by elements of Y(s). Then we define a boundary operator $\partial_s : C(s) \to C(s)$ by

$$\partial_s x := \sum_{y \in Y(s)} \sharp \{ \text{isolated points of } \widehat{\mathcal{M}}_s^d(x, y) \} y,$$

where $x \in Y(s)$.

Proposition 3.4. We have $\partial_s^2 = 0$.

Proof. We prove this proposition by the standard gluing argument in the Floer theory. From the definition

$$\partial_s^2 x := \sum_{z,y \in Y(s)} \sharp \{ \text{isolated points of } \widehat{\mathcal{M}}_s^d(x,y) \} \sharp \{ \text{isolated points of } \widehat{\mathcal{M}}_s^d(y,z) \} z$$

Hence we show that the coefficient of each z is even. Take isolated points $u_1 \in \widehat{\mathcal{M}}_s^d(x, y)$ and $u_2 \in \widehat{\mathcal{M}}_s^d(y, z)$, then there is a 1-dimensional component N of $\widehat{\mathcal{M}}_s(x, z)$ so that (u_1, u_2) is an end of the compactification of N. Because the length is additive under the gluing procedure, it holds that $l(u) = l(u_1) + l(u_2) = \widetilde{F}_s(x) - \widetilde{F}_s(z)$ for $u \in N$. Then $N \subset \widehat{\mathcal{M}}_s^d(x, z)$. From Corollary 3.2 there is no bubble in the sequence of points of N. And there are isolated points $u'_1 \in \widehat{\mathcal{M}}_s(x, y')$ and $u'_2 \in \widehat{\mathcal{M}}_s(y', z)$ so that (u'_1, u'_2) is the other end point of the compactification of N. Finally we show that u'_1 and u'_2 are distinguished. We put $l(u'_1) = \widetilde{F}_s(x) - \widetilde{F}_s(y') + nC'$ and $l(u'_2) = \widetilde{F}_s(y') - \widetilde{F}_s(z) - nC'$, $n \in Z$. Since $l(u'_1) > 0$ and $C' > \widetilde{F}_s(x) - \widetilde{F}_s(y') - \widetilde{F}_s(z) > -C'$, n have to be non-negative. Similarly, since $l(u'_2) > 0$ and $C' > \widetilde{F}_s(x) - \widetilde{F}_s(y') - \widetilde{F}_s(z) > -C'$, n have to be non-positive. Then n is zero and $l(u'_1) = \widetilde{F}_s(x) - \widetilde{F}_s(y') - \widetilde{F}_s(z) > -C'$.

Namely, u'_1 and u'_2 are distinguished. Hence the coefficient of each z is even and $\partial_s^2 = 0$.

We construct a homology group $H(C(s), \partial_s)$ from this chain complex $(C(s), \partial_s)$. In the next section, we show the following. If we have a suitable estimate of a Hamiltonian function, then there is an injective homomorphism $V_1^s: H(C(s), \partial_s) \to H(C(1), \partial_1)$ for small s. Hence we have rank $H(C(1), \partial_1) \ge \operatorname{rank} H(C(s), \partial_s)$. Of course, if $R \times L_1$ intersects $G^1(\widehat{L}_0)$ transversaly, then $\sharp\{(R \times L_1) \cap G^1(\widehat{L}_0)\} \ge \operatorname{rank} H(C(1), \partial_1)$.

Proposition 3.5. For some small s, $H(C(s), \partial_s)$ is isomorphic to $H_*(L_1; Z_2)$ as a vector space.

Sketch of proof. There is a contact diffeomorphism from a small neighborhood of L_1 in M to a small neighborhood of the zero section of 1-jet of L_1 such that the image of L_0 is the 0-wall. Under the assumption that $\varphi_s(L_1)$ intersects W transversaly, for small s there is a Morse function such that the set of its critical points is isomorphic to the set of intersection points of $\varphi_s(L_1)$ and W. And take a suitable metric on L_1 , the set of gradient trajectories of the Morse function between critical points x_- and x_+ is isomorphic to the set of gradient trajectories of the Floer's functional between the intersection points x_- and x_+ . Moreover for some small s the gradient trajectories of the Floer's functional are distinguished. Then the Morse complex is isomorphic to the complex $(C(s), \partial_s)$.

Hence if we have a suitable estimate of Hamiltonian function, then we obtain $\#\{(R \times L_1) \cap G^1(\widehat{L_0})\} \ge \operatorname{rank} H_*(L_1; Z_2).$

4. Continuations and homotopy of continuations

In this section, we describe the technique of Chekanov [1]. We put

$$a_{+} := \int_{0}^{1} \max_{p \in G^{s}(\widehat{L_{0}})} \widetilde{H}_{s}(p) ds \quad \text{and} \quad a_{-} := \int_{0}^{1} \min_{p \in G^{s}(\widehat{L_{0}})} \widetilde{H}_{s}(p) ds,$$

and we may think that $a_{-} \leq 0 \leq a_{+}$. From now we assume that $a_{+} - a_{-} < C'$. At the beginning we can take a generic base point of $\widetilde{\Omega}$ and $\varepsilon > 0$ such that $F_{s}(y) > 0$ for any $s < \varepsilon$ and any $y \in Y(s)$. Moreover we retake the generic base point so that $\widetilde{F}_{1}(y) \neq a_{-}$ for any $y \in Y(1)$. Since the number of elements of Y(1) is finite we can choose the number b_{-} so that $\widetilde{F}_{1}(y) \notin [b_{-}, a_{-}]$ for any $y \in Y(1)$. Then we take an interval $(c_{-}, c_{+}) \subset (b_{-}, b_{+})$, where $b_{+} = b_{-} + C'$, such that $a_{-} < c_{-}$, $a_{+} < c_{+}$ and $\widetilde{F}_{1}(y) \in [c_{-}, c_{+}]$ for any $y \in Y(1)$. Moreover we take c_{-} enough close to a_{-} and c_{+} enough close to b_{+} and retake $\varepsilon > 0$ small such that $\widetilde{F}_{s}(x) \in [c_{-} - a_{-}, c_{+} - a_{+}]$ for any $s < \varepsilon$ and $x \in Y(s)$.

We introduce a continuation map $Q_{s_+}^{s_-} \in \text{Hom}(C(s_-), C(s_+))$. Let $\rho : R \to [0, 1]$ be a function which satisfies that there are some constants K > 0 such that

Manabu Akaho

 $\rho(\tau) = s_{-}$ for $\tau < -K$ and $\rho(\tau) = s_{+}$ for $\tau > K$. We call such a function an (s_{-}, s_{+}) -continuation function. Moreover, if ρ is a monotone function, we call it a monotone (s_{-}, s_{+}) -continuation function. For critical points $x_{-} \in Y(s_{-})$ and $x_{+} \in Y(s_{+})$, we put the moduli spaces of continuation trajectories as

$$\mathcal{M}_{\rho}(x_{-}, x_{+}) := \left\{ u : R \to \Omega \mid \frac{du(\tau)}{d\tau} = -\nabla F_{\rho(\tau)}(u(\tau)) \text{ and } \lim_{\tau \to \pm \infty} u(\tau) = x_{\pm} \right\}.$$

For a suitable perturbation of almost complex structures we can assume that the regularity condition holds and this space is manifold.

For a continuation trajectory u, we put the length l(u) by

$$l(u) := -\int_{-\infty}^{\infty} u^* dF$$

and the symplectic area A(u) by

$$A(u) := -\int_{R \times [0,1]} u^* \omega = \int_{-\infty}^{\infty} \left(\frac{du(\tau)}{d\tau}, \frac{du(\tau)}{d\tau}\right) d\tau \ge 0.$$

And we put

$$h(u) := \int_{-\infty}^{\infty} \frac{d\rho(\tau)}{d\tau} \widetilde{H}_{\rho(\tau)}(u(\tau, 1)) d\tau,$$

then A(u) = l(u) + h(u). We define the moduli space of distinguished continuation trajectories by

$$\mathcal{M}_{\rho}^{d}(x_{-}, x_{+}) := \Big\{ u \in \mathcal{M}_{\rho}(x_{-}, x_{+}) \ \Big| \ l(u) = \widetilde{F}_{s_{-}}(x_{-}) - \widetilde{F}_{s_{+}}(x_{+}) \Big\}.$$

Lemma 4.1. Let $s_{-} < \varepsilon$, $s_{+} = 1$ or $s_{-} = 1$, $s_{+} < \varepsilon$. And let ρ be a monotone (s_{-}, s_{+}) -continuation function, then we obtain

$$A(u) \le c_{+} - c_{-}(< C'),$$

where $u \in \mathcal{M}^d_{\rho}(x_-, x_+)$.

Proof. First let $s_{-} < \varepsilon$ and $s_{+} = 1$. Notice that ρ is monotone. We obtain

$$h(u) \leq \int_{-\infty}^{\infty} \frac{d\rho(\tau)}{d\tau} \max_{p \in G^{\rho(\tau)}(\widehat{L_0})} \widetilde{H}_{\rho(\tau)}(p) d\tau$$
$$= \int_{s}^{1} \max_{p \in G^s(\widehat{L_0})} \widetilde{H}_s(p) ds \leq a_+,$$

where $u \in \mathcal{M}^{d}_{\rho}(x_{-}, x_{+})$. Since $l(u) = \tilde{F}_{s_{-}}(x_{-}) - \tilde{F}_{s_{+}}(x_{+}) \leq (c_{+} - a_{+}) - c_{-}$, we obtain $A(u) = l(u) + h(u) \leq c_{+} - c_{-}$.

Second let $s_{-} = 1$ and $s_{+} < \varepsilon$. Notice that ρ is monotone. We obtain

$$\begin{split} h(u) &\leq \int_{-\infty}^{\infty} \frac{d\rho(\tau)}{d\tau} \min_{p \in G^{\rho(\tau)}(\widehat{L_0})} \widetilde{H}_{\rho(\tau)}(p) d\tau \\ &= \int_{1}^{s} \min_{p \in G^s(\widehat{L_0})} \widetilde{H}_s(p) ds \leq -a_{-}, \end{split}$$

where $u \in \mathcal{M}^{d}_{\rho}(x_{-}, x_{+})$. Since $l(u) = \tilde{F}_{s_{-}}(x_{-}) - \tilde{F}_{s_{+}}(x_{+}) \leq c_{+} - (c_{-} - a_{-})$, we obtain $A(u) = l(u) + h(u) \leq c_{+} - c_{-}$.

Theorem 4.2. Let s_{-} , s_{+} and ρ be the same as Lemma 4.1. Assume that $C'e^{d+\varepsilon} < C_{\gamma}(L_{1})$ for some positive number ε , where $d = \int_{0}^{1} \max_{p \in G^{t}(\widehat{L_{0}})} |d\theta(X_{\widetilde{H}_{t}})| dt$. Then the images of all continuation trajectories are contained in some compact set of P.

Corollary 4.3. There is no bubble in the continuation trajectories.

The proofs of them is the same ones as Theorem 3.1 and Corollary 3.2.

For a monotone (s_-, s_+) -continuation function ρ , we define a continuation map $Q_{s_-}^{s_+}: C(s_-) \to C(s_+)$ by

$$Q^{s_+}_{s_-}(x) := \sum_{y \in Y(s_+)} \sharp \big\{ \text{isolated points of } \mathcal{M}^d_\rho(x,y) \big\} y,$$

where $x \in Y(s_{-})$.

Proposition 4.4. Let $s_{-} < \varepsilon$, $s_{+} = 1$ or $s_{-} = 1$, $s_{+} < \varepsilon$. And let ρ be a monotone (s_{-}, s_{+}) -continuation function, then we obtain

$$Q_{s_+}^{s_-} \circ \partial_{s_-} = \partial_{s_+} \circ Q_{s_+}^{s_-}.$$

Proof. Let $x \in Y(s_{-})$ and $z \in Y(s_{+})$. Take a pair of isolated points (u_1, u_2) where $u_1 \in \widehat{\mathcal{M}}_{s_-}^d(x, y)$, $u_2 \in \mathcal{M}_{\rho}^d(y, z)$, $y \in Y(s_-)$ or $u_1 \in \mathcal{M}_{\rho}^d(x, y)$, $u_2 \in \widehat{\mathcal{M}}_{s_+}^d(y, z)$, $y \in Y(s_+)$. Then there is a 1-dimensional component N of $\mathcal{M}_{\rho}(x, z)$ so that (u_1, u_2) is an end of the compactification of N. Because the length is additive under the gluing procedure, it holds that $l(u) = l(u_1) + l(u_2) = \widetilde{F}_{s_-}(x) - \widetilde{F}_{s_+}(z)$ for $u \in N$. Then $N \subset \mathcal{M}_{\rho}^d(x, z)$. From Corollary 4.3 there is no bubble in the sequence of points of N. And there is a pair of isolated points (u'_1, u'_2) where $u'_1 \in \widehat{\mathcal{M}}_{s_-}(x, y)$, $u'_2 \in \mathcal{M}_{\rho}(y, z)$, $y \in Y(s_-)$ or $u'_1 \in \mathcal{M}_{\rho}(x, y)$, $u'_2 \in \widehat{\mathcal{M}}_{s_+}(y, z)$, $y \in Y(s_+)$ so that (u'_1, u'_2) is the other end point of the compactification of N. Finally we need to show that u'_1 and u'_2 are distinguished.

Lemma 4.5. If $u \in \mathcal{M}_{\rho}(x_{-}, x_{+})$, then we have $l(u) \geq \widetilde{F}_{s_{-}}(x_{-}) - \widetilde{F}_{s_{+}}(x_{+})$.

Proof. First let $s_{-} < \varepsilon$ and $s_{+} = 1$. Then we have

$$\begin{split} l(u) &= A(u) - h(u) \geq -a_+ \\ &> (c_+ - a_+) - c_- - C' \\ &\geq \widetilde{F}_{s_-}(x_-) - \widetilde{F}_{s_+}(x_+) - C'. \end{split}$$

Second let $s_{-} = 1$ and $s_{+} < \varepsilon$. Then we have

$$l(u) = A(u) - h(u) \ge a_{-}$$

> $c_{+} - (c_{-} - a_{-}) - C'$
 $\ge \widetilde{F}_{s_{-}}(x_{-}) - \widetilde{F}_{s_{+}}(x_{+}) - C'.$

In both cases, we obtain $l(u) > \widetilde{F}_{s_-}(x_-) - \widetilde{F}_{s_+}(x_+) - C'$. Moreover, $l(u) = \widetilde{F}_{s_-}(x_-) - \widetilde{F}_{s_+}(x_+) + nC'$, $n \in \mathbb{Z}$. Hence we obtain $l(u) = \widetilde{F}_{s_-}(x_-) - \widetilde{F}_{s_+}(x_+)$.

Let $(u_1, u_2) \in \widehat{\mathcal{M}}_{s_-}(x, y) \times \mathcal{M}_{\rho}(y, z), y \in Y(s_-)$, be an end point of the compactification of a 1-dimensional component $N \subset \mathcal{M}_{\rho}^d(x, z)$. Put $l(u_1) = \widetilde{F}_{s_-}(x) - \widetilde{F}_{s_-}(y) + nC'$ and $l(u_2) = \widetilde{F}_{s_-}(y) - \widetilde{F}_{s_+}(z) - nC'$. Because $l(u_1) = A(u_1) \geq 0$, we obtain $n \geq 0$. From Lemma 4.5, $l(u_2) \geq \widetilde{F}_{s_-}(y) - \widetilde{F}_{s_+}(z)$, we obtain $n \leq 0$. Hence n = 0 and u_1, u_2 are distinguished. Similarly, let $(u_1, u_2) \in \mathcal{M}_{\rho}(x, y) \times \widehat{\mathcal{M}}_{s_+}(y, z), y \in Y(s_+)$, be an end point of the compactification of a 1-dimensional component $N \subset \mathcal{M}_{\rho}^d(x, z)$. Put $l(u_1) = \widetilde{F}_{s_-}(x) - \widetilde{F}_{s_+}(y) + nC'$ and $l(u_2) = \widetilde{F}_{s_+}(y) - \widetilde{F}_{s_+}(z) - nC'$. Because $l(u_2) = A(u_2) \geq 0$, we obtain $n \leq 0$. From Lemma 4.5, $l(u_1) \geq \widetilde{F}_{s_+}(x) - \widetilde{F}_{s_+}(y)$, we obtain $n \geq 0$. Hence n = 0 and u_1, u_2 are distinguished. Then we obtain

$$(Q_{s_+}^{s_-} \circ \partial_{s_-} - \partial_{s_+} \circ Q_{s_+}^{s_-})x = 0,$$

where $x \in Y(s_{-})$.

From Q_1^s and Q_s^1 , $s < \varepsilon$, we construct homomorphisms

$$V_1^s : H(C(s), \partial_s) \to H(C(1), \partial_1)$$
 and $V_s^1 : H(C(1), \partial_1) \to H(C(s), \partial_s).$
Proposition 4.6. We have $V_s^1 \circ V_1^s = \text{id.}$

Proof. Consider a family of (s, s)-continuation functions $\pi_{\omega}, \omega \in [0, \infty)$, which satisfies the following conditions.

- $\pi_0(\tau) \equiv s.$
- $\omega \mapsto \pi_{\omega}(0)$ is monotone and surjective onto [s, 1].
- $d\pi_{\omega}(\tau)/d\tau \ge 0$, for $\tau < 0$, and $d\pi_{\omega}(\tau)/d\tau \le 0$, for $\tau > 0$.
- For large ω ,

$$\pi_{\omega}(\tau) = \begin{cases} \rho^{-}(\tau + \omega) & \text{for } \tau \leq 0, \\ \rho^{+}(\tau - \omega) & \text{for } \tau \geq 0, \end{cases}$$

	1.1	

where ρ^+ and ρ^- are monotone (1, s)-continuation function and monotone (s, 1)-continuation function which we use to construct Q_s^1 and Q_1^s respectively. For critical points x_- and $x_+ \in Y(s)$, we put

$$\mathcal{M}_{\pi}(x_{-}, x_{+}) := \big\{ (\omega, u) \mid u \in \mathcal{M}_{\pi_{\omega}}(x_{-}, x_{+}) \big\}.$$

For a suitable perturbation of almost complex structures we can assume that the regularity condition holds and this space is manifold. Moreover we put

$$\mathcal{M}^d_{\pi}(x_-, x_+) := \left\{ (\omega, u) \mid u \in \mathcal{M}^d_{\pi_\omega}(x_-, x_+) \right\}$$

Lemma 4.7. Let $u \in \mathcal{M}^d_{\pi}(x_-, x_+)$, then we obtain

$$A(u) \le c_+ - c_- (< C').$$

Proof. For $u \in \mathcal{M}^d_{\pi_\omega}(x_-, x_+)$,

$$\begin{split} h(u) &\leq \int_{-\infty}^{0} \frac{d\pi_{\omega}(\tau)}{d\tau} \max_{p \in G^{\pi_{\omega}(\tau)}(\widehat{L_{0}})} \widetilde{H}_{\pi_{\omega}(\tau)}(p) d\tau \\ &+ \int_{0}^{\infty} \frac{d\pi_{\omega}(\tau)}{d\tau} \min_{p \in G^{\pi_{\omega}(\tau)}(\widehat{L_{0}})} \widetilde{H}_{\pi_{\omega}(\tau)}(p) d\tau \\ &= \int_{s}^{0} \max_{p \in G^{s}(\widehat{L_{0}})} \widetilde{H}_{s}(p) ds + \int_{0}^{s} \min_{p \in G^{s}(\widehat{L_{0}})} \widetilde{H}_{s}(p) ds \\ &\leq a_{+} - a_{-}. \end{split}$$

Since $l(u) = \widetilde{F}_s(x_-) - \widetilde{F}_s(x_+) \le (c_+ - a_+) - (c_- - a_-)$, we obtain $A(u) = l(u) + h(u) \le c_+ - c_-$.

From Lemma 4.7 the set of isolated points of $\mathcal{M}^d_{\pi}(x, z)$ is compact and there is no bubble in $\mathcal{M}^d_{\pi}(x, z)$ in the same way of Corollary 4.3. Hence the number of 1-dimensional components of $\mathcal{M}^d_{\pi}(x, z)$ is finite. And there are four types of the end points of the compactification of a 1-dimensional component as follows.

1. a pair (u_1, u_2) of isolated points $u_1 \in \mathcal{M}_{\rho^-}(x, y)$ and $u_2 \in \mathcal{M}_{\rho^+}(y, z)$, for $y \in Y(1)$.

2. an isolated point $u \in \mathcal{M}_{\pi_0}(x, z)$.

3. a pair (u_1, u_2) of isolated points $u_1 \in \widehat{\mathcal{M}}_s(x, y)$ and $u_2 \in \mathcal{M}_{\pi_\omega}(y, z)$, for $y \in Y(s)$.

4. a pair (u_1, u_2) of isolated points $u_1 \in \mathcal{M}_{\pi_\omega}(x, y)$ and $u_2 \in \widehat{\mathcal{M}}_s(y, z)$, for $y \in Y(s)$.

We put

$$h_s(x) := \sum_{y \in Y(s)} \sharp \{ \text{isolated points of } \mathcal{M}^d_{\pi}(x, y) \} y,$$

where $x \in Y(s)$. If all the end points as mentioned are distinguished, we obtain

$$Q_s^1 \circ Q_1^s + \mathrm{id} + h_s \circ \partial_s + \partial_s \circ h_s = 0.$$

Then we can say $V_s^1 \circ V_1^s = \text{id}$. First the end points of type 1 are distinguished from Lemma 4.5. Second the end points of type 2 are constant maps because if they are not constant then they have non-zero dimension by the *R*-action. And constant maps are obviously distinguished. Finally we show that the end points of type 3 and 4 are distinguished.

Lemma 4.8. If $u \in \mathcal{M}_{\pi_{\omega}}(x_{-}, x_{+})$, then we obtain $l(u) \geq \widetilde{F}_{s}(x_{-}) - \widetilde{F}_{s}(x_{+})$.

Proof. We have $h(u) \leq a_{+} - a_{-}$ in the same way as Lemma 4.7. And

$$\begin{split} l(u) &= A(u) - l(u) \geq a_{+} - a_{-} \\ &> (c_{+} - a_{+}) - (c_{-} - a_{-}) - C' \\ &\geq \widetilde{F}_{s}(x_{-}) - \widetilde{F}_{s}(x_{+}) - C'. \end{split}$$

Moreover $l(u) = \widetilde{F}_s(x_-) - \widetilde{F}_s(x_+) + nC', n \in \mathbb{Z}$. Hence $l(u) \ge \widetilde{F}_s(x_-) - \widetilde{F}_s(x_+)$.

In the case of type 3, put $l(u_1) = \widetilde{F}_s(x) - \widetilde{F}_s(y) + nC'$ and $l(u_2) = \widetilde{F}_s(y) - \widetilde{F}_s(z) - nC'$. Since $l(u_1) = A(u_1) \ge 0$, we obtain $n \ge 0$. From Lemma 4.8, $l(u_2) \ge \widetilde{F}_s(y) - \widetilde{F}_s(z)$, we obtain $n \le 0$. Hence n = 0 and u_1, u_2 are distinguished. Similarly, in the case of type 4, put $l(u_1) = \widetilde{F}_s(x) - \widetilde{F}_s(y) + nC'$ and $l(u_2) = \widetilde{F}_s(y) - \widetilde{F}_s(z) - nC'$. Since $l(u_2) = A(u_2) \ge 0$, we obtain $n \le 0$. From Lemma 4.8, $l(u_1) \ge \widetilde{F}_s(x) - \widetilde{F}_s(y)$, we obtain $n \le 0$. Hence n = 0 and u_1, u_2 are distinguished.

Then we obtain $V_s^1 \circ V_1^s = \mathrm{id}$.

5. Proof of main theorem

We summarize our story. Let M be a closed contact manifold with a contact form γ . Let L_0 be a closed pre-Lagrangian submanifold of M and L_1 a closed Legandrian submanifold of M which satisfy the conditions $L_0 \supset L_1$ and the boundary homomorphism $\pi_2(M, L_0) \to \pi_1(L_0)$ is trivial. We take $\widehat{L_0}$ the Lagrangian lift of L_0 with the condition $\min_{p \in \widehat{L_0}} \theta(p) = 0$.

We denote the symplectization of M by P. Let \tilde{H}_s be a time-dependent Hamiltonian function on P, and $G^s: P \to P$ the time-s flow generated by \tilde{H}_s . We put

$$a_+:=\int_0^1 \max_{p\in G^s(\widehat{L_0})} \widetilde{H}_s(p) ds \quad \text{and} \quad a_-:=\int_0^1 \min_{p\in G^s(\widehat{L_0})} \widetilde{H}_s(p) ds.$$

Suppose that $C'e^{d+\varepsilon} < C_{\gamma}(L_1)$, where $d = \int_0^1 \max_{p \in G^t(\widehat{L_0})} |d\theta(X_{\widetilde{H}_t})| dt$, then we can define Floer homology. Moreover if we have $a_+ - a_- < C'$, then there are homomorphisms $V_1^s : H(C(s), \partial_s) \to H(C(1), \partial_1)$ and $V_s^1 : H(C(1), \partial_1) \to C(1)$.

 $H(C(s), \partial_s)$, for small s, such that $V_s^1 \circ V_1^s = \text{id.}$ Hence if $G^1(\widehat{L_0})$ intersects $R \times L_1$ transversaly, we obtain

$$\# \{ G^1(\widehat{L_0}) \cap (R \times L_1) \} \ge \operatorname{rank} H(C(1), \partial_1)$$

$$\ge \operatorname{rank} H(C(s), \partial_s).$$

And, for small s, $H(C(s), \partial_s)$ is isomorphic to $H_*(L_1; Z_2)$ as a vector space. Hence we obtain

$$\sharp \left\{ G^1(\widehat{L_0}) \cap (R \times L_1) \right\} \ge \operatorname{rank} H(L_1; Z_2).$$

In the next step, let H_s be a time-dependent function on M and X_{H_s} the contact vector field generated by H_s . Let $e^{\theta}H_s$ be a Hamiltonian function on P, then the Hamiltonian vector field generated by $e^{\theta}H_s$ is $(dH_s(Y), X_{H_s})$ on $P = R \times M$, where Y is the Reeb vector field. We put $d = \max_{s \in [0,1], p \in M} |dH_s(Y)|$ and moreover

$$a_+ := \int_0^1 \max_{p \in M} H_s(p) ds \cdot \exp\{d + h(\widehat{L_0})\},$$

and

$$a_{-} := \int_0^1 \min_{p \in M} H_s(p) ds \cdot \exp\{d + h(\widehat{L_0})\}.$$

Finally, if we have $C'e^{d+\varepsilon} < C_{\gamma}(L_1)$ and $a_+ - a_- < C'$, then Theorem 1.1 holds.

6. Compactness

For simplicity we fix the almost complex structure \tilde{J} on P defined in the introduction. To put it more precisely, we have to consider perturbations of almost complex structures. It is a little complicated. Hence we omit it here. See [2].

We introduce notation. Put $K_{a,b} := [a,b] \times M \subset P$ and $M_{\theta} := \{\theta\} \times M$. If we denote $d = \int_0^s \max_{p \in G^t(\widehat{L_0})} |d\theta(X_{\widetilde{H}_t})| dt$, then we may have $G^s(\widehat{L_0}) \subset K_{-d,h(L_0)+d+\varepsilon}$.

Lemma 6.1. For any $u \in \mathcal{M}_s(x_-, x_+)$, the image of u is contained in $K_{-\infty,h(L_0)+d+\varepsilon}$.

Proof. Assume that the image of u is not contained in $K_{-\infty,h(L_0)+d+\varepsilon}$, then we have $\sup(\theta \circ u) > h(L_0) + d + \varepsilon$. Because u converges to x_{\pm} at infinity and $\theta(x_{\pm}) \leq h(L_0) + d + \varepsilon$, there are some points of the image of u where $\theta \circ u$ takes the maximum. Let p_0 be one of these points. From the pseudoconvexity of M_{θ} and maximum principle, p_0 is not an interior point of the image of u. Assume that p_0 is a boundary point. Let v be a tangent vector along the boundary at p_0 . From $p_0 \in K_{h(L_0)+d+\varepsilon,\infty}$, we have $p_0 \in R \times L_1$ and v is tangent to L_1 . Then $v \in \xi_{p_0}$. Because $\tilde{J}v \in \tilde{J}\xi_{p_0} = \xi_{p_0}$ and u is pseudo-holomorphic, the image of u is tangent to $M_{\theta(p_0)}$ at p_0 . But this contradicts the pseudo-convexity of M_{θ} and strong maximum principle.

We denote the pull-back of γ by the projection $\pi : R \times M \to M$, also by γ . Let $\overline{\omega} := d\gamma$, then we have $\overline{\omega}|_{T_p(R \times M)} = e^{-\theta}(d\pi)^*(\omega|_{T_pM_\theta})$, where $p \in M_\theta$.

Lemma 6.2. Put $C^i := u^{-1}(K_{-\infty,-i})$ for $u \in \mathcal{M}_s(x_-, x_+)$. If $i \ge d$, then we have

$$0 \le \int_{C^i} u^* \overline{\omega} = e^i \int_{C^i} u^* \omega.$$

Hence, if $\int_{R \times [0,1]} u^* \omega < C'$, then we obtain $0 \leq \int_{C^i} u^* \overline{\omega} < C' e^i$.

Proof. From $i \geq d$, $\partial C^i = u^{-1}(M_{-i}) \cup u^{-1}((R \times L_1) \cap K_{-\infty,-i})$. Notice that L_1 is a Legandrian submanifold. Hence

$$\int_{C^i} u^* \overline{\omega} = \int_{\partial C^i} u^* \gamma = \int_{u^{-1}(M_{-i})} u^* \gamma = e^i \int_{u^{-1}(M_{-i})} u^* (e^\theta \gamma) = e^i \int_{C^i} u^* \omega. \quad \Box$$

Corollary 6.3. If $i \ge d$, then we have

$$\int_{C^i} u^* \omega \le e^{d-i} \int_{C^d} u^* \omega.$$

Hence, if $\int_{R \times [0,1]} u^* \omega < C'$, then we obtain $\int_{C^i} u^* \omega < C' e^{d-i}$.

Proof. Since u is pseudo-holomorphic, $\int_{C^{i+1}} u^*\overline{\omega} \leq \int_{C^i} u^*\overline{\omega}$. Then from Lemma 6.2

$$e^{i+1}\int_{C^{i+1}}u^*\omega=\int_{C^{i+1}}u^*\overline{\omega}\leq\int_{C^i}u^*\overline{\omega}=e^i\int_{C^i}u^*\omega.$$

Hence we obtain

$$\int_{C^{i+1}} u^* \omega \le e^{-1} \int_{C^i} u^* \omega$$

and repeat this inequality.

For a map $u: R \times [0,1] \to P$, if a domain G of $R \times M$ satisfies the following conditions, we call G a special domain for u of level k and width l.

- G is either a disk or an annulus.
- $u|_G$ intersects $M_{-k} \cup M_{-k-l}$ transversaly.
- $u(\partial G) \subset M_{-k} \cup M_{-k-l} \cup (R \times L_1)$ and $u(\partial G \cap \partial (R \times [0,1])) \subset R \times L_1$.
- $u(\partial G) \cap M_{-k} \neq \emptyset$ and $u(\partial G) \cap M_{-k-l} \neq \emptyset$.
- $u(G) \subset K_{-\infty,-d}$.

606

Lemma 6.4. For $u \in \mathcal{M}_s(x_-, x_+)$, C^i is a disjoint union of disks.

Proof. It follows from the pseudo-convexity of M_{θ} and maximum principle.

Again note that, for simplicity we fix the almost complex structure \tilde{J} on P defined in the introduction. To put it more precisely, we have to consider perturbations of almost complex structures. It is a little complicated. Hence we omit it here. See [2].

Lemma 6.5. Let $\{u_n\} \subset \mathcal{M}_s(x_-, x_+)$ be a sequence of pseudo-holomorphic maps. Assume that the union of the images of u_n 's is not contained in any compact subset of P. Then there are a subsequence $\{u_{n_k}\}$ and a sequence of domains $\{G_k\}, G_k \subset R \times [0, 1]$, which satisfy the following.

- G_k is a special domain for u_{n_k} .
- G_k is of width l and level j for $d \leq j$ and $u_{n_k}(G_k) \subset K_{-j-2l,-j}$.
- If $\int_{R \times [0,1]} u_n^* \omega < C'$, then we have $\int_{G_k} u_{n_k}^* \overline{\omega} \to 0$ as $k \to \infty$.

Proof. From Lemma 6.1, the union of the images of $u_n's$ is bounded above along the *R*-direction of *P*. Hence we may assume that there is a subsequence $\{u_{n_k}\}$ such that $u_{n_k}(R \times [0,1]) \cap M_{-(k+1)l,-d} \neq \emptyset$. For $d \leq i \leq d + kl$ we put

$$B_k^i := u_{n_k}^{-1}(K_{-\infty,-i}) \setminus u_{n_k}^{-1}(K_{-\infty,-i-l}).$$

Let *B* be a connected component of B_k^i such that $u_{n_k}^{-1}(M_{-i}) \cap B \neq \emptyset$ and $u_{n_k}^{-1}(M_{-i-l}) \cap B \neq \emptyset$. From Lemma 6.4, *B* is a disk with some holes. We patch some disks back to these holes so that *B* turns to either a disk or an annulus. We denote this disk or annulus by \widehat{B} . Especially we can do this procedure so that $\partial \widehat{B} \cap u_{n_k}^{-1}(M_{-i}) \neq \emptyset$ and $\partial \widehat{B} \cap u_{n_k}^{-1}(M_{-i-l}) \neq \emptyset$. Then \widehat{B} is a special domain for u_{n_k} of width *l* and level *i*. In this way we can find special domains.

For each k, we can find special domains \widehat{B}_k^j for u_{n_k} of width l and level j, $j = d, d + l, \ldots, d + kl$, such that Int $\widehat{B}_k^i \cap$ Int $\widehat{B}_k^j = \emptyset$ for $i \neq j$. From $\bigcup_j \widehat{B}_k^j \subset u_{n_k}^{-1}(K_{-\infty,-d}),$

$$\sum_{j} \int_{\widehat{B}_{k}^{j}} u_{n_{k}}^{*} \overline{\omega} \leq \int_{C_{k}^{d}} u_{n_{k}}^{*} \overline{\omega} = e^{d} \int_{C_{k}^{d}} u_{n_{k}}^{*} \omega,$$

where $C_k^d = u_{n_k}^{-1}(K_{-\infty,-d})$. Hence, if $\int_{R \times [0,1]} u_n^* \omega < C'$, we have

$$\sum_{j} \int_{\widehat{B}_{k}^{j}} u_{n_{k}}^{*} \overline{\omega} < C' e^{d}.$$

Because each term of the sum is positive, there is at least one special domain \widehat{B}_k^j such that $\int_{\widehat{B}_i^j} u_{n_k}^* \overline{\omega} < C' e^d / k$.

Manabu Akaho

We put a special domain G_k for u_{n_k} such that $\int_{G_k} u_{n_k}^* \overline{\omega}$ is the minimum over all the special domains of width l and level $d, d+l, \ldots, d+kl$. From the construction, we have $G_k \cap M_{-j+l} = \emptyset$, where j is the level of G_k . Moreover we have $G_k \cap M_{-j-2l} = \emptyset$, because if $G_k \cap M_{-j-2l} \neq \emptyset$ we can find another special domain G'_k such that $\int_{G'_k} u_{n_k}^* \overline{\omega} < \int_{G_k} u_{n_k}^* \overline{\omega}$. This contradicts the minimum of G_k .

Fix a width *l*. We put \widetilde{u}_{n_k} to be the (j - d)-shift, along the *R*-direction of *P*, of a pseudo-holomorphic map $u_{n_k} : G_k \to P$, where *j* is the level of G_k . Then we have

$$\int_{G_k} \widetilde{u}_{n_k}^* \omega = e^{j-d} \int_{G_k} u_{n_k}^* \omega$$

From the inequality $\int_{u_{n_k}^{-1}(K_{-\infty,-j})} u_{n_k}^* \omega \leq e^{d-j} \int_{u_{n_k}^{-1}(K_{-\infty,-d})} u_{n_k}^* \omega$, in Corollary 6.3, we obtain

$$\int_{G_k} \tilde{u}_{n_k}^* \omega \le e^{j-d} \int_{u_{n_k}^{-1}(K_{-\infty,-j})} u_{n_k}^* \omega \le \int_{u_{n_k}^{-1}(K_{-\infty,-d})} u_{n_k}^* \omega.$$

Hence, if $\int_{R \times [0,1]} u_{n_k}^* \omega < C'$, then we have

$$\int_{G_k} \widetilde{u}_{n_k}^* \omega < C'.$$

Consider the pseudo-holomorphic maps $\widetilde{u}_{n_k} : G_k \to (-d - 2l, -d] \times M$, and apply the Gromov's compactness theorem. See [2].

Proposition 6.6. There is a subsequence $\{\widetilde{u}_{n_k}\}$ which converges uniformly on compact sets to a non-constant pseudo-holomorphic map \widetilde{u}_{∞} . The boundary of this image is contained in $M_{-d} \cup M_{-d-l} \cup (R \times L_1)$ and smoothness of the boundary holds at points in $R \times L_1$.

Notice that, if $\int_{R \times [0,1]} u_{n_k}^* \omega < C'$, we have $\int_{G_k} \tilde{u}_{n_k}^* \overline{\omega} \to 0$ as $k \to \infty$. Hence we obtain $\int_B \tilde{u}_{\infty}^* \overline{\omega} = 0$, where *B* is either a disk or an annulus.

Lemma 6.7. Let \widetilde{u}_{∞} : Int $B \to (-d - 2l, -d] \times M$ be a non-constant pseudo-holomorphic map, where B is either a disk or an annulus, and the boundary of this image be contained in $M_{-d} \cup M_{-d-l} \cup (R \times L_1)$. Assume that $\int_B \widetilde{u}_{\infty}^* \overline{\omega} = 0$. Then there is either a closed orbit of the Reeb vector field or an orbit of the Reeb vector field with the end points in L_1 , we denote each by S, such that

$$\widetilde{u}_{\infty}(\mathrm{Int}B) = (-d-l, -d) \times S \subset (-d-l, -d) \times M.$$

And we obtain

$$e^{-d}(1-e^{-l})\int_{S}\gamma = \int_{B}\widetilde{u}_{\infty}^{*}\omega.$$

Proof. From $\overline{\omega} = d\gamma$, $\omega = e^{\theta}(d\theta \wedge \gamma + d\gamma)$ and \widetilde{u}_{∞} is pseudo-holomorphic, this lemma holds.

If $\int_{R \times [0,1]} u_n^* \omega < C'$, then we have $\int_{G_k} \tilde{u}_n^* \omega < C'$ as mentioned after Lemma 6.5. Hence $\int_B \tilde{u}_\infty^* \omega < C'$ and we obtain

$$\int_{S} \gamma < e^{d} (1 - e^{-l})^{-1} C'.$$

If we have $C'e^{d+\varepsilon} < C_{\gamma}(L_1)$ for $\varepsilon > 0$, all the images of u_n have to be contained in a compact set of P from Lemma 6.5, Proposition 6.6 and Lemma 6.7.

Thus we finish a proof of Theorem 3.1.

Acknowledgement. The author wishes to thank K. Fukaya for his encouragement.

> Department of Mathematics Faculty of Science Tokyo Metropolitan University Hachiohji 192-0397 Japan

References

- Y. V. Chekanov, Hofer's Symplectic Energy and Lagrangian intersections, in Contact and Symplectic Geometry, Cambridge, 1996, 296–306.
- [2] Y. Eliashberg, H. Hofer and D. Salamon, Lagrangian intersectons in contact geometry, Geom. Funct. Anal., 5-2 (1995), 244–269.
- [3] A. Floer, Morse theory for Lagrangian intersections, J. Diff. Geom., 28 (1988), 513–547.
- [4] H. Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math., 114 (1993), 515–563.