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Hofer’s symplectic energy and lagrangian
intersections in contact geometry

By
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Abstract

There is a version of Lagrangian intersection theory in contact ge-
ometry [2]. But it works well only with very restrictive contact manifolds.
For example, it does not work well with overtwisted contact 3-manifolds.
Here we show the following. If we have an estimate on Hamiltonian func-
tions of contact flow, then we can apply the theory to a much wider class
of contact manifolds.

1. Introduction

In this paper, we show a version of Lagrangian intersection theory in con-
tact geometry. Especially under an estimate of Hamiltonian functions of con-
tact flow, we can construct Floer homology. Then we can show a version of the
Arnold conjecture in a wide class of contact manifolds under the new condition.

Let M be a (2n + 1)-dimensional contact manifold, i.e., M has a 1-form γ
which satisfies the condition γ∧ (dγ)n �= 0. For simplicity, we consider the case
of a global 1-form γ. Then the hyperplane distribution, ξ, defined by the kernel
of γ is called a contact structure on M , and the 1-form γ is called a contact
form. For each contact form γ there is a unique vector field Y which satisfies
the conditions ι(Y )γ = 1 and ι(Y )dγ = 0. We call this vector field Y the Reeb
vector field of γ.

We may regard the distribution ξ as a rank 2 vector subbundle of TM ,
the tangent bundle of M . Then the restriction of dγ on ξ, dγ|ξ, defines a
non-degenerate 2-form on ξ. Hence we can define a complex structure J and a
Hermitian metric on ξ which has dγ|ξ as a fundamental 2-form.

Next we can associate a symplectic manifold with a contact manifold M ,
so called the symplectization of M . Consider a product R × M . Denote the
pull-back of γ by the projection from R × M to M , also by γ, and denote
the coordinate of R by θ. Then a 2-form d(eθγ) is an exact symplectic form
on R × M . And we define an almost complex structure J̃ on R × M by the
following.

J̃ |ξ := J, J̃
∂

∂θ
:= Y and J̃Y := − ∂

∂θ
,
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where the pull-backs by the projection are also denoted by the same notation.
Now we introduce some important objects in this paper. Let L1 be an

n-dimensional submanifold of M which satisfies the condition that the tangent
bundle of L1 is contained in the ξ, i.e., TL1 ⊂ ξ. Then we call such a sub-
manifold a Legandrian submanifold. It is easy to see that (n + 1)-dimensional
submanifold R ×L1 is a Lagrangian submanifold in the symplectization of M .
Let L0 be an (n + 1)-dimensional submanifold of M . If there is a Lagrangian
submanifold L̂0 of the R × M which satisfies the condition that L̂0 is diffeo-
morphic to L0 by the projection, then we call L0 a pre-Lagrangian submanifold
and call L̂0 a Lagrangian lift of L0. A shift of the L̂0 along the R-direction is
also a Lagrangian lift of L0. Then we define the following quantity and call it
the height of L̂0.

hγ(L̂0) :=] max
p∈cL0

θ(p) − min
p∈cL0

θ(p),

where θ is the coordinate of R of the symplectization R×M . Moreover we put
hγ(L0) to be the infimum of hγ(L̂0) over the all Lagrangian lifts and call it the
height of L0.

Here we fix a contact form γ of a contact structure ξ. For any function
H : M → R, there is a unique vector field XH which satisfies the conditions

ι(XH)γ = −H and ι(XH)dγ = dH − (ι(Y )dH)γ,

where Y is the Reeb vector field of γ. It is easy to see that the XH is a contact
vector field, i.e., the flow generated by XH preserves the contact structure ξ.
This map, from the space of functions to the space of contact vector fields, is
bijective. Moreover it holds for time-dependent functions and time-dependent
contact vector fields. Let XHs

be the contact vector field generated by a time-
dependent function Hs. We define a function eθHs : R × M → R by (θ, q) �→
eθHs(q). Then the Hamiltonian vector field generated by the eθHs on the
symplectization of M is

(ι(Y )dH)
∂

∂θ
+ XHs

,

where we regard XHs
as a vector field on the symplectization of M which is

constant along the R-direction.
Finally we introduce some quantities. Let γ be a contact form, Y the Reeb

vector field of γ and L1 a Legandrian submanifold. We put

σγ := inf

{∫
l

γ

∣∣∣∣∣ l is a contractible closed orbit of Y

}
.

If there is no contractible closed orbit, we put σγ := ∞.

σγ(L1) := inf

{∫
l

γ

∣∣∣∣∣ l is an orbit of Y which satisfies that l(0), l(1) ∈ L1

and l represents the zero element of π1(M, L1)

}
.
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If there is no such an orbit as above, we put σγ(L1) := ∞. We put

Cγ(L1) := min {σγ , σγ(L1)} .

For time-dependent function Hs on M , we put

‖Hs‖ :=
∫ 1

0

{
max
p∈M

Hs(p) − min
p∈M

Hs(p)
}

ds,

dγ := max
s∈[0,1],p∈M

|dHs(Y )| ,

where Y is the Reeb vector field of γ.

Theorem 1.1. Let M be a closed contact manifold with a contact form
γ. Fix this contact form γ. Let L0 be a closed pre-Lagrangian submanifold and
L1 a closed Legandrian submanifold which satisfy the conditions L0 ⊃ L1 and
the boundary homomorphism π2(M, L0) → π1(L0) is trivial.

Let ϕ1 be a time-1 map of the contact flow generated by a time-dependent
function Hs such that ϕ1(L1) intersects L0 transversaly. Assume that the fol-
lowing estimate holds.

‖Hs‖ · exp{2dγ + hγ(L0) + ε} < Cγ(L1).

Then we obtain the following estimate.



{
L0 ∩ ϕ1(L1)

} ≥ rank H∗(L1; Z2).

Notice that we do not need a C1-small estimate of Hs except for the Reeb
direction. Eliashberg, Hofer and Salamon constructed a version of Lagrangian
intersection theory in contact geometry [2]. Their theorems work well only with
restrictive contact manifolds. For example, overtwisted contact 3-manifolds are
not suitable, see [2] and [4]. Their theorem is the case of Cγ(L1) = ∞ in our
theorem.

Theorem 1.2 (Eliashberg, Hofer and Salamon). Let M be a closed con-
tact manifold with a contact form γ. Fix this contact form γ. Let L0 be
a closed pre-Lagrangian submanifold and L1 a closed Legandrian submani-
fold which satisfy the conditions L0 ⊃ L1 and the boundary homomorphism
π2(M, L0) → π1(L0) is trivial.

Let ϕ1 be a time-1 map of the contact flow generated by a time-dependent
function Hs such that ϕ1(L1) intersects L0 transversaly. Assume that there is
no contractible closed orbit of the Reeb flow Y and there is no orbit of Y which
satisfies that l(0), l(1) ∈ L1 and l represents the zero element of π1(M, L1).
Then we obtain the following estimate.



{
L0 ∩ ϕ1(L1)

} ≥ rank H∗(L1; Z2).

The key points of the proof of our theorem is to show the compactness of
the moduli space of pseudo-holomorphic disks with an estimate of the energy
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and to construct the homomorphism between Floer homologies of different
contactomorphisms by using the technique of Chekanov [1].

2. Path spaces and functionals

In this section, we introduce path spaces and functionals. From now on,
we denote the symplectization of a contact manifold M by P . Let H̃s : [0, 1]×
P → R be a time-dependent function on P and X̃ eHs

the Hamiltonian venter

field generated by the Hamiltonian function H̃s. Namely the vector field X̃ eHs

satisfies the condition that

dH̃s = ω(·, X̃ eHs
),

where ω is the symplectic form on P . Moreover, we put Gs : P → P to be the
time-s Hamiltonian flow generated by X̃ eHs

. Namely Gs satisfies the condition
that {

d
dsGs = X̃ eHs

◦ Gs,

G0 = id.

For a closed Lagrangian submanifold L̂0 of P and a closed Legandrian
submanifold L1 of M satisfying that L̂0 ∩ (R × L1) is not empty, we put

Ω′
s :=

{
l : [0, 1] → P

∣∣ l(0) ∈ R × L1, l(1) ∈ Gs(L̂0)
}
.

Moreover we denote a component which contains a path l(t) := Gts(x0), for
x0 ∈ L̂0∩(R×L1), by Ωs. Put Ω :=

⋃
s∈[0,1](s, Ωs) and, for a fixed path l0 ∈ Ω,

Ω̃ :=

{
lτ (t) : [0, 1] × [0, 1] → P

∣∣∣∣∣ lτ=0(t) = l0(t),
lτ (0) ∈ R × L1, and lτ (1) ∈ Gs(τ)(L̂0)

}
.

Next we introduce a functional F on Ω̃. For l̃ := lτ (t) ∈ Ω̃, we put

F ( l̃ ) :=
∫ 1

0

dτ

∫ 1

0

dt ω

(
∂

∂t
l,

∂

∂τ
l

)
−

∫ s(1)

s(0)

ds(τ ) H̃s(τ)(lτ (1)).

Lemma 2.1. The value of F depends only on the homotopy type of l
which fixes an end path. Namely, put l̃σ : [0, 1] �→ Ω̃; σ → l(σ; τ, t) which satis-
fies that l(σ; 1, t) = l(σ′; 1, t), for any σ, σ′ ∈ [0, 1], then F (l̃σ=0) = F (l̃σ=1).

Lemma 2.2. Let L0 be a closed pre-Lagrangian submanifold of M with
a Lagrangian lift L̂0 and L1 be a closed Legandrian submanifold of M . Suppose
that L1 is contained in L0, i.e., L1 ⊂ L0, and the boundary homomorphism
π2(M, L0) → π1(L0) is trivial. Then, for l̃ ∈ Ω̃ which satisfies that l̃τ=1 = l̃τ=0,
we obtain F ( l̃ ) = 0.
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From the above lemmas, we can regard the functional F on the Ω̃ as a
functional on the Ω, i.e., the value of F is determined by an end point lτ=1 and
the base point l0. Note that the restriction of F on Ωs coincides with the usual
Floer’s functional and denote F |Ωs

by Fs.

3. Floer homology

In this section, let J̃ be the almost complex structure on P as mentioned
in introduction. To put it more precisely, we have to consider perturbations of
almost complex structures. It is a little complicated. Hence we omit it here.
See [2].

We define a metric on Ωs by

(ξ1, ξ2) :=
∫ 1

0

ω(ξ1(t), J̃ξ2(t))dt,

where ξ1, ξ2 ∈ TlΩs. For this metric, the gradient vector field ∇Fs of the Fs is

∇Fs(l)(t) = J̃(l(t))l̇(t).

The set of critical points of Fs consists of the intersection points of R×L1 and
Gs(L̂0). Suppose that Gs(L̂0) intersects R×L1 transversaly. For critical points
x+, x− of Fs, we put the moduli space of descending gradient trajectories as

Ms(x−, x+)

:=

{
u : R → Ωs

∣∣∣∣∣ du(τ)
dτ = −∇Fs(u(τ )), u is not constant and

limτ→±∞ u(τ ) = x±

}
.

For a suitable perturbation of almost complex structures we can assume that
the regularity condition holds and this space is a manifold, see [2]. And R acts
on Ms(x−, x+) by translation, u(·) �→ u(·+ a), a ∈ R. We denote the quotient
by M̂s(x−, x+).

From now on, let L̂0 be the Lagrangian lift of a closed pre-Lagrangian sub-
manifold L0 with the condition min

p∈cL0
θ(p) = 0 and L1 be a closed Legandrian

submanifold with the condition L1 ⊂ L0. Moreover assume that the boundary
homomorphism π2(M, L0) → π1(L0) is trivial. From these assumptions we can
say the followings. First we may regard the functional F on Ω̃ as a functional
on Ω from Lemma 2.2. Second the bubbling off phenomena can’t occur at the
boundary points of pseudo-holomorphic disks. Because the symplectic form of
P is exact the bubbling off phenomena always can’t occur at the interior points
of pseudo-holomorphic disks.

Fix constants b− and C ′. Let p : R → [b−, b− + C ′) be a projection. For
a critical point x of Fs, we put F̃s(x) := p ◦Fs(x). Next we put the length of a
descending gradient trajectory u by

l(u) := −
∫ ∞

−∞
u∗dFs =

∫ ∞

−∞

(
du(τ )

dτ
,
du(τ )

dτ

)
dτ > 0.



�

�

�

�

�

�

�

�

598 Manabu Akaho

Then we define the moduli space of distinguished gradient trajectories by

Md
s(x−, x+) :=

{
u ∈ Ms(x−, x+)

∣∣ l(u) = F̃s(x−) − F̃s(x+)
}
.

If F̃s(x−) − F̃s(x+) is negative, then Md
s(x−, x+) is empty. And the quotient

of Md
s(x−, x+) by the action of R is denoted by M̂d

s(x−, x+).

Theorem 3.1. Assume that C ′ed+ε < Cγ(L1) for some positive number
ε, where d =

∫ s

0
max

p∈Gt(cL0)
|dθ(X

H̃t
)|dt. Then the images of all distinguished

gradient trajectories are contained in some compact set of P .

Corollary 3.2. There is no bubble in the distinguished gradient trajec-
tories.

Corollary 3.3. The set of isolated points of M̂d
s(x−, x+) is compact.

We show the proof of Theorem 3.1 in the last section. Owing to the
compactness, we can define Floer homology. Let Y (s) be the set of critical
points of Fs and C(s) be the vector space over Z2 spanned by elements of
Y (s). Then we define a boundary operator ∂s : C(s) → C(s) by

∂sx :=
∑

y∈Y (s)



{
isolated points of M̂d

s(x, y)
}
y,

where x ∈ Y (s).

Proposition 3.4. We have ∂2
s = 0.

Proof. We prove this proposition by the standard gluing argument in the
Floer theory. From the definition

∂2
sx :=

∑
z,y∈Y (s)



{
isolated points of cMd

s(x, y)
}


{
isolated points of cMd

s(y, z)
}
z.

Hence we show that the coefficient of each z is even. Take isolated points
u1 ∈ M̂d

s(x, y) and u2 ∈ M̂d
s(y, z), then there is a 1-dimensional component N

of M̂s(x, z) so that (u1, u2) is an end of the compactification of N . Because the
length is additive under the gluing procedure, it holds that l(u) = l(u1)+ l(u2)
= F̃s(x) − F̃s(z) for u ∈ N . Then N ⊂ M̂d

s(x, z). From Corollary 3.2 there
is no bubble in the sequence of points of N . And there are isolated points
u′

1 ∈ M̂s(x, y′) and u′
2 ∈ M̂s(y′, z) so that (u′

1, u
′
2) is the other end point of

the compactification of N . Finally we show that u′
1 and u′

2 are distinguished.
We put l(u′

1) = F̃s(x)− F̃s(y′) + nC ′ and l(u′
2) = F̃s(y′)− F̃s(z)− nC ′, n ∈ Z.

Since l(u′
1) > 0 and C ′ > F̃s(x) − F̃s(y′) > −C ′, n have to be non-negative.

Similarly, since l(u′
2) > 0 and C ′ > F̃s(y′) − F̃s(z) > −C ′, n have to be non-

positive. Then n is zero and l(u′
1) = F̃s(x)− F̃s(y′) and l(u′

2) = F̃s(y′)− F̃s(z).
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Namely, u′
1 and u′

2 are distinguished. Hence the coefficient of each z is even
and ∂2

s = 0.

We construct a homology group H(C(s), ∂s) from this chain complex
(C(s), ∂s). In the next section, we show the following. If we have a suitable
estimate of a Hamiltonian function, then there is an injective homomorphism
V s

1 : H(C(s), ∂s) → H(C(1), ∂1) for small s. Hence we have rank H(C(1), ∂1) ≥
rank H(C(s), ∂s). Of course, if R × L1 intersects G1(L̂0) transversaly, then


{
(R × L1) ∩ G1(L̂0)

} ≥ rank H(C(1), ∂1).

Proposition 3.5. For some small s, H(C(s), ∂s) is isomorphic to H∗(L1;
Z2) as a vector space.

Sketch of proof. There is a contact diffeomorphism from a small neigh-
borhood of L1 in M to a small neighborhood of the zero section of 1-jet of L1

such that the image of L0 is the 0-wall. Under the assumption that ϕs(L1)
intersects W transversaly, for small s there is a Morse function such that the
set of its critical points is isomorphic to the set of intersection points of ϕs(L1)
and W . And take a suitable metric on L1, the set of gradient trajectories of
the Morse function between critical points x− and x+ is isomorphic to the set
of gradient trajectories of the Floer’s functional between the intersection points
x− and x+. Moreover for some small s the gradient trajectories of the Floer’s
functional are distinguished. Then the Morse complex is isomorphic to the
complex (C(s), ∂s).

Hence if we have a suitable estimate of Hamiltonian function, then we
obtain 


{
(R × L1) ∩ G1(L̂0)

} ≥ rankH∗(L1; Z2).

4. Continuations and homotopy of continuations

In this section, we describe the technique of Chekanov [1]. We put

a+ :=
∫ 1

0

max
p ∈ Gs(cL0)

H̃s(p)ds and a− :=
∫ 1

0

min
p ∈ Gs(cL0)

H̃s(p)ds,

and we may think that a− ≤ 0 ≤ a+. From now we assume that a+ −a− < C ′.
At the beginning we can take a generic base point of Ω̃ and ε > 0 such that
Fs(y) > 0 for any s < ε and any y ∈ Y (s). Moreover we retake the generic
base point so that F̃1(y) �= a− for any y ∈ Y (1). Since the number of elements
of Y (1) is finite we can choose the number b− so that F̃1(y) /∈ [b−, a−] for any
y ∈ Y (1). Then we take an interval (c−, c+) ⊂ (b−, b+), where b+ = b− + C ′,
such that a− < c−, a+ < c+ and F̃1(y) ∈ [c−, c+] for any y ∈ Y (1). Moreover
we take c− enough close to a− and c+ enough close to b+ and retake ε > 0
small such that F̃s(x) ∈ [c− − a−, c+ − a+] for any s < ε and x ∈ Y (s).

We introduce a continuation map Q
s−
s+ ∈ Hom(C(s−), C(s+)). Let ρ : R →

[0, 1] be a function which satisfies that there are some constants K > 0 such that
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ρ(τ ) = s− for τ < −K and ρ(τ ) = s+ for τ > K. We call such a function an
(s−, s+)-continuation function. Moreover, if ρ is a monotone function, we call
it a monotone (s−, s+)-continuation function. For critical points x− ∈ Y (s−)
and x+ ∈ Y (s+), we put the moduli spaces of continuation trajectories as

Mρ(x−, x+) :=
{

u : R → Ω
∣∣∣ du(τ )

dτ
= −∇Fρ(τ)(u(τ )) and lim

τ→±∞ u(τ ) = x±
}
.

For a suitable perturbation of almost complex structures we can assume that
the regularity condition holds and this space is manifold.

For a continuation trajectory u, we put the length l(u) by

l(u) := −
∫ ∞

−∞
u∗dF

and the symplectic area A(u) by

A(u) := −
∫

R×[0,1]

u∗ω =
∫ ∞

−∞

(
du(τ )

dτ
,
du(τ )

dτ

)
dτ ≥ 0.

And we put

h(u) :=
∫ ∞

−∞

dρ(τ )
dτ

H̃ρ(τ)(u(τ, 1))dτ,

then A(u) = l(u) + h(u). We define the moduli space of distinguished continu-
ation trajectories by

Md
ρ(x−, x+) :=

{
u ∈ Mρ(x−, x+)

∣∣∣ l(u) = F̃s−(x−) − F̃s+(x+)
}
.

Lemma 4.1. Let s− < ε, s+ = 1 or s− = 1, s+ < ε. And let ρ be a
monotone (s−, s+)-continuation function, then we obtain

A(u) ≤ c+ − c−(< C ′),

where u ∈ Md
ρ(x−, x+).

Proof. First let s− < ε and s+ = 1. Notice that ρ is monotone. We
obtain

h(u) ≤
∫ ∞

−∞

dρ(τ )
dτ

max
p∈Gρ(τ)(cL0)

H̃ρ(τ)(p)dτ

=
∫ 1

s

max
p∈Gs(cL0)

H̃s(p)ds ≤ a+,

where u ∈ Md
ρ(x−, x+). Since l(u) = F̃s−(x−)− F̃s+(x+) ≤ (c+ − a+)− c−, we

obtain A(u) = l(u) + h(u) ≤ c+ − c−.
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Second let s− = 1 and s+ < ε. Notice that ρ is monotone. We obtain

h(u) ≤
∫ ∞

−∞

dρ(τ )
dτ

min
p∈Gρ(τ)(cL0)

H̃ρ(τ)(p)dτ

=
∫ s

1

min
p∈Gs(cL0)

H̃s(p)ds ≤ −a−,

where u ∈ Md
ρ(x−, x+). Since l(u) = F̃s−(x−)− F̃s+(x+) ≤ c+ − (c−− a−), we

obtain A(u) = l(u) + h(u) ≤ c+ − c−.

Theorem 4.2. Let s−, s+ and ρ be the same as Lemma 4.1. Assume
that C ′ed+ε < Cγ(L1) for some positive number ε, where d =

∫ 1

0
max

p∈Gt(cL0)
|dθ(X

H̃t
)|dt. Then the images of all continuation trajectories are contained in

some compact set of P .

Corollary 4.3. There is no bubble in the continuation trajectories.

The proofs of them is the same ones as Theorem 3.1 and Corollary 3.2.
For a monotone (s−, s+)-continuation function ρ, we define a continuation

map Q
s+
s− : C(s−) → C(s+) by

Qs+
s−(x) :=

∑
y∈Y (s+)



{
isolated points of Md

ρ(x, y)
}
y,

where x ∈ Y (s−).

Proposition 4.4. Let s− < ε, s+ = 1 or s− = 1, s+ < ε. And let ρ be
a monotone (s−, s+)-continuation function, then we obtain

Qs−
s+

◦ ∂s− = ∂s+ ◦ Qs−
s+

.

Proof. Let x ∈ Y (s−) and z ∈ Y (s+). Take a pair of isolated points
(u1, u2) where u1 ∈ M̂d

s−(x, y), u2 ∈ Md
ρ(y, z), y ∈ Y (s−) or u1 ∈ Md

ρ(x, y),

u2 ∈ M̂d
s+

(y, z), y ∈ Y (s+). Then there is a 1-dimensional component N of
Mρ(x, z) so that (u1, u2) is an end of the compactification of N . Because the
length is additive under the gluing procedure, it holds that l(u) = l(u1) +
l(u2) = F̃s−(x) − F̃s+(z) for u ∈ N . Then N ⊂ Md

ρ(x, z). From Corollary
4.3 there is no bubble in the sequence of points of N . And there is a pair of
isolated points (u′

1, u
′
2) where u′

1 ∈ M̂s−(x, y), u′
2 ∈ Mρ(y, z), y ∈ Y (s−) or

u′
1 ∈ Mρ(x, y), u′

2 ∈ M̂s+(y, z), y ∈ Y (s+) so that (u′
1, u

′
2) is the other end

point of the compactification of N . Finally we need to show that u′
1 and u′

2 are
distinguished.

Lemma 4.5. If u ∈ Mρ(x−, x+), then we have l(u) ≥ F̃s−(x−) −
F̃s+(x+).
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Proof. First let s− < ε and s+ = 1. Then we have

l(u) = A(u) − h(u) ≥ −a+

> (c+ − a+) − c− − C ′

≥ F̃s−(x−) − F̃s+(x+) − C ′.

Second let s− = 1 and s+ < ε. Then we have

l(u) = A(u) − h(u) ≥ a−
> c+ − (c− − a−) − C ′

≥ F̃s−(x−) − F̃s+(x+) − C ′.

In both cases, we obtain l(u) > F̃s−(x−) − F̃s+(x+) − C ′. Moreover, l(u) =
F̃s−(x−)− F̃s+(x+)+nC ′, n ∈ Z. Hence we obtain l(u) = F̃s−(x−)− F̃s+(x+).

Let (u1, u2) ∈ M̂s−(x, y) × Mρ(y, z), y ∈ Y (s−), be an end point of the
compactification of a 1-dimensional component N ⊂ Md

ρ(x, z). Put l(u1) =
F̃s−(x) − F̃s−(y) + nC ′ and l(u2) = F̃s−(y) − F̃s+(z) − nC ′. Because l(u1) =
A(u1) ≥ 0, we obtain n ≥ 0. From Lemma 4.5, l(u2) ≥ F̃s−(y)− F̃s+(z), we ob-
tain n ≤ 0. Hence n = 0 and u1, u2 are distinguished. Similarly, let (u1, u2) ∈
Mρ(x, y)×M̂s+(y, z), y ∈ Y (s+), be an end point of the compactification of a
1-dimensional component N ⊂ Md

ρ(x, z). Put l(u1) = F̃s−(x) − F̃s+(y) + nC ′

and l(u2) = F̃s+(y) − F̃s+(z) − nC ′. Because l(u2) = A(u2) ≥ 0, we obtain
n ≤ 0. From Lemma 4.5, l(u1) ≥ F̃s+(x) − F̃s+(y), we obtain n ≥ 0. Hence
n = 0 and u1, u2 are distinguished. Then we obtain

(Qs−
s+

◦ ∂s− − ∂s+ ◦ Qs−
s+

)x = 0,

where x ∈ Y (s−).

From Qs
1 and Q1

s, s < ε, we construct homomorphisms

V s
1 : H(C(s), ∂s) → H(C(1), ∂1) and V 1

s : H(C(1), ∂1) → H(C(s), ∂s).

Proposition 4.6. We have V 1
s ◦ V s

1 = id.

Proof. Consider a family of (s, s)-continuation functions πω, ω ∈ [0,∞),
which satisfies the following conditions.

• π0(τ ) ≡ s.
• ω �→ πω(0) is monotone and surjective onto [s, 1].
• dπω(τ )/dτ ≥ 0, for τ < 0, and dπω(τ )/dτ ≤ 0, for τ > 0.
• For large ω,

πω(τ ) =
{

ρ−(τ + ω) for τ ≤ 0,
ρ+(τ − ω) for τ ≥ 0,
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where ρ+ and ρ− are monotone (1, s)-continuation function and monotone
(s, 1)-continuation function which we use to construct Q1

s and Qs
1 respectively.

For critical points x− and x+ ∈ Y (s), we put

Mπ(x−, x+) :=
{
(ω, u)

∣∣ u ∈ Mπω
(x−, x+)

}
.

For a suitable perturbation of almost complex structures we can assume that
the regularity condition holds and this space is manifold. Moreover we put

Md
π(x−, x+) :=

{
(ω, u)

∣∣ u ∈ Md
πω

(x−, x+)
}
.

Lemma 4.7. Let u ∈ Md
π(x−, x+), then we obtain

A(u) ≤ c+ − c−(< C ′).

Proof. For u ∈ Md
πω

(x−, x+),

h(u) ≤
∫ 0

−∞

dπω(τ )
dτ

max
p∈Gπω(τ)(cL0)

H̃πω(τ)(p)dτ

+
∫ ∞

0

dπω(τ )
dτ

min
p∈Gπω(τ)(cL0)

H̃πω(τ)(p)dτ

=
∫ 0

s

max
p∈Gs(cL0)

H̃s(p)ds +
∫ s

0

min
p∈Gs(cL0)

H̃s(p)ds

≤ a+ − a−.

Since l(u) = F̃s(x−) − F̃s(x+) ≤ (c+ − a+) − (c− − a−), we obtain A(u) =
l(u) + h(u) ≤ c+ − c−.

From Lemma 4.7 the set of isolated points of Md
π(x, z) is compact and there

is no bubble in Md
π(x, z) in the same way of Corollary 4.3. Hence the number

of 1-dimensional components of Md
π(x, z) is finite. And there are four types of

the end points of the compactification of a 1-dimensional component as follows.
1. a pair (u1, u2) of isolated points u1 ∈ Mρ−(x, y) and u2 ∈ Mρ+(y, z),

for y ∈ Y (1).
2. an isolated point u ∈ Mπ0(x, z).
3. a pair (u1, u2) of isolated points u1 ∈ M̂s(x, y) and u2 ∈ Mπω

(y, z), for
y ∈ Y (s).

4. a pair (u1, u2) of isolated points u1 ∈ Mπω
(x, y) and u2 ∈ M̂s(y, z), for

y ∈ Y (s).
We put

hs(x) :=
∑

y∈Y (s)



{
isolated points of Md

π(x, y)
}
y,

where x ∈ Y (s). If all the end points as mentioned are distinguished, we obtain

Q1
s ◦ Qs

1 + id + hs ◦ ∂s + ∂s ◦ hs = 0.
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Then we can say V 1
s ◦V s

1 = id. First the end points of type 1 are distinguished
from Lemma 4.5. Second the end points of type 2 are constant maps because
if they are not constant then they have non-zero dimension by the R-action.
And constant maps are obviously distinguished. Finally we show that the end
points of type 3 and 4 are distinguished.

Lemma 4.8. If u ∈ Mπω
(x−, x+), then we obtain l(u) ≥ F̃s(x−) −

F̃s(x+).

Proof. We have h(u) ≤ a+ − a− in the same way as Lemma 4.7. And

l(u) = A(u) − l(u) ≥ a+ − a−
> (c+ − a+) − (c− − a−) − C ′

≥ F̃s(x−) − F̃s(x+) − C ′.

Moreover l(u) = F̃s(x−) − F̃s(x+) + nC ′, n ∈ Z. Hence l(u) ≥ F̃s(x−) −
F̃s(x+).

In the case of type 3, put l(u1) = F̃s(x) − F̃s(y) + nC ′ and l(u2) = F̃s(y) −
F̃s(z) − nC ′. Since l(u1) = A(u1) ≥ 0, we obtain n ≥ 0. From Lemma
4.8, l(u2) ≥ F̃s(y) − F̃s(z), we obtain n ≤ 0. Hence n = 0 and u1, u2 are
distinguished. Similarly, in the case of type 4, put l(u1) = F̃s(x)− F̃s(y) + nC ′

and l(u2) = F̃s(y) − F̃s(z) − nC ′. Since l(u2) = A(u2) ≥ 0, we obtain n ≤ 0.
From Lemma 4.8, l(u1) ≥ F̃s(x) − F̃s(y), we obtain n ≥ 0. Hence n = 0 and
u1, u2 are distinguished.

Then we obtain V 1
s ◦ V s

1 = id.

5. Proof of main theorem

We summarize our story. Let M be a closed contact manifold with a
contact form γ. Let L0 be a closed pre-Lagrangian submanifold of M and L1 a
closed Legandrian submanifold of M which satisfy the conditions L0 ⊃ L1 and
the boundary homomorphism π2(M, L0) → π1(L0) is trivial. We take L̂0 the
Lagrangian lift of L0 with the condition min

p∈cL0
θ(p) = 0.

We denote the symplectization of M by P . Let H̃s be a time-dependent
Hamiltonian function on P , and Gs : P → P the time-s flow generated by H̃s.
We put

a+ :=
∫ 1

0

max
p∈Gs(cL0)

H̃s(p)ds and a− :=
∫ 1

0

min
p∈Gs(cL0)

H̃s(p)ds.

Suppose that C ′ed+ε < Cγ(L1), where d =
∫ 1

0
max

p∈Gt(cL0)
|dθ(X

H̃t
)|dt, then

we can define Floer homology. Moreover if we have a+ − a− < C ′, then there
are homomorphisms V s

1 : H(C(s), ∂s) → H(C(1), ∂1) and V 1
s : H(C(1), ∂1) →
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H(C(s), ∂s), for small s, such that V 1
s ◦ V s

1 = id. Hence if G1(L̂0) intersects
R × L1 transversaly, we obtain



{
G1(L̂0) ∩ (R × L1)

} ≥ rank H(C(1), ∂1)
≥ rank H(C(s), ∂s).

And, for small s, H(C(s), ∂s) is isomorphic to H∗(L1; Z2) as a vector space.
Hence we obtain



{
G1(L̂0) ∩ (R × L1)

} ≥ rank H(L1; Z2).

In the next step, let Hs be a time-dependent function on M and XHs
the

contact vector field generated by Hs. Let eθHs be a Hamiltonian function on P ,
then the Hamiltonian vector field generated by eθHs is (dHs(Y ), XHs

) on P =
R ×M , where Y is the Reeb vector field. We put d = maxs∈[0,1],p∈M |dHs(Y )|
and moreover

a+ :=
∫ 1

0

max
p∈M

Hs(p)ds · exp{d + h(L̂0)},

and

a− :=
∫ 1

0

min
p∈M

Hs(p)ds · exp{d + h(L̂0)}.

Finally, if we have C ′ed+ε < Cγ(L1) and a+ − a− < C ′, then Theorem 1.1
holds.

6. Compactness

For simplicity we fix the almost complex structure J̃ on P defined in the
introduction. To put it more precisely, we have to consider perturbations of
almost complex structures. It is a little complicated. Hence we omit it here.
See [2].

We introduce notation. Put Ka,b := [a, b] × M ⊂ P and Mθ := {θ} × M .
If we denote d =

∫ s

0
max

p∈Gt(cL0)
|dθ(X

H̃t
)|dt, then we may have Gs(L̂0) ⊂

K−d,h(L0)+d+ε.

Lemma 6.1. For any u ∈ Ms(x−, x+), the image of u is contained in
K−∞,h(L0)+d+ε.

Proof. Assume that the image of u is not contained in K−∞,h(L0)+d+ε,
then we have sup(θ ◦ u) > h(L0) + d + ε. Because u converges to x± at infinity
and θ(x±) ≤ h(L0) + d + ε, there are some points of the image of u where
θ ◦ u takes the maximum. Let p0 be one of these points. From the pseudo-
convexity of Mθ and maximum principle, p0 is not an interior point of the
image of u. Assume that p0 is a boundary point. Let v be a tangent vector
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along the boundary at p0. From p0 ∈ Kh(L0)+d+ε,∞, we have p0 ∈ R × L1 and
v is tangent to L1. Then v ∈ ξp0 . Because J̃v ∈ J̃ξp0 = ξp0 and u is pseudo-
holomorphic, the image of u is tangent to Mθ(p0) at p0. But this contradicts
the pseudo-convexity of Mθ and strong maximum principle.

We denote the pull-back of γ by the projection π : R × M → M , also by
γ. Let ω := dγ, then we have ω|Tp(R×M) = e−θ(dπ)∗(ω|TpMθ

), where p ∈ Mθ.

Lemma 6.2. Put Ci := u−1(K−∞,−i) for u ∈ Ms(x−, x+). If i ≥ d,
then we have

0 ≤
∫

Ci

u∗ω = ei

∫
Ci

u∗ω.

Hence, if
∫

R×[0,1]
u∗ω < C ′, then we obtain 0 ≤ ∫

Ci u∗ω < C ′ei.

Proof. From i ≥ d, ∂Ci = u−1(M−i) ∪ u−1((R × L1) ∩ K−∞,−i). Notice
that L1 is a Legandrian submanifold. Hence∫

Ci

u∗ω =
∫

∂Ci

u∗γ =
∫

u−1(M−i)

u∗γ = ei

∫
u−1(M−i)

u∗(eθγ) = ei

∫
Ci

u∗ω.

Corollary 6.3. If i ≥ d, then we have∫
Ci

u∗ω ≤ ed−i

∫
Cd

u∗ω.

Hence, if
∫

R×[0,1]
u∗ω < C ′, then we obtain

∫
Ci u∗ω < C ′ed−i.

Proof. Since u is pseudo-holomorphic,
∫

Ci+1 u∗ω ≤ ∫
Ci u∗ω. Then from

Lemma 6.2

ei+1

∫
Ci+1

u∗ω =
∫

Ci+1
u∗ω ≤

∫
Ci

u∗ω = ei

∫
Ci

u∗ω.

Hence we obtain ∫
Ci+1

u∗ω ≤ e−1

∫
Ci

u∗ω

and repeat this inequality.

For a map u : R× [0, 1] → P , if a domain G of R×M satisfies the following
conditions, we call G a special domain for u of level k and width l.

• G is either a disk or an annulus.
• u|G intersects M−k ∪ M−k−l transversaly.
• u(∂G) ⊂ M−k ∪M−k−l ∪ (R×L1) and u(∂G∩ ∂(R× [0, 1])) ⊂ R×L1.
• u(∂G) ∩ M−k �= ∅ and u(∂G) ∩ M−k−l �= ∅.
• u(G) ⊂ K−∞,−d.
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Lemma 6.4. For u ∈ Ms(x−, x+), Ci is a disjoint union of disks.

Proof. It follows from the pseudo-convexity of Mθ and maximum princi-
ple.

Again note that, for simplicity we fix the almost complex structure J̃ on
P defined in the introduction. To put it more precisely, we have to consider
perturbations of almost complex structures. It is a little complicated. Hence
we omit it here. See [2].

Lemma 6.5. Let {un} ⊂ Ms(x−, x+) be a sequence of pseudo-holomor-
phic maps. Assume that the union of the images of un

′s is not contained in
any compact subset of P . Then there are a subsequence {unk

} and a sequence
of domains {Gk}, Gk ⊂ R × [0, 1], which satisfy the following.

• Gk is a special domain for unk
.

• Gk is of width l and level j for d ≤ j and unk
(Gk) ⊂ K−j−2l,−j.

• If
∫

R×[0,1]
u∗

nω < C ′, then we have
∫

Gk
u∗

nk
ω → 0 as k → ∞.

Proof. From Lemma 6.1, the union of the images of un
′s is bounded above

along the R-direction of P . Hence we may assume that there is a subsequence
{unk

} such that unk
(R × [0, 1]) ∩ M−(k+1)l,−d �= ∅. For d ≤ i ≤ d + kl we put

Bi
k := u−1

nk
(K−∞,−i) \ u−1

nk
(K−∞,−i−l).

Let B be a connected component of Bi
k such that u−1

nk
(M−i) ∩ B �= ∅ and

u−1
nk

(M−i−l)∩B �= ∅. From Lemma 6.4, B is a disk with some holes. We patch
some disks back to these holes so that B turns to either a disk or an annulus.
We denote this disk or annulus by B̂. Especially we can do this procedure
so that ∂B̂ ∩ u−1

nk
(M−i) �= ∅ and ∂B̂ ∩ u−1

nk
(M−i−l) �= ∅. Then B̂ is a special

domain for unk
of width l and level i. In this way we can find special domains.

For each k, we can find special domains B̂j
k for unk

of width l and level j,
j = d, d + l, . . . , d + kl, such that Int B̂i

k∩ Int B̂j
k = ∅ for i �= j. From⋃

j B̂j
k ⊂ u−1

nk
(K−∞,−d),∑

j

∫
bBj

k

u∗
nk

ω ≤
∫

Cd
k

u∗
nk

ω = ed

∫
Cd

k

u∗
nk

ω,

where Cd
k = u−1

nk
(K−∞,−d). Hence, if

∫
R×[0,1]

u∗
nω < C ′, we have

∑
j

∫
bBj

k

u∗
nk

ω < C ′ed.

Because each term of the sum is positive, there is at least one special domain
B̂j

k such that
∫

bBj
k

u∗
nk

ω < C ′ed/k.
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We put a special domain Gk for unk
such that

∫
Gk

u∗
nk

ω is the minimum
over all the special domains of width l and level d, d + l, . . . , d + kl. From the
construction, we have Gk ∩M−j+l = ∅, where j is the level of Gk. Moreover we
have Gk ∩M−j−2l = ∅, because if Gk ∩M−j−2l �= ∅ we can find another special
domain G′

k such that
∫

G′
k
u∗

nk
ω <

∫
Gk

u∗
nk

ω. This contradicts the minimum of
Gk.

Fix a width l. We put ũnk
to be the (j − d)-shift, along the R-direction

of P , of a pseudo-holomorphic map unk
: Gk → P , where j is the level of Gk.

Then we have ∫
Gk

ũ∗
nk

ω = ej−d

∫
Gk

u∗
nk

ω.

From the inequality
∫

u−1
nk

(K−∞,−j)
u∗

nk
ω ≤ ed−j

∫
u−1

nk
(K−∞,−d)

u∗
nk

ω, in Corollary
6.3, we obtain∫

Gk

ũ∗
nk

ω ≤ ej−d

∫
u−1

nk
(K−∞,−j)

u∗
nk

ω ≤
∫

u−1
nk

(K−∞,−d)

u∗
nk

ω.

Hence, if
∫

R×[0,1]
u∗

nk
ω < C ′, then we have∫

Gk

ũ∗
nk

ω < C ′.

Consider the pseudo-holomorphic maps ũnk
: Gk → (−d − 2l,−d] × M ,

and apply the Gromov’s compactness theorem. See [2].

Proposition 6.6. There is a subsequence {ũnk
} which converges uni-

formly on compact sets to a non-constant pseudo-holomorphic map ũ∞. The
boundary of this image is contained in M−d∪M−d−l∪(R×L1) and smoothness
of the boundary holds at points in R × L1.

Notice that, if
∫

R×[0,1]
u∗

nk
ω < C ′, we have

∫
Gk

ũ∗
nk

ω → 0 as k → ∞.
Hence we obtain

∫
B

ũ∗
∞ω = 0, where B is either a disk or an annulus.

Lemma 6.7. Let ũ∞ : IntB → (−d − 2l,−d] × M be a non-constant
pseudo-holomorphic map, where B is either a disk or an annulus, and the
boundary of this image be contained in M−d ∪M−d−l ∪ (R×L1). Assume that∫

B
ũ∗
∞ω = 0. Then there is either a closed orbit of the Reeb vector field or an

orbit of the Reeb vector field with the end points in L1, we denote each by S,
such that

ũ∞(IntB) = (−d − l,−d) × S ⊂ (−d − l,−d) × M.

And we obtain

e−d(1 − e−l)
∫

S

γ =
∫

B

ũ∗
∞ω.
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Proof. From ω = dγ, ω = eθ(dθ∧γ +dγ) and ũ∞ is pseudo-holomorphic,
this lemma holds.

If
∫

R×[0,1]
u∗

nω < C ′, then we have
∫

Gk
ũ∗

nω < C ′ as mentioned after
Lemma 6.5. Hence

∫
B

ũ∗
∞ω < C ′ and we obtain∫

S

γ < ed(1 − e−l)−1C ′.

If we have C ′ed+ε < Cγ(L1) for ε > 0, all the images of un have to be contained
in a compact set of P from Lemma 6.5, Proposition 6.6 and Lemma 6.7.

Thus we finish a proof of Theorem 3.1.
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