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On commutators of foliation preserving
Lipschitz homeomorphisms
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Kazuhiko Fukui∗ and Hideki Imanishi

Abstract

We consider the group of foliation preserving Lipschitz homeomor-
phisms of a Lipschitz foliated manifold. First we show that the identity
component of the group of leaf preserving Lipschitz homeomorphisms of
a Lipschitz foliated manifold is perfect. Next using this result we com-
pute the first homology of the group of foliation preserving Lipschitz
homeomorphisms of a codimension one C2-foliated manifold. Then we
have results which are different from those of topological and differen-
tiable cases.

1. Introduction

Let M be an m-dimensional connected Lipschitz manifold. A continuous
map f : M → M is called a Lipschitz map if for any point p in M , there
exist a local Lipschitz chart (Uα, ϕα) of M around p and a local Lipschitz chart
(Uβ , ϕβ) of M around f(p) such that f(Uα) ⊂ Uβ and ϕβ ◦ f ◦ϕ−1

α : ϕα(Uα) →
ϕβ(Uβ) is Lipschitz. We denote by CLIP (M,M) the set of all Lipschitz map-
pings from M to M . A homeomorphism f : M → M is called a Lipschitz
homeomorphism if both f and f−1 are Lipschitz. We denote by CLIP (M,M)
the space of all Lipschitz maps from M to M with the compact open Lipschitz
topology (see Section 2) and by HLIP (M) the subspace of CLIP (M,M) which
consists of Lipschitz homeomorphisms of M with compact support.

In this note we treat certain subgroups of HLIP (M). Let Rm = {(x1, . . . ,
xm) | xi ∈ R} be an m-dimensional Euclidean space and F0 the p-dimensional
foliation of Rm whose leaves are defined by xp+1 = constant , . . . , xm = constant
(1 ≤ p ≤ m). A p-dimensional Lipschitz foliation F of M is defined to be a
maximal set of local Lipschitz charts : {(Uα, ϕα), Uα is open in M , ϕα : Uα →
ϕα(Uα)(⊂ Rm), α ∈ A} of M such that ϕα ◦ϕ−1

β : ϕβ(Uα∩Uβ) → ϕα(Uα∩Uβ)
preserves the leaves of foliations which are restrictions of F0 to ϕβ(Uα ∩ Uβ)
and ϕα(Uα ∩ Uβ).
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A Lipschitz homeomorphism f : M → M is called a foliation preserving
Lipschitz homeomorphism (resp. a leaf preserving Lipschitz homeomorphism) if
for each point x of M , the leaf through x is mapped into the leaf through f(x)
(resp. x), that is, f(Lx) = Lf(x) (resp. f(Lx) = Lx), where Lx is the leaf of F
which contains x. Let HLIP (M,F) (resp. HLIP,L(M,F)) denote the group of
foliation (resp. leaf) preserving homeomorphisms of (M,F) which are isotopic
to the identity by foliation (resp. leaf) preserving Lipschitz homeomorphisms
fixed outside a compact set.

In Section 2, we consider the homologies of HLIP,L(M,F), that is, the
homology groups of the group HLIP,L(M,F) and show that the homologies of
HLIP,L(Rm,F0) vanish in all dimension > 0. This is an analogy to Theorem
2.1 of [F-I] which is a generalization of a result of Mather [M].

In Section 3, first we show that any f ∈ HLIP,L(M,F) can be expressed
as f = fk ◦ fk−1 ◦ · · · ◦ f1, where each fi is a leaf preserving Lipschitz home-
omorphism with support in a small ball. Next we show using this result and
the result in Section 2 that HLIP,L(M,F) is perfect for a compact Lipschitz
foliated manifold (M,F). Furthermore by an argument similar to that in [A-F]
we can show that HLIP,L(M,F) is locally contractible.

In Section 4, we compute the first homology of HLIP (M,F) for a codi-
mension one C2-foliated manifold (M,F). For the case that F has no dense
components, we have the same result as that in topological case (Theorem 4.4),
which is different from that in differentiable case. For the case that F has a
dense component, we have a phenomenon different from that in topological case
(Theorem 4.7).

The authors would like to thank the referee for pointing out a gap in the
proof of Theorem 4.4 and for helpful suggestions. Example 4.5 is due to the
referee.

2.Compact open Lipschitz topology and homologies of HLIP,L(Rm,F0)

We recall the definitions of a Lipschitz manifold, a Lipschitz map and
the compact open Lipschitz topology on HLIP (M) (cf. [A-F]). Let M be an
m-dimensional topological manifold. By a Lipschitz atlas on M we mean a
maximal family S = {(Uα, ϕα)}α∈A of pairs (Uα, ϕα) of open sets Uα in M
and homeomorphisms ϕα of Uα to ϕα(Uα) in Rm satisfying the following : (i)
{Uα}α∈A covers M and (ii) If Uα ∩ Uβ �= ∅, the transition function ϕβ ◦ ϕ−1

α :
ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ) from an open set of Rm to an open set of Rm is
Lipschitz. We call (M, S) a Lipschitz manifold and simply write M instead of
(M, S).

Let M, N be two Lipschitz manifolds. A continuous map f : M → N
is called a Lipschitz map if for any point p in M , there exist a local chart
(Uα, ϕα) of M around p and a local chart (Vλ, ψλ) of N around f(p) such that
f(Uα) ⊂ Vλ and ψλ ◦ f ◦ ϕ−1

α : ϕα(Uα) → ψλ(Vλ) is Lipschitz. We denote by
CLIP (M,N) the set of all Lipschitz mappings from M to N .

Let {(Uα, ϕα)}α∈A and {(Vλ, ψλ)}λ∈Λ be Lipschitz atlases on M and N re-
spectively. Let Kα be a compact subset of Uα for each α ∈ A such that the fam-
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ily {intKα}α∈A covers M . Let f ∈ CLIP (M,N). We take a local chart (Vλ, ψλ)
on N such that f(Kα) ⊂ Vλ. For εα > 0, we let NLIP (f, (Uα, ϕα), (Vλ, ψλ), εα,
Kα) be the set of all g ∈ CLIP (M,N) such that g(Kα) ⊂ Vλ and lip(f−g) < εα,
where lip(f − g) < εα means that

||ψλ ◦ f ◦ ϕ−1
α (x) − ψλ ◦ g ◦ ϕ−1

α (x)|| < εα

and

||(ψλ◦f◦ϕ−1
α (x)−ψλ◦g◦ϕ−1

α (x))−(ψλ◦f◦ϕ−1
α (y)−ψλ◦g◦ϕ−1

α (y))|| < εα||x−y||

for distinct x, y ∈ Kα. The sets NLIP (f, (Uα, ϕα), (Vλ, ψλ), εα, Kα) form a
subbasis for a topology on CLIP (M,N). We call this topology the compact
open Lipschitz topology.

A homeomorphism f : M → M is called a Lipschitz homeomorphism if
f and f−1 are Lipschitz. We denote by HLIP (M) the group of all Lipschitz
homeomorphisms of M with compact support (as a subspace of CLIP (M,M)
endowed with the compact open Lipschitz topology).

Let Rm = {(x1, . . . , xm) | xi ∈ R} be an m-dimensional Euclidean space
and F0 the p-dimensional foliation of Rm whose leaves are defined by xp+1 =
constant , . . . , xm = constant (1 ≤ p ≤ m). A p-dimensional Lipschitz foliation
F of a Lipschitz manifold M is defined to be a maximal set of Lipschitz charts
{(Uα, ϕα)}α∈A of M such that ϕα◦ϕ−1

β : ϕβ(Uα∩Uβ) → ϕα(Uα∩Uβ) preserves
the leaves of foliations which are restrictions of F0 to ϕβ(Uα∩Uβ) and ϕα(Uα∩
Uβ).

Let (M,F) be a Lipschitz foliated manifold. We denote by HLIP (M,F)
(resp. HLIP,L(M,F)) the identity component of the subgroup of HLIP (M)
which consists of foliation (resp. leaf) preserving Lipschitz homeomorphisms of
(M,F) (as the subspace of HLIP (M)).

By an argument similar to those in the proofs of Theorem 2.1 of [F-I] and
Theorem 2.2 of [A-F], we have the following:

Theorem 2.1. The homology groups Hr(HLIP,L(Rm,F0)) = 0 for
r > 0.

Corollary 2.2. HLIP,L(Rm,F0) is a perfect group.

Proof. This is an immediate consequence of Theorem 2.1 because that
H1(G) ∼= G/[G,G] for any group G.

3. Commutators of leaf preserving Lipschitz homeomorphisms

In this section we consider commutators of HLIP,L(M,F). Let (M,F) be a
compact Lipschitz foliated manifold. We take a local foliated chart (Uα, ϕα) on
M , that is, for coordinate (x, y) = (x1, . . . , xp, y1, . . . , ym−p), the set {(x, y) ∈
Uα | y1 = c1, . . . , ym−p = cm−p} gives a connected component of a leaf of F
and identify Uα with an open subset of Rm via ϕα, and take relatively compact
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open subsets W1, W2 of Uα such that W̄2 ⊂W1. Then the metric on W̄1 may be
considered as the Euclidean metric. Furthermore we take a Lipschitz function
µα : Uα → [0, 1] such that µα = 1 on W̄2 and µα = 0 outside of W̄1. For
any f ∈ NLIP (1M , (Uα, ϕα), (Uα, ϕα), ε, W̄1)∩HLIP,L(M,F), f has the form
f(x, y) = (f1(x, y), y). Then we define a map fα : M →M by

fα(x, y) =
{

(x, y) + (µα(x, y)(f1(x, y) − x), 0) for (x, y) ∈ Uα

(x, y) for (x, y) /∈ Uα.

Then we have the following:

Proposition 3.1. If p(1 + lip(µα))ε < 1, then fα is a leaf preserv-
ing Lipschitz homeomorphism which is isotopic to 1M through leaf preserving
Lipschitz homeomorphisms, that is, fα ∈ HLIP,L(M,F).

Proof. For distinct (x, y), (x′, y′) ∈ W̄1, we have

||µα(x, y)(f1(x, y) − x) − µα(x′, y′)(f1(x′, y′) − x′)||
≤ ||µα(x, y)(f1(x, y) − x) − µα(x, y)(f1(x′, y′) − x′)||

+ ||µα(x, y)(f1(x′, y′) − x′) − µα(x′, y′)(f1(x′, y′) − x′)||
= |µα(x, y)| · ||f1(x, y) − x− (f1(x′, y′) − x′)||

+ |µα(x, y) − µα(x′, y′)| · ||f1(x′, y′) − x′||
< ε · ||(x, y) − (x′, y′)|| + lip(µα)ε · ||(x, y) − (x′, y′)||.

Putting µα(x, y)(f1(x, y)− x) = (u1(x, y), . . . , up(x, y)), we have lip(ui) < 1/p
for each i. We define maps f i

α : Uα → Uα (i = 1, · · · , p) by f1
α(x1, . . . , xp, y1, . . . ,

ym−p) = (x1 +u1(x, y), . . . , xp, y1, . . . , ym−p) and f i
α(x1, . . . , xp, y1, . . . , ym−p)

= (x1, . . . , xi−1, xi + ui((f i−1
α ◦ · · · ◦ f1

α)−1(x, y)), xi+1, . . . , xp, y1, . . . , ym−p)
for i = 2, . . . , p. By an argument similar to that in the proof of Proposition
4.2 of [A-F], we can prove by induction that each f i

α is a leaf preserving Lips-
chitz homeomorphism which is isotopic to 1M through leaf preserving Lipschitz
homeomorphisms. Since fα = fp

α ◦ fp−1
α ◦ · · · ◦ f1

α, we have fα ∈ HLIP,L(M,F).
This completes the proof.

Corollary 3.2 (fragmentation lemma). For any f ∈ HLIP,L(M,F),
there are fi ∈ HLIP,L(M,F) (i = 1, 2, . . . , k) such that f = fk ◦ fk−1 ◦ · · · ◦ f1
and the support of each fi is contained in a small ball.

Proof. This follows from Proposition 3.1 because of the compactness of
M .

Corollary 3.3. HLIP,L(M,F) is locally contractible.

Proof. This is an immediate consequence of Proposition 3.1 and Corollary
3.2.
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Theorem 3.4. HLIP,L(M,F) is perfect.

Proof. Let f ∈ HLIP,L(M,F). We may assume that f is close to the
identity. From Corollary 3.2, we have f = fk ◦ fk−1 ◦ · · · ◦ f1, where each
fi is a leaf preserving Lipschitz homeomorphism whose support is contained
in a small ball. Hence we can assume that fi ∈ HLIP,L(Rm,F0) for each
i. From Corollary 2.2, we have that fi is in the commutator subgroup of
HLIP,L(Rm,F0) and hence f is in the commutator subgroup of HLIP,L(M,F).
Thus HLIP,L(M,F) is perfect.

4. H1(HLIP (F)) for codimension one foliations

In this section, we consider the first homology of HLIP (M,F) for a codi-
mension one foliation F . Let M be a compact C2-manifold without bound-
ary and F a codimension one C2-foliation of M . Hereafter we simply write
HLIP (F), HLIP,L(F) instead of HLIP (M,F), HLIP,L(M,F) respectively.

There exists a one dimensional C2-foliation T of M transverse to F . Then
we have the following:

Lemma 4.1. Let f be an element of HLIP (F) sufficiently close to the
identity. Then f is uniquely decomposed as f = g ◦ h, where h (resp. g) is an
element of HLIP (F)∩HLIP,L(T ) (resp. HLIP,L(F)) and h and g are also close
to the identity.

Proof. The existence of g and h follows from Lemma 4.1 of [F-I]. For
coordinate (x, y) = (x1, . . . , xm−1, y) on a foliated chart U , we may assume that
F is defined by y = constant and T is defined by x1 = constant, . . . , xm−1 =
constant. Thus f has the form f(x, y) = (f1(x, y), f2(y)) locally. Then h has
the form h(x, y) = (x, f2(y)). Hence h is Lipschitz and is close to the identity
and g is also so.

Lemma 4.2 (Lemma 4.2 of [F-I]). Let f be an element of HLIP (F) and
L a leaf of F . If f(L) �= L, then the holonomy group of L is trivial.

We define the subset S0 of M by

S0 = {x ∈M | there exists an element f of HLIP (F) such that f(Lx) �= Lx}.

By definition, S0 is an open F-saturated set and by Lemma 4.2, all leaves
in S0 have trivial holonomy.

Theorem 4.3 (see Theorem 4.3 of [F-I]). Let S be a connected compo-
nent of S0. Then clearly S is invariant under the action of HLIP (F) and S is
one of the following three types:

Type P : S is homeomorphic to L× (0, 1) and the foliations F |S and T |S
correspond to the product structure of L× (0, 1).



�

�

�

�

�

�

�

�

512 Kazuhiko Fukui and Hideki Imanishi

Type R : There exists a closed transversal curve C in S such that C meets
each leaf of F |S at exactly one point and the natural map

p : S → C, p(x) = Lx ∩ C

is a fibration and T |S is a connection of the fibration p.
Type D : All leaves of F in S are dense in S and there exists a topological

flow {ϕt} on S which preserves F |S and whose orbits are leaves of T |S .

Then following Theorem 4.6 of [F-I], we have:

Theorem 4.4. Let F be a codimension one C2-foliation of a compact
C2-manifold M . Suppose that F has no components of Type D and has only a
finite number of components of type R. Then HLIP (F) is perfect.

Proof. We can suppose that the transverse foliation T is defined by a C2

vector field X and on each Type R component S, X has a closed orbit C of
period 1 which satisfies the condition of Type R. We make the convention that
t is the first component of any local coordinate compatible with the foliation
satisfying ∂/∂t = fX, where f is a function which is 1 on C, and differentiations
with respect to t will be denoted by ′ (prime).

For a Type R component S, we can define an flow {ϕs} on S by the C1

vector field (1/p∗dt(X))X, then {ϕs} is F-preserving and from the relation
p(ϕs(x)) = p(x) + s, we have the formula ϕs

′(x) = p′(x)/p′(ϕs(x)).

Assertion. ϕs
′ are bounded on S uniformely for |s| ≤ 1.

Proof. Since ϕ1 (or possibly ϕk) generates the holonomy of a leaf in ∂S̄,
ϕ1 is of class C2 on S̄. In particular log(ϕ1

′) has bounded variation. Let K be
a compact subset of S such that {ϕs}-orbit of K is S, then ϕs

′ are bounded
on K and |s| ≤ 1. For x /∈ K we have ϕn(x) ∈ K (or possibly ϕ−n(x) ∈ K) for
a positive integer n. Since p = p ◦ ϕn = p ◦ (ϕ1)n, we have

| logϕs
′(x)|

≤ | log p′(ϕn(x)) − log p′(ϕn+s(x))| +
n−1∑
k=0

| logϕ1
′(ϕk(x)) − logϕ1

′(ϕk+s(x))|.

Therefore the assertion holds.

Proof of Theorem 4.4 continued. We have a homomorphism p∗:HLIP (F |S)
→ HLIP (C) defined by p∗(f) = f |C (= f̄) for f ∈ HLIP (F |S). We assert
that p∗ is surjective. Let f̄ be an element of HLIP (C), then we lift f̄ to a
foliation preserving homeomorphism f of S by f(x) = ϕs(x)(x), where s(x) =
f̄(p(x)) − p(x). Since f̄ is Lipschitz, f̄ is almost everywhere differentiable and
f̄ ′ is bounded. To prove that f is Lipschitz, it is sufficient to prove that f ′

exists a.e. and is bounded. From the relation p(f(x)) = f̄(p(x)), it is easy to
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see that f ′(x) = (p′(x)/p′(ϕs(x)(x)))f̄ ′(p(x)) = ϕs(x)
′(x)f̄ ′(p(x)). Since ϕs

′(x)
is bounded for x ∈ S and |s| ≤ 1, so f ′(x) exists a.e. and is bounded. This
proves that p∗ is surjective.

Since HLIP (C) is perfect (Theorem 4.6 of [A-F]), we have that for any f ∈
HLIP (F |S̄), p∗(f) is expressed as the product of commutators

∏v
i=1[f̄2i−1, f̄2i],

where f̄i ∈ HLIP (C), and we can lift f̄i to fi ∈ HLIP (F |S̄) (i = 1, . . . , 2v) with
fi |∂S̄= identity. Then f ◦ (

∏v
i=1[f2i−1, f2i])

−1 is in the kernel of p∗ which is
HLIP,L(F |S̄).

From Theorem 4.3, for a Type P component S, we have S ∼= L × (0, 1),
hence S̄ ∼= L×[0, 1]. Then we have the surjective homomorphism π : HLIP (F |S̄)
→ HLIP ([0, 1]). T. Tuboi [T] showed that HLIP ([0, 1]) is uniformly perfect.
Thus for any f ∈ HLIP (F |S̄), π(f) is expressed as the product of commutators∏u

i=1[f̄2i−1, f̄2i], where f̄i ∈ HLIP ([0, 1]) and u is the positive integer which does
not depend on Type P components. Since π is surjective, we can show by an
argument similar to that in the proof of a Type R component that for any
f ∈ HLIP (F |S̄), f ◦ (

∏u
i=1[f2i−1, f2i])

−1 is in HLIP,L(F |S̄).
Hence by Theorem 3.4, HLIP (F) is perfect. This completes the proof.

The following example shows that the homomorphism p∗ is not necessarily
surjective for a Type R component of class C1.

Example 4.5. Let h be a diffeomorphism of [0, 1] which is tangent to
the identity at 0, 1 and satisfies the condition h(t) > t for t ∈ (0, 1). Let I be
the interval (1/2, h(1/2)), Φ a diffeomorphism of I onto R and let X and Y
be vector fields on I defined by Φ∗X = x(∂/∂x) and Φ∗Y = ∂/∂x. Then the
flows {fs} and {gt} on I defined by X and Y respectively satisfies the relation
fs ◦ gt ◦ f−s = gtes . We define fs(x) = gt(x) = x for x ∈ [0, 1]\I, then, by
a suitable choice of Φ, we can suppose that fs and gt are diffeomorphisms of
[0, 1]. For any sequences sn and tn, we define homeomorphisms F and G of
[0, 1] by

F = h
∞∏

n=−∞
hn ◦ fsn

◦ h−n, G =
∞∏

n=−∞
hn ◦ gtn

◦ h−n.

We choose the sequence {sn} so that we have limn→±∞ sn = 0,
∑∞

n=0 sn = ∞,
and

∑∞
n=0 s−n = −∞, then F is of class C1. We define tn by esntn = tn+1

(t1 = 1), then we have F ◦G = G ◦F and G is not Lipschitz since limn→±∞ tn
= ∞. We consider F the foliated [0, 1]-bundle over S1 with the holonomy F ,
then F is of Type R and of class C1. G defines an F-preserving homeomorphism
g on [0, 1]× S1 and p∗(g) = ḡ is smooth but ḡ does not lift to an F-preserving
Lipschitz homeomorphism of [0, 1] × S1.

Remark 4.6. From Theorem 4.4, we see that HLIP (S3,FR) is perfect
for the Reeb foliation FR of S3. In contrast with Lipschitz case, differentiable
case has a different phenomenon as follows. Let F r(S3,FR) be the group
of foliation preserving Cr-diffeomorphisms of (S3,FR) isotopic to the identity
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through foliation preserving diffeomorphisms. Then Lemma 1 of [F-U] implies
that F r(S3,FR) is not perfect for r ≥ 1.

For a Type D component S, the flow {ϕt} is defined as follows (see [I]).
Let C be a closed transversal curve of F |S and we suppose that C is a T -orbit.
Then, for a leaf L of F |S , G = C ∩ L has a structure of abelian group and G
acts on C as the holonomy transformation group. Since all G-orbits are dense,
there exists a homeomorphism h of C such that G is included in h−1 ◦SO(2)◦h
and we call h, which is unique up to rotations of C, the linearization map of
the holonomy transformations. We define a flow {ϕt} on C by {h−1 ◦Rt ◦ h},
where Rt is the rotation of C of angle 2πt, and we extend {ϕt} to a flow on S
by using holonomy maps.

We define a submodule Per(S) of R by

Per(S) = {t ∈ R | ϕt(L) = L for one and all leaves L in S}.

Then we have the following:

Theorem 4.7. Let S be a Type D component and suppose the lin-
earization map h is not absolutely continuous, then HLIP (F |S) coincides with
HLIP,L(F |S).

Proof. Suppose that there exists an element f of HLIP (F |S)−
HLIP,L(F |S) and let {ft} be an isotopy in HLIP (F |S) and, by restriction, we
consider that {ft} is in HLIP (C). Then we can write ft = h−1◦Rα(t) ◦h, where
α is a continuous function of [0, 1] onto [0, α]. Since f1 is Lipschitz and h is
not absolutely continuous, by Proposition (1.2) of [H](CHAP. XII), we see that
h and h−1 are almost everywhere differentiable and we have h′(x) = 0 (a.e.),
(h−1)′(x) = 0 (a.e.). We choose points x1, x2 of C and an angle β so that
h′(x1) = 0, (h−1)′(x2) = 0 and Rβ(h(x1)) = x2. Moreover we can choose x2

near to h(x1) and β sufficiently small. Then for some t1, we have α(t1) = β,
ft1 = h−1 ◦Rβ ◦ h and f ′t1(x1) = 0. Since f−1

t1 is Lipschitz, this is a contradic-
tion.

Theorem 4.8. Let S be a Type D component and suppose the lin-
earization map h is a C1-diffeomorphism, then there exists a surjection π of
H1(HLIP (F)) to R/Per(S).

Proof. In this case the flow {ϕt} is a one parameter subgroup of
HLIP (F |S) and the proof is the same as that of Theorem 4.3 of [F-I].

Theorem 4.9. Let F be a foliation of a torus Tm defined by a 1-form
ω =

∑
aidxi. If one of ai/aj is irrational, then H1(HLIP (F)) is isomorphic to

R/a1Z + · · · + amZ.

Proof. The proof is same as in the proof of Theorem 4.10 of [F-I].
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Remark 4.10. By Theorem (3.6) of [H](CHAP. XII), there exists a
C∞-foliation F ′ which is topologically equivalent to F of Theorem 4.9 for a
suitable {ai} with non absolutely continuous linearization map, therefore by
Theorem 3.4 and Theorem 4.7, we have H1(HLIP (F ′)) = 0. We also remark
that if F is Cr(r ≥ 3) and Per(S) contains an irrational number which satisfies
a Diophantine condition, then the linearization map h is differentiable (see [Y]).

Department of Mathematics
Kyoto Sangyo University
Kyoto 603-8555, Japan
e-mail: fukui@cc.kyoto-su.ac.jp

Faculty of Integrated Human Studies
Kyoto University
Kyoto 606-8501, Japan
e-mail: imanishi@math.h.kyoto-u.ac.jp

References

[A-F] K. Abe and K. Fukui, On the structure of the group of Lipschitz homeo-
morphisms and its subgroups, J. Math. Soc. Japan, 53-3 (2001), 501–511.

[F-I] K. Fukui and H. Imanishi, On commutators of foliation preserving home-
omorphisms, J. Math. Soc. Japan, 51-1 (1999), 227–236.

[F-U] K. Fukui and S. Ushiki, On the homotopy type of FDiff(S3,FR), J.
Math. Kyoto Univ., 15-1 (1975), 201–210.

[H] M. R. Herman, Sur la conjugaison différentiable des difféomorphismes
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