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The invariance of analytic assembly maps under
the groupoid equivalence
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Jae-Kwan Shim
∗

Introduction

The original motivation for the work of Baum and Connes ([1], [2]) was to
construct a geometric or topological version K∗(M,G) of the K-theory group
K∗(C∗

r (M � G)), where C∗
r (M � G) is the reduced C∗-algebra associated to

the Lie group action of G on a manifold M . K∗(M,G) is much easier to
calculate than K∗(C∗

r (M �G)) since there are geometric and topological tools
available for the calculation of K∗(M,G). The cocycles of K∗(M,G) are triples
(Z, σ, f), where Z is a proper smooth G-manifold, f : Z →M is aG-equivariant
smooth submersion, and σ is a G-equivariant symbol along the fibers of f .
The (reduced) analytic assembly map µr : K∗(M,G) → K∗(C∗

r (M � G)) is
defined as follows: on each fiber the symbol σ gives an elliptic operator Dx,
and µr(Z, σ, f) is the index of the family (Dx). It is conjectured by P. Baum
and A. Connes that this map is an isomorphism.

It has many important implications in topology and analysis. For instance,
the rational injectivity of µr implies the Novikov conjecture on the homotopy
invariance of higher signatures ([11]), and the Gromov-Lawson-Rosenberg con-
jecture on manifolds admitting metrics of positive scalar curvature ([17]). The
surjectivity of µr implies the generalized Kadison conjecture on the nonexis-
tence of projections in C∗

r (Γ) where Γ is a torsion-free discrete group.
In [6], A. Connes sketched the construction of the analytic assembly map

for a general smooth groupoid G,

K∗
top(G)

µG−−→ K∗(C∗(G)).

Then he conjectured that the composition of µG with the canonical map from
K∗(C∗(G)) to K∗(C∗

r (G)), which will be called the reduced analytic assembly
map, is an isomorphism. This conjecture will be called the Baum-Connes
conjecture for G.
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810 Jae-Kwan Shim

In this paper, we explicitly construct analytic assembly maps for general
smooth groupoids and then prove that they are invariant under the groupoid
equivalence. Since C∗-algebras of two equivalent groupoids have the same K-
theory, this result is a strong evidence for the Baum-Connes conjecture for
general smooth groupoids.

1. Some basic facts on groupoids

The contents in this section are well known. In order to fix the notation,
we have collected them here.

Definition 1.1. A groupoid consists of a set G, a subset G(0) ⊂ G, two
maps r, s : G → G(0), and a law of composition · : G(2) → G, where

G(2) = {(γ1, γ2) ∈ G × G|s(γ1) = r(γ2)},
satisfying the following:
s(γ1 · γ2) = s(γ2), r(γ1 · γ2) = r(γ1) for any (γ1, γ2) ∈ G(2),

1. s(x) = r(x) = x for any x ∈ G(0),
2. γ · s(γ) = γ, r(γ) · γ = γ for any γ ∈ G,
3. (γ1 · γ2) · γ3 = γ1 · (γ2 · γ3) for (γ1, γ2), (γ2, γ3) ∈ G(2), and
4. each γ ∈ G has a two-sided inverse γ−1, with

γ · γ−1 = r(γ), γ−1 · γ = s(γ).

We may regard a groupoid G as a small category where every morphism
is an isomorphism. Indeed, we take G(0) as the collection of objects. Then the
collection of morphisms from x to y consists of γ’s with s(γ) = x and r(γ) = y.
A subgroupoid can be defined as a subcategory of G. A subgroupoid is called a
full subgroupoid if it is a full subcategory of G. A subgroupoid G′ of G is called
a component subgroupoid if it satisfies the following: if γ is any element in G,
and if x = s(γ) lies in G′, then y = r(γ) also lies in G′.

Definition 1.2. A smooth groupoid is a groupoid G with differential
structures on G and G(0) in which the maps r, s are submersions, and the
inclusion G(0) → G is smooth as well as the composition G(2) → G. We allow G
to be a manifold with boundary. In this case, we require that the boundary is
a full component subgroupoid of G.

Example 1.3. (1) Any manifold P is a smooth groupoid, where the
set of units is all of P . It has no composition structure except the trivial
compositions, x · x = x for x ∈ P . This is called a trivial groupoid.

(2) A Lie group G is a smooth groupoid, where G(0) = {e}, s(g) = r(g) =
e and the composition is the group multiplications. Here e denotes the identity
of G. This is the opposite case to the above example.

(3) Assume that a Lie group G acts on a manifold M from the right.
We take G = M × G, G(0) = M × {e}, and r(x, g) = x, s(x, g) = xg. The
composition is given by

(x, g1) · (xg1, g2) = (x, g1g2).
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The invariance of analytic assembly maps 811

This is a smooth groupoid, which will be denoted by M �G.
(4) Let {Gα}α∈I be a collection of groupoids indexed by I. Then the

disjoint union G = ∪
α∈I
Gα is a groupoid. Note that Gα is a full component

subgroupoid of G. When each Gα, G and I are smooth, and the canonical map
p : G → I is a submersion, G is called a smooth groupoid of parameterized
groupoids over I. In particular, the total space E of a smooth vector bundle
p : E →M is a smooth groupoid of parameterized abelian groups over M .

(5) Let M be a manifold. G = M ×M is a smooth groupoid, where G(0)

is the diagonal identified with M , r(x, y) = x, s(x, y) = y, and (x, y) · (y, z) =
(x, z).

Let Ω1/2 is the line bundle over a smooth groupoid G whose fiber at γ ∈ G,
r(γ) = x, s(γ) = y, is the linear space of maps

ρ : ΛkTγ(Gx)⊗ ΛkTγ(Gy)→ C

such that ρ(λv) = |λ|1/2ρ(v) for λ ∈ R. Here

Gx = {γ ∈ G | r(γ) = x}, Gy = {γ ∈ G | s(γ) = y},
and k = dim(Gx) = dim(Gy). We consider the linear space C∞

c (G,Ω1/2) of
compactly supported smooth sections of Ω1/2, We define a convolution product
and a ∗-operation on C∞

c (G,Ω1/2): for f, g ∈ C∞
c (G,Ω1/2),

(f ∗ g)(γ) =
∫

γ1·γ2=γ

f(γ1)g(γ2),

f∗(γ) = f(γ−1).

They define a ∗-algebra structure on C∞
c (G,Ω1/2). To obtain a C∗-algebra,

we need to take a completion of C∞
c (G,Ω1/2). Usually, it is completed in two

ways; the maximal C∗-algebra C∗(G) and the reduced C∗-algebra C∗
r (G). We

omit it and refer to [6].

Definition 1.4. Let G be a smooth groupoid. Regarding G as a small
category, we define a right G-action on a smooth manifold P as a contravariant
functor F from G to the category M of smooth manifolds and smooth maps
satisfying the following three properties.

1. Let Px denote F (x), for x ∈ G(0). Px’s are submanifolds of P and they
form a partition of P .

2. The map σ : P → G(0), given by σ(p) = x, when p ∈ Px, is a submersion.
3. The map

P ×G(0) G → P

(p, γ) �→ F (γ)(p)

is smooth, where P ×G(0) G is the fibered product, that is P ×G(0) G = {(p, γ) ∈
P × G : σ(p) = r(γ)}.

P will be called a G-manifold. We abbreviate F (γ)(p) by p · γ, or simply
by pγ.
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Remark. (1) Similarly, we may define a left G-action. It is defined
as a covariant functor from G to M. It is obvious how to modify the above
definition.

(2) P ×G(0) G has a natural groupoid structure. We put (P ×G(0) G)(0) =
P ,*1 r(p, γ) = p, s(p, γ) = p · γ, and (p, γ) · (p · γ, γ′) = (p, γγ′). We denote this
groupoid by P � G.

Example 1.5. (1) For any smooth groupoid G there is a natural action
of G on G(0). The functor F sends γ : x→ y to the trivial map {y} → {x}.

(2) A smooth groupoid G acts on itself by the groupoid multiplication.
(3) Let h : E1 → E2 be a vector bundle map over a manifold M . Then

the groupoid E1 acts on E2. We let F (x) = E2,x and v1 ∈ E1,x acts on E2,x as
follows: v2 · v1 = v2 + h(v1), for any v2 ∈ E2,x.

(4) A group Γ acts on V . Let EΓ be the universal Γ-bundle. Then the
groupoid V � Γ acts on V × EΓ freely and properly as follows: let σ(v, x) =
v ∈ V = (V �Γ)(0) and (v, x) · (v, g) := (vg, xg). The quotient space of V ×EΓ
by this groupoid action is V ×Γ EΓ. V × EΓ → V ×Γ EΓ is the universal
V � Γ-bundle.

(5) For a G-manifold P we obtain another G-manifold TGP by replacing
each Px, x ∈ G(0), by its tangent bundle T (Px). The total space TGP is the
kernel of the map dσ. γ acts as the differential from T (Py) to T (Px), where
x = s(γ), y = r(γ).

Definition 1.6. (1) A G-manifold P is said to be proper if the following
map is proper:

P ×G(0) G → P × P
(p, γ)→ (p, p · γ).

(2) A smooth groupoid G is proper if the following map is proper:

G → G(0) × G(0)

γ → (r(γ), s(γ)).

Remark. Note that a G-manifold P is proper if and only if P � G is
proper.

Definition 1.7 ([14]). Let G and H be smooth groupoids. They are
said to be (smoothly) equivalent if there exists a manifold Z such that

1. G has a free and proper left action on Z with ρ : Z → G(0),
2. H has a free and proper right action on Z with σ : Z → H(0),
3. the G and H actions commute,
4. the map ρ induces a diffeomorphism of Z/H onto G(0), and
5. the map σ induces a diffeomorphism of G\Z onto H(0).

Z is said to be a (G,H)-equivalence.

*1We identify p with (p, σ(p)).
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Remark. (1) Indeed, this is an equivalence relation. If Z is a (G,H)-
equivalence and Y is a (H,K)-equivalence, then a (G,K)-equivalence is given
by the quotient of Z ×H(0) Y obtained by the diagonal action of H.

(2) G is naturally isomorphic to (Z ×σ Z)/H where

(Z ×σ Z) = {(z1, z2) ∈ Z × Z : σ(z1) = σ(z2)}.
For any [z1, z2] ∈ (Z ×σ Z)/H, there is a unique γ ∈ G such that γ · z1 = z2.
(Note that σ(z1) = σ(z2).) The correspondence [z1, z2] �→ γ is the desired
isomorphism between (Z ×σ Z)/H and G.

Example 1.8. (1) Let GF be the holonomy groupoid of a foliated space
(M,F) ([20]), and T ⊂ M be a complete transversal, that is, a transversal
which meets every leaf (but T need not be connected). Then GT

T = {γ ∈ GF :
r(γ), s(γ) ∈ T} is an etale (or discrete) groupoid which is equivalent to GF . We
take GT = {γ : s(γ) ∈ T} as a (GF ,GT

T )-equivalence.
(2) Let G be a transitive groupoid. Then for any unit x ∈ G(0), the Lie

groupH = Gx
x is equivalent to G. Gx is a (G, H)-equivalence. Here Gx

x = Gx∩Gx.
(3) Suppose that two Lie groups H and K act freely and properly on

a manifold M and assume that their actions commute. The manifold M/H
(respectively, M/K) carries a K (respectively, H) action. With these two
actions M is a (M/K �H,M/H �K)-equivalence.

(4) If a smooth groupoid G acts on P freely and properly, then the trivial
groupoid P/G is equivalent to P � G with P a (P/G, P � G)-equivalence. P/G
acts on P trivially and the right action of P�G on P is given by p ·(p, γ) = p ·γ.

(5) For a proper groupoid G, consider the subgroupoid Ĝ which is the
inverse image of the diagonal under the map

G → G(0) × G(0).

It is easy to see that G is equivalent to Ĝ. Since G is proper, its automorphism
groups Gx

x are compact. So Ĝ is a parameterized compact groups. Hence
we conclude that a proper groupoid is equivalent to a groupoid which is a
parameterized compact groups. In particular, for a proper G-manifold P , the
groupoid P � G is equivalent to a parameterized compact groups.

For equivalent groupoids G and H with a (G,H)-equivalence Z as in Defi-
nition 1.7, we define a left Cc(G)-action and a right Cc(H)-action on Cc(Z) as
follows: for f ∈ Cc(G), g ∈ Cc(H) and ϕ ∈ Cc(Z),

(f · ϕ)(z) =
∫
Gρ(z)

f(γ)ϕ(γ−1 · z),

(ϕ · g)(z) =
∫
Hσ(z)

ϕ(z · δ)g(δ−1).

Then f · ϕ and ϕ · g are in Cc(Z) ([14]).
Now we define a Cc(H)-valued inner-product on Cc(Z):

〈ϕ, ψ〉Cc(H) (δ) =
∫
Gρ(z)

ϕ(γ−1 · z)ψ(γ−1 · z · δ),
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where σ(z) = r(δ). Note that the definition is independent of the choice of z
with σ(z) = r(δ).

Similarly, we define a Cc(G)-valued inner product:

〈ϕ, ψ〉Cc(G) (γ) =
∫
Hσ(z)

ϕ(γ−1 · z · δ)ψ(z · δ),

where ρ(z) = r(γ).
Then the following identities are straightforward to prove:

f · 〈ϕ, ψ〉Cc(G) = 〈f · ϕ, ψ〉Cc(G) ,

〈ϕ, ψ〉Cc(H) · g = 〈ϕ, ψ · g〉Cc(H) ,

(f1 ∗ f2) · ϕ = f1 · (f2 · ϕ),
ϕ · (g1 ∗ g2) = (ϕ · g1) · g2,
〈ϕ, ψ〉∗Cc(G) = 〈ψ, ϕ〉Cc(G) ,

〈ϕ, ψ〉∗Cc(H) = 〈ψ, ϕ〉Cc(H) .

The following is the main theorem of [14].

Theorem 1.9. The Cc(G) − Cc(H)-bimodule Cc(Z) defined above can
be naturally completed into a C∗(G)−C∗(H)-equivalence bimodule E . That is,
C∗(G) and C∗(H) are Morita equivalent.

For those who are not familiar with Morita equivalence, we refer to [16].

Remark. (1) So the C∗(G)−C∗(H)-equivalence bimodule E defines an
invertible element [E ] ∈ KK(C∗(G), C∗(H)). Hence we have an isomorphism

K∗(C∗(G)) ·⊗[E]−−−→ K∗(C∗(H)),

where · ⊗ [E ] denotes the Kasparov product by [E ]. This isomorphism is called
the isomorphism induced by the (G,H)-equivalence Z.

(2) The above theorem still holds when we take the reduced C∗-algebras.
That is, the Cc(G)-Cc(H)-bimodule Cc(Z) is naturally completed into a C∗

r (G)-
C∗

r (H)-equivalence bimodule Er. We have the following commutative diagram:

K∗(C∗(G)) (rG)∗−−−−→ K∗(C∗
r (G))

·⊗[E]

� �·⊗[Er ]

K∗(C∗(H)) −−−−→
(rH)∗

K∗(C∗
r (H))

where (rG)∗ and (rH)∗ are the induced maps from the canonical surjections
rG : C∗(G)→ C∗

r (G) and rH : C∗(H)→ C∗
r (H), respectively.

Definition 1.10. Let G1 and G2 be smooth groupoids. A strong defor-
mation from G1 to G2 is given by another smooth groupoid of parameterized
groupoids over [0, 1) (see (4) of Example 1.3) whose restriction to (0, 1) is
G2 × (0, 1) and restriction to 0 is G1.
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Remark. A strong deformation G from G1 to G2 defines a continuous
field of C∗-algebras over [0, 1), where the restriction to (0, 1) is a constant field
with fiber C∗(G2), and the fiber over 0 is C∗(G1). Hence G defines an E-theory
element in E(C∗(G1), C∗(G2)). Recall that a cycle of E(A,B) is an asymptotic
homomorphism from K ⊗ A to K ⊗ B, where K is the C∗-algebra of compact
operators on a separable Hilbert space. An asymptotic homomorphism from a
C∗-algebra A to another C∗-algebra B is a family {ϕt}t∈(1,∞) of maps from A
to B, satisfying the following two conditions:

1. For any a ∈ A, the map t→ ϕt(a) is norm continuous.
2. For any a, b ∈ A, λ ∈ C, we have

lim
t→∞(ϕt(a) + λϕt(b)− ϕt(a+ λb)) = 0,

lim
t→∞(ϕt(ab)− ϕt(a)ϕt(b)) = 0,

lim
t→∞(ϕt(a∗)− ϕt(a)∗) = 0.

If we are given a continuous field (A(t),Γ) of C∗-algebras over the interval [0, 1)
whose fiber at 0 is A(0) = A, and whose restriction to (0, 1) is the constant field
with fiber A(t) = B for t ∈ (0, 1), then we obtain an asymptotic homomorphism
from A to B: for any a ∈ A = A(0), choose a continuous section σa ∈ Γ, and
define ϕt(a) = σa(1/t). For more details about E-theory, see [7], or [9].

2. Construction of analytic assembly maps for general groupoids

Definition 2.1 (Semi-direct products). A smooth groupoid G acts on
another smooth groupoid H with τ : H → G(0). Assume that this action
satisfies the following conditions.

1. For each x ∈ G(0), τ−1(x) is a full component subgroupoid of G. Hence,
if δ and δ′ ∈ H are composable and one of δ · γ and δ′ · γ is defined, then the
other one as well as (δδ′) · γ are defined.

2. For δ, δ′ ∈ τ−1(x), γ ∈ G with r(γ) = x, where δ and δ′ are composable,
then δ · γ and δ′ · γ are also composable with the equality

(δδ′) · γ = (δ · γ)(δ′ · γ).
Then we defineH−→�G, the semi-direct product ofH by the action of G as follows.
As a manifold, H−→�G is H×G(0) G = {(δ, γ): τ (δ) = r(γ) }. (δ1, γ1) and (δ2, γ2)
are composable if and only if γ1, γ2 are composable and δ2 = δ′2 · γ1 with δ1
and δ′2 composable. Their composition is given by

(δ1, γ1)(δ′2 · γ1, γ2) = (δ1δ′2, γ1γ2).

The other maps are given by s(δ, γ) = (s(δ) ·γ, s(γ)), r(δ, γ) = (r(δ), r(γ)), and
(δ, γ)−1 = (δ−1 · γ, γ−1). The units are H(0), identifying (u, τ (u)) with u.

Remark. (1) Note that the groupoid P � G is an example of a semi-
direct product, where P is regarded as a trivial groupoid.
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(2) When a group G acts on another group H as group homomorphisms,
then H

−→
�G is the usual semi-direct product. But, in taking H � G, we com-

pletely forget the group structure of H.

In [6], A. Connes constructed the tangent groupoid GM for a Riemannian
manifold M , which is the union of TM and (M ×M)× (0, 1). This is a strong
deformation from TM to M × M . Its induced map from K∗(C∗(TM)) =
K∗(T ∗M) to K∗(K) = Z is the Atiyah-Singer index map. For details, see [5],
[6]. We generalize the tangent groupoid for the G-equivariant case. Before we
do so, we need to make some observations. For a proper G-manifold P , the
action of G on TGP satisfies the conditions of the above definition. Hence we
may take the semi-direct product TGP

−→
�G. We have an isomorphism between

C∗(TGP
−→
�G) and C∗(T ∗

GP �G), where γ ∈ G acts on T ∗
GP as the inverse of the

codifferential. The proof is essentially the same as that of the following simple
fact: for a group G acting on an abelian group H as homomorphisms, we have
C∗(H−→�G) ∼= C∗(Ĥ �G) = C0(Ĥ) �G, which is due to the Fourier transform.
Here Ĥ denotes the dual group of H.

Definition 2.2. Let P be a proper G-manifold with a submersion σ :
P → G(0). We put a G-invariant metric on TGP . We can do so because the
G-action is proper. We denote the tangent groupoid of Px = σ−1(x) by GPx

.
Then let G′P be the smooth groupoid obtained by putting together GPx

’s. That
is, G′P is the closure of (P ×σ P ) × (0, 1) in the usual tangent groupoid GP of
P , where

P ×σ P = {(p1, p2) ∈ P × P : σ(p1) = σ(p2)}.
P ×σ P is a groupoid with s(p1, p2) = p2, (p1, p2)(p2, p3) = (p1, p3). As a set,
G′P is equal to TGP ∪ [(P ×σ P ) × (0, 1)]. The G-action on P induces another
G-action on G′P which satisfies the conditions in Definition 2.1. Therefore, we
can take the semi-direct product G′P−→�G, which is a strong deformation from
TGP
−→
�G to (P×σP )−→�G. But it is easy to show that (P×σP )−→�G is equivalent

to G. Indeed we take P ×G(0) G as an equivalence between these two groupoids.
We define

ρ′ : P ×G(0) G → ((P ×σ P )−→�G)(0) = P,

σ′ : P ×G(0) G → G(0),

as ρ′(p, γ) = ((p, p), r(γ)) (identified with p) and σ′(p, γ) = s(γ). We define

((p1, p2), γ′) · (p, γ) := (p1, γ
′γ)

whenever p2γ
′ = p and s(γ′) = r(γ). Also we define

(p, γ) · γ′ := (p, γγ′)

whenever s(γ) = r(γ′). Then P ×G(0) G is a ((P ×σ P )−→�G,G)-equivalence.
Hence we obtain an element of E(C∗(T ∗

GP � G), C∗(G)). We denote this E-
theory element by IndG

P . The induced map

IndG
P : K∗(C∗(T ∗

GP � G))→ K∗(C∗(G))
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is called the G-equivariant index map determined by the G-manifold P . (Note
that we are using the same notation for the induced group homomorphism.)
Since we have chosen a G-invariant metric on TGP , we may identify T ∗

GP with
TGP . Hence we regard IndG

P as an element in E(C∗(TGP � G), C∗(G)). So we
drop ∗ in the induced map: hence

IndG
P : K∗(C∗(TGP � G))→ K∗(C∗(G)).

Remark. Any submersion f : P →M is a M -manifold if M is regarded
as a trivial groupoid. If p : E →M is a vector bundle, then IndM

E = g!, where
g is the projection from the total space of ker(dp)∗ to M . Note that ker(dp)∗

is a vector bundle over M , that is, E ⊕ E∗. Hence IndM
E induces the Thom

isomorphism between K∗(E ⊕ E∗) and K∗(M).

Definition 2.3. Let τV : V → G(0) and τW : W → G(0) be proper right
G-manifolds. Then a smooth map f : V → W is said to be G-equivariant if
τW (f(v)) = τV (v) and f(v · γ) = f(v) · γ.

For a G-equivariant map f : P1 → P2, we construct a G-equivariant version
of (df)!.

Let h : V → W be a G-equivariant map. Then each 0 ≤ ε ≤ 1 gives us a
groupoid h∗(TGW ) �ε TGV where multiplication is given by

(η, ξ) · (η′, ξ′) = (η, ξ + ξ′) if η + ε(dh)(ξ) = η′,

that is, it is the groupoid which comes from the groupoid action of TGV on
h∗(TGW ) given by η · ξ = η+ ε(dh)(ξ). (It is clear when and only when η · ξ is
defined.) The family (h∗(TGW ) �ε TGV )0≤ε<1 form a groupoid RG

h , where the
fibers over (0, 1) are all isomorphic to as a set RG

h is (TGV ⊕h∗(TGW ))× [0, 1).
There is the canonical action of G on RG

h , which satisfies the conditions in
Definition 2.1. Hence we may take the semi-direct product RG

h
−→
�G, which is

a strong deformation from [h∗(TGW ) �0 TGV ]−→�G to [h∗(TGW ) �1 TGV ]−→�G.
Note that to C∗([T ∗

GV ⊕ h∗(TGW )] � G). So RG
h
−→
�G gives us an element

δh ∈ E
(
C∗([T ∗

GV ⊕ h∗(TGW )] � G), C∗([h∗(TGW ) �1 TGV ]−→�G)
)
.

For a smooth map f : M → N , A. Connes constructed G(f) which is a strong
deformation from f∗(TN) �1 TM to N × (M ×M).*2 For each x ∈ G(0), we
have a map hx : Vx → Wx, where Vx = τ−1

V (x) and Wx = τ−1
W (x). We put

G(hx) together. More explicitly, forgetting G-manifold structure for a moment,
we take the groupoid G(h) constructed in the non-equivariant case. Then QG

h

is the closure of W ×G(0) (V ×τV
V )× (0, 1) in G(h), where

W ×G(0) (V ×τV
V ) = {(w, v1, v2) : τW (w) = τV (v1) = τV (v2)}.

We have a canonical action of G on QG
h , which satisfies the conditions in Def-

inition 1.2. Hence we take the semi-direct product QG
h
−→
�G, which is a strong

*2See p. 108 of [6].
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deformation from [h∗(TGW ) �1 TGV ]−→�G to [W ×G(0) (V ×τV
V )]−→�G. Since

[W ×G(0) (V ×τV
V )]−→�G is equivalent*3 to W �G, we have an E-theory element

πh ∈ E(C∗([h∗(TGW ) �1 TGV ]−→�G), C∗(W � G)).
Composing πh with δh, we obtain

[hpr!]G ∈ E
(
C∗([T ∗

GV ⊕ h∗(TGW )] � G), C∗(W � G)) .
When h = df for some G-equivariant map f : P1 → P2 (hence V = TGP1 and
W = TGP2), then the bundle T ∗

GV ⊕h∗(TGW ) over V is equal to F⊕F for some
G-equivariant bundle F . (Note that the bundle T ∗

GV ⊕h∗(TGW ) has G-invariant
complex structure.) F becomes a right V �G-manifold with submersion F → V .
Hence we have

IndV �G
F ∈ E(C∗((F ⊕ F ) � G), C∗(V � G)),

which induces the “G-equivariant Thom isomorphism”.

Definition 2.4. We define

[df !]G = [dfpr !]G ◦ (IndV �G
F )−1 ∈ E(C∗(TGP1 � G), C∗(TGP2 � G)).

Definition 2.5 ([6]). Let G be a smooth groupoid. Then a geometric
cycle for G is given by a proper G-manifold P and an element y ∈ K∗(C∗(TGP�

G)). Two geometric cycles are equivalent if there exists a proper G-manifold P
and G-equivariant maps fj : Pj → P such that [df1!]G(y1) = [df2!]G(y2). Then
we define K∗

top(G) as the set of geometric cycles modulo the above equivalence
relation and call it the group of topological G-indices.

Now we define the analytic assembly map for a smooth groupoid G. Let
(P, y) be a geometric cycle, y ∈ K∗(C∗(TGP � G)). Then µG(y) is defined as
IndG

P (y). This gives us a well-defined map

µG : K∗
top(G)→ K∗(C∗(G)),

which is called the analytic assembly map for the smooth groupoid G. Well-
definedness follows from the functoriality of shrink maps and the fact that
IndG

P = [dσ!]G , where σ : P → G(0) is the submersion required in the right
G-action. By composing µG with the natural homomorphism

K∗(C∗(G))→ K∗(C∗
r (G)),

we obtain another map, called the reduced analytic assembly map for G,
µG,r : K∗

top(G)→ K∗(C∗
r (G)).

A. Connes conjectured that µG,r is an isomorphism. This conjecture was proved
for some cases: for instance, the cases of fundamental groups of negatively

*3W ×G(0) V ×G(0) G is an equivalence between them.
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curved compact Riemannian manifolds ([12]), discrete subgroups of SO(n, 1)
or SU(n, 1) ([3]), free groups ([15], [8]), connected linear reductive groups ([19]),
p-adic GL(n) ([4]), and the case of foliations whose holonomy groupoid is Haus-
dorff and amenable ([18]).

3. Analytic assembly maps and the groupoid equivalence

Note that the collection of proper right G-manifolds form a categoryM(G),
where morphisms are G-equivariant maps. We proceed to show that equivalent
groupoids possess equivalent categories.

Suppose that G and H are equivalent as in Definition 1.7. Let τ : P → G(0)

be a proper right G-manifold. We let P ×G(0) Z = {(p, z) : τ (p) = ρ(z)}. We
have a free and proper left action of G on P ×G(0) Z given by γ · (p, z) =
(pγ−1, γz). We define a right H-action on the smooth manifold G\(P ×G(0) Z)
as follows: define a submersion

τ ′ : G\(P ×G(0) Z)→ H(0), [p, z] �→ σ(z),

and [p, z] · δ = [p, z · δ] for δ ∈ H. This action is proper if P is a proper
G-manifold. For any morphism f : P1 → P2 in M(G), we define

f̂ : G\(P1 ×G(0) Z)→ G\(P2 ×G(0) Z)

by f̂([p1, z]) = [f(p1), z].

Theorem 3.1. For an object P and a morphism f : P1 → P2 in M(G)
we define Φ(P ) = G\(P ×G(0) Z) and Φ(f) = f̂ . Then Φ(f) is inM(H) and Φ
is a functor from M(G) to M(H).

Proof. Clearly Φ(f) is smooth and we have

f̂([p1, z] · δ) = f̂([p1, z · δ]) = [f(p1), z · δ] = [f(p1), z] · δ = f([p, z]) · δ.

So f̂ is in M(H). It is also clear that Φ(f1 ◦ f2) = Φ(f1) ◦ Φ(f2).

Similarly we define a functor

Ψ :M(H)→M(G)

by Ψ(Q) = (Q ×H(0) Z)/H for an object Q in M(H). We denote (Ψ ◦ Φ)(P )

and (Ψ ◦ Φ)(f) simply by ̂̂
P and ̂̂

f respectively. We define a map

∆P : ̂̂
P → P

by [[p1, z1], z2] �→ p1 · γ where γ is the unique element such that z1 = γ · z2.
Then it is easy to check that ∆P is an isomorphism inM(G). For f : P1 → P2
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in M(G), we have the following commutative diagram:

P1
f−−−−→ P2

∆P1

	 	∆P2

̂̂
P1

bbf−−−−→ ̂̂
P2 .

Hence, we have the following theorem.

Theorem 3.2. For equivalent groupoids G and H, we have equivalent
categories M(G) and M(H).

Theorem 3.3. Suppose that G and H are equivalent as in Definition 1.7.
Let P be a proper right G-manifold. Then P � G and Φ(P ) �H are equivalent.

Proof. We define a left P � G-action and a right Φ(P ) � H-action on
P ×G(0) Z. Let

ρ′ : P ×G(0) Z → (P � G)(0) = P

be defined as ρ′(p, z) = p, and we let

σ′ : P ×G(0) Z → (Φ(P ) �H)(0) = Φ(P )

be the projection. The actions are given by

(p, γ) · (p, z) = (pγ−1, γz)
(p, z) · ([p, z], δ) = (p, z · δ)

where (p, z) ∈ P ×G(0) Z, (p, γ) ∈ P � G and ([p, z], δ) ∈ Φ(P ) � H. Then
we can check that P � G and Φ(P ) � H are equivalent with P ×G(0) Z as a
(P � G,Φ(P ) �H)-equivalence.

Corollary 3.4. TGP � G and THΦ(P ) �H are equivalent.

Proof. This follows from Theorem 3.3 and from the fact that Φ(TGP ) =
THΦ(P ). So TGP×G(0)Z implements a (TGP�G, THΦ(P )�H)-equivalence.

Hence C∗(P�G) and C∗(Φ(P )�H) are Morita equivalent. The C∗(Φ(P )�
H)-valued inner product on Cc(P ×G(0) Z) is given by

〈ϕ, ψ〉 ([p, z], δ) =
∫
Gτ(p)

ϕ(pγ, γ−1)ψ(pγ, γ−1zδ),

and the action of Cc(P � G) on Cc(P ×G(0) Z) is given by

(f · ϕ)(p, z) =
∫
Gτ(p)

f(p, γ)ϕ(pγ, γ−1z).

These two induce a C∗(P�G)-C∗(Φ(P )�H) bimoduleX, which is the closure of
Cc(P �G) under the norm induced by the C∗(Φ(P )�H)-valued inner product.

Now we prove that the IndG
P is invariant under the groupoid equivalence.

Before proving that, we need to make a couple of observations.
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Observation 3.5. (1) Suppose that G and H are equivalent as in Def-
inition 1.7, and that G acts on P . Then the semi-direct products TGP

−→
�G and

TH(Φ(P ))−→�H are equivalent. We define actions on TGP ×G(0) Z: ρ′(w, z) =
(0, ρ(z)), σ′(w, z) = ([0, z], σ(z)) (we may identify (0, γ) and ([0, z], δ) with γ
and δ respectively).

(v, γ) · (w, z) = (v + w · γ−1, γ · z),
(w, z) · ([v, z], δ) = (w + v, z · δ).

With the above actions TGP ×G0 Z is a (TGP
−→
�G, TH(Φ(P ))−→�H)-equivalence.

Hence it gives us a C∗(TGP
−→
�G)−C∗(TH(Φ(P ))−→�H)-equivalence bimodule E .

Remember that

C∗(TGP
−→
�G) ∼= C∗((T ∗

GP ) � G), and

C∗(TH(Φ(P ))−→�H) ∼= C∗([T ∗
H(Φ(P ))] �H).

If we identify T ∗
GP and T ∗

H(Φ(P )) with TGP and TH(Φ(P )) respectively (by im-
posing invariant metrics), then E is the same as the C∗(TGP�G)−C∗(THΦ(P )�
H)-equivalence bimodule in Corollary 3.4.

(2) The G action on P ×τ P given by (p1, p2) · γ = (p1 · γ, p2 · γ) satisfies
the conditions of Definition 2.1. Hence we take (P ×τ P )−→�G. We define a
(P ×τ P )−→�G action on (P ×τ P )×G(0) Z, where

(P ×τ P )×G(0) Z = {((p1, p2), z) : τ (p1) = τ (p2) = ρ(z)}.
Let ρ′((p1, p2), z) = ((p1, p1), ρ(z)). So ((p3, p4), γ) ·((p1, p2), z) is defined if and
only if p4 = p1 · γ−1 and s(γ) = ρ(z), and the action is given by

((p3, p1 · γ−1), γ) · ((p1, p2), z) = ((p3, p2 · γ−1), γ · z).
Now we define a [Φ(P )×τ ′ Φ(P )]−→�H action on (P×τP )×G(0)Z. Let σ′((p1, p2),
z) = (([p2, z], [p2, z]), σ(z)). So ((p1, p2), z)·(([p3, z

′], [p4, z
′]), δ) is defined if and

only if [p2, z] = [p3, z
′] and σ(z) = r(δ), and the action is given by

((p1, p2), z) · (([p2, z], [p4, z]), δ) = ((p1, p4), z · δ).
With these actions, (P ×τ P )×G(0) Z is a ((P ×τ P )−→�G, (Φ(P )×τ ′ Φ(P ))−→�H)-
equivalence. We saw that (P×τ P )−→�G is equivalent to G with P×G(0)G as their
equivalence. Also we have a ([Φ(P )×τ Φ(P )]−→�H,H)-equivalence Φ(P )×H(0)H.
Hence we have the following four equivalences:

((P ×τ P )−→�G) −−−−→ P ×G(0) G ←−−−− G� �
(P ×τ P )×G(0) Z Z	 	

[Φ(P )×τ ′ Φ(P )]−→�H −−−−→ Φ(P )×H(0) H ←−−−− H .
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Arrows do not mean mappings here, but instead, for instance, G → Y means
that G acts on Y from the left. The diagram gives us two equivalences between
(P ×τ P )−→�G and H: one is obtained by passing through G and the other one
by passing through Φ(P )×τ ′ Φ(P ). But it is easy to see that these two are bi-
equivariantly diffeomorphic. Hence the above diagram induces a commutative
diagram:

K∗(C∗((P ×τ P )−→�G)) ∼=−−−−→ K∗(C∗(G))
∼=
� �∼=

K∗C∗((Φ(P )×τ ′ Φ(P ))−→�H)
∼=−−−−→ K∗(C∗(H)),

where the isomorphisms are induced by groupoid equivalences.

Before we proceed, remember the definition of G′P−→�G in Definition 2.2.

Theorem 3.6. Suppose that G and H are equivalent as in Definition 1.7
and that P is a right G-manifold. Then the following diagram commutes.

K∗(C∗(TGP � G)) IndG
P−−−−→ K∗(C∗(G))

∼=
� �∼=

K∗(C∗(TH(Φ(P )) �H))
IndH

Φ(P )−−−−−→ K∗(C∗(H)),

where the left vertical map is the isomorphism induced by the (TGP�G, TH(Φ(P ))
�H)-equivalence TGP ×G(0) Z in Corollary 3.4, and the right vertical map is
the isomorphism induced by the (G,H)-equivalence Z.

Proof. We have a left G′P−→�G-action and a right H′
Φ(P )

−→
�H-action on

G′P ×G(0) Z, where G′P ×G(0) Z is fibered over [0, 1). The fiber over t = 0 is
TGP ×G(0) Z, and the space over (0, 1) is (0, 1) × [(P ×τ P ) ×G(0) G]. The
actions of G′P−→�G and H′

Φ(P )

−→
�H on G′P ×G(0) Z are “fiberwise”. That is,

for t ∈ [0, 1), the actions restrict to the actions of the fibers of G′P−→�G and
H′

Φ(P )

−→
�H on the fiber of G′P ×G(0) Z over t. For instance, when t = 0, we

have the (TGP
−→
�G, TH(Φ(P ))−→�H)-equivalence TGP ×G0 Z described in (1) of

Observation 3.5. For t > 0, we have the ((P ×τ P )−→�G, (Φ(P )×τ ′ Φ(P ))−→�H)-
equivalence (P ×τ P )×G(0) Z in (2) of Observation 3.5.

We have G′P−→�G = G1 ∪ G2, H′
Φ(P )

−→
�H = H1 ∪ H2 where G1 = TGP

−→
�G,

G2 = (0, 1)×((P ×τ P )−→�G), H1 = TH(Φ(P ))−→�H, and H2 = (0, 1)×(Φ(P )×τ ′

Φ(P )). It is easily checked that the following diagram is commutative:

K(C∗(G2)) −−−−→ K(C∗(GP
−→
�G)) −−−−→ K(C∗(G1))

∼=
� ∼=

� ∼=
�

K(C∗(H2)) −−−−→ K(C∗(HΦ(P )
−→
�H)) −−−−→ K(C∗(H1)),
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where the vertical maps are the isomorphisms induced by the groupoid equiv-
alences. By the naturality of the boundary maps, we have the following com-
mutative diagram:

Ki(C
∗(G2)) −−−−−→ Ki(C

∗(GP
−→
oG)) −−−−−→ Ki(C

∗(G1))
∂P−−−−−→ Ki−1(C∗(G2))

∼=
?
?
y ∼=

?
?
y ∼=

?
?
y ∼=

?
?
y

Ki(C
∗(H2)) −−−−−→ Ki(C

∗(H bP

−→
oH)) −−−−−→ Ki(C

∗(H1))
∂ bP−−−−−→ Ki−1(C∗(H2)),

where P̂ = Φ(P ). The boundary map ∂P coincides with the map induced by
the asymptotic homomorphism (1 ⊗ ϕt) associated to the deformation from
C0(0, 1) ⊗ C∗(TPG−→�G) to C0(0, 1) ⊗ C∗((P ×τ P )−→�G) which is given by
C∗(G′P−→�G). This is because the asymptotic homomorphism associated to the
exact sequence

0→ C∗(G2)→ C∗(G′P−→�G)→ C∗(G1)→ 0

induces the same map as the boundary map ∂P . Note that C∗(G2) is isomorphic
to C0(0, 1)⊗ C∗((P ×τ P )−→�G). By the naturality of the Bott periodicity and
Observations 3.5, we can conclude that ∂P and ∂Φ(P ) coincide with IndG

P and
IndH

Φ(P ) respectively, and that the diagram whose commutativity we want to
prove is the right block of the above diagram. So the theorem is proved.

Lemma 3.7. Assume that smooth groupoids G and H are equivalent as
in Definition 1.7. Suppose that G acts on another smooth groupoid R and that
the action satisfies the conditions in Definition 2.1. Then the H-manifold Φ(R)
inherits a natural groupoid structure from R. With this groupoid structure on
Φ(R), the H-action on Φ(R) satisfies the condition in Definition 2.1, and R−→�G
and Φ(R)−→�H are equivalent.

Proof. The groupoid structure of Φ(R) is given as follows. [α, z] and
[α′, z′] are composable if and only if σ(z) = σ(z′), i.e., z′ = γz for some γ, and
α, α′′ = α′ · γ−1 are composable. The composition is given by

[α, z][α′′, z] = [αα′′, z].

This is well-defined provided that the G-action on R satisfies the conditions
in Definition 2.1. It is also easy to check that the H-action on Φ(R) also
satisfies the conditions in Definition 2.1. So we can take the semi-direct prod-
uct Φ(R)−→�H. We define a left R−→�G-action and a right Φ(R)−→�H-action on
R×G(0) Z. (α, γ) · (α′, z) is defined if and only if s(γ) = ρ(z), and α, α′ · γ−1

are composable. Then

(α, γ) · (α′, z) = (α(α′γ−1), γz).

(α, z) · ([α′, z], δ) is defined if and only if α and α′ are composable. It is defined
as

(α, z) · ([α′, z], δ) = (αα′, zδ).

With these actions, R×G(0) Z becomes a (R−→�G, Φ(R)−→�H)-equivalence.
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Theorem 3.8. Assume that G and H are equivalent as in Definition 1.7.
Let f : P1 → P2 be inM(G). Then we have the following commutative diagram:

K∗ (C∗(TGP1 � G)) [df !]G−−−−→ K∗ (C∗(TGP2 � G))
∼=
� �∼=

K∗
(
C∗(THP̂1 �H)

)
[d bf !]H−−−−→ K∗

(
C∗(THP̂2 �H)

)
,

where P̂1 = Φ(P1), P̂2 = Φ(P2), and f̂ = Φ(f). The vertical isomorphisms are
induced by groupoid equivalences.

Proof. For the sake of simplifying the notations, we first consider a G-
equivariant map h : V → W as we did in the course of constructing [df !]G .
Then its associated object Φ(h) : Φ(V ) → Φ(W ) in M(H) gives us groupoids
RH

Φ(h) and QH
Φ(h) (see the paragraph which lies between Definitions 2.3 and

2.4). It is easy to check that RH
Φ(h) = Φ(RG

h) and the groupoid structure of
RH

Φ(h) coincides with the one inherited from RG
h . Hence RG

h ×G(0) Z gives us a

(RG
h
−→
�G,RH

Φ(h)

−→
�H)-equivalence. This equivalence is fiberwise. Each groupoid

has simple form over (0, 1). Similar statements hold for QG
h and QH

Φ(h).
As in Observation 3.5 we have the following four groupoid equivalences.

(W ×G(0) (V ×τV
V ))−→�G −−−−→ W ×G(0) V ×G(0) G ←−−−− W � G� �

W ×G(0) (V ×τV
V )×G(0) Z W ×G(0) Z	 	[

Ŵ ×H(0) (V̂ ×τ ′
V
V̂ )

]−→
�H −−−−→ Ŵ ×H(0) V̂ ×H(0) H ←−−−− Ŵ �H,

where V̂ = Φ(V ) and Ŵ = Φ(W ). These equivalences induce the following
commutative diagram:

K∗
(
C∗

(
[W ×G(0) (V ×τV

V )]−→�G
)) ∼=−−−−→ K∗ (C∗(W � G))

∼=
� �∼=

K∗
(
C∗

([
Ŵ ×H(0)

(
V̂ ×τ ′

V
V̂

)]−→
�H

)) ∼=−−−−→ K∗
(
C∗(V̂ �H)

)
,

where the isomorphisms are induced by groupoid equivalences. Hence we have
the following commutative diagram:

K∗
(
C∗ (

[T ∗
GV ⊕ (dh)∗(TGW )] � G)) [hpr !]G−−−−→ K∗(C∗(W � G))

∼=
� ∼=

�
K∗

(
C∗

(
[T ∗

HV̂ ⊕ (dĥ)∗(THŴ )] �H
))

[ĥpr !]H−−−−→ K∗(C∗(Ŵ �H)),
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where ĥ = Φ(h). In the case of h = df (so V = TGP1 and W = TGP2) then the
G-equivariant Thom isomorphism betweenK∗

(
C∗ (

[T ∗
GV ⊕ (dh)∗(TGW )] � G))

and K∗(C∗(V � G)) is given by IndV �G
F as we saw in Section 2. Similarly

IndΦ(V )�H
Φ′(F ) induces the H-equivariant Thom isomorphism. (Φ′ is the functor

induced by the groupoid equivalence between V �G and Φ(V ) �H.) Hence by
Theorem 3.6, the diagram

K∗ (C∗(TGP1 � G)) [df !]G−−−−→ K∗ (C∗(TGP2 � G))
∼=
� �∼=

K∗
(
C∗(THP̂1 �H)

)
[df̂ !]H−−−−→ K∗

(
C∗(THP̂2 �H)

)
commutes.

Theorem 3.8 gives us a homomorphism

α : K∗
top(G)→ K∗

top(H).

Theorem 3.9. For equivalent groupoids G and H, α : K∗
top(G)→ K∗

top(H)
is an isomorphism.

Proof. Surjectivity : For any H-manifold P ′, there is a H - equivariant
smooth map ∆P ′ : Φ(Ψ(P ′))→ P ′ which is an isomorphism in M(H). So any
element in K∗(C∗(THP ′

� H)) can be identified with an element in
K∗(C∗(TH(Φ(Ψ(P ′))) �H)). So the surjectivity of α follows.

Injectivity : Let P1 and P2 be proper G-manifolds. Suppose that we have
a H - equivariant map

h : Φ(P1)→ Φ(P2).

Since ∆P1 : ̂̂
P1 → P1 and ∆P2 : ̂̂

P2 → P2 are isomorphisms in M(G), h
determines a G-equivariant map f which makes the following diagram commute:

P1
f−−−−→ P2

∆P1

� �∆P2

̂̂
P1

Ψ(h)−−−−→ ̂̂
P2

Then it is easy to check that h = Φ(f). So the injectivity of α follows.

Now Theorems 3.6 and 3.9 imply the main theorem.

Theorem 3.10. The analytic assembly map is invariant under the
groupoid equivalence. More explicitly, if G and H are equivalent as in Defi-
nition 1.7, then there is an isomorphism α : K∗

top(G)→ K∗
top(H) which makes

the following diagram commute:

K∗
top(G)

µG−−−−→ K∗(C∗(G))
α

� �∼=

K∗
top(H)

µH−−−−→ K∗(C∗(H)),
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where the right vertical map is the isomorphism induced by the (G,H)-equivalence
Z.

We mention three easy consequences, which are well-known already.

Remark. (1) Let GF be the holonomy groupoid of a foliated space
(M,F) and T be a complete transversal. Since the etale groupoid GT

T = {γ :
r(γ), s(γ) ∈ T} is equivalent to GF , the Baum-Connes conjecture for a foliation
reduces to the conjecture for an etale groupoid.

(2) Let M = B̃ ×Γ F be the flat bundle associated to a discrete group
Γ acting on F by diffeomorphims. Suppose that the fixed point set of any
non-identity g ∈ Γ has no interior. Then the etale groupoid associated to the
transversal F is isomorphic to the groupoid F � Γ ([13]). Hence the analytic
assembly map for the foliated space M = B̃ ×Γ F is the same as the analytic
assembly map for the action of Γ on F .

(3) Let G be a transitive groupoid. Then for any unit u ∈ G, the Lie
group H = Gu

u is equivalent to G. So G and H have the same analytic assembly
map.
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