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Abstract

Let f be an area preserving monotone twist diffeomorphism on the
annulus. In this paper, we prove the equivalence of the following three
conditions: (i) the annulus is foliated by circles invariant under f . (ii)
any periodic point of f is of Birkhoff type, and (iii) all iterations fn are
twist diffeomorphisms.

1. Introduction

Let S1 = R/Z be the circle and A = S1× [0, 1] the closed annulus. Denote
by Sa the level set S1 × {a} for each a ∈ [0, 1]. Let Diff1

a(A) be the set of C1

diffeomorphisms which preserve area, orientation and each component S0 and
S1 of the boundary of A. For every point z = (x, y) in a product space X × Y ,
we write [z]1 for the first coordinate x.

Definition 1.1. We call a diffeomorphism f ∈ Diff1
a(A) a monotone

twist diffeomorphism (or simply a twist map) if the inequality

∂

∂y
[f(x, y)]1 > 0

holds for any (x, y) ∈ A.

The above inequality is called the twist condition. Monotone twist diffeo-
morphisms are important objects in the theory of area preserving or symplectic
mappings and there are many results on them. Basic results on monotone twist
diffeomorphisms are summarized in Sections 9 and 13 of [4] for example.

We call a point z a periodic point if its orbit {gn(z) | n ∈ Z} is finite.
Denote by Ã = R1 × [0, 1] the universal cover of A, by π : Ã→A the natural
covering projection.
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704 Masayuki Asaoka

One of the most important examples of twist maps is an integrable map.
A twist diffeomorphism f is called integrable if there exists a C1 function α
from [0, 1] to S1 such that dα/dy > 0 and f(x, y) = (x + α(y), y) for all
(x, y) ∈ A. The distinguished property of integrable twist maps is the existence
of an invariant foliation {Sa}a∈[0,1]. Perturbations of integrable twist maps have
been studied by many researchers.

In this paper, we focus on the characterization of the integrability. First, it
is easy to see that all iterations of an integrable twist map satisfy the twist con-
dition. Hence, it is natural to ask whether the twist condition for all iterations
characterizes integrable twist maps or not.

Second, the existence of invariant circles is related to the non-existence of
so-called non-Birkhoff periodic points.

Definition 1.2. Let f ∈ Diff1
a(A) be a monotone twist diffeomorphism

and F its lift. We say an f -invariant compact subset Λ of A is ordered when
[F (z1)]1 ≤ [F (z2)]1 for any z1, z2 ∈ π−1(Λ) such that [z1]1 < [z2]1. A periodic
point of f is called of Birkhoff type if its orbit is ordered.

Notice that whether an invariant set is ordered or not does not depend on
the choice of a lift F . In particular, whether a periodic point is of Birkhoff or of
non-Birkhoff does not depend on the choice of a lift F . In [2], Boyland and Hall
have shown that an invariant circle with an irrational rotation number does not
exist if and only if there exists a sequence of non-Birkhoff periodic points such
that the rotation numbers of them converge to the irrational number.

It is easy to see that all periodic points are of Birkhoff type for every
integrable twist map. Hence, it is natural to ask whether the condition that all
periodic points are of Birkhoff type characterizes integrable twist maps or not.

The following main theorem asserts that the twist condition for all itera-
tions or the non-existence of periodic points of non-Birkhoff type characterize
the integrability of a twist map in a weak sense.

Theorem 1.1. Let f ∈ Diff1
a(A) be an area preserving monotone twist

diffeomorphism. Then, the following three conditions are equivalent :
(1) there exists a homeomorphism h on A such that f(h(Sa)) = h(Sa) for

any a ∈ [0, 1],
(2) all periodic points of g are of Birkhoff type, and
(3) all iterations fn of f satisfy the twist condition.

One may ask whether the map is integrable if the above three conditions
hold. Since the conjugation of an integrable map by an area preserving dif-
feomorphism does not preserve the foliation {Sa}a∈[0,1] in general, the above
conditions does not imply that the map is integrable. Hence, a more suitable
question is whether the above three conditions imply that the map is topolog-
ically conjugate to an integrable one or not. We do not know whether it is
true or not so far. However, Mitsuhiro Shishikura has pointed out that the dy-
namics on invariant circles with a rational rotation number is the rigid rotation
under the conditions in the main theorem. We discuss his observation in the
appendix.
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We remark that the proof of the main theorem fits the case that an area
preserving monotone twist diffeomorphism on S1 × R preserves a band which
has the form {(x, y) ∈ S1 × R | x ∈ S1, γ1(x) ≤ y ≤ γ2(x)}, where γ1, γ2

are continuous functions on S1. Therefore, if there exist no periodic points of
non-Birkhoff type then the band is foliated by invariant circles.

We split the proof of the main theorem into three parts. In Section 2,
we show that the existence of an invariant foliation implies the twist condition
for all iterations. We devote Section 3 to show that the twist condition for all
iterations implies the non-existence of non-Birkhoff periodic points. The proofs
of them are elementary. Sections 4 and 5 are the main part of the proof of the
theorem. In these sections, we show that the non-existence of non-Birkhoff
periodic points implies the existence of an invariant foliation.

Acknowledgements. This work is supported by Grant-in Aid for En-
couragement of Young Scientists. The author is especially thankful to the
referee, who gave many fruitful comments for improvement of this paper. The
author is also thankful to Eiko Kin and Mitsuhiro Shishikura. The first idea
of the main theorem has come from discussions with Eiko Kin. Mitsuhiro
Shishikura has pointed out Lemma A.1. At last, the author would like to
thank Akira Kono for some valuable comments and encouragements.

2. Twist diffeomorphisms with a invariant foliation

In this section, we show that all iterations of a twist map also satisfy the
twist condition if the map preserves a foliation.

For a function γ on a space X, we denote the graph of γ by Γ(γ). Namely,
let

Γ(γ) = {(x, γ(x)) | x ∈ X}.

Theorem 2.1 (Birkhoff theorem). Let f ∈ Diff1
a(A) be a monotone

twist diffeomorphism and C an f-invariant continuously embedded circle which
is homotopic to S0. Then, there exists a continuous function γ on S1 such that
C = Γ(γ). In particular C is an ordered set.

Proposition 2.1 (Regularity Lemma). Let f ∈ Diff1
a(A) be a mono-

tone twist diffeomorphism. Then, there exists a constant K > 0 such that

|y1 − y2| ≤ K|x1 − x2|

for all two points (x1, y1), (x2, y2) in any f-invariant ordered set.
In particular, [z1]1 �= [z2]1 for any two distinct points z1, z2 in an f-

invariant ordered set.

We refer Section 13.2 of [4] for the proofs.
With the help of these results, we show the following.
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Proposition 2.2. Let f ∈ Diff1
a(A) be a monotone twist diffeomor-

phism. Assume that there exists a homeomorphism h on A such that f(h(Sa)) =
h(Sa) for any a ∈ [0, 1]. Then, all iterations fn of f satisfy the twist condition.

Proof. We identify the tangent space TwA at w ∈ A with the two dimen-
sional Euclidean space {(u, v)w | u, v ∈ R}.

By Birkhoff theorem and Regularity Lemma, h(Sa) is the graph of a Lip-
schitz function γa on S1 for every a ∈ A. Define a function b on A by

b(x, y) = lim sup
x′→x+0

γa(x′) − γa(x)
x′ − x

if (x, y) ∈ h(Sa). Since each γa is Lipschitz, b is a well-defined function on A.
For every w ∈ A, we define a half plane H(w) and a subset C(w) in TwA

by H(w) = {(u, v)w ∈ TwA | v > b(w)u} and C(w) = {(u, v)w ∈ H(w) | u >
0}. By the invariance of Γ(γa) = h(Sa) and the twist condition, we have
Df(H(w)) = H(f(w)) and Df(0, 1)w ⊂ C(f(w)). Hence, Df(C(w)) is a
subset of C(f(w)) for all w ∈ A. In particular, Dfn(0, 1)w ∈ C(fn(w)) for all
n ≥ 1. Therefore, we obtain that (∂/∂y)[fn(x, y)]1 > 0 for all (x, y) ∈ A and
n ≥ 1.

3. Twist maps of which all iterations are also twist maps

In this section, we show that all periodic points of a twist map are of
Birkhoff type if all iterations of the map satisfy the twist condition.

Proposition 3.1. Let f ∈ Diff1
a(A) be a monotone twist diffeomor-

phism and N a positive integer. Assume that fN−1 and fN satisfy the twist
condition. Then, all periodic points of f of period N are of Birkhoff type.

In particular, if all iterations fn satisfy the twist condition, then all peri-
odic points of f are of Birkhoff type.

Proof. The proof is by contradiction.
Assume that there exists a non-Birkhoff type periodic point w0 with period

N . Fix a lift F of f . Let Λ be the orbit of w0. We choose an integer m so
that FN (x0, y0) = (x0 + m, y0) for all (x, y) ∈ π−1(Λ). Since w0 is of non-
Birkhoff type, there exist two points z1, z2 ∈ π−1(Λ) such that [z1]1 < [z2]1 and
[F (z1)]1 ≥ [F (z2)]1.

Let (xi, yi) = zi and (x∗
i , y

∗
i ) = F (zi) for each i = 1, 2. By the twist

condition, there exist an interval [a0, a1] and a C1 function l on [a0, a1] such
that a0 ≤ x∗

2 ≤ a1 and F ({x2}× [0, 1]) = Γ(l). Notice that F ([x2,∞)× [0, 1]) =
{(x, y) ∈ Ã | a0 ≤ x ≤ a1, y ≤ l(x)} ∪ {x > a1}. Since x∗

2 = [F (z2)]1 ≤
[F (z1)]1 = x∗

1 and F ([x2,∞) × [0, 1]) does not contain (x∗
1, y

∗
1) = F (x1, y1), we

obtain that a0 ≤ x∗
2 ≤ x∗

1 ≤ a1 and l(x∗
1) < y∗

1 .
Let b0 be the number such that F (x2, b0) = (x∗

1, l(x
∗
1)). Notice that

b0 ∈ (y2, 1) since x∗
2 ≤ x∗

1 < a1. By the twist condition for fN , we have



�

�

�

�

�

�

�

�

Twist diffeomorphisms without non-Birkhoff periodic points 707

[FN (x2, b0)]1 ≥ [FN (x2, y2)]1 = x2 + m. On the other hand, the twist condi-
tion for fN−1 and the inequality l(x∗

1) < y∗
1 imply that

[FN (x2, b0)]1 = [FN−1(x∗
1, l(x

∗
1))]1

< [FN−1(x∗
1, y

∗
1)]1 = [FN (x1, y1)]1 = x1 + m.

Therefore, we obtain that x2 < x1. It contradicts that x1 = [z1]1 > [z2]1 = x2.
The latter part of the proposition is an immediate consequence of the

former part.

4. Invariant circles

In the rest of the paper, we prove that the annulus is foliated by invariant
circles if all periodic points of a twist map are of Birkhoff type. In this section,
we investigate invariant circles from the view point of rotation numbers.

We define a homeomorphism T on Ã by T (x, y) = (x+1, y). Remark that
all lifts of a diffeomorphism on A commute with T .

Let f ∈ Diff1
a(A) be a diffeomorphism which is not assumed to be a twist

map. Fix a lift F of f . For every point z ∈ Ã, we define the translation number
τ (z, F ) of z by

τ (z, F ) = lim
n→∞

1
n
{[Fn(z)]1 − [z]1}

if the limit exists.
Let C be an f -invariant circle which is homotopic to S0. By the theory

of rotation numbers, the number τ (z, F ) exists and does not depend on the
choice of z ∈ π−1(C). We define the rotation number ρ(C, F ) with respect to
a fixed lift F by ρ(C, F ) = τ (z, F ), where z ∈ π−1(C). It is easy to see that
ρ(C, T q ◦F p) = p ·ρ(C, F )+q for any integers p, q and that ρ(C1, F ) = ρ(C2, F )
if two f -invariant circles C1 and C2 intersect with each other.

The following is an immediate corollary of Proposition 13.2.7 of [4] and
Birkhoff theorem.

Proposition 4.1. Let f ∈ Diff1
a(A) be a monotone twist diffeomor-

phism. Then, the rotation number of invariant circles homotopic to S0 is con-
tinuous with respect to Hausdorff metric.

With the help of the area preserving condition, we can show that mutu-
ally disjoint invariant circles have different rotation numbers. We start with
the following elementary lemma which does not require the area preserving
condition.

Lemma 4.1. Let f ∈ Diff1
a(A) be a monotone twist diffeomorphism,

and γ1, γ2 two continuous functions such that Γ(γ1) and Γ(γ2) are invariant
under f . Fix a lift F of f .

(1) If γ1(x) ≤ γ2(x) for all x ∈ S1, then ρ(Γ(γ1), F ) ≤ ρ(Γ(γ2), F ).
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(2) If there exists a constant δ > 0 such that [F (z1)]1−[z1]1+δ ≤ [F (z2)]1−
[z2]1 for all z1 ∈ π−1(Γ(γ1)) and z2 ∈ π−1(Γ(γ2)), then ρ(Γ(γ1), F ) + δ ≤
ρ(Γ(γ2), F ).

Proof. Assume that γ1(x) ≤ γ2(x) for any x ∈ S1. Let li = γi ◦π for each
i.

First, we claim that [Fn(x, l1(x))]1 ≤ [Fn(x, l2(x))]1 for any x ∈ R and
n ≥ 0. Once it is shown, it is easy to see that ρ(Γ(γ1)) ≤ ρ(Γ(γ2)).

The proof of the claim is by induction. The case n = 0 is trivial. As-
sume that [Fn(x, l1(x))]1 ≤ [Fn(x, l2(x))]1. Let xn = [Fn(x, l1(x))]1. By the
twist condition, [Fn+1(x, l1(x))]1 = [F (xn, l1(xn))]1 ≤ [F (xn, l2(xn))]1. On
the other hand, [F (xn, l2(xn))]1 ≤ [Fn+1(x, l2(x))]1 since xn ≤ [Fn(x, l2(x))]1
and Γ(l2) is an ordered set. Therefore, we obtain that [Fn+1(x, l1(x))]1 ≤
[Fn+1(x, l2(x))]1. It completes the proof of the claim.

Next, we assume that there exists a positive constant δ > 0 such that
[F (x1, l1(x1))]1 − x1 + δ ≤ [F (x2, l2(x2))]1 − x2 for any x1, x2 ∈ R. Then, for
any x ∈ R,

[Fn(x, l1(x))]1 − x − nδ =
n−1∑
k=0

(
[F k+1(x, l1(x))]1 − [F k(x, l1(x))]1 + δ

)

≤
n−1∑
k=0

(
[F k+1(x, l2(x))]1 − [F k(x, l2(x))]1

)
= [Fn(x, l2(x))]1 − x.

Therefore, we obtain that ρ(Γ(γ1), F ) ≤ ρ(Γ(γ2), F ) − δ.

Proposition 4.2. Let f ∈ Diff1
a(A) be a monotone twist diffeomor-

phism and γ1, γ2 are continuous functions on S1 such that Γ(γ1) and Γ(γ2) are
f-invariant. If γ1(x) < γ2(x) for all x ∈ S1, then ρ(Γ(γ1), F ) < ρ(Γ(γ2), F )
for any lift F of f .

Proof. Without loss of generality, we can choose a lift F of f so that
[F (z)]1 > [z]1 for all z ∈ Ã. Let li = γi ◦ π for each i = 1, 2 and Dz,z′ =
{(x, y) | [z]1 ≤ x ≤ [z′]1, l1(x) ≤ y ≤ l2(x)} for every z, z′ ∈ Ã. We denote the
Lebesgue measure by Leb.

For every integer n ≥ 0, we define a function αn on Ã by αn(z) =
Leb(Dz,F n(z)). It is easy to see that α0(z) = 0, αn(Tm(z)) = αn(z), and
αn(z) =

∑n−1
k=0 α1(F k(z)) for any m, n ≥ 1 and z ∈ Ã.

We claim that there exists a constant δ > 0 such that α1(z1) < α1(z2)
for any z1 ∈ Γ(l1) and z2 ∈ Γ(l2). Proof is by contradiction. Assume that
there exist two points z1 ∈ Γ(l1), z2 ∈ Γ(l2) such that α1(z1) ≥ α1(z2).
Since α1(Tm(z)) = α1(z) for any integer m and z ∈ Ã, we can assume that
[z1]1 < 0 < [z2]1 and [F ([z1]1, y)]1 < 0 < [F ([z2]1, y)]1 for any y ∈ [0, 1] by
replacing z1 and z2 by T−m(z1) and Tm(z2) with a large integer m. Then,
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we have Leb(DF (z1),F (z2)) = Leb(Dz1,z2) + α1(z2) − α1(z1). By assumption,
Leb(DF (z1),F (z2)) ≤ Leb(Dz1,z2). By the twist condition and the invariance of
Γ(l1) and Γ(l2) under F , the set F (Dz1,z2) is a proper subset of DF (z1),F (z2).
It contradicts that F is area preserving. The proof of the claim is completed.

Since α1 ◦ T = α1 and li(x + 1) = li(x), a function α1 has a minimum and
a maximum on each Γ(li). Hence, the above claim implies that there exists a
constant δ > 0 such that α1(z1)+ δ ≤ α1(z2) for any z1 ∈ Γ(l1) and z2 ∈ Γ(l2).

Let K be the Lebesgue measure of {(x, y) ∈ Ã | 0 ≤ x ≤ 1, l1(x) ≤ y ≤
l2(x)}. Note that m ≤ [z′]1 − [z]1 ≤ m + 1 if mK ≤ Leb(Dz,z′) ≤ (m + 1)K
since Leb(DT i(z),T i+1(z)) = K for every i. Choose a large integer N so that
Nδ ≥ 2K.

αN (z2) − αN (z1) =
N−1∑
k=0

α1(F k(z2)) − α1(F k(z1)) ≥ Nδ ≥ 2K

for every z1 ∈ Γ(l1) and z2 ∈ Γ(l2). It implies that [FN (z1)]1 − [z1]1 + 1 ≤
[FN (z2)]1 − [z2]1. By Lemma 4.1, we obtain that ρ(z1, F

N ) < ρ(z2, F
N ).

Therefore, ρ(Γ(γ1), F ) < ρ(Γ(γ2), F ) since ρ(zi, F
N ) = Nρ(zi, F

N ) for each
i = 1, 2.

In the rest of this section, we show the uniqueness of the invariant circle
with a given rotation number for twist maps without non-Birkhoff periodic
points.

Lemma 4.2. Let f be a homeomorphism on A, F a lift of f , and µ a
Borel measure on A such that µ(U) > 0 for all open subset U of A. Denote
by B the subset [0,∞) × [0, 1] of Ã. Suppose that f preserves µ, F has a fixed
point, and F (B) is a proper subset of B. Then, there exists an integer p ≥ 2
and a point z0 ∈ Ã such that F q(z0) = T (z0).

Proof. Let B0 = [0, 1) × [0, 1] and Dn = F (B0) ∩ Tn(B0) for every n.
By assumption, int B0 \ F (B0) �= ∅. Let µ′ be the pull back measure of µ on
Ã by π. Since F preserves µ′, we have µ′(F (B0) \ B0) > 0. Hence, F (B0) is
the disjoint union of Dn (n ≥ 0) and there exists an integer n0 ≥ 1 such that
µ′(Dn0) > 0.

Since π maps both B0 and F (B0) to A bijectively, the set B0 is the disjoint
union of T−n(Dn) (n ≥ 0). Since F and T preserve µ′, we obtain that∫

B0

[F (z)]1dµ′ =
∫

F (B0)

[z]1dµ′

=
∑
n≥0

∫
T−n(Dn)

([z]1 + n)dµ′

=
∫

B0

[z]1dµ′ +
∑
n≥1

nµ′(Dn).

In particular, the integral of [F (z)]1 − [z]1 on B0 is positive since µ′(Dn0) > 0.
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Let ϕ(w) = [F (z)]1 − [z]1 for any w = π(z) ∈ Ã. Note that the integral of
ϕ on A is positive. By Birkhoff’s ergodic theorem, there exist a point w1 ∈ A
and a positive number δ > 0 such that limn→∞(1/n)

∑n−1
k=0 ϕ(fk(w1)) = δ. It

implies the existence of z1 ∈ Ã such that

lim
n→∞

1
n
{[F k(z1)]1 − [z1]1} = δ > 0.

Choose an integer p ≥ 2 so that 0 < 1/p < δ and 1/p �= ρ(S0, F ), ρ(S1, F ).
By assumption, F has a fixed point z2. Let G = T−1 ◦ F p. Then, we have
τ (z1, G) = pδ − 1 > 0 > −1 = τ (z2, G). By the fixed point theorem of Franks
for annulus homeomorphisms in [3], there exists a fixed point z0 of G. In
particular, F p(z0) = T (z0). Since 1/p �= ρ(S0, F ), ρ(S1, F ), we obtain that
π(z0) �∈ S0 ∪ S1.

Lemma 4.3. Let f ∈ Diff1
a(A) be a twist diffeomorphism and F a lift

of f . Assume that F kp(z0) = T kq(z0) and F p(z0) �= T q(z0) for a point z0 ∈ Ã
and integers p, q and k ≥ 2. Then, π(z0) is a non-Birkhoff periodic point of f .

Proof. Let G = T−q ◦F p. Since Gk(z0) = z0 and G(z0) �= z0, the orbit of
z0 for G is finite and contains at least two distinct points. Hence, there exists
an integer n0 such that [Gn0+1(z0)]1 = max{[Gn(z0)]1 | n ∈ Z}. Notice that
Gn0+1(z0) �= Gn0(z0), [Gn0(z0)]1 ≤ [Gn0+1(z0)]1, and

[F p(Gn0(z0))]1 = [Gn0+1(z0)]1 + q ≥ [Gn0+2(z0)]1 + q = [F p(Gn0+1(z0))]1.

Since π ◦ Gn0(z0) and π ◦ Gn0+1(z0) are contained in the orbit of a periodic
point π(z0) of f , π(z0) is a non-Birkhoff periodic point of f .

Proposition 4.3. Let f ∈ Diff1
a(A) be a monotone twist diffeomor-

phism and F its lift. Assume that C1 and C2 be f-invariant circles such that
ρ(C1, F ) = ρ(C2, F ). Then, either

(1) C1 = C2 or
(2) there exists a periodic point of non-Birkhoff type in the region bounded

by C1 and C2.

Proof. Assume that C1 �= C2. Let γi be the function on S1 satisfying
that Γ(γi) = Ci for each i = 1, 2. Without loss of generality, we could assume
that γ1(x) ≤ γ2(x) for any x ∈ S1.

Let I be the collection of the connected components of {x ∈ S1 | γ1(x) <
y < γ2(x)}. Since C1 �= C2, the set I is not empty. By Proposition 4.2,
Γ(γ1) and Γ(γ2) intersect with each other. Hence, each element of I is an open
interval.

Fix an element I ∈ I. Let U = {(x, y) ∈ A | x ∈ I, γ1(x) < y < γ2(x)}.
Since Γ(γ1) and Γ(γ2) are invariant under f , there exists a sequence {In} in I
such that fn(U) = {(x, y) ∈ A | x ∈ In, γ1(x) < y < γ2(x)}. It implies that
either fn(U) = U or fn(U) ∩ U = ∅ for each n. Since f is area preserving and
the area of U is positive, there exists an integer p ≥ 1 such that fp(U) = U .
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Let li = γi ◦ π for each i = 1, 2. Fix a connected component of π−1(U)
and let D be its closure. Then, there exists an interval [a0, b0] such that D =
{(x, y) ∈ Ã | x ∈ [a0, b0], l1(x) ≤ y ≤ l2(x)}. Since π(intD) = U and fp(U) =
U , there exists an integer q such that F p(D) = T q(D).

Let c0 = l1(b0) = l2(b0). By the invariance of Γ(l1) and Γ(l2), (b0, c0) is
a fixed point of T−q ◦ F p. By the fixed point theorem of Andrea in [1] and
Poincaré’s recurrence theorem, any orientation preserving homeomorphism on
the plane which preserves a finite Borel measure has a fixed point. Since D is
homeomorphic to the closed unit disk D2 = {(x, y) ∈ R2 | x2 + y2 ≤ 1}, there
exists a fixed point (x0, y0) ∈ int D of T−q ◦ F p.

Let (xn, yn) = Fn(x0, y0) and (bn, cn) = Fn(b0, c0) for each n. Since
Fn(D) is homeomorphic to D2, there exists a homeomorphism ϕn between D2

and Fn(D) such that ϕ(0, 0) = (xn, yn), ϕ(∂D2) = ∂D, ϕ(0, 1) = (bn, cn), and
ϕ([−1, 1]×{0}) = {xn}×[l1(xn), l2(xn)]. We can choose ϕp so that ϕp = T q◦ϕ0.

Let π′(θ, r) = (r cos(2πθ), r sin(2πθ)) for every (θ, r) ∈ A. Define a home-
omorphism gn on A by (ϕn+1 ◦ π′) ◦ gn(θ, r) = F ◦ (ϕn ◦ π′(θ, r)) for every
(θ, r) ∈ A. We remark that gn(1/4, 1) = (1/4, 1) since F (bn, cn) = (bn+1, cn+1).

Let hn(x, y) = ϕn ◦π′◦π(x, y) for every x, y ∈ Ã. Choose a lift Gn of gn on
Ã so that Gn(1/4, 1) = (1/4, 1). Let B = [0,∞)× [0, 1]. We claim that Gn(B)
is a proper subset of B for all n. In fact, since F satisfies the twist condition,
F ({xn} × (yn, l2(xn))) ⊂ Fn+1(D) ∩ {x > xn+1}. It implies that [Gn(0, y)]1 ∈
(0, 1/2) since Gn(1/4, 1) = (1/4, 1), hn({0} × [0, 1]) = {xn} × [yn, l2(xn)], and
hn({0} × [1/2, 1]) = {xn} × [l1(xn), yn]. Therefore, we obtain that Gn(B) is a
proper subset of B.

Let g = gp−1 ◦ gp−2 ◦ · · · ◦ g0, G = Gp−1 ◦ Gp−2 ◦ · · · ◦ G0, and µ′ the
pull back measure of µ by ϕ0 ◦ π′. Notice that G is a lift of g and (1/4, 1)
is a fixed point of G. By the above claim, G(B) is a proper subset of B.
Since (ϕn ◦ π′) ◦ g = F p ◦ (ϕ0 ◦ π′) and ϕn = T q ◦ ϕ0, the map g preserves
µ′. Hence, we apply Lemma 4.2 and obtain an integer k ≥ 2 and a point
w0 ∈ int Ã satisfying that Gk(w0) = T (w0). Notice that g(π(w0)) �= π(w0)
since τ (G, w0) = 1/k. Since ϕ0 = T−q ◦ ϕp maps int A to int D \ {(x0, y0)}
homeomorphically, we obtain that F p ◦ h0(w0) �= T q ◦ h0(w0). By Lemma 4.3,
a periodic point π ◦ h0(w0) ∈ π(D) of f is of non-Birkhoff type.

5. Twist diffeomorphisms without non-Birkhoff periodic points

In this section, we show the existence of an invariant foliation for twist
maps without non-Birkhoff periodic points.

First, we recall the result of Boyland and Hall in [2] on the existence of
invariant circles.

Theorem 5.1 ([2, Theorem C]). Let f ∈ Diff1
a(A) be a monotone twist

diffeomorphism and F a lift of f . If f possesses no invariant circles of irrational
rotation number ω ∈ [ρ(S0, F ), ρ(S1, F )], then for any rational number q/p
sufficiently close to ω, there exists a non-Birkhoff periodic point with rotation
number q/p.
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We combine the above theorem with the results in the last section.

Proposition 5.1. Let f ∈ Diff1
a(A) be a monotone twist diffeomor-

phism. Assume that all periodic points of f are of Birkhoff type. Then, there
exists a homeomorphism h on A such that f(h(Sa)) = h(Sa) for any a ∈ [0, 1].

Proof. Fix a lift F of f . Let ρ0 = ρ(S0, F ) and ρ1 = ρ(S1, F ). Notice
that ρ0 < ρ1 by Proposition 4.2.

By Theorem 5.1, for any irrational number ω ∈ [ρ0, ρ1], there exists an
invariant circle Cω such that ρ(Cω, F ) = ω. Birkhoff theorem implies that
Cω = Γ(γω) for some function γω on S1. By Proposition 4.3, Cω = Γ(γω) is
the unique invariant circle with rotation number ω.

For any number α ∈ [ρ0, ρ1], we define two functions γ−
α and γ+

α on S1 by

γ−
α (x) = sup({γω(x)|ω �∈ Q, ω ≤ α} ∪ {0}),

γ+
α (x) = inf({γω(x)|ω �∈ Q, ω ≥ α} ∪ {1}).

For any irrational numbers ω1, ω2 ∈ [ρ0, ρ1] with ω1 < ω2, we obtain that
γω1(x) < γω2(x) for all x ∈ S1 by Proposition 4.2. Hence, γω = γ−

ω = γ+
ω for

any irrational number ω.
By Regularity Lemma and Proposition 4.1, all γ−

α and γ+
α are uniformly

Lipschitz and ρ(Γ(γ−
α ), F ) = ρ(Γ(γ+

α )) = α. By Proposition 4.3, we obtain
that γ−

α = γ+
α . Let γα = γ−

α = γ+
α for every number α ∈ [ρ0, ρ1]. By its

definition, γα(x) is continuous with respect to α. Since ρ(Γ(γα)) = α for any
α, γα1(x) �= γα2(x) if α1 �= α2.

Let a(t) = (1 − t)ρ0 + tρ1 for every t ∈ [0, 1]. We define a map h on A by

h(x, y) = (x, γa(y)(x)).

We claim that h is a homeomorphism on A. Once it is shown, then f(h(Sy)) =
f(Γ(γa(y))) = Γ(γa(y)) = h(Sy) for any y ∈ [0, 1] since Γ(γa(y)) is f -invariant.

Let h0(x, y) = (x, γy(x)) for every (x, y) ∈ S1 × [ρ0, ρ1]. It is sufficient to
show that h0 is a homeomorphism between S1 × [ρ0, ρ1] and A.

First, we show that h0 is bijective. Fix a point (x0, y0) ∈ A. Since
γρ0(x0) = 0, γρ1(x0) = 1 and γα(x0) is strictly increasing and continuous
with respect to α, there exists the unique number α0 ∈ [ρ0, ρ1] such that
γα0(x0) = y0. Then, h0(x0, α0) = (x0, y0). Therefore, h0 is bijective.

Second, we show that h0 is continuous. We can choose a constant K > 0
so that |γα(x1) − γα(x2)| ≤ K|x1 − x2| for any x1, x2 ∈ S1 and α ∈ [ρ0, ρ1]
since γα are uniformly Lipschitz. Hence, for any points (x, α), (x′, α′),

|γα(x) − γα′(x)| ≤ |γα(x) − γα′(x)| + |γα′(x) − γα′(x′)|
≤ |γα(x) − γα′(x)| + K|x − x′|

Since γα(x) is continuous with respect to α, γα′(x′) converges to γα(x) as
(x′, α′) goes to (x, α). It implies the continuity of h0.

At last, we show that h0 is an open map. Fix (x0, α0) ∈ S1 × [ρ0, ρ1]
and a neighborhood U0 of (x0, α0). There exists ε > 0 such that the set
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U = {(x, α) | |x−x0| < ε, |α−α0| < ε} is contained in U0. We show that h0(U)
is a neighborhood of h0(x0, α0). Once it is shown, the map h0 is open map and
the proof is completed.

Recall that there exists K > 0 such that |γα(x′) − γα(x)| < K|x′ − x| for
all x, x′ ∈ S1 and α ∈ [ρ0, ρ1]. Take δ > 0 so that 2Kδ < min{γα0+ε(x0) −
γα0(x0), γα0(x0) − γα0−ε(x0)}. If |x − x0| < δ, then

γα0+ε(x) − γα0(x0) ≥ |γα0+ε(x0) − γα0(x0)| − |γα0+ε(x) − γα0+ε(x0)|
> 2Kδ − Kδ = Kδ.

By the same calculation, we also obtain that γα0−ε(x) < γα0(x0) − Kδ. Since
γα(x) is increasing with respect to α for any x, we have h0(U) = {(x, y) | |x −
x0| < ε, γα0−ε(x) < y < γα0+ε(x)}. Hence, h0(U) contains a neighborhood
{(x, y) | |x − x0| < δ, |y − γα0(x0)| < Kδ} of (x0, γα0(x0)).

Main theorem follows immediately from Propositions 2.2, 3.1 and 5.1.

Appendix A. The rigid rotations on invariant circles with a rational
rotation number

As mentioned in the introduction, we do not know whether the three con-
ditions in the main theorem imply that the map is topologically conjugate to
an integrable one or not. However, Mitsuhiro Shishikura has pointed out the
following.

Lemma A.1. Let f be an area preserving monotone twist diffeomor-
phism on A and h a homeomorphism on A such that f ◦ h(Sa) = h(Sa) for all
a ∈ [0, 1]. Then, f |h(Sy0) is topologically conjugate to the rigid rotation if the
rotation number on h(Sy0) is rational.

Proof. Assume that the rotation number of f on h(Sy0) is a rational
number p/q. Notice that the rotation number of f on h(Sy) is strictly increasing
with respect to y by Proposition 4.2.

We identify the map h◦f ◦h−1|Sy0
with a homeomorphism g on S1. Then,

there exists a lift G of g such that Gq − p has a fixed point. If Gq(x) − p > x
for some x ∈ R, then every small perturbation of Gq − p either satisfies that
Gq(x) − p > x for all x ∈ S1 or has a fixed point by the mean value theorem.
Hence, the rotation number of h−1 ◦ f ◦ h|Sy

is not less than p/q for all y
close to y0. It contradicts that the rotation number of h−1 ◦ f ◦ h|Sy

is strictly
increasing. Therefore, we obtain that Gq(x) − p ≤ x for all x. By the same
argument, we can show that Gq(x)− p ≥ x for all x. Therefore, Gq(x) = x+ p,
and hence, h−1 ◦ f ◦ h|Sy0

is topologically conjugate to the rigid rotation.



�

�

�

�

�

�

�

�

714 Masayuki Asaoka

Department of Mathematical
and Natural Sciences
The University of Tokushima
Minamijosanjima-cho 1-1
Tokushima 770-8502, Japan

After March 1, 2003
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606-8502, Japan

References

[1] S. Andrea, On homeomorphisms of the plane which have no fixed points,
Abh. Math. Sem. Univ. Hamburg, 30 (1967), 61–74.

[2] P. Boyland and G. Hall, Invariant circles and the order structure of periodic
orbits in monotone twist maps, Topology, 26 (1987), 21–35.

[3] J. Franks, Recurrent and fixed point of surface homeomorphisms, Ergodic
Theory and Dynam. Systems, 8∗ (1988), 99–107.

[4] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dy-
namical Systems, Encyclopedia of Math. and its Appl. 54, Cambridge
Univ. Press, 1995.


