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The topology of spaces of maps between real
projective spaces

By

Kohhei Yamaguchi

1. Introduction

Let O(k) be the group of orthogonal (k×k) matrices. For connected spaces
X and Y , let Map(X,Y ) denote the space consisting of all continuous maps
f : X → Y with compact-open topology. For m ≤ n, we define the inclusion
map im,n : RPm → RPn by

im,n([z0 : z1 : · · · : zm]) = [z0 : z1 : · · · : zm : 0 : 0 : · · · : 0].

We denote by Map1(RPm,RPn) the path component of Map(RPm,RPn) con-
taining im,n. Define the map s̃m,n : O(n + 1) → Map1(RPm,RPn) by the
matrix multiplication

s̃m,n(A)([z0 : · · · : zm]) = [z0 : · · · : zm : 0 : 0 : · · · : 0] ·A.

Let ∆k denote the center of O(k) given by ∆k = {εEk : ε = ±1} ∼= Z/2, where
Ek denotes the (k×k) identity matrix. Since s̃m,n is constant on the subgroup
∆m+1 ×O(n−m) ⊂ O(n+ 1), it induces the map

sm,n : PVn+1,m+1 → Map1(RPm,RPn),

where let PVn+1,m denote the real projective Stiefel manifold of orthogonal
(m+ 1)-frames in Rn+1 given by PVn+1,m+1 = (∆m+1 ×O(n−m))\O(n+ 1).

The main purpose of this paper is to prove the following result.

Theorem 1.1. If m ≤ n, sm,n : PVm+1,m+1 → Map1(RPm,RPn) is a
homotopy equivalence up to dimension D(m,n) = 2(n−m)− 1.

Remark 1. A map f : X → Y is called a homotopy equivalence up to
dimension N if the induced homomorphism f∗ : πi(X) → πi(Y ) is bijective
when i < N and surjective when i = N .
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A similar result for KPn was first obtained in [2] (cf. [1]) for the case
K = C and in this paper we shall treat the case K = R. However, a partial
result only holds for the case K = H (cf. [3]) because the quaternion field H is
not commutative.

2. Reduction of the proof

The inclusion map i = im−1,m : RPm−1 → RPm induces the fibration

i∗ : Map1(RPm,RPn)→ Map1(RPm−1,RPn)

given by i∗(f) = f ◦ i with fiber Fm, where the space Fm is defined by

Fm = {f ∈ Map1(RPm,RPn) : f ◦ i = im−1,n}.
We remark that the homeomorphism

φm,n :
∆m ×O(n−m+ 1)
∆m+1 ×O(n−m)

∼= O(n−m+ 1)
O(n−m)

∼=−→ Sn−m

is induced from the map O(n−m+ 1)→ Sn−m given by

(2.0) A =




z0 z1 · · · zn−m

a1,0 a1,1 · · · a1,n−m

...
. . . . . .

...
an−m,0 an−m,1 · · · an−m,n−m


 �→ (z0, . . . , zn−m).

Then we have the commutative diagram

(†)
Sn−m −−−−→ PVn+1,m+1 −−−−→ PVn+1,m

sm

� sm,n

� sm−1,n

�
Fm −−−−→ Map1(RPm,RPn) i∗−−−−→ Map1(RPm−1,RPn)

where two horizontal sequences are fibration sequences.
We identify RPk = RPk−1 ∪γk−1 e

k, where γk : Sk → RPk denotes the
usual Hopf fibering. Let µ : RPm → RPm ∨ Sm denote the co-action map
given by pinching the hemisphere of the top cell em. Then consider a pairing
P : Fm × Ωm

RPn → Fm defined by P (f, ω) = ∇ ◦ (f ∨ ω) ◦ µ for (f, ω) ∈
Fm × ΩmRPm, where ∇ : RPm ∨ RPm → RPm denotes a folding map. It also
induces a homotopy equivalence Fm � ΩmRPn by multiplying by the element
im,n. Because there is a homotopy equivalence ΩmRPn � ΩmSn, we obtain
the homotopy commutative diagram

(‡)
Sn−m −−−−→ PVn+1,m+1 −−−−→ PVn+1,m

s′
m

� sm,n

� sm−1,n

�
ΩmSn −−−−→ Map1(RPm,RPn) i∗−−−−→ Map1(RPm−1,RPn)
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where two horizontal sequences are fibration sequences.
Now we introduce the following result.

Lemma 2.1. (s′m)∗ : πn−m(Sn−m)
∼=→ πn−m(ΩmSn) ∼= Z is an isomor-

phism.

We postpone the proof of Lemma 2.1 to the next section and complete the
proof of Theorem 1.1.

Proof of Theorem 1.1. The proof of Theorem 1.1 is by induction on m
keeping n fixed. If m = 0, the map sm,n is a homeomorphism and the assertion
clearly holds. Suppose n ≥ m ≥ 1 and that the assertion is true for m − 1.
Consider the homotopy exact sequences induced from (‡):
→ πk(Sn−m) −−−−−→ πk(PVn+1,m+1) −−−−−→ πk(PVn+1,m)

∂′
−−−−−→

(s′m)∗
?
?
y (sm,n)∗

?
?
y (sm−1,n)∗

?
?
y

→ πk(ΩmSn) −−−−−→ πk(Map1(RPm, RPn))
i∗−−−−−→ πk(Map1(RPm−1, RPn))

∂−−−−−→
It follows from Lemma 2.1 that s′m is identified with the m-fold suspension
Em : Sn−m → ΩmSn (up to homotopy equivalence). Hence, s′m is a homotopy
equivalence up to dimension D(m,n) = 2(n−m)−1. Then the assertion easily
follows from the Five Lemma. This completes the proof of Theorem 1.1.

3. Proof of Lemma 2.1

In this section we prove Lemma 2.1. Since we can identify sm with s′m up
to homotopy equivalence, it is sufficient to show the following result.

Lemma 3.1. (sm)∗ : πn−m(Sn−m)
∼=→ πn−m(Fm) ∼= Z is an isomor-

phism.

Proof. We note that the map sm : Sn−m → Fm is the composite of maps

Sn−m φm,n←−−−∼=
∆m ×O(n−m+ 1)
∆m+1 ×O(n−m)

j−→ O(n+ 1)
∆m+1 ×O(n−m)

sm,n−−−→ Map1(RPm,RPn),

where j denotes the natural inclusion map induced from the inclusion map
∆m ×O(n−m+ 1) ⊂ O(n+ 1). Since

[w0 : · · · : wm : 0 : · · · : 0] ·
(
Em O
O A

)
= [w0 : · · · : wm−1 : wmz0 : wmz1 : · · ·wmzn−m]

for (z0, z1, . . . , zn−m) ∈ Sn−m and

A =




z0 z1 · · · zn−m

a1,0 a1,1 · · · a1,n−m

...
. . . . . .

...
an−m,0 an−m,1 · · · an−m,n−m


 ,
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it follows from (2.0) that the map Sn−m sm→ Fm ⊂ Map1(RPm,RPn) corre-
sponds to a map φ : RPm × Sn−m → RPn given by

φ(w, z) = [w0 : · · · : wm−1 : wmz0 : wmz1 : · · · : wmzn−m]

for (w, z) = ([w0 : · · · : wm], (z0, . . . , zn−m)) ∈ RPm × Sn−m.
Let ε : Sn−m → Map1(RPm,RPn) be the constant map at im,n, which is

defined by ε(w) = im,n for any w ∈ RPm. Then the map ε corresponds to a
map ψ : RPm × Sn−m → RPn given by

ψ(w, z) = [w0 : · · · : wm−1 : wm : 0 : · · · : 0]

for (w, z) = ([w0 : · · · : wm], (z0, . . . , zn−m)) ∈ RPm × Sn−m.
Then two maps φ and ψ agree on the subspace

(RPm−1 × Sn−m) ∪ (RPm × (1, 0, . . . , 0))

and we would like to study the difference element between them. For this pur-
pose, it is sufficient to replace the pair (RPm,RPm−1) by the pair (Dm, Sm−1)
(using a characteristic map of the top cell in RPm) and to find the difference
element between the two resulting maps on Dm × Sn−m.

From now on, we embedDm×Sn−m in Sn = ∂(Dm×Dn−m+1) in the usual
way. Let w = (w0, . . . , wm−1) and z = (z0, . . . , zn−m) run over Sm and Sn−m,
respectively. Then the points ((sin θ)w, (cos θ)z) runs over Sn (0 ≤ θ ≤ π/2),
and the space Dm × Sn−m may be regarded as the subset

{((sin θ)w, (cos θ)z) : w ∈ Sm, z ∈ Sn−m, 0 ≤ θ ≤ 4/π}.
We define the map γm : Dm → RPm by

γm((sin θ)w) = ((sin 2θ)w, cos θ) (0 ≤ θ ≤ 4/π).

Then γm represents the characteristic map of the top cell em in RPm. In this
case, the corresponding two maps φ′, ψ′ : Dm × Sn−m → RPm are given by{

φ′((sin θ)w, (cos θ)z) = [(sin 2θ)w : (cos 2θ)z]
ψ′((sin θ)w, (cos θ)z) = [(sin 2θ)w : (cos 2θ)(1, 0, . . . , 0)]

for 0 ≤ θ ≤ π/4, (w, z) ∈ Sm × Sn−m.
Two maps φ′ and ψ′ agree on (Sm−1×Sn−m+1)∪ (Dm× (1, 0, . . . , 0)) and

we wish to know the difference element between them. For this purpose, we
extend φ′ and ψ′ over Sm−1 ×Dn−m+1 by

φ′((sin θ)w, (cos θ)z) = ψ′((sin θ)w, (cos θ)z) = [w : 0] (π/4 ≤ θ ≤ π/2).

Now two maps φ′ and ψ′ agree on (Sm−1 × Dn−m+1) ∪ (Dm × (1, 0, . . . , 0)),
which is a contractible space. Hence their difference element is

[φ′]− [ψ′] ∈ πn(RPn).
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However, since ψ′ factors through Dn, [ψ′] = 0. Thus, the required difference
element is [φ′] ∈ πn(RPn). Now define the map φ′′ : Sn → Sn by

φ′′((sin θ)w, (cos θ)z) = ((sin θ)w, (cosω(θ))z), where

ω(θ) =

{
2θ if 0 ≤ θ ≤ π/4
π/2 if π/4 ≤ θ ≤ π/2.

Then φ′′ is a lifting of φ′ to Sn such that γn ◦ φ′′ = φ′. Because the function
ω(θ) is homotopic to the identity keeping 0 and π/2 fixed. Hence φ′′ � id :
Sn → Sn. So the required difference element is [φ′] = [γn], and it is a generator
of πn(RPn) ∼= Z. Because φ′ and ψ′ correspond to sm and ε, respectively,
[sm] ∈ πn−m(Fm) ∼= Z is a generator.
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