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Comparison theorems for eigenvalues of
one-dimensional Schrodinger operators

By

Min-Jei HUANG

Abstract

The Schrédinger operator H = —d?/da* + V() on an interval [0, a]
with Dirichlet or Neumann boundary conditions has discrete spectrum
Eq[V] < E3lV] < Es[V] < ---, for bounded V. In this paper, we apply
the perturbation theory of discrete eigenvalues to obtain upper bounds
for Z?zl E;[V], where k is any positive integer. Our results include the
following:

(1) Yooy BilV] < 05 E[Vel, where Vi(z) = [V (z) + V(a—2)]/2,
with equality if and only if V' is symmetric about = = a/2.

(ii) If V is convex, then the Dirichlet eigenvalues satisfy

k

S OBV <> E[0] +§/av(x)dac

j=1

with equality if and only if V' is constant.
(iii) If V' is concave, then the Neumann eigenvalues satisfy

k k
k: a
ZEJ-[V} < ZEj[O] + 5/0 V(x)dx
j=1 j=1
with equality if and only if V' is constant.

1. The basic theorem

Let  be a region in the complex plane, and for each z € , let T(z) be
a closed operator with nonempty resolvent set. {T'(z)} is called an analytic
family of type (A) if the operator domain of T'(z) is some set D independent of
z, and for each ¢ € D, T'(z)p is a vector-valued analytic function of z ([1], [3]).
Suppose that {T'(z)} is an analytic family of type (A) in 2. The Kato-Rellich
theorem ([3]) asserts that if zp € Q and if E(zp) is an isolated nondegenerate
eigenvalue of T'(zp), then, for z near zg, there is a unique point E(z) in the
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spectrum of T'(z) near E(zp) which is an isolated nondegenerate eigenvalue.
Moreover, E(z) is analytic near z = zp, and there is an analytic eigenvector
u(z) near z = 2.

We now consider the eigenvalue problem for one-dimensional Schrodinger
operators. Let V(z) be a bounded real-valued function on the interval [0, al,
and let H be the selfadjoint operator on L?([0,a]) given by —d?/dx? + V (x)
with Dirichlet or Neumann boundary conditions. As we know, H has discrete
spectrum

EFi<EBEy<FBEz<---

with corresponding normalized eigenfunctions uq(z), uz(x), ug(z),.... Also,
the w;(z) can be chosen so as to be real-valued and to form a complete or-
thonormal basis for L([0, a]).

In this paper, we shall apply the perturbation theory of discrete eigenval-
ues to obtain upper bounds for Z?:l E;, the sum of the k lowest eigenvalues
of H, where k is any positive integer. To apply the idea of this theory to eigen-
values, let V(-,t), t € R, be a one-parameter family of bounded potentials,
and consider the selfadjoint operator H(t) = —d?/dx? + V(x,t) on L?([0,a])
with Dirichlet or Neumann boundary conditions. We assume that H(¢) has an
analytic continuation to a region  so that {H(2)} is an analytic family of type
(A) in Q. If E;(t) is the jth eigenvalue of H(t), there is a simple formula for
the derivative of Ej(t):

d %

(1) HEit) = ; o7 (@0 (@, t)dr,

where u;(x,t) is the normalized eigenfunction corresponding to the eigenvalue
E;(t). Here we note the following basic formula for the second derivative of
E5(t).

Theorem 1 (the second-order perturbation formula).

& “ 92V
Y B4 = oV 2
a2 (1) oz (z, t)uj (2, t)dx
- 1 @ a9V 2
2 B — E. (1) {/ — (z, ) u;(z, t)up(z, t)de
n:;n;éj Ej (t) - En(t) 0 ot J
Proof. See, for example, [2, Chapter 17] or [3, Chapter XIIJ. O

The following result, which is an important consequence of Theorem 1,
plays a major role in the next section.

Theorem 2.  If (0?V/0t?)(x,t) <0, then

d2
@(E1+E2+~~+Ek)(t)§0 forany k>1.
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Proof. Since (0?V/0t?)(x,t) < 0, we have from Theorem 1 that

d2 )
= ) <2 Z )Ajyn(t),

n#j Ej(

where A; ,,(t) fo (OV/)0t)(z, t)u;(z, t)un(x, t)de. It follows that

& & 1 )
J=1nz#j 7 "
(2) o k - 1 A2
=22 2 pa—mm e

where we have used the fact that A, ,(t) = A, ;(t) in the second step.

467

|

Theorem 2 indicates that the concavity of Z?Zl E;(t) is connected with
the concavity of V(x,t) with respect to ¢t. In fact, there is a natural way of
approaching this connection based on the min-max principle and basic facts
about concave functions. For the linear case V(z,t) = tV(z), it was shown in
[4] (pp. 153-154) that 25:1 E;(t) is a concave function of ¢ for any £ > 1. Here

we prove a theorem that is a generalization of this result.

Theorem 3.  IfV(z,t) is concave with respect to t, then, for any k > 1,

Z§:1 E;(t) is a concave function of t.
Proof. By the min-max principle ([4, p. 152]),
k k

3) Y Eit) = inf > ey Hb)ey),

{8917~--7<Pk}j:1

where the infimum is taken over all orthonormal systems {¢1,...,¢%} in D =

D(H(t)), the domain of H(t). For simplicity of notation, write H (t)
V(t). Then, by the concavity of V(t), we have

=1 i=1

for all a; > 0 with 7" | o; = 1. So,

<s0,H (Z am> s0> > aile, Ht:))
i=1 i=1

:H0+

for all ¢ € D. This implies that Z?:N‘P]’» H(t)p;) is a concave function of .
Since the infimum of any collection of concave functions is concave, we conclude

that Zle E;(t) is concave.

|
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2. Applications

For a bounded potential V' on [0, a], we denote by E;[V] the jth eigen-
value of the selfadjoint operator —d?/dz® + V(x) on L?([0,a]) with Dirichlet
[Neumann] boundary conditions.

We begin with a comparison theorem.

Theorem 4. IfV(x) is a bounded potential on [0, a], then, for any k >
L,

k
(4) Y EVI< Z E;[Vil,

j=1
where Vs(z) = [V(x) + V(a — x)]/2. The equality holds only if V. = Vj; i.e.,

only if V is symmetric about x = a/2.

Proof. Consider the one-parameter family of potentials: V (x,t) =tV (z)
+ (1 —t)Vs(x). By (1), we have

k / 1 k " 2
jz:; Ej(t) =3 ]z:l/o V(z)—V(a— x)}uj (2,t)dz.

Note that the potential Vi(x) is symmetric about = a/2 with corresponding
normalized eigenfunctions u;(z,0), 7 =1,2,.... So,
ugj—1(x,0) =ugj_1(a —z,0) and wug;(z,0) = —ugj(a—z,0).

Thus, for each j, uf(x, 0) is symmetric about 2 = a/2. On the other hand, the
potential V(z) — V(a — x) is antisymmetric about 2 = a/2. It follows that

k / 1 k " 2
;Ej(()) T2 jz_‘:/o [V(z) = V(a = 2)]uj(z,0)dr = 0.

Since (92V/0t?)(x,t) = 0, we have by Theorem 2 that Z?:l E/(t) <0. Thus,
for any t > 0, we have
k k
Bi(t) <Y Ej(0) = 0.
j=1 j=1
This implies that

k k k k

S EVI=Y E;j(1)< ZEj(O) =Y E;[Vi].

j=1 j=1 j=1

Finally, if the equality holds in (4), then 25:1 E;(t) is constant for 0 <
t <1 so that Z§=1 E/(t) =0for 0 <t < 1. Now taking ¢t = 0 and using (2),
we see that

1

45000 = 5 /OQ[V(x) V(a4 — 2)Ju; (2, 0)un(z, 0)dz = 0
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for 1 < j <kandn >k+1. Thus, writing f(z) = [V(z) — V(a — 2)]/2, we
have, for 1 < j <k,

f(@)u(z,0) = {/ f(@)u(z, 0)uy(z,0)dr | uy(x,0)

M- M-

A (0)uy(z,0).

Il
-

n

Since uq(z,0) has no zeros in the open interval (0,a), we see that f(x) is
continuous on (0,a). Moreover, for each z € (0,a), f(x) is an eigenvalue of
the k x k matrix [A;,(0)]. It follows that f(z) must be constant. Thus,
f(z) = f(a/2) = 0. This shows that V = V. O

We remark that there is an alternative proof of the inequality (4) based on
the min-max principle rather than the second-order perturbation formula and
antisymmetry. In fact, by (3), the sum of the k lowest Dirichlet [Neumann]
eigenvalues for any potential V is given by

k
E; |V / 2 LV ..
2 V1= ,MZ [ (@)> + V(@) () [2)da
where the infimum is taken over all functions ¢1,...,¢, € C' which satisfy

(@i, ;) = 0; ; and the Dirichlet [Neumann] boundary conditions. Thus,

SEV] = inf Z/ [m 24 V@)l

{e1,-0k }

+ 5V Dl o

1 -
5{4:1, ,wk}z/ (105 (@) ? + V (2)|p; (2)[*]dz

k

ey S [ 1 @) + Ve — o)y (@)2)de

{«ol,m’wc}j:l

1< 1o
=52 EilVI+5 3 EilV]

k]f J=
:ZEJ[V]

since the Dirichlet [Neumann] eigenvalues of —d?/dx? 4+ V (a — z) are the same
as those of —d?/dxz? + V (x).
As an immediate corollary of Theorem 4, we have
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Corollary 5. If V(z) is a concave potential on [0,a], then, for any
k>1,

k k

(5) D EIVI <Y B0+ £V (a/2)

j=1 j=1
with equality if and only if V is constant.

Proof. If V(x) is concave on [0, a], we have Vi(x) < V(a/2) for all x €
[0, a] so that

k k k
> E;lV]< ZEj[ Z V(a/2)] ZEj[O] +kV(a/2).

From this and Theorem 4, it follows that the equality occurs in (5) if and only

if V(z) = Vi(x) = V(a/2). This proves the corollary. O

Remark 1.  The eigenvalues E;[0] for the zero potential are well-known.
In the Dirichlet case, E;[0] = j 7r2/a In the Neumann case, E;[0] = (j —
1)%72 /a®.

Remark 2. An improvement of Corollary 5 in the Neumann case will
be given in Theorem 9.

Now, for bounded V', we consider the one-parameter family of potentials:
V(x,t) = tV(z). Then, by Theorem 2, we have Z?=1 EJ(t) <0 so that

for all ¢ > 0. In particular, taking t = 1, we get

k k k a
(6) > E[V] Z E;[0] +Z /O V(z)u?(z,0)dz.

Jj=1

Here the normalized eigenfunctions u;(x,0) for the zero potential can, for ex-
ample, be taken as

(7) uj(z,0) = v/2/asin(jrz/a)
in the Dirichlet case; and

1 f =1
®) uy(w,0) = VO or g=1
V2/acos[(j — 1)mx/al for j>2

in the Neumann case.

In the remainder of this section, we shall give two applications of the
inequality (6). We first note a useful fact.
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Lemma 6. IfV(x) is a convex potential on [0, a], then

() Q/OGV( ) sin? ( )d </ Vi

forj=1,2.3,....

Proof. We suppose first that V' is differentiable. Then an integration by
parts gives

a 2 .
2/ V(x) sin® < )dw—/ V(z / V(x)cos(ﬁrx)dx
0 a
— V'(x) sin 2jme dx
25w a '
Since V is convex, V' is monotone increasing on [0, a]. Thus,
Jj— (n+1)a/j 24
/ V/( sm( wm) dm—Z/ V'(x)sin( ij)d:c
na/j a
(2 a (n+1)a/j 24
<ZV’< n—I— )/ sin(]ﬂ-x>da:
na/j a
(2 a
_ Z Vv’ < n Jr > .0

=O

and (9) follows.

To prove (9) without the assumption that V is differentiable, we intro-
duce the approximate identity {n.(z)}. Let n(z) be any positive infinitely
differentiable function with support in (—1,1) so that f x)dx = 1. Define

ne(z) = e~ n(x/e) for ¢ > 0. Now, let V(z) be any contmuous extension of
V(z) to the whole of (—o00,00), and set

Ve(z) = /oo ne(z — )V (t)dt.

— 00

Then

Vala) — V()| < /°° ne(x — V(1) — V(a)]dt

§< sup IV(t)V(mN)/ ne(z — t)dt
{t/la—t|<e} —o0
= sup |V(t)-V(2)

{t/|e—t]<<}

so V. — V uniformly on [0,a]. Also, if z,y € [§,a — 6] C (0,a) and if £ < 6,
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then, by the convexity of V on [0, a], we have

(532)- Lo

g/sgvu—a+vw—aMAWﬂ

—€

= JVe(a) + V(o))

which implies that V; is convex on [d,a — 0] whenever e < §. Since V; is
differentiable, the first part of the proof gives

?AWJVHxHHF(Z%@%%Q>dx§i£mJVHxﬂx

Taking € — 0, we see that

2 /;_6 V (z) sin? (%) dzr < /;_5 V(x)dx.

Since this is true for all § with 0 < § < a/2, (9) is proved in the general case
by letting § — 0. |

With this lemma, we can now prove the following result for convex poten-
tials.

Theorem 7.  IfV(x) is a convex potential on [0, a], then, for any k > 1,
the Dirichlet eigenvalues satisfy

k

k k a
(10) zﬁMWS§:@M+EAVWM%

j=1
Moreover, the equality holds if and only if V' is constant.

Proof. The inequality (10) follows immediately from (6), (7) and Lemma
6. To examine the case of equality, we have from Theorem 4, (6), (7) and
Lemma 6 that

k k
Y EIVI<Y BV
j=1 j=1
k kg e jmax
2
_ZE][O]—I—ZE/O Vs(z) sin (—) dx
Jj=1 j=1
k E e
< E][O]Jrf/ Vi(x)dx
- a Jo
J=1
k
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where Vi(z) = [V(z) + V(a — x)]/2 is also convex. Thus, by Theorem 4 and
Lemma 6, equality holds in (10) only when V =V, and 2 [ Vi(x) sin?(jrz/a)dx
= foa Vi(x)dx for all j =1,2,... k. To see that these conditions imply that V'
is constant, we take j = 1 and note that V; is a symmetric single-well poten-
tial, i.e., Vi(z) = Vs(a — ) and V; is monotone decreasing on [0,a/2]. Since
sin?(7x/a) is symmetric about 2 = a,/2 and monotone increasing on [0, a/2], it
follows that

“ o (TX 2 [ ¢ g T “
-~ <z = = :
2/0 Vs (z) sin ( - )da: < a/o VS(J:)dx/O sin ( - )dx /0 Vs(z)dz

Moreover, the equality holds here only when Vj is constant. This together with
the condition V' = V, completes the proof of the theorem. O

A fact corresponding to Lemma 6 for concave potentials is given by

Lemma 8. IfV(x) is a concave potential on [0,a], then

2/:1/(:5) cos? <¥) dx < /OGV(x)dx

Proof. Since V is concave, —V is convex. Hence, by Lemma 6,

—Q/OaV(x) sin? (?) dz < —/Oa V(2)da.

Q/Oa V() cos? (?) do = 2/0a V(z)dz — 2/: V() sin® (?) do

< /0 V).

forj=1,2.3,....

O

As a final application of our comparison techniques, we prove the following
result for concave potentials. This improves the result of Corollary 5 in the
Neumann case.

Theorem 9. If V(z) is a concave potential on [0, a], then, for any k >
1, the Neumann eigenvalues satisfy

k

k A
(11) > BV < ZEj[o] + 5/0 V(z)dz.

j=1

Moreover, the equality holds if and only if V' is constant.
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Proof. The proof is similar to that of Theorem 7. Since V is concave, so
is Vi. Hence, by Theorem 4, (6), (8) and Lemma 8, we have

SZE /V da:+z / ) cos <(‘7a1)7m)dx
gZE /V

k
= Z E;[0] + g /0 V(z)dx

and equality can hold in (11) only when V = V; and 2 [ Vi (2) cos? (jrx/a)dz =
Jo Vis(z)da for all]—l 2,...,k—1; ie, only when V = V; and 2 [ V() x
sin (jﬂ'x/a Ydx = fo S ( dx for all 7 = 1,2,...,k — 1. As in the proof of
Theorem 7, these Condltlons imply that V' is constant since —V; is a symmetric
single-well potential. d
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