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Homotopy exponents of Harper’s spaces

By

Stephen D. Theriault

Abstract

For an odd prime p, we show that the p-primary homotopy exponent

of Harper’s rank 2 finite mod-p H-space Kp is pp2+p. We then use this to
show that the 3-primary homotopy exponent of each of the exceptional
Lie groups F4 and E6 is 312.

1. Introduction

Localize spaces and maps at an odd prime p. The homotopy exponent of
a space X is the least power of p which annihilates the p-torsion in π∗(X). We
write this as exp(X) = pr, or if the prime deserves extra emphasis, we instead
write expp(X) = pr. Harper [H] constructed a rank 2 finite mod-p H-space Kp

which is analogous to the Lie group G2 at the prime 2, as

H∗(Kp;Z/pZ) = Λ(x3, y2p+1) ⊗ Z/pZ[z2p+2]/(zp
2p+2)

with P1(x) = y and β(y) = z. We show:

Theorem 1.1. For any odd prime p, exp(Kp) = pp2+p.

Theorem 1.1 is proven by showing that upper and lower bounds for the
homotopy exponent coincide. Davis [D1] has shown that Kp has v1-periodic
homotopy groups of order pp2+p. As the v1-periodic homotopy groups of any
space X represent actual summands in π∗(X), these calculations give lower
bounds for the homotopy exponents. We approach the problem from the other
side and find upper bounds for the homotopy exponents of matching order.

One interesting consequence of Theorem 1.1 concerns the exceptional Lie
groups F4 and E6 at the prime 3. These are both examples of a torsion Lie
group, that is, a Lie group which has torsion in its mod-p cohomology. For
the compact simple Lie groups, the torsion cases are F4, E6, E7, and E8 at
the prime 3, and E8 at the prime 5. Harper [H] has shown that there is a 3-
local equivalence F4 � K3×B(11, 15), where B(11, 15) is a spherically resolved
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space. Harris [Hs] has shown there is a 3-local equivalence E6 � F4 × (E6/F4),
while Bendersky and Davis [BD] have shown that E6/F4 is spherically resolved.
Since πm(X) = πm(Y ) × πm(Z) if X � Y × Z, these decompositions reduce
the calculation of an upper bound for the homotopy exponents of F4 and E6

to finding upper bounds for the homotopy exponents of each of their factors.
Theorem 1.1 gives the upper bound on the homotopy exponent of the factor
K3. In Section 2 we discuss a general method for obtaining an upper bound on
the homotopy exponent of the total space in a fibration over a sphere. Lower
bounds on the homotopy exponents are given by Bendersky and Davis [BD].
They show F4 and E6 each have v1-periodic homotopy groups of order 312.
Note that this is the value of exp3(K3). We show:

Theorem 1.2. exp3(F4) = exp3(E6) = 312.

Another space related to Kp is Jp−1(S2n), the (p− 1)st stage of the James
construction on S2n (equivalently, the 2n(p − 1)-skeleton of ΩS2n+1). As sug-
gested by the cohomology of Kp, Davis [D1], giving an unpublished proof of
Harper, has shown the existence of a map Kp −→ Jp−1(S2p+2) which is a
cohomological inclusion. We show that, in general:

Proposition 1.1. For any odd prime p, exp(Jp−1(S2n)) ≤ pnp.

One application of Proposition 1.1 concerns the Cayley projective plane W .
In the context of the exceptional Lie groups, there is a fibration Spin(9) −→
F4 −→ W . Davis and Mahowald [DM] showed there is an integral homotopy
fibration S7 −→ ΩW −→ ΩS23 which splits if p ≥ 5. Bendersky and Davis [BD]
showed that when p = 3, there is a homotopy equivalence ΩW � ΩJ2(S8), and
further showed that there exist elements of order 312 in π∗(W ). Combining
this with the upper bound on exp3(J2(S8)) from Proposition 1.1 proves the
following.

Corollary 1.1. exp3(W ) = 312.

The three remaining cases of torsion Lie groups, E7 and E8 at the prime 3,
and E8 at the prime 5, have been well studied. Davis [D2] has shown that
exp3(E7) ≥ 319, exp3(E8) ≥ 330, and exp5(E8) ≥ 530. Wilkerson [W] has
shown that there is a 5-local equivalence E8 � X × Y where H∗(X;Z/5Z) ∼=
Λ(x15, x23, x39, x47) and H∗(Y ;Z/5Z) ∼= Z/5Z[x12]/(x5

12)⊗Λ(x3, x11, x27, x35).
Gonçalves [Go] has shown that X is indecomposable. Homologically, it looks
as though Y may have K5 as a factor. At one point Harper claimed this
was the case but later agreed with an objection by Kono. The issue was
finally resolved by Davis [D2] when he showed that Y was in fact indecom-
posable. However, there should exist fibrations B(27, 35) −→ Y −→ K5 and
S27 −→ B(27, 35) −→ S35, in which case the methods of this paper would ap-
ply and one should be able to obtain a good, perhaps optimal, upper bound for
exp5(E8). The cases of E7 and E8 at the prime 3 appear more difficult. Kono
and Mimura [KM] have shown that both E7 and E8 are indecomposable at 3,
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Homotopy exponents of Harper’s spaces 35

which makes the computation of a best possible upper bound on their homo-
topy exponents more difficult. In the case of E7, however, there is a fibration
F4 −→ E7 −→ E7/F4 and it is conjectured that E7/F4 is spherically resolved.
If so then again our methods apply. On the other hand, the author knows of
no such advantageous fibration for E8 so this case remains problematic.

2. A method for computing upper bounds on exponents

Typically, an upper bound for the exponent of a space Y is estimated by
identifying homotopy fibrations X −→ Y −→ Z in which the exponents of both
X and Z are known. Then exp(Y ) ≤ exp(X) · exp(Z). Often, though, this is
a poor estimate. This section shows that a better estimate can be obtained in
certain cases, in particular for spherically resolved spaces. We then consider
some examples.

We begin with the following Lemma, which is a sort of Mayer-Vietoris
sequence, and is trivial to prove.

Lemma 2.1. Suppose there is a homotopy pullback diagram

Q
f ��

h

��

P

i

��
M

g �� N,

where N is an H-space. Then there is a homotopy fibration

Q
f×h−−→ P × M

i·(−g)−−→ N.

Let pr : S2n+1 −→ S2n+1 be the map of degree pr. Let S2n+1{pr} be its
homotopy fiber. By [N], exp(S2n+1{pr}) = pr.

Lemma 2.2. Suppose there is a homotopy fibration

X
f−→ Y

q−→ S2n+1

where Y is an H-space and there is a map S2n+1 i−→ Y such that q ◦ i � pr.
Then there is a homotopy fibration

ΩX × ΩS2n+1 Ωf ·(−Ωi)−−−−→ ΩY −−−−→ S2n+1{pr}.
Consequently, exp(Y ) ≤ pr · max(exp(X), exp(S2n+1)).

Proof. The homotopy q ◦ i � pr results in a homotopy pullback diagram

S2n+1{pr} ��

��

S2n+1
pr

��

i

��

S2n+1

X
f �� Y

q �� S2n+1.
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Apply Lemma 2.1 to get a homotopy fibration S2n+1{pr} −→ X ×S2n+1 f ·(−i)−→
Y . Continuing the fibration sequence to the left two steps gives the desired
fibration. The exponent consequence follows.

Two slight modifications of Lemma 2.2 are useful. Both concern altered
hypotheses on the initial fibration X

f−→ Y
q−→ S2n+1. First, if Y is not an

H-space then we can instead consider the fibration ΩX
Ωf−→ ΩY

Ωq−→ ΩS2n+1.
Second, the initial fibration may have the form Z −→ ΩY

q−→ ΩS2n−1, where
q is not a loop map. The following Lemma covers both cases.

Lemma 2.3. Suppose there is a homotopy fibration

Z
f−→ ΩY

q−→ ΩS2n+1

and there is a map ΩS2n+1 i−→ ΩY such that q ◦ i � pr. Then there is a
homotopy fibration

ΩZ × Ω2S2n+1 Ωf ·(−Ωi)−−−−→ Ω2Y −−−−→ ΩS2n+1{pr}.

Consequently, exp(Y ) ≤ pr · max(exp(X), exp(S2n+1)).

Proof. As in Lemma 2.2.

We now consider some examples of Lemmas 2.2 and 2.3 which play a role
in our exponent calculations. Suppose there is a homotopy fibration

S2m+1 −→ B −→ S2n+1,

where n > m. The (2n+1)-skeleton of B is the cofiber C of a map f : S2n −→
S2m+1. Suppose f has order pr. Recall from [CMN] that exp(S2n+1) = pn.

Lemma 2.4. exp(B) ≤ pn+r.

Proof. Since f has order pr there is a homotopy cofibration diagram

S2n ��

pr

��

∗ ��

��

S2n+1

��

S2n+1

pr

��
S2n

f �� S2m+1 �� C �� S2n+1.

Since the map B −→ S2n+1 is an extension of the map C −→ S2n+1 we have
a composition S2n+1 −→ C −→ B −→ S2n+1 which is degree pr. If B is an
H-space apply Lemma 2.2 to get a homotopy fibration ΩS2m+1 ×ΩS2n+1 −→
ΩB −→ S2n+1{pr}. If B is not an H-space apply Lemma 2.3 to ΩB to get
a homotopy fibration Ω2S2m+1 × Ω2S2n+1 −→ Ω2B −→ ΩS2n+1{pr}. The
exponent conclusion then follows.
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Example 2.1. Let q = 2(p − 1). Let α1 ∈ πS
q−1(S0) be a generator of

the stable stem. Following Mimura and Toda [MT], for m ≥ 1 define a space
B(2m + 1, 2m + q + 1) as the homotopy pullback

S2m+1 �� B(2m + 1, 2m + q + 1) ��

��

S2m+q+1

α1

��
S2m+1 �� S4m+3 w �� S2m+2,

where w is the Whitehead product of the identity map on S2m with itself. Since
α1 has order p we have exp(B(2m + 1, 2m + q + 1) ≤ pm+p.

Example 2.2. Replacing α1 in Example 2.1 with α2 ∈ πS
2q−1(S0), we

obtain a homotopy fibration S2m+1 −→ B2(2m+1, 2m+2q+1) −→ S2m+2q+1.
Again, since α2 has order p we have exp(B2(2m + 1, 2m + 2q + 1) ≤ pm+2p−1.

Another example involves the filtration of the James construction on
spheres. The James construction on a connected space X is a model for ΩΣX.
Let Jk(X) = (

∏k
i=1 X)/ ∼ where

(x1, . . . , xi−1, ∗, xi+1, . . . xk) ∼ (x1, . . . , xi, ∗, xi+2, . . . xk)

for 1 ≤ i ≤ k − 1. By adding ∗’s on the right we have an inclusion Jk(X) −→
Jk+1(X). Let J(X) = lim−→ Jk(X). Then J(X) � ΩΣX.

Of particular interest is the case when X is an even sphere S2n. Then
J(S2n) � ΩS2n+1 and, localized at a prime p, there is an EHP fibration

Jp−1(S2n) −→ ΩS2n+1 H−→ ΩS2np+1.

If p = 2 then a similar fibration holds for X = S2n+1 but at odd primes the
second EHP fibration is

S2n−1 −→ ΩJp−1(S2n) T−→ ΩS2np−1,

where T is the Toda map. In [Gr] it was shown that T can be chosen to be an
H-map.

Let s : S2np−1 −→ Jp−1(S2n) be the attaching map whose cofiber is
Jp(S2n).

Lemma 2.5. There is a homotopy commutative diagram

ΩS2np−1
p ��

Ωs

��

ΩS2np−1

ΩJp−1(S2n) T �� ΩS2np−1.
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Proof. The proof is standard. One property of the James construction
is that any H-map ΩΣX −→ Y into a homotopy associative H-space Y is
uniquely determined by its restriction to X. Let E : S2np−2 −→ ΩS2np−1 be
the inclusion. A homology calculation shows that T ◦ Ωs ◦ E has degree p.
Note that T ◦ Ωs is a composite of H-maps and so is an H-map. Thus T ◦ Ωs

is homotopic to ΩS2np−1 Ωp−→ ΩS2np−1, which in turn is homotopic to the
pth-power map.

We now prove Proposition 1.1, which states that exp(Jp−1(S2n)) ≤ pnp.

Proof. Start with the homotopy fibration S2n−1 −→ ΩJp−1(S2n) T−→
ΩS2np−1. By Lemmas 2.5 and 2.3 there is a homotopy fibration

ΩS2n−1 × Ω2S2np−1 −→ Ω2Jp−1(S2n) −→ ΩS2np−1{p}.
The conclusion follows.

Remark 1. The factorization of the pth-power map on ΩS2np−1

through ΩJp−1(S2n) also implies exp(Jp−1(S2n)) ≥ 1
p exp(S2np−1) = pnp−2.

In fact, Davis [D1] has shown that exp(Jp−1(S2p+2) ≥ pp2+p, showing Propo-
sition 1.1 is sharp in this case. It is likely to always be sharp.

3. Harper’s finite H-spaces

In [H] Harper constructs finite H-spaces Kp, one for each odd prime p,
satisfying

H∗(Kp;Z/pZ) = Λ(x3, y2p+1) ⊗ Z/pZ[z2p+2]/(zp
2p+2)

with P1(x) = y and β(y) = z. We wish to find an upper bound for the
homotopy exponent of Kp. To do this we want to wrap around Kp a suitable
homotopy fibration which allows us to use Lemma 2.3.

We begin by recording some cohomological information. The three-
connected cover Kp〈3〉 of Kp is defined by the homotopy fibration

Kp〈3〉 −→ Kp −→ K(Z, 3).

In [K] Kono shows:

Lemma 3.1. We have

H∗(Kp〈3〉;Z/pZ) ∼= Λ(b2p2+1, c2p2+2p−1) ⊗ Z/pZ[a2p2 ]

where β(a2p2) = b2p2+1 and P1(b2p2+1) = c2p2+2p−1.

We now set up the homotopy fibration that will allow us to compute
exp(Kp). Davis [D1], proving an unpublished result of Harper, showed that
there is a homotopy fibration

B(3, 2p + 1) −→ Kp
π−→ Jp−1(S2p+1),
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where B(3, 2p + 1) is one case of the spaces considered in Example 2.1. Taking
three-connected covers, looping, and composing with the Toda map gives a
homotopy pullback

X ��

��

S2p+1 ��

��

B(3, 2p + 1)〈3〉

ΩKp〈3〉 Ωπ ��

T

��

ΩJp−1(S2p+2) ��

T

��

B(3, 2p + 1)〈3〉

ΩSp2+2p−1 ΩS2p2+2p−1,

where T is defined as the composite T ◦ Ωπ, and X is simply a name for the
pullback. In particular, note that T is an H-map since both T and Ωπ are.
Note also that the map S2p+1 −→ B(3, 2p + 1)〈3〉 along the top row of the
diagram is the inclusion of the bottom cell. Toda [T1] first studied this map
and calculated H∗(X;Z/pZ) ∼= Λ(x2p2−1) ⊗ Z/pZ[y2p2 ] with β(x) = y.

The following Lemma is the analogue of Lemma 2.5.

Lemma 3.2. There is a homotopy commutative square

ΩS2p2+2p−1
Ωt ��

p

��

ΩKp〈3〉
T

��

ΩS2p2+2p−1 ΩS2p2+2p−1,

for some map map t.

Proof. Consider the homotopy fibration X
f−→ ΩKp〈3〉 T−→ ΩS2p2+2p−1.

By Lemma 3.1 the (2p2 + 2p − 2)-skeleton of ΩKp〈3〉 is a space C whose
mod-p cohomology has vector space basis a2p2−1, b2p2 , and c2p2+2p−2 with
β(a2p2−1) = b2p2 and P1(b2p2) = c2p2+2p−2. In particular, there is a cofibration

S2p2+2p−3 α1−→ P 2p2
(p) −→ C, where P 2p2

(p) is the Moore space of dimension
2p2 and order p, and α1 is a lift of S2p2+2p−3 α1−→ S2p2

through the pinch map
P 2p2

(p) −→ S2p2
.

Observe that the cohomology of X implies that its (4p2 − 2)-skeleton is
P 2p2

(p). Since f is (2p2+2p−3)-connected we must therefore have a homotopy
commutative diagram

P 2p2
(p) ��

��

C ��

��

S2p2+2p−2

E

��
X

f �� ΩKp〈3〉 T �� ΩS2p2+2p−1,
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where the top row is a cofibration and all the vertical maps are inclusions.
Since α1 has order p, there is a homotopy cofibration diagram

S2p2+2p−3 ��

p

��

∗ ��

��

S2p2+2p−2

��

S2p2+2p−2

p

��
S2p2+2p−3

α1 �� P 2p2
(p) �� C �� S2p2+2p−2.

Define λ as the composite λ : S2p2+2p−2 −→ C −→ ΩKp〈3〉. Then the two
diagrams above imply T ◦ λ � E ◦ p. The James construction lets us extend
λ to an H-map λ : ΩS2p2+2p−1 −→ ΩKp〈3〉. A standard argument with the
James construction shows that an H-map ΩΣX −→ ΩZ is homotopic to a loop
map. Thus λ � Ωt for some map t : S2p2+2p−1 −→ Kp.

Now consider the H-map ΩS2p2+2p−1 T◦Ωt−−−−→ ΩS2p2+2p−1. One property
of the James construction is that any H-map ΩΣX −→ Y into a homotopy
associative H-space Y is uniquely determined by its restriction to X. Thus
T ◦ λ � E ◦ p implies T ◦ Ωt � p.

Lemma 3.3. exp(X) = p.

Proof. The composition S2p+1 i−→ B(3, 2p + 1)〈3〉 −→ B(3, 2p + 1) −→
S2p+1 is degree p. Thus there is a homotopy pullback diagram

X �� S2p+1{p} ��

��

S3〈3〉

��
X �� S2p+1 i ��

p

��

B(3, 2p + 1)〈3〉

��
S2p+1 S2p+1.

By [S], the fibration along the top row splits when looped twice, Ω2S2p+1{p} �
Ω2S3〈3〉×Ω2X. Since exp(S2p+1{p}) = p, we therefore have exp(X) ≤ p. The
inclusion of the bottom Moore space into X shows exp(X) ≥ p.

We now prove Theorem 1.1, which states that exp(Kp) = pp2+p.

Proof. Lemmas 3.2 and 2.3 imply there is a homotopy fibration

ΩX × Ω2S2p2+2p−1 −→ Ω2Kp −→ ΩS2p2+2p−1{p}.

Thus exp(Kp) ≤ p ·max(exp(X), exp(S2p2+2p−1)). By Lemma 3.3, exp(T ) = p

while exp(S2p2+2p−1) = pp2+p−1. Thus exp(Kp) ≤ pp2+p. On the other hand,
Davis [D1] showed that π∗(Kp) has elements of order pp2+p so exp(Kp) ≥
pp2+p.
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4. The exponents of F4 and E6 at 3

We first record lower bounds for the homotopy exponents. As mentioned
in the Introduction, Bendersky and Davis [BD] showed that exp3(F4) ≥ 312

and exp3(E6) ≥ 312. We now prove Theorem 1.2 by showing that the upper
bounds on the 3-primary homotopy exponents of F4 and E6 match the lower
bounds.

Proof. First, Harper [H] showed there is a 3-local equivalence

F4 � K3 × B(11, 15).

Theorem 1.1 shows that exp3(K3) ≤ 312. On the other hand, Example 2.1
shows that exp3(B(11, 15)) ≤ 38. Thus exp3(F4) ≤ 312. Next, Harris [Hs]
showed there is a 3-local equivalence

E6 � F4 × (E6/F4).

Bendersky and Davis [BD] showed there is a 3-local equivalence E6/F4 �
B2(9, 17). Example 2.2 shows that exp3(B2(9, 17)) ≤ 39. Thus the upper bound
for the homotopy exponent of E6 equals that of F4, and so exp3(E6) ≤ 312.
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