# Homotopy exponents of Harper's spaces

By

Stephen D. THERIAULT

#### Abstract

For an odd prime p, we show that the p-primary homotopy exponent of Harper's rank 2 finite mod-p H-space  $K_p$  is  $p^{p^2+p}$ . We then use this to show that the 3-primary homotopy exponent of each of the exceptional Lie groups  $F_4$  and  $E_6$  is  $3^{12}$ .

## 1. Introduction

Localize spaces and maps at an odd prime p. The homotopy exponent of a space X is the least power of p which annihilates the p-torsion in  $\pi_*(X)$ . We write this as  $\exp(X) = p^r$ , or if the prime deserves extra emphasis, we instead write  $\exp_p(X) = p^r$ . Harper [H] constructed a rank 2 finite mod-p H-space  $K_p$ which is analogous to the Lie group  $G_2$  at the prime 2, as

$$H^*(K_p; \mathbf{Z}/p\mathbf{Z}) = \Lambda(x_3, y_{2p+1}) \otimes \mathbf{Z}/p\mathbf{Z}[z_{2p+2}]/(z_{2p+2}^p)$$

with  $\mathcal{P}^1(x) = y$  and  $\beta(y) = z$ . We show:

**Theorem 1.1.** For any odd prime p,  $\exp(K_p) = p^{p^2+p}$ .

Theorem 1.1 is proven by showing that upper and lower bounds for the homotopy exponent coincide. Davis [D1] has shown that  $K_p$  has  $v_1$ -periodic homotopy groups of order  $p^{p^2+p}$ . As the  $v_1$ -periodic homotopy groups of any space X represent actual summands in  $\pi_*(X)$ , these calculations give lower bounds for the homotopy exponents. We approach the problem from the other side and find upper bounds for the homotopy exponents of matching order.

One interesting consequence of Theorem 1.1 concerns the exceptional Lie groups  $F_4$  and  $E_6$  at the prime 3. These are both examples of a *torsion Lie* group, that is, a Lie group which has torsion in its mod-p cohomology. For the compact simple Lie groups, the torsion cases are  $F_4$ ,  $E_6$ ,  $E_7$ , and  $E_8$  at the prime 3, and  $E_8$  at the prime 5. Harper [H] has shown that there is a 3local equivalence  $F_4 \simeq K_3 \times B(11, 15)$ , where B(11, 15) is a spherically resolved

<sup>2000</sup> Mathematics Subject Classification(s). 55Q52

Received July 8, 2002

Revised May 26, 2003

space. Harris [Hs] has shown there is a 3-local equivalence  $E_6 \simeq F_4 \times (E_6/F_4)$ , while Bendersky and Davis [BD] have shown that  $E_6/F_4$  is spherically resolved. Since  $\pi_m(X) = \pi_m(Y) \times \pi_m(Z)$  if  $X \simeq Y \times Z$ , these decompositions reduce the calculation of an upper bound for the homotopy exponents of  $F_4$  and  $E_6$ to finding upper bounds for the homotopy exponents of each of their factors. Theorem 1.1 gives the upper bound on the homotopy exponent of the factor  $K_3$ . In Section 2 we discuss a general method for obtaining an upper bound on the homotopy exponent of the total space in a fibration over a sphere. Lower bounds on the homotopy exponents are given by Bendersky and Davis [BD]. They show  $F_4$  and  $E_6$  each have  $v_1$ -periodic homotopy groups of order  $3^{12}$ . Note that this is the value of  $\exp_3(K_3)$ . We show:

**Theorem 1.2.**  $\exp_3(F_4) = \exp_3(E_6) = 3^{12}$ .

Another space related to  $K_p$  is  $J_{p-1}(S^{2n})$ , the  $(p-1)^{st}$  stage of the James construction on  $S^{2n}$  (equivalently, the 2n(p-1)-skeleton of  $\Omega S^{2n+1}$ ). As suggested by the cohomology of  $K_p$ , Davis [D1], giving an unpublished proof of Harper, has shown the existence of a map  $K_p \longrightarrow J_{p-1}(S^{2p+2})$  which is a cohomological inclusion. We show that, in general:

**Proposition 1.1.** For any odd prime p,  $\exp(J_{p-1}(S^{2n})) \leq p^{np}$ .

One application of Proposition 1.1 concerns the Cayley projective plane W. In the context of the exceptional Lie groups, there is a fibration  $Spin(9) \longrightarrow F_4 \longrightarrow W$ . Davis and Mahowald [DM] showed there is an integral homotopy fibration  $S^7 \longrightarrow \Omega W \longrightarrow \Omega S^{23}$  which splits if  $p \ge 5$ . Bendersky and Davis [BD] showed that when p = 3, there is a homotopy equivalence  $\Omega W \simeq \Omega J_2(S^8)$ , and further showed that there exist elements of order  $3^{12}$  in  $\pi_*(W)$ . Combining this with the upper bound on  $\exp_3(J_2(S^8))$  from Proposition 1.1 proves the following.

Corollary 1.1.  $\exp_3(W) = 3^{12}$ .

The three remaining cases of torsion Lie groups,  $E_7$  and  $E_8$  at the prime 3, and  $E_8$  at the prime 5, have been well studied. Davis [D2] has shown that  $\exp_3(E_7) \geq 3^{19}$ ,  $\exp_3(E_8) \geq 3^{30}$ , and  $\exp_5(E_8) \geq 5^{30}$ . Wilkerson [W] has shown that there is a 5-local equivalence  $E_8 \simeq X \times Y$  where  $H^*(X; \mathbb{Z}/5\mathbb{Z}) \cong$  $\Lambda(x_{15}, x_{23}, x_{39}, x_{47})$  and  $H^*(Y; \mathbb{Z}/5\mathbb{Z}) \cong \mathbb{Z}/5\mathbb{Z}[x_{12}]/(x_{12}^{5}) \otimes \Lambda(x_3, x_{11}, x_{27}, x_{35})$ . Gonçalves [Go] has shown that X is indecomposable. Homologically, it looks as though Y may have  $K_5$  as a factor. At one point Harper claimed this was the case but later agreed with an objection by Kono. The issue was finally resolved by Davis [D2] when he showed that Y was in fact indecomposable. However, there should exist fibrations  $B(27, 35) \longrightarrow Y \longrightarrow K_5$  and  $S^{27} \longrightarrow B(27, 35) \longrightarrow S^{35}$ , in which case the methods of this paper would apply and one should be able to obtain a good, perhaps optimal, upper bound for  $\exp_5(E_8)$ . The cases of  $E_7$  and  $E_8$  at the prime 3 appear more difficult. Kono and Mimura [KM] have shown that both  $E_7$  and  $E_8$  are indecomposable at 3, which makes the computation of a best possible upper bound on their homotopy exponents more difficult. In the case of  $E_7$ , however, there is a fibration  $F_4 \longrightarrow E_7 \longrightarrow E_7/F_4$  and it is conjectured that  $E_7/F_4$  is spherically resolved. If so then again our methods apply. On the other hand, the author knows of no such advantageous fibration for  $E_8$  so this case remains problematic.

#### 2. A method for computing upper bounds on exponents

Typically, an upper bound for the exponent of a space Y is estimated by identifying homotopy fibrations  $X \longrightarrow Y \longrightarrow Z$  in which the exponents of both X and Z are known. Then  $\exp(Y) \leq \exp(X) \cdot \exp(Z)$ . Often, though, this is a poor estimate. This section shows that a better estimate can be obtained in certain cases, in particular for spherically resolved spaces. We then consider some examples.

We begin with the following Lemma, which is a sort of Mayer-Vietoris sequence, and is trivial to prove.

Lemma 2.1. Suppose there is a homotopy pullback diagram

$$\begin{array}{c} Q \xrightarrow{f} P \\ \downarrow_{h} & \downarrow_{i} \\ M \xrightarrow{g} N, \end{array}$$

where N is an H-space. Then there is a homotopy fibration

$$Q \xrightarrow{f \times h} P \times M \xrightarrow{i \cdot (-g)} N.$$

Let  $p^r: S^{2n+1} \longrightarrow S^{2n+1}$  be the map of degree  $p^r$ . Let  $S^{2n+1}\{p^r\}$  be its homotopy fiber. By [N],  $\exp(S^{2n+1}\{p^r\}) = p^r$ .

Lemma 2.2. Suppose there is a homotopy fibration

$$X \xrightarrow{f} Y \xrightarrow{q} S^{2n+1}$$

where Y is an H-space and there is a map  $S^{2n+1} \xrightarrow{i} Y$  such that  $q \circ i \simeq p^r$ . Then there is a homotopy fibration

$$\Omega X \times \Omega S^{2n+1} \xrightarrow{\Omega f \cdot (-\Omega i)} \Omega Y \longrightarrow S^{2n+1} \{p^r\}.$$

Consequently,  $\exp(Y) \le p^r \cdot \max(\exp(X), \exp(S^{2n+1})).$ 

*Proof.* The homotopy  $q \circ i \simeq p^r$  results in a homotopy pullback diagram

Apply Lemma 2.1 to get a homotopy fibration  $S^{2n+1}\{p^r\} \longrightarrow X \times S^{2n+1} \xrightarrow{f \cdot (-i)} Y$ . Continuing the fibration sequence to the left two steps gives the desired fibration. The exponent consequence follows.

Two slight modifications of Lemma 2.2 are useful. Both concern altered hypotheses on the initial fibration  $X \xrightarrow{f} Y \xrightarrow{q} S^{2n+1}$ . First, if Y is not an *H*-space then we can instead consider the fibration  $\Omega X \xrightarrow{\Omega f} \Omega Y \xrightarrow{\Omega q} \Omega S^{2n+1}$ . Second, the initial fibration may have the form  $Z \longrightarrow \Omega Y \xrightarrow{q} \Omega S^{2n-1}$ , where q is not a loop map. The following Lemma covers both cases.

Lemma 2.3. Suppose there is a homotopy fibration

$$Z \xrightarrow{f} \Omega Y \xrightarrow{q} \Omega S^{2n+1}$$

and there is a map  $\Omega S^{2n+1} \xrightarrow{i} \Omega Y$  such that  $q \circ i \simeq p^r$ . Then there is a homotopy fibration

$$\Omega Z \times \Omega^2 S^{2n+1} \xrightarrow{\Omega f \cdot (-\Omega i)} \Omega^2 Y \longrightarrow \Omega S^{2n+1} \{ p^r \}.$$

Consequently,  $\exp(Y) \le p^r \cdot \max(\exp(X), \exp(S^{2n+1})).$ 

*Proof.* As in Lemma 2.2.

We now consider some examples of Lemmas 2.2 and 2.3 which play a role in our exponent calculations. Suppose there is a homotopy fibration

$$S^{2m+1} \longrightarrow B \longrightarrow S^{2n+1},$$

where n > m. The (2n+1)-skeleton of B is the cofiber C of a map  $f: S^{2n} \longrightarrow S^{2m+1}$ . Suppose f has order  $p^r$ . Recall from [CMN] that  $\exp(S^{2n+1}) = p^n$ .

**Lemma 2.4.**  $\exp(B) \le p^{n+r}$ .

*Proof.* Since f has order  $p^r$  there is a homotopy cofibration diagram



Since the map  $B \longrightarrow S^{2n+1}$  is an extension of the map  $C \longrightarrow S^{2n+1}$  we have a composition  $S^{2n+1} \longrightarrow C \longrightarrow B \longrightarrow S^{2n+1}$  which is degree  $p^r$ . If B is an H-space apply Lemma 2.2 to get a homotopy fibration  $\Omega S^{2m+1} \times \Omega S^{2n+1} \longrightarrow$  $\Omega B \longrightarrow S^{2n+1}\{p^r\}$ . If B is not an H-space apply Lemma 2.3 to  $\Omega B$  to get a homotopy fibration  $\Omega^2 S^{2m+1} \times \Omega^2 S^{2n+1} \longrightarrow \Omega^2 B \longrightarrow \Omega S^{2n+1}\{p^r\}$ . The exponent conclusion then follows.

**Example 2.1.** Let q = 2(p-1). Let  $\alpha_1 \in \pi_{q-1}^S(S^0)$  be a generator of the stable stem. Following Mimura and Toda [MT], for  $m \ge 1$  define a space B(2m+1, 2m+q+1) as the homotopy pullback



where w is the Whitehead product of the identity map on  $S^{2m}$  with itself. Since  $\alpha_1$  has order p we have  $\exp(B(2m+1, 2m+q+1) \le p^{m+p})$ .

**Example 2.2.** Replacing  $\alpha_1$  in Example 2.1 with  $\alpha_2 \in \pi_{2q-1}^S(S^0)$ , we obtain a homotopy fibration  $S^{2m+1} \longrightarrow B_2(2m+1, 2m+2q+1) \longrightarrow S^{2m+2q+1}$ . Again, since  $\alpha_2$  has order p we have  $\exp(B_2(2m+1, 2m+2q+1) \le p^{m+2p-1})$ .

Another example involves the filtration of the James construction on spheres. The James construction on a connected space X is a model for  $\Omega \Sigma X$ . Let  $J_k(X) = (\prod_{i=1}^k X) / \sim$  where

$$(x_1,\ldots,x_{i-1},*,x_{i+1},\ldots,x_k) \sim (x_1,\ldots,x_i,*,x_{i+2},\ldots,x_k)$$

for  $1 \leq i \leq k-1$ . By adding \*'s on the right we have an inclusion  $J_k(X) \longrightarrow J_{k+1}(X)$ . Let  $J(X) = \lim J_k(X)$ . Then  $J(X) \simeq \Omega \Sigma X$ .

Of particular interest is the case when X is an even sphere  $S^{2n}$ . Then  $J(S^{2n}) \simeq \Omega S^{2n+1}$  and, localized at a prime p, there is an EHP fibration

$$J_{p-1}(S^{2n}) \longrightarrow \Omega S^{2n+1} \stackrel{H}{\longrightarrow} \Omega S^{2np+1}.$$

If p = 2 then a similar fibration holds for  $X = S^{2n+1}$  but at odd primes the second *EHP* fibration is

 $S^{2n-1} \longrightarrow \Omega J_{p-1}(S^{2n}) \xrightarrow{T} \Omega S^{2np-1},$ 

where T is the Toda map. In [Gr] it was shown that T can be chosen to be an H-map.

Let  $s: S^{2np-1} \longrightarrow J_{p-1}(S^{2n})$  be the attaching map whose cofiber is  $J_p(S^{2n})$ .

**Lemma 2.5.** There is a homotopy commutative diagram



*Proof.* The proof is standard. One property of the James construction is that any H-map  $\Omega\Sigma X \longrightarrow Y$  into a homotopy associative H-space Y is uniquely determined by its restriction to X. Let  $E: S^{2np-2} \longrightarrow \Omega S^{2np-1}$  be the inclusion. A homology calculation shows that  $T \circ \Omega s \circ E$  has degree p. Note that  $T \circ \Omega s$  is a composite of H-maps and so is an H-map. Thus  $T \circ \Omega s$ is homotopic to  $\Omega S^{2np-1} \xrightarrow{\Omega p} \Omega S^{2np-1}$ , which in turn is homotopic to the  $p^{th}$ -power map.

We now prove Proposition 1.1, which states that  $\exp(J_{p-1}(S^{2n})) \leq p^{np}$ .

*Proof.* Start with the homotopy fibration  $S^{2n-1} \longrightarrow \Omega J_{p-1}(S^{2n}) \xrightarrow{T} \Omega S^{2np-1}$ . By Lemmas 2.5 and 2.3 there is a homotopy fibration

$$\Omega S^{2n-1} \times \Omega^2 S^{2np-1} \longrightarrow \Omega^2 J_{p-1}(S^{2n}) \longrightarrow \Omega S^{2np-1}\{p\}.$$

The conclusion follows.

**Remark 1.** The factorization of the  $p^{th}$ -power map on  $\Omega S^{2np-1}$ through  $\Omega J_{p-1}(S^{2n})$  also implies  $\exp(J_{p-1}(S^{2n})) \geq \frac{1}{p}\exp(S^{2np-1}) = p^{np-2}$ . In fact, Davis [D1] has shown that  $\exp(J_{p-1}(S^{2p+2}) \geq p^{p^2+p})$ , showing Proposition 1.1 is sharp in this case. It is likely to always be sharp.

#### 3. Harper's finite *H*-spaces

In [H] Harper constructs finite *H*-spaces  $K_p$ , one for each odd prime *p*, satisfying

$$H^*(K_p; \mathbf{Z}/p\mathbf{Z}) = \Lambda(x_3, y_{2p+1}) \otimes \mathbf{Z}/p\mathbf{Z}[z_{2p+2}]/(z_{2p+2}^p)$$

with  $\mathcal{P}^1(x) = y$  and  $\beta(y) = z$ . We wish to find an upper bound for the homotopy exponent of  $K_p$ . To do this we want to wrap around  $K_p$  a suitable homotopy fibration which allows us to use Lemma 2.3.

We begin by recording some cohomological information. The threeconnected cover  $K_p\langle 3 \rangle$  of  $K_p$  is defined by the homotopy fibration

$$K_p\langle 3 \rangle \longrightarrow K_p \longrightarrow K(\mathbf{Z},3).$$

In [K] Kono shows:

Lemma 3.1. We have

$$H^*(K_p\langle 3\rangle; \mathbf{Z}/p\mathbf{Z}) \cong \Lambda(b_{2p^2+1}, c_{2p^2+2p-1}) \otimes \mathbf{Z}/p\mathbf{Z}[a_{2p^2}]$$

where  $\beta(a_{2p^2}) = b_{2p^2+1}$  and  $\mathcal{P}^1(b_{2p^2+1}) = c_{2p^2+2p-1}$ .

We now set up the homotopy fibration that will allow us to compute  $\exp(K_p)$ . Davis [D1], proving an unpublished result of Harper, showed that there is a homotopy fibration

$$B(3,2p+1) \longrightarrow K_p \xrightarrow{\pi} J_{p-1}(S^{2p+1}),$$

where B(3, 2p + 1) is one case of the spaces considered in Example 2.1. Taking three-connected covers, looping, and composing with the Toda map gives a homotopy pullback



where  $\overline{T}$  is defined as the composite  $T \circ \Omega \pi$ , and X is simply a name for the pullback. In particular, note that  $\overline{T}$  is an H-map since both T and  $\Omega \pi$  are. Note also that the map  $S^{2p+1} \longrightarrow B(3, 2p+1)\langle 3 \rangle$  along the top row of the diagram is the inclusion of the bottom cell. Toda [T1] first studied this map and calculated  $H^*(X; \mathbb{Z}/p\mathbb{Z}) \cong \Lambda(x_{2p^2-1}) \otimes \mathbb{Z}/p\mathbb{Z}[y_{2p^2}]$  with  $\beta(x) = y$ .

The following Lemma is the analogue of Lemma 2.5.

Lemma 3.2. There is a homotopy commutative square

$$\Omega S^{2p^2+2p-1} \xrightarrow{\Omega t} \Omega K_p \langle 3 \rangle$$

$$\downarrow^p \qquad \qquad \downarrow^{\overline{T}}$$

$$\Omega S^{2p^2+2p-1} = \Omega S^{2p^2+2p-1}$$

for some map map t.

*Proof.* Consider the homotopy fibration  $X \xrightarrow{f} \Omega K_p \langle 3 \rangle \xrightarrow{\overline{T}} \Omega S^{2p^2+2p-1}$ . By Lemma 3.1 the  $(2p^2 + 2p - 2)$ -skeleton of  $\Omega K_p \langle 3 \rangle$  is a space  $\overline{C}$  whose mod-p cohomology has vector space basis  $a_{2p^2-1}$ ,  $b_{2p^2}$ , and  $c_{2p^2+2p-2}$  with  $\beta(a_{2p^2-1}) = b_{2p^2}$  and  $\mathcal{P}^1(b_{2p^2}) = c_{2p^2+2p-2}$ . In particular, there is a cofibration  $S^{2p^2+2p-3} \xrightarrow{\overline{\alpha}_1} P^{2p^2}(p) \longrightarrow \overline{C}$ , where  $P^{2p^2}(p)$  is the Moore space of dimension  $2p^2$  and order p, and  $\overline{\alpha}_1$  is a lift of  $S^{2p^2+2p-3} \xrightarrow{\alpha_1} S^{2p^2}$  through the pinch map  $P^{2p^2}(p) \longrightarrow S^{2p^2}$ .

Observe that the cohomology of X implies that its  $(4p^2 - 2)$ -skeleton is  $P^{2p^2}(p)$ . Since f is  $(2p^2 + 2p - 3)$ -connected we must therefore have a homotopy commutative diagram



where the top row is a cofibration and all the vertical maps are inclusions.

Since  $\overline{\alpha}_1$  has order p, there is a homotopy cofibration diagram

Define  $\overline{\lambda}$  as the composite  $\overline{\lambda} : S^{2p^2+2p-2} \longrightarrow \overline{C} \longrightarrow \Omega K_p\langle 3 \rangle$ . Then the two diagrams above imply  $\overline{T} \circ \overline{\lambda} \simeq E \circ p$ . The James construction lets us extend  $\overline{\lambda}$  to an H-map  $\lambda : \Omega S^{2p^2+2p-1} \longrightarrow \Omega K_p\langle 3 \rangle$ . A standard argument with the James construction shows that an H-map  $\Omega \Sigma X \longrightarrow \Omega Z$  is homotopic to a loop map. Thus  $\lambda \simeq \Omega t$  for some map  $t : S^{2p^2+2p-1} \longrightarrow K_p$ .

Now consider the *H*-map  $\Omega S^{2p^2+2p-1} \xrightarrow{\overline{T} \circ \Omega t} \Omega S^{2p^2+2p-1}$ . One property of the James construction is that any *H*-map  $\Omega \Sigma X \longrightarrow Y$  into a homotopy associative *H*-space *Y* is uniquely determined by its restriction to *X*. Thus  $\overline{T} \circ \overline{\lambda} \simeq E \circ p$  implies  $\overline{T} \circ \Omega t \simeq p$ .

**Lemma 3.3.**  $\exp(X) = p$ .

*Proof.* The composition  $S^{2p+1} \xrightarrow{i} B(3, 2p+1)\langle 3 \rangle \longrightarrow B(3, 2p+1) \longrightarrow S^{2p+1}$  is degree p. Thus there is a homotopy pullback diagram



By [S], the fibration along the top row splits when looped twice,  $\Omega^2 S^{2p+1}\{p\} \simeq \Omega^2 S^3 \langle 3 \rangle \times \Omega^2 X$ . Since  $\exp(S^{2p+1}\{p\}) = p$ , we therefore have  $\exp(X) \leq p$ . The inclusion of the bottom Moore space into X shows  $\exp(X) \geq p$ .

We now prove Theorem 1.1, which states that  $\exp(K_p) = p^{p^2+p}$ .

*Proof.* Lemmas 3.2 and 2.3 imply there is a homotopy fibration

$$\Omega X \times \Omega^2 S^{2p^2 + 2p - 1} \longrightarrow \Omega^2 K_p \longrightarrow \Omega S^{2p^2 + 2p - 1} \{p\}.$$

Thus  $\exp(K_p) \leq p \cdot \max(\exp(X), \exp(S^{2p^2+2p-1}))$ . By Lemma 3.3,  $\exp(T) = p$  while  $\exp(S^{2p^2+2p-1}) = p^{p^2+p-1}$ . Thus  $\exp(K_p) \leq p^{p^2+p}$ . On the other hand, Davis [D1] showed that  $\pi_*(K_p)$  has elements of order  $p^{p^2+p}$  so  $\exp(K_p) \geq p^{p^2+p}$ .

### 4. The exponents of $F_4$ and $E_6$ at 3

We first record lower bounds for the homotopy exponents. As mentioned in the Introduction, Bendersky and Davis [BD] showed that  $\exp_3(F_4) \ge 3^{12}$ and  $\exp_3(E_6) \ge 3^{12}$ . We now prove Theorem 1.2 by showing that the upper bounds on the 3-primary homotopy exponents of  $F_4$  and  $E_6$  match the lower bounds.

*Proof.* First, Harper [H] showed there is a 3-local equivalence

$$F_4 \simeq K_3 \times B(11, 15).$$

Theorem 1.1 shows that  $\exp_3(K_3) \leq 3^{12}$ . On the other hand, Example 2.1 shows that  $\exp_3(B(11, 15)) \leq 3^8$ . Thus  $\exp_3(F_4) \leq 3^{12}$ . Next, Harris [Hs] showed there is a 3-local equivalence

$$E_6 \simeq F_4 \times (E_6/F_4).$$

Bendersky and Davis [BD] showed there is a 3-local equivalence  $E_6/F_4 \simeq B_2(9, 17)$ . Example 2.2 shows that  $\exp_3(B_2(9, 17)) \leq 3^9$ . Thus the upper bound for the homotopy exponent of  $E_6$  equals that of  $F_4$ , and so  $\exp_3(E_6) \leq 3^{12}$ .

#### References

- [BD] M. Bendersky and D. M. Davis, 3-primery  $v_1$ -periodic homotopy groups of  $F_4$  and  $E_6$ , Trans. Amer. Math. Soc. **344** (1994), 291–306.
- [CMN] F. R. Cohen, J. C. Moore and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979), 549–565.
- [D1] D. M. Davis, Equivalence of some  $v_1$ -telescopes, Contemp. Math. 188 (1995), 81–92.
- [D2] \_\_\_\_\_, From Representation theory to homotopy groups, to appear in Mem. Amer. Math. Soc.
- [DM] D. M. Davis and M. Mahowald, Three contributions to the homotopy theory of the exceptional Lie groups  $G_2$  and  $F_4$ , J. Math. Soc. Japan 43 (1992), 55–72.
- [Go] D. C. Gonçalves, The mod-5 splitting of the compact exceptional Lie group  $E_8$ , Publ. RIMS Kyoto Univ. **19** (1983), 1–6.
- [Gr] B. Gray, On Toda's fibrations, Math. Proc. Cambridge Philos. Soc. 97 (1986), 289–298.
- [H] J. R. Harper, *H*-spaces with torsion, Mem. Amer. Math. Soc. 22-223 (1978).

| Stephen | D. | Theriault |
|---------|----|-----------|
|---------|----|-----------|

- [Hs] B. Harris, Suspensions and characteristic maps for symmetric spaces, Ann. of Math. **76** (1962), 295–305.
- [K] A. Kono, On Harper's mod-p H-space of rank 2, Proc. Roy. Soc. Edinburgh 118 (1991), 75–78.
- [KM] A. Kono and M. Mimura, Cohomology operations and the Hopf algebra structures of the compact, exceptional Lie groups E<sub>7</sub> and E<sub>8</sub>, Proc. London Math. Soc. 35 (1977), 345–358.
- [MT] M. Mimura and H. Toda, Cohomology operations and the homotopy of compact Lie groups I, Topology 9 (1970), 317–336.
- [N] J. Neisendorfer, Properties of certain H-spaces, Quart. J. Math. Oxford 34 (1983), 201–209.
- [S] P. Selick, Odd primary torsion in  $\pi_k(S^3)$ , Topology 17 (1978), 407–412.
- [T1] H. Toda, On homotopy groups of  $S^3$  bundles over spheres, J. Math. Kyoto Univ. **2** (1963), 193–207.
- [T2]  $\frac{1}{87-142}$ , On iterated suspensions I, J. Math. Kyoto. Univ. 5 (1965),
- [W] C. W. Wilkerson, Self-maps of classifying spaces, Lecture Notes in Math. 418, Springer, Berlin, 1974, pp. 150–157.