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On a p-adic analogue of Shintani’s formula

By

Tomokazu Kashio

Abstract

Shintani expressed the first derivative at s = 0 of a partial ζ-
function of an algebraic number field in terms of the multiple gamma
function. Cassou-Noguès constructed a p-adic analogue of the partial
ζ-function and calculated the derivative at s = 0. In this paper, we
will define a p-adic analogue of the multiple gamma function and give a
p-adic analogue of Shintani’s formula. This formula has a strong resem-
blance to the original Shintani’s formula. Using this formula, we get a
partial result toward Gross’ conjecture concerning the order at s = 0 of
the p-adic L-function.

1. Introduction

In this paper, we will give a formula for the first derivative of the p-adic
partial ζ-function at s = 0 using the p-adic multiple gamma function (Theorem
6.2). For the usual partial ζ-function, Shintani ([18, Proposition 1]) obtained
a formula which expresses the first derivative at s = 0 in terms of the multiple
gamma function (see Section 3). His formula has the following form: Let F be
a totally real algebraic number field of degree n, OF the ring of integers, E+ the
group of all totally positive units, and f an integral ideal of F . Then we embed
F into Rn by x �→ (xσ1 , . . . , xσn) where JF := {σ1, . . . , σn} is the set of all
embeddings F → R. Let {aµ} be a complete set of representatives for the nar-
row ideal class group consisting of integral ideals. Let ∞1, . . . ,∞n denote the
archimedean primes of F , Cf denote the ideal class group modulo f∞1 · · ·∞n.
For c ∈ Cf, let ζf(s, c) =

∑
a∈c N(a)−s denote the partial ζ-function of the class

c, where a extends over all integral ideals in the class c. For v1, . . . , vr ∈ R+n,
let C ((v1, . . . , vr)) = {t1v1 + · · · + trvr | (t1, . . . , tr) ∈ R+r} be a cone in
R+n. We can take a cone decomposition, i.e., there exist a finite set J and
vj = (vj,1, . . . , vj,r(j)), j ∈ J, vj,i ∈ OF such that R+n =

⊔
j∈J

⊔
u∈E+ uC(vj)

where
⊔

denotes the disjoint union and C(vj) = C((vj,1, . . . , vj,r(j))). Let
R(c, C(vj)) = {z =

∑r(j)
k=1 xkvj,k ∈ (aµf)−1 ∩ C(vj) | 0 < xi ≤ 1, (z)aµf ∈ c}

when aµ = c in the narrow ideal class group. Then there exist algebraic num-
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bers aq, bq (q = 1, . . . , m) such that

[
d

ds
ζf(s, c)

]
s=0

=
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

log

(
Γr(j)(zσk , vσk

j )
ρ(vσk

j )

)

− log(Naµf)ζf(0, c) +
m∑

q=1

aq log(bq).

We can write explicitly the last term:

m∑
q=1

aq log(bq) =
∑
j∈J

∑
z∈R(c,C(vj))

(−1)r(j)

n

∑
l

Cl






vσ1
j
...

vσn
j




 r(j)∏

i=1

Bli(xi(z))
li!

.

Here Γr denotes the r-ple gamma function. For the other notation, see Section
3.

In [6] and [5], Cassou-Noguès constructed a p-adic analogue ζp,f(s, c) of
the partial ζ-function. Furthermore she expressed the derivative of ζp,f(s, c) at
s = 0 in terms of the p-adic multiple gamma function. But her definition of the
p-adic multiple gamma function is rather ad hoc, and may not be regarded as a
proper generalization of Shintani’s formula. We will define the (natural) p-adic
logarithmic multiple gamma function in Section 5. Take 0 < a1, . . . , ar, a ∈ F .
Let P be a prime ideal of F lying over p. Assume that ai and a are P-integral.
Then we can define the p-adic r-ple ζ-function ζp,r(s, (a1, . . . , ar), a) by a p-adic
interpolation of the usual r-ple ζ-function (Theorem 5.1 or [4]). Generalizing
Barnes’ definition [2] to the p-adic case, we define the p-adic logarithmic r-ple
gamma function LΓp,r(a, (a1, . . . , ar)) as the derivative of ζp,r(s, (a1, . . . , ar), a)
at s = 0. For the p-adic partial ζ-function ζp,f(s, c), we obtain a p-adic formula
(Theorem 6.2):

[
d

ds
ζp,f(s, c)

]
s=0

=
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

LΓp,r(j)(zσk , vσk
j )

− logp(Naµf)ζp,f(0, c) +
m∑

q=1

aq logp(bq).

Through the analogy between these two formulas, we can show that the
derivative at s = 0 of the p-adic L-function is equal to 0 in a special case. In
fact, we prove a partial result toward Gross’ conjecture ([9, Conjecture 2.12]).
In Section 7.2, we show the result (Theorem 7.1): Let F be a totally real field,
K an abelian extension over F with conductor f0 and χ an odd character of
Gal(K/F ). Put f = f0 ×

∏
p|(p),p�f0

p and assume that the number of prime
ideals p satisfying p|(p), χ(p) = 1 is greater than 1. Then the order at s =
0 of Lp,f(s, χ−1) is greater than 1. Here χ−1 is a character twisted by the
Teichmüller character.
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The Chowla-Selberg formula shows that there exists a strong correlation
between Shimura’s CM-period and the gamma function. In [19], Yoshida for-
mulated a conjecture: For all τ ∈ Gal(K/F ),

(1.1)
∏

σ∈JK

pK(σ, τσ) ∼ π−[K:Q]µ(τ)/2 exp


 ∑

χ∈Ĝ−

χ(τ )
L′(0, χ)
L(0, χ)


 .

Here K is a CM-field which is abelian over a totally real algebraic number
field F , Ĝ− is the set of all odd characters of Gal(K/F ), JK is the set of all
embeddings of K into C. For χ ∈ Ĝ−, L(s, ω) is the Artin L-function attached
to χ. For σ, τ ∈ JK , pK(σ, τ ) denotes Shimura’s CM-period and

µ(τ ) =




1 if τ = 1,
−1 if τ = the complex conjugation,
0 otherwise.

We write a ∼ b if b �= 0 and a/b ∈ Q. By Shintani’s formula, this conjecture can
be sharpened so that every Shimura’s CM-period can be expressed in terms of
the multiple gamma function [19]. We obtained a p-adic analogue of the formula
(1.1) in the case of F = Q, K = Q(ζm), (p, m) = 1, where ζm is a primitive
m-th root of unity. Indeed, we proved:

(1.2) ΩK
p (id, τ ) ∼ expp

(∑
χ

−χ(τ )
[K : Q]

L′
p(0, χ−1)
L(0, χ)

)
.

Here χ extends over all odd Dirichlet characters modulo m, χ−1 denotes the
primitive character associated to the character χ twisted by the Teichmüller
character, ΩK

p denotes the p-adic CM-period symbol, Lp denotes the Kubota-
Leopoldt p-adic L-function, σp is an element of Gal(K/F ) such that ζm �→ ζp

m

and expp is the p-adic exponential function. In the succeeding paper, a proof of
(1.2) will be given. Now H. Yoshida and I are conducting cooperative research
on this theme [12]. We will investigate the generalization of the formula (1.2)
and its refinement, that is, a p-adic analogue of Conjecture (1.1).

The author expresses gratitude to Professor H. Yoshida for suggesting this
problem, his kind advice and warm encouragement.

2. Notation and Terminology

For an odd prime number p, Qp denotes an algebraic closure of Qp, Cp

denotes a completion of Qp, | |p denotes the valuation on Cp such that |p|p =
1/p. OCp

(resp. OQp
) denotes the ring of integers of Cp(resp. Qp) and Mp

denotes the maximal ideal of OCp
. We fix an embedding Q ↪→ Qp.

For an algebraic number field F of degree n, OF denotes the ring of in-
tegers, JF denotes the set of all embedding F ↪→ Q and we put JF = {σi |
i = 1, 2, . . . , n}. Then x(i) denotes σi(x) for x ∈ F . Suppose that F is totally
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real. For an integral ideal f of F , let If be the group of all fractional ideals of F
which is prime to f, Ff+ = {α ∈ F | α	 0, (i.e., totally positive), vp(α− 1) ≥
vp(f) for all prime ideals p dividing f} and E+

f = O×
F ∩Ff+. Here vp is the nor-

malized p-adic valuation. Let Pf+ = {(α) | α ∈ Ff+} and Cf = If/Pf+. For
a ∈ If, a denotes the class modPf+. For vi ∈ Rn, we call C(v1, v2, . . . , vr) =
{t1v1 + t2v2 + · · ·+ trvr | ti ∈ R+} an open simplicial cone. We embed F into
Rn by x �→ (x(1), x(2), . . . , x(n)).

We define the Teichmüller character θp : OCp
→ Cp

× as follows: Let
x ∈ OQp

. If |x|p < 1 then we put θp(x) = 0. If |x|p = 1 then we take a finite
extension K over Qp such that K � x. Let f be the degree of the residue field
of K over Z/pZ. Then we put θp(x) = liml→∞ xpfl

and extend θp continuously.
We define: θ0

p(x) = 0 if |x|p < 1, = 1 if |x|p = 1. Note that θp(x) and θ0
p(x) are

(pf − 1)-th roots of unity, or 0. If |x|p = 1 then θp(x)−1x ≡ 1 mod Mp, and we
put 〈x〉 = θp(x)−1x.

For a Dirichlet character χ, χ∗ denotes the associated primitive character
and χn denotes (χθp

−n)∗. For a character χ of Cf , χn denotes χ(θp ◦ N)−n

where N denotes the norm.
We use the Iwasawa logarithm function: logp : C×

p → Cp defined by the
usual power series on 1 + Mp and extended to C×

p by requiring logp p = 0. Γp

denotes Morita’s p-adic Γ-function [13] defined by Γp(n) = (−1)n
∏n−1

i=1,p�i i on
N and extended to a continuous function on Zp.

Let Bm(X) denote the m-th Bernoulli polynomial and Bm = Bm(0) denote
the m-th Bernoulli number. We define for a, b ∈ N ∪ 0:

{
a
b

}
=




(−1)b−1

(
a− 1
b− 1

)
if a, b ≥ 1,

1 if a = 0,
0 if a ≥ 1, b = 0.

As the set,
⊔

denotes the disjoint union.

3. Shintani’s formula

First we review the complex case [16], [18]. We define the multiple Riemann
ζ-function on C by

ζr(s, (a1, . . . , ar), x) =
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mr=0

{
x +

r∑
i=1

aimi

}−s

,

where ai, x ∈ R+. This series converges when Re(s) > r and can be continued
meromorphically to the whole s-plane. We define the multiple gamma function:

log (ρr ((a1, . . . , ar))) = − lim
x→0

{[
d

ds
ζr(s, (a1, . . . , ar), x)

]
s=0

+ log x

}
,[

d

ds
ζr(s, (a1, . . . , ar), x)

]
s=0

= log
(

Γr (x, (a1, . . . , ar))
ρr ((a1, . . . , ar))

)
.
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We also consider a meromorphic function on C, such that for Re(s) > r/n,

ζr(s, A, ξ, x) =
∞∑

m1=0

∞∑
m2=0

· · ·
∞∑

mr=0

r∏
i=1

ξmi
i

n∏
j=1

{
r∑

i=1

aj,i(mi + xi)

}−s

,

where A = (aj,i) is an n × r-matrix, x = (x1, . . . , xr), ξ = (ξ1, . . . , ξr),
aj,i > 0, xi ≥ 0, x �= 0 and ξi are roots of unity. Let ζr(s, A, x) denote
ζr(s, A, (1, . . . , 1), x). According to [18, Proposition 1],
(3.1)[

d

ds
ζr(s, A, x)

]
s=0

=
n∑

j=1

log
(

Γr (xtAj , Aj)
ρr(Aj)

)
+

(−1)r

n

∑
l

Cl(A)
r∏

i=1

Bli(xi)
li!

.

Here l extends over all l = (l1, . . . , lr) such that l1 + · · · + lr = r, 0 ≤ li ∈ Z,
Aj = (aj,1, . . . , aj,r), Cl(A) =

∑
1≤j,k≤n,j �=k Cl,j,k(A) and

Cl,j,k(A) =
∫ 1

0

{
r∏

m=1

(aj,m + ak,mu)lm−1 −
r∏

m=1

alm−1
j,m

}
du

u
.

Let F be a totally real number field of degree n, JF = {σ1, . . . , σn}, f an
integral ideal, c ∈ Cf and {aµ} a complete set of representatives for C(1). We
define the partial ζ-function of the class c:

ζf(s, c) =
∑

g

Ng−s,

where g extends over all integral ideals in the class of c. The next lemmas are
proved in [16].

Lemma 3.1. We can take a finite set J and totally positive elements
vj,i ∈ OF for j ∈ J, i = 1, 2, . . . , r(j) so that vj,1, . . . , vj,r(j) are linearly inde-
pendent for each j and

R+n =
⊔
j∈J

⊔
u∈E+

(1)

uC(vj,1, vj,2, . . . , vj,r(j)).

Lemma 3.2. With the above notation, we define an n × r(j)-matrix
Aj = (v(l)

j,m) (1 ≤ l ≤ n, 1 ≤ m ≤ r(j)), z = x(z)tvj , x(z) = (x1(z), . . . , xr(j)(z))
for z ∈ C(vj) and

R(c, j) = R(c, C(vj))

= {z ∈ C(vj) ∩ (aµf)−1 | xi(z) ∈ Q, 0 < xi(z) ≤ 1, (z)aµf ∈ c},
for aµ satisfying that c = aµf in C(1). Then R(c, j) is finite and

ζf(s, c) =
∑
j∈J

∑
z∈R(c,j)

N(aµf)−sζr(j)(s, Aj , x(z)).
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By (3.1) and these lemmas, we get Shintani’s formula.

Theorem 3.1.[
d

ds
ζf(s, c)

]
s=0

=
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

log

(
Γr(j)(z(k), v

(k)
j )

ρr(j)(v
(k)
j )

)

− log(Naµf)ζf(0, c) + T0,

where

T0 =
∑
j∈J

∑
z∈R(c,C(vj))

(−1)r(j)

n

∑
l

Cl(Aj)
r(j)∏
i=1

Bli(xi(z))
li!

.

4. p-adic L-functions, the method by Cassou-Noguès

In this section, we will review the p-adic L-function over a totally real field
and calculate the derivatives at s = 0 following the method by Cassou-Noguès
[6], [5]. For other method of construction, we refer the reader to [7]. Imai [10]
also defined a p-adic log multiple Γ function and formulated a relationship with
a special value of a p-adic analogue of the multiple ζ-function, not with the
derivatives. But his functions are different from our functions.

First we will define a p-adic analogue of the ζ-function. We prepare several
Lemmas. We assume that p is an odd prime.

Lemma 4.1. Let f(s) =
∑∞

k=0 ak

(
s
k

)
, ak ∈ Cp.

1. Assume that |ak|p → 0. Then f(s) is a continuous function on Zp.
2. Assume that |ak/k|p → 0. Then f(s) is differentiable at s = 0 and

df/ds(0) =
∑∞

k=1(−1)k−1ak/k.
3. Assume that there exist C > 0, |p|1/(p−1)

p > r > 0 such that |ak|p ≤ Crk.
Then f(s) is analytic at s = 0.

Proof. When |ak|p → 0, f(s) converges uniformly. Hence the first asser-
tion is clear. Assume that |ak/k|p → 0. Then

df

ds
(0) = lim

s→0

f(s)− f(0)
s

= lim
s→0

∞∑
k=1

ak

(
s

k

)
1
s

= lim
s→0

∞∑
k=1

ak

k

(
s− 1
k − 1

)
.

By the first assertion,
∑∞

k=1

ak

k

(
s−1
k−1

)
is a continuous function,

df

ds
(0) =∑∞

k=1(−1)k−1 ak

k
. To prove the third assertion, it suffices to show that there

exist bn ∈ FP(n = 0, 1, . . . ) such that f(s) =
∑∞

n=0 bnsn for s ∈ Zp. Let bn

be the coefficient of sn in
∑∞

k=0 ak

(
s
k

)
, i.e., bn =

∑∞
k=n ak

cn,k

k! where cn,k is the
coefficient of sn for s(s − 1) · · · (s − k + 1). Since |k!|p ≥ |p|k/(p−1)

p , the sum
converges. Furthermore

|bn|p ≤ sup
k=n,n+1,...

∣∣∣ak
cn,k

k!

∣∣∣
p
≤ sup

k=n,n+1,...
C

(
r|p|

−1
p−1
p

)k

= C

(
r|p|

−1
p−1
p

)n

.
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Hence
∑∞

n=0 bnsn converges. We have, for every N ≥ 1,

∣∣∣∣∣f(s)−
∞∑

n=0

bnsn

∣∣∣∣∣
p

≤
∣∣∣∣∣

∞∑
k=N+1

ak

(
s

k

)∣∣∣∣∣
p

+

∣∣∣∣∣
∞∑

n=N+1

bnsn

∣∣∣∣∣
p

+

∣∣∣∣∣
N∑

n=0

∞∑
k=N+1

ak
cn,k

k!
sn

∣∣∣∣∣
p

≤ CrN+1 + C

(
r|p|

−1
p−1
p

)N+1

+ C

(
r|p|

1
p−1
p

)N+1

.

The right hand side tends to 0 when N →∞ and the third assertion follows.

Lemma 4.2. Let fn(s) =
∑∞

k=0 an,k

(
s
k

)
with an,k ∈ Cp and f(s) =∑∞

n=1 fn(s) such that |an,k|p → 0 when k →∞ and sups∈Zp
|fn(s)|p → 0 when

n→∞. Then
1. f(s) is a continuous function on Zp.
2. Assume that supn=1,2,... |an,k/k|p → 0 when k → ∞. Then f(s) is

differentiable at s = 0 and df
ds(0) =

∑∞
n=1

dfn

ds (0) =
∑∞

n=1

∑∞
k=1(−1)k−1 an,k

k .
3. Assume that there exist C > 0, |p|1/(p−1)

p > r > 0 such that
supn=1,2,... |an,k|p ≤ Crk. Then f(s) is analytic at s = 0.

Proof. Since supk=0,1,... |an,k|p = sups∈Zp
|fn(s)|p → 0 when n→∞,

f(s) =
∞∑

n=1

∞∑
k=0

an,k

(
s

k

)
=

∞∑
k=0

( ∞∑
n=1

an,k

)(
s

k

)
.

By Lemma 4.1, the assertions are clear.

Lemma 4.3. Let P (X), Q(X) ∈ OCp
[X1, X2, . . . , Xr], b ≥ 1, (b, p) = 1

and ξi �= 1 (1 ≤ i ≤ r) be b-th roots of unity. Assume that P (X) = Q(ΠX)
with an element Π ∈Mp and P (0) ≡ 1 mod ΠOCp

. We can define continuous
functions on Zp:

λk,P (s) = λk(P s) :=
k1∑

l1=0

· · ·
kr∑

lr=0

{
k1
l1

} · · ·{ kr

lr

}
P (−l)s,

ζp,r(s, P, ξ) :=
∑

k∈{0,1,... }r,k �=0

λk,P (−s)
(1− ξ)k

,
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and λk,P (s) and ζp,r(s, P, ξ) are analytic at s = 0. Furthermore

dλk,P

ds
(0) =

k1∑
l1=0

· · ·
kr∑

lr=0

{
k1
l1

} · · ·{ kr

lr

}
logp(P (−l)),

sup
s∈Zp

|λk,P (s)|p ≤ |Π|k1+···+kr−r1
p ,

[
d

ds
ζp,r(s, P, ξ)

]
s=0

= −
∑

0�=k∈{0,1,... }r

∑k1
l1=0 · · ·

∑kr

lr=0

{
k1
l1

} · · ·{ kr

lr

}
logp(P (−l))

(1− ξ)k
.

Here r1 = #{j | kj �= 0, 1 ≤ j ≤ r}.

Proof. For all l ∈ Zr, P (l) = Q(Πl) ≡ Q(0) = P (0) ≡ 1 mod ΠOCp
.

Then we can define P (−l)s =
∑∞

k=0(P (−l)pL − 1)k
(
s′

k

)
, where s = pLs′. Let

L = 0. Then ∣∣∣∣ (P (−l)− 1)k

k

∣∣∣∣
p

≤
∣∣∣∣Πk

k

∣∣∣∣
p

→ 0, when k →∞.

By Lemma 4.1, P (−l)s and λk,P (s) are continuous functions on Zp and are
differentiable at s = 0. Furthermore

dP (−l)s

ds

∣∣∣
s=0

=
∞∑

k=1

(−1)k−1(P (−l)− 1)k

k
= logp(P (−l)),

dλk,P

ds
(0) =

k1∑
l1=0

· · ·
kr∑

lr=0

{
k1
l1

} · · ·{ kr

lr

}
logp(P (−l)).

Let ε = |p|Lp supi=1,2,...{|Πi/i|p} and L be large enough to satisfy that ε <

|p|1/(p−1)
p . Then |(P (−l)pL − 1)k|p =

∣∣∣pL
∑pL

i=1

(
pL−1
i−1

) (P (−l)−1)i

i

∣∣∣k
p
≤ εk. Hence,

by Lemma 4.1, P (−l)s and λk,P (s) are analytic at s = 0. By Lemma 4.2,
it suffices to show that sups∈Zp

|λk,P (s)|p ≤ |Π|k1+···+kr−r1
p . Because λk,P (s)

is a continuous function and {0, 1, 2, . . . } is dense in Zp, it suffices to show
supn=0,1,... |λk,P (n)|p ≤ |Π|k1+···+kr−r1

p . Furthermore, since P (X)n is a poly-
nomial if n = 0, 1, . . . and λk has linearity, it suffices to show that

for all Q(X) =
r∏

i=1

Xni
i (ni ≥ 0), |λk(Q(ΠX))|p ≤ |Π|k1+···+kr−r1

p .

If there exists i such that ki = 0, ni �= 0, then λk(Q(ΠX)) = 0. Therefore we
may assume that if ki = 0 then ni = 0. Let {ki1 , . . . , kir1

} be the set of all
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ki �= 0. Then

λk(Q(ΠX)) = (−Π)ni1+···+nir1

r1∏
j=1

kij∑
lij

=1

(
kij
− 1

lij
− 1

)
(−1)lij

−1l
nij

ij
,

kij∑
lij

=1

(
kij
− 1

lij
− 1

)
(−1)lij

−1l
nij

ij
=
−1
kij

kij∑
lij

=1

(
kij

lij

)
(−1)lij l

nij
+1

ij
= 0

if nij
+ 1 < kij

.

Hence λk(Q(ΠX)) = 0 if
∑

j nij
<
∑

j kij
− r1. Therefore, if

∑
i ni <

∑
i ki −

r1 then |λk(Q(ΠX))|p = 0 ≤ |Π|
P

i ki−r1
p and if

∑
i ni ≥

∑
i ki − r1 then

|λk(Q(ΠX))|p ≤ |(−Π)
P

i ni |p ≤ |Π|
P

i ki−r1
p .

For an n × r-matrix A = (aj,i) (aj,i ∈ Mp) and an r-row vector x =
(x1, . . . , xr) (xi ∈ OCp

) with
∏n

j=1

∑r
i=1 aj,ixi ≡ 1 mod Mp, we define a poly-

nomial

PA,x(X) =
n∏

j=1

{
r∑

i=1

aj,i(Xi + xi)

}
.

Then PA,x satisfies the conditions for Lemma 4.3. Let b be a natural number
prime to p. For b-th roots of unity ξi �= 1, we define a p-adic counterpart of
ζr(s, A, ξ, x): for s ∈ Zp,

(4.1) ζp,r(s, A, ξ, x) = ζp,r(s, PA,x, ξ).

Note that λk(P ) = 0 if k1 +k2 + · · ·+kr > deg P +r. According to [6, Theorem
22, Lemma 19], we get the next Theorem.

Theorem 4.1. Let F ⊂ R be an algebraic number field and fix an em-
bedding F → Cp. Let 0 < aj,i ∈ F and 0 ≤ xi ∈ F such that |aj,i|p < 1,
|aj,1x1 + · · · + aj,rxr − 1|p < 1. Let b be a natural number prime to p, ξi �= 1
b-th roots of unity and ξ = (ξ1, . . . , ξr). Then for 0 ≤ m ∈ Z,

ζp,r(−m, A, ξ, x) = ζr(−m, A, ξ, x),

Now we will define a p-adic analogue of the partial ζ-function. Let F, f, c
be as in Section 3 and a an integral ideal ∈ c−1. Assume that every prime ideal
p above (p) divides f. With minor variation from Lemma 3.1, we can take a
finite set J and totally positive elements vj,i ∈ af for j ∈ J, i = 1, 2, . . . , r(j) so
that vj,1, . . . , vj,r(j) are linearly independent for each j and

(4.2) R+n =
⊔
j∈J

⊔
u∈E+

f

uC(vj,1, vj,2, . . . , vj,r(j)).
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For integral ideals a, b prime to f, we define:

ζf(s, a−1, b) = Nb1−sζf(s, a−1b−1)− ζf(s, a−1).

Now we assume that b satisfies the following conditions:

(4.3)
(i) (b, f) = 1, (b, D) = 1,
(ii) (b, (vi,j)) = 1 for all j ∈ J, i = 1, 2, . . . , r(j),
(iii) OF /b � Z/bZ.

Here D denotes the different of F over Q and b is the positive generator of
b ∩ Z. Let e(x) = exp(2πix). According to [6, Lemmas 2a and 2b, Corollaries
1 and 2],

Lemma 4.4. Take ν ∈ D−1b−1 so that Tr(ν) = c/b with 0 �= c ∈
Z, (b, c) = 1. Then

e(Tr(vi,jν)) is a primitive b-th root of unity for every i, j and
b−1∑
µ=0

e(Tr(αµν)) =

{
0 if α ∈ OF , /∈ b,
Nb = b if α ∈ b.

Theorem 4.2. With the above notation, let R′(a−1, j) = {z ∈ C(vj) ∩
OF | 0 < xi(z) ≤ 1, z ∈ a,≡ 1 mod f}, ξj = (ξj,1, . . . , ξr(j)), ξj,i = e(Tr(vj,iν))
and ξz = e(Tr(ν

∑r(j)
i=1 xi(z)vj,i)) for z ∈ R′(a−1, j). Then

ζf(s, a−1, b) = Nas
b−1∑
µ=1

∑
j∈J

∑
z∈R′(a−1,j)

ξµ
z ζr(j)(s, Aj , ξ

µ
j , x(z)).

Now we define a function on s ∈ Zp:

(4.4) ζp,f(s, a−1, b) = 〈Na〉s
b−1∑
µ=1

∑
j∈J

∑
z∈R′(a−1,j)

ξµ
z ζp,r(j)(s, Aj , ξ

µ
j , x(z)).

By Theorems 4.2 and 4.1, we have

(4.5) ζp,f(−m, a−1, b) = θp(Na)mζf(−m, a−1, b) (m ≥ 0).

We can take b in Pf+. Then there exists α ∈ Ff+∩OF such that b = (α). Since
ab = a in Cf, ζf(s, a−1, b) = (b1−s − 1)ζf(s, a−1). We define the p-adic partial
ζ-function of the class c:

ζp,f(s, c) =
ζp,f(s, a−1, b)

(b1−s − 1)
,(4.6)
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for a ∈ c, b ∈ Pf+. Here b1−s is well-defined since b = N(α) ≡ 1 mod (p). By
(4.5),

(4.7) ζp,f(−m, c) = ζf(−m, c) for m ≥ 0, m ≡ 0 mod (p− 1).

Let χ be a character of Cf. Then we define the L-function:

L(s, χ) = Lf(s, χ) =
∑
c∈Cf

χ(c)ζf(s, c).

We define the p-adic L-function:

Lp,f(s, χ) =
∑
d∈Cf

χ1(c)ζp,f(s, c).(4.8)

By (4.5), we obtain

Lp,f(1−m, χ) = Lf(1−m, χm) (1 ≤ m ∈ Z).(4.9)

Let f0 be an integral ideal, f = f0 ×
∏

p|(p),p�f p and χ be a character of Cf0 .
Then χ−1 is a character of Cf. By (4.8),

Lp,f(s, χ−1) =
∑
c∈Cf

χ(c)ζp,f(s, c).(4.10)

We get a formula on the derivative of the p-adic partial ζ-function at s = 0.

Theorem 4.3. Let f be an integral ideal such that every prime ideal p
above (p) divides f, a ∈ If an integral ideal, b �= (1) an integral ideal satisfying
(4.3), J , vj,i as in (4.2), R′(a−1, j), ξz, ξj as in Theorem 4.2. Then[

d

ds
ζp,f(s, a−1, b)

]
s=0

= logp(Na)ζp,f(0, a−1, b)

+
b−1∑
µ=1

∑
j∈J

∑
z∈R′(a−1,j)

ξµ
z

n∑
k=1

[
d

ds
ζp,r(j)(s, v

(k)
j , ξµ

j , x(z))
]

s=0

.

Proof. By Lemma 4.3,[
d

ds
ζp,r(j)(s, Aj , ξ

µ
j , x(z))

]
s=0

= −
n∑

k=1

∑
0�=m∈{0,1,... }r(j)

∑m1
l1=0 · · ·

∑mr(j)

lr(j)=0

{m1
l1

} · · ·{mr(j)

lr(j)

}
logp(z + v

(k)
j

t(−l))

(1− ξµ
j )m

=
n∑

k=1

[
d

ds
ζp,r(j)(s, v

(k)
j , ξµ

j , x(z))
]

s=0

.
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Then the assertion is clear.

5. p-adic multiple gamma functions

In this section, we will define the p-adic multiple gamma function as the
derivative of the p-adic multiple ζ-function [4] at s = 0. Let r be an integer
and R[X] = R[X1, . . . , Xr] denote the polynomial ring over the ring R. For a
map f(X) : Zr

p → Cp, we define:

(5.1) JX(f(X)) = lim
l1→∞

lim
l2→∞

· · · lim
lr→∞

1
pl1+l2+···+lr

pl1−1∑
n1=0

pl2−1∑
n2=0

· · ·
plr−1∑
nr=0

f(n).

Here n = (n1, . . . , nr). If f(X) ∈ Cp[X], the right hand side converges and we
get the next Lemma.

Lemma 5.1. For xi ∈ Cp (i = 1, 2, . . . , r),

JX

(
r∏

i=1

(Xi + xi)mi

)
=

r∏
i=1

Bmi
(xi) (mi ≥ 0).

Proof. It suffices to show the assertion for the case r = 1. If m = 0, it is
obvious. Assume that m �= 0. Then

lim
l→∞

1
pl

pl−1∑
n=0

nm = lim
l→∞

Bm+1(pl)−Bm+1(0)
(m + 1)pl

=
1

m + 1
dBm+1(X)

dX

∣∣∣
X=0

= Bm(0),

Bm(x) =
m∑

l=0

(
m

l

)
Blx

m−l = JX

(
m∑

l=0

(
m

l

)
X lxm−l

)
= JX((X + x)m).

Thus we can define a Cp-linear map:

(5.2) JX : Cp[X]→ Cp, sending P (X) ∈ Cp[X] to JX(P (X)) ∈ Cp.

Suppose that r = 1 and let P (X) be a polynomial ∈ Cp[X],
(
X
m

)
denote the

polynomial X(X−1)···(X−m+1)
m! for m ≥ 1 and

(
X
0

)
= 1. Then P (X) is a linear

combination of
{(

X
m

) | m = 0, 1, . . .
}

, that is, there exist am ∈ Cp such that

P (X) =
∑M

m=0 am

(
X
m

)
. Note that sups∈Zp

|P (s)|p = supi=0,1,... |ai|p.
Lemma 5.2.

JX

((
X

m

))
=

(−1)m

m + 1
.
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Proof. If m = 0, it is obvious. Assume that m ≥ 1. Since
(
X+1
m+1

)−( X
m+1

)
=(

X
m

)
,

JX

((
X

m

))
= lim

l→∞
1
pl

((
pl

m + 1

)
−
(

0
m + 1

))
=

d
(

X
m+1

)
dX

∣∣∣
X=0

=
(−1)m

m + 1
.

By this lemma,

|JX(P (X))|p ≤ sup
m=0,1,...,M

∣∣∣∣ai
(−1)m

m + 1

∣∣∣∣
p

≤ sup
m=0,1,...,M

|ai|p sup
m=0,1,...,M

∣∣∣∣ (−1)m

m + 1

∣∣∣∣
p

≤ (M + 1) sup
s∈Zp

|P (s)|p.

For general r, let P (X) =
∑M1,...,Mr

m1=0,...,mr=0 am1,...,mr
Xm1

1 · · ·Xmr
r ∈ Cp[X1, . . . ,

Xr]. In this case, we can show that

(5.3) |JX(P (X))|p ≤ (M1 + 1) · · · (Mr + 1) sup
s∈Zp

r
|P (s)|p.

Now we define ‖P (X)‖r = (M1 + 1) · · · (Mr + 1) sups∈Zp
r |P (s)|p where Mi =

supam1,...,mr �=0{mi}. If P (X) = 0 let ‖P (X)‖r = 0. We define a space of
continuous functions on Zr

p:

Cp[X]′ =

{
P (X) : Zr

p → Cp

∣∣∣∣∣ P (X) =
∞∑

n=1

Pn(X),

Pn(X) ∈ Cp[X], ‖Pn(X)‖r → 0 when n→∞
}

.

Then we can extend JX to an Cp-linear map on Cp[X]′ sending P (X) =∑∞
n=1 Pn(X) to

∑∞
n=1 JX(Pn(X)) where Pn(X) ∈ K[X], ‖Pn(X)‖r → 0 when

n → ∞. JX(f(X)) converges when JX(f(pX + n′)) converges for all n′ =
(n′

1, . . . , n
′
r), n′

i = 0, 1, . . . , p− 1 (i = 1, 2, . . . , r). Therefore we put

Cp[X]′′ = {P (X) : Zr
p → Cp | P (pX + n′) ∈ Cp[X]′

for all ni = 0, 1, . . . , p− 1, (i = 1, 2, . . . , r)},
and we can extend JX :

JX : Cp[X]′′ → Cp, sending P (X) ∈ Cp[X]′′

to
1
pr

p−1∑
n′

1=0

· · ·
p−1∑

n′
r=0

JX(P (pX + n′)).

Let ai, a ∈ OCp
, ai �= 0 (i = 1, 2, . . . , r) and f(X) =

∑r
i=1 aiXi + a. For

s ∈ Zp, we define Ps(X) = θ0
p (f(X)) f(X)r

(
θp (f(X))−1 f(X)

)−s

, that is,
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for n′ satisfying θ0
p(f(n′)) = 0 we put Ps(pX + n′) = 0 and for n′ satisfying

θ0
p(f(n′)) �= 0, we put

Ps(pX + n′) = f(pX + n′)r
∞∑

k=0

(−s

k

)
(θp(f(n′))−1f(pX + n′)− 1)k.

Then∥∥∥∥f(pX + n′)r

(−s

k

)
(θp(f(n′))−1f(pX + n′)− 1)k

∥∥∥∥
r

= (r + k + 1)r sup
x∈Zr

p

|f(px + n′)r

(−s

k

)
(θp(f(n′))−1f(px + n′)− 1)k|p

≤ (r + k + 1)r|〈f(n′)〉 − 1|kp → 0, when k →∞.

Therefore Ps(X) ∈ Cp[X]′′. We define the p-adic multiple ζ-function:

(5.4) ζp,r(s, (a1, a2, . . . , ar), a) =
(−1)rJX (Ps(X))

(r − s)(r − 1− s) · · · (1− s)a1a2 · · · ar
.

In particular, for 0 �= ai ∈Mp, a /∈Mp,

(5.5) ζp,r(s, (a1, a2, . . . , ar), a) =
(−1)rJX

(
f(X)r

(
θp(a)−1f(X)

)−s
)

(r − s)(r − 1− s) · · · (1− s)a1a2 · · · ar
,

and for 0 �= ai ∈Mp, a ∈Mp,

(5.6) ζp,r(s, (a1, a2, . . . , ar), a) = 0.

We extend ζp,r(s, (a1, a2, . . . , ar), a) on 0 �= ai ∈ Cp, a ∈ Cp as follows. When
|a|p > 1 or |ai|p > 1, there exists the unique positive rational number α such
that sup{|a1|p, . . . , |ar|p, |a|p} = |p−α|p. Then we define:

(5.7) ζp,r(s, (a1, a2, . . . , ar), a) = ζp,r(s, (pαa1, p
αa2, . . . , p

αar), pαa).

This definition does not depend on the choice of pα. We will check several
properties of the p-adic multiple ζ-function.

Lemma 5.3. Let 0 �= ai ∈ Cp, a ∈ Cp.
1. ζp,r(s, (a1, . . . , ar), a) is analytic at s = 0, and continuous on s ∈ Zp.
2. There exist 0 �= a

(k)
i ∈Mp, a(k) ∈ OCp

× such that

ζp,r(s, (a1, . . . , ar), a) =
m∑

k=1

ζp,r(s, (a(k)
1 , . . . , a(k)

r ), a(k)).

3. For c ∈ OCp

×

ζp,r(s, (ca1, . . . , car), ca) = 〈c〉−rsζp,r(s, (a1, . . . , ar), a).
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Proof. By definition of ζp,r and (5.3), the last assertion is clear. By (5.5),
(5.6), (5.7) and

ζp,r(s, (a1, . . . , ar), a) =
p−1∑
n1=0

· · ·
p−1∑

nr=0

ζp,r(s, (pa1, . . . , par), a+n1a1+· · ·+nrar),

the second assetion is also clear. Therefore to prove the first assertion, we
can assume that ai ∈ Mp, a /∈ Mp. Take a non-negative integer L and put
s = pLs′, s′ ∈ Zp. By definition,

ζp,r(s, (a1, a2, . . . , ar), a)(s− r) · · · (s− 1)a1 · · · ar

=
∞∑

k=0

JX

(
f(X)r((θp (a)−1 f(X))pL − 1)k

)(−s′

k

)
.

(5.8)

By (5.3), we get

∣∣∣∣∣JX

(
f(X)r

((
θp (a)−1 f(X)

)pL

− 1
)k

)∣∣∣∣∣
p

≤ (r + pLk + 1)r sup
x∈Zr

p




∣∣∣∣∣∣∣∣


pL

pL∑
i=1

(
pL − 1
i− 1

)(θp (a)−1
f(x)− 1

)i

i




k
∣∣∣∣∣∣∣∣
p


 .

(5.9)

Now let L be large enough to satisfy |p|Lp supi=1,2,...{|Πi/i|p} < |p|1/(p−1)
p . By

Lemma 4.1, JX

(
f(X)r

(
θp (a)−1 f(X)

)−pLs′)
is analytic at s′ = 0.

Let F be a totally real algebraic number field and fix an embedding F →
Cp. Let P be a prime ideal determined by this embedding and fP = [OF /P :
Z/pZ].

Theorem 5.1. Let ai, a ∈ F be elements such that ai, a > 0, |ai|p <
1, |a|p ≤ 1 (i = 1, 2, . . . , r). Then for 0 ≤ k ∈ Z, k ≡ 0 mod pfP − 1,

ζp,r(−k, (a1, a2, . . . , ar), a) = ζr(−k, (a1, a2, . . . , ar), a).

Moreover, if |a− 1|p < 1, this equation holds for any 0 ≤ k ∈ Z.

Proof. Take xi ∈ F , xi > 0 (i = 1, . . . , r) so that a1x1 + · · · + arxr = a.
(For example, xi = a/rai.) According to [16, Corollary to Proposition 1] (or
[2, §30]), for m = 1, 2, . . . ,

ζr(1−m, (a1, a2, . . . , ar), a)

= (−1)r(m− 1)!
∑

p1+···+pr=m+r−1
pi≥0

∏
i=1,...,r

Bpi
(xi)a

pi−1
i

pi!
.
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By Lemma 5.1,

ζr(1−m, (a1, a2, . . . , ar), a) =
(−1)rJX

(
f(X)m+r−1

)
m(m + 1) · · · (m + r − 1)a1 · · · ar

.

Hence the assertion is clear.

Now we define the p-adic logarithmic r-ple Γ-function for 0 �= ai ∈ Cp,
a ∈ Cp:

LΓp,r(a, (a1, a2, . . . , ar)) =
dζp,r(s, (a1, a2, . . . , ar), a)

ds

∣∣∣
s=0

.(5.10)

By Lemma 3, (5.8) and Lemma 4.1 (b), for 0 �= ai ∈ OCp
, a ∈ OCp

,

LΓp,r(a, (a1, a2, . . . , ar))

=
(

1 +
1
2

+ · · ·+ 1
r

)
ζp,r(0, (a1, a2, . . . , ar), a) +

(−1)r

prr!a1a2 · · · ar

×
∑

0≤ni≤p−1(i=0,...,r)
θ0

p(f(n))�=0

∞∑
k=1

(−1)kJX

(
f(pX + n)r

(
θp (f(n))−1

f(pX + n)− 1
)k
)

k
.

(5.11)

In particular, for 0 �= ai ∈Mp, a ≡ 1 mod Mp,

LΓp,r(a, (a1, a2, . . . , ar))

=
(−1)r

r!a1a2 · · · ar
JX

(
f(X)r

(
1 +

1
2

+ · · ·+ 1
r

+
∞∑

k=1

(−1)k

k
(f(X)− 1)k

))
.

(5.12)

We will check several properties of the p-adic logarithmic multiple Γ-function.

Lemma 5.4.
1. LΓp,r(a, (a1, . . . , ar)) is a continuous function on 0 �= ai ∈ Cp, a ∈ Cp.
2. There exist 0 �= a

(k)
i ∈Mp, a(k) ∈ 1 + Mp (i = 1, . . . , r, k = 1, . . . , m)

such that

LΓp,r(a, (a1, . . . , ar)) =
m∑

k=1

LΓp,r(a(k), (a(k)
1 , . . . , a(k)

r )).

3. For c ∈ OCp

×,

LΓp,r(ca, (ca1, . . . , car)) = LΓp,r(a, (a1, . . . , ar))− logp(c)ζp,r(0, (a1, . . . , ar), a).
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Proof. By definition, the last assertion is clear. By Lemma 3, there exist
0 �= a

(k)
i ∈Mp, a

(k) ∈ OCp

× such that

LΓp,r(a, (a1, . . . , ar)) =
m∑

k=1

LΓp,r(a(k), (a(k)
1 , . . . , a(k)

r )).

By the last assertion,

LΓp,r(a(k), (a(k)
1 , . . . , a(k)

r )) = LΓp,r(〈a(k)〉, (θp(ak)−1a
(k)
1 , . . . , θp(ak)−1a(k)

r )),

therefore we get the second assertion. Since logp and ζp,r(0, (a1, . . . , ar), a) are
continuous functions, we may assume that ai ∈ Mp, a ≡ 1 mod Mp to prove
the first assertion. In this case, by (5.12), (5.3), we get this assertion.

Lemma 5.5. If r ≥ 2, then

ζp,r(s, (a1, a2, . . . , ar), a)−ζp,r(s, (a1, a2, . . . , ar), a + ai)
= ζp,r−1(s, (a1, . . . , ai−1, ai+1, . . . , ar), a),

LΓp,r(a, (a1, a2, . . . , ar))−LΓp,r(a + ai, (a1, a2, . . . , ar))
= LΓp,r−1(a, (a1, . . . , ai−1, ai+1, . . . , ar)).

If r = 1, then

ζp,1(s, (a1), a)− ζp,1(s, (a1), a + a1) =

{
〈pαa〉−s if |a|p > |a1|p, |a|p > 1,

0 if |a|p < |a1|p or |a|p < 1,

LΓp,1(a, (a1))− LΓp,1(a + a1, (a1)) = − logp(a),

where α is a rational number such that |a|p = |p−α|p. Furthermore, if a ∈ Zp,
then

LΓp,1(a, (1)) = logp(Γp(a)).

Proof. Because of the definition (5.7), it suffices to show the assertions
when ai, a ∈ OCp

. We assume that ai, a ∈ OCp
. Let r ≥ 2, k ≥ 0 and f(X) =

a1X1+· · ·+arXr+a. We put Pk(X) = θ0
p (f(X)) f(X)r

(
θp (f(X))−1 f(X)

)−k

.
Then

(ζp,r(−k, (a1, a2, . . . , ar), a)− ζp,r(−k, (a1, a2, . . . , ar), a + ai))
× (r + k)(r + k − 1) · · · (k + 1)a1a2 · · · ar

= (−1)r lim
lj→∞

j �=i

1
p

P
j �=i lj

×
∑

0≤xj≤p
lj −1

j �=i

(
lim

li→∞
1
pli

(
Pk(X) |Xi=0 −Pk(X) |Xi=pli

)) ∣∣∣
Xj=xj

j �=i

.
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Since

lim
li→∞

1
pli

(
Pk(X) |Xi=0 −Pk(X) |Xi=pli

)
= −θp (f(X) |Xi=0)−k ∂f(X)r+k

∂Xi

∣∣∣
Xi=0

= −θp (f(X) |Xi=0)−k (r + k)aif(X)r+k−1 |Xi=0,

ζp,r(−k, (a1, a2, . . . , ar), a)− ζp,r(−k, (a1, a2, . . . , ar), a + ai0)

=
(−1)r−1JX1,...,Xi−1,Xi+1,...,Xr

(
θp (f(X) |Xi=0)−k f(X)r+k−1 |Xi=0

)
(r + k − 1) · · · (k + 1)a1 · · · ai−1ai+1 · · · ar

= ζp,r−1(−k, (a1, . . . , ai−1, ai+1, . . . , ar), a).

Because {n ∈ Z | n ≤ 0} is dense in Zp, the case of r ≤ 2 is clear. If r = 1,
similarly we obtain the assertion

ζp,1(s, (a1), a)− ζp,1(s, (a1), a + a1) = θ0
p(a)

(
θp(a)−1a

)−s
.

By Lemma 4.1,

LΓp,1(a, (a1))− LΓp,1(a + a1, (a1)) = −
∞∑

k=1

(−1)k−1
(
θp(a)−1a− 1

)k

k

= − logp (a) .

Since ζp,1(0, (1), 0) = −1
p

∑p−1
n=1 JX (pX + n) = 0, by (5.11),

LΓp,1(0, (1)) =
−1
p

p−1∑
n=1

∞∑
k=1

(−1)k

k
lim
l→∞

1
pl

pl−1∑
x=0

(px + n)
(
θp(n)−1(px + n)− 1

)k
.

Here
p−1∑
n=1

(px + n)(θp(n)−1(px + n)− 1)k

=

p−1
2∑

n=1

((px + n)(θp(n)−1(px + n)− 1)k

+ (px + p− n)(−θp(n)−1(px + p− n)− 1)k),
pl−1∑
x=0

(px + p− n)
(−θp(n)−1(px + p− n)− 1

)k

=
pl−1∑
x=0

(px− n)
(−θp(n)−1(px− n)− 1

)k
+ n

(−θp(n)−1(−n)− 1
)k

+ (ppl − n)
(−θp(n)−1(ppl − n)− 1

)k
,
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(px + n)
(
θp(n)−1(px + n)− 1

)k
+ (px− n)

(−θp(n)−1(px− n)− 1
)k

=
∑

0≤i≤k,i:even

2
(

k

i

)
θp(n)−i(px)i+1

(
θp(n)−1n− 1

)k−i

+
∑

0≤i≤k,i:odd

2
(

k

i

)
θp(n)−i(px)in

(
θp(n)−1n− 1

)k−i
,

n
(−θp(n)−1(−n)− 1

)k
+ (ppl − n)

(−θp(n)−1(ppl − n)− 1
)k

=
k∑

i=0

(
k

i

)(−θp(n)−1
)i

(pl+1)i+1
(
θp(n)−1n− 1

)k−i

−
k∑

i=1

(
k

i

)(−θp(n)−1
)i

(pl+1)in
(
θp(n)−1n− 1

)k−i
.

Since B2m+1 = 0 for m ≥ 1 and liml→∞(1/pl)(pl+1)i = 0 for i ≥ 2,

LΓp,1(0, (1))

=

p−1
2∑

n=1

∞∑
k=1

(−1)k+1

pk
{2pB1(θp(n)−1n− 1)k + 2kθp(n)−1pB1n(θp(n)−1n− 1)k−1

+ p(θp(n)−1n− 1)k + kθp(n)−1pn(θp(n)−1n− 1)k−1}
= 0.

Then for n = 0, 1, . . . , LΓp,1(n, (1)) =
∑n−1

k=0 logp(k) = logp(Γp(n)). Hence for
all a ∈ Zp, LΓp,1(a, (1)) = logp(Γp(a)).

6. Main Theorem

In this section, we will formulate a p-adic analogue of Shintani’s formula,
and show that there exists the strong analogy. Let the notations be as in
Section 4. We transform Theorem 4.3 to the style of Shintani’s formula.

Lemma 6.1. Let the notations be as in Theorem 4.3. Then

[
d

ds
ζp,f(s, a−1, b)

]
s=0

= logp(Na)ζp,f(0, a−1, b)

+
n∑

k=1

∑
j∈J

∑
z∈R′(a−1,j)

(
b
∑
n′

LΓp,r(j)((z + n′tvj)(k), bv
(k)
j )− LΓp,r(j)(z(k), v

(k)
j )

)
,

where n′ extends over all n′ = (n′
1, . . . , n

′
r(j)) such that 0 ≤ n′

i ≤ b − 1 and
z + n′tvj ∈ b.
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Proof. By Theorem 4.3, it suffices to show that for each k, z,

(6.1)
b−1∑
µ=1

ξµ
z ζp,r(j)(s, v

(k)
j , ξµ

j , x(z))

= b
∑
n′

ζp,r(j)(s, bv
(k)
j , (z + n′tvj)(k))− ζp,r(j)(s, v

(k)
j , z(k)).

By Lemma 4.4,

b−1∑
µ=1

ξµ
z ξµn

j =
b−1∑
µ=1

e(Tr((x + n)vj × µν)) =

{
−1 if (x + n)vj /∈ b,
b− 1 if (x + n)vj ∈ b.

Therefore, by Theorems 5.1 and 4.1, the assertion is clear.

Let a, vj,i, R
′(a−1, C(vj)), b = (α), b be as for (4.2), (4.6) and Theorem 4.2.

Now we consider two cone decompositions:

R+n =
⊔
j∈J

⊔
u∈E+

f

uC(bvj,1, bvj,2, . . . , bvj,r(j)),

R+n =
⊔
j∈J

⊔
u∈E+

f

uC(αvj,1, αvj,2, . . . , αvj,r(j)),

and define R′((ab)−1, C(bvj)), R′((ab)−1, C(αvj)) respectively as in Theorem
4.2. According to [19, Lemma 2], we can take a cone decomposition {C(vj′) |
C(vj′) = C(vj′,1, . . . , vj′,r(j′)), j′ ∈ J ′} such that

1. vj′,i ∈ abf, totally positive.
2. {C(vj′) | j′ ∈ J ′} is a refinement of {C(αvj) | j ∈ J}.
3. There exist uj′ ∈ E+

f such that {C(uj′vj′) | j′ ∈ J ′} is a refinement of
{C(bvj) | j ∈ J}.
Now xt(αvj) ∈ ab(= αa) is equivalent to xtvj ∈ a. If xtvj ∈ OF , then xt(αvj) ≡
1 mod f is equivalent to xtvj ≡ 1 mod f. Hence we get

R′((ab)−1, C(αvj)) = {αz | z ∈ R′(a−1, C(vj))}.
For σ ∈ JF , ∑

j∈J

∑
z∈R′(a−1,C(vj))

ζp,r(j)(s, vσ
j , zσ)

=
∑
j∈J

∑
z∈R′((ab)−1,C(αvj))

(ασ)sζp,r(j)(s, (αvj)σ, zσ)

=
∑

j′∈J′

∑
z∈R′((ab)−1,C(vj′ ))

(ασ)sζp,r(j′)(s, vσ
j′ , zσ).

(6.2)

Let z ∈ R′((ab)−1, C(bvj)). Then x(z)t(bvj) = (bx(z))tvj ∈ a,≡ 1 mod f. Hence
there exist n ∈ {0, 1, . . . }r(j) and z′ ∈ R′(a−1, C(vj)) such that bx(z) = x(z′) +
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n. Here 0 < xi(z) ≤ 1 and 0 < xi(z′) ≤ 1, then 0 ≤ ni ≤ b − 1. Furthermore
x(z)t(bvj) = x(z′)tvj + ntvj ∈ b. Conversely, let z′ ∈ R′(a−1, C(vj)) and n ∈
{0, 1, . . . }r(j) satisfying that 0 ≤ ni ≤ b − 1 and x(z′)tvj + ntvj ∈ b. Let x =
(x(z′) + n)/b. Then 0 < xi ≤ 1 and xt(bvj) = x(z′)tvj + ntvj ≡ 1 mod f. Since
b is prime to (vj,i), b is prime to a. Then xt(bvj) = x(z′)tvj + ntvj ∈ a∩ b = ab.
Therefore

R′((ab)−1, C(bvj))

= {z + ntvj | z ∈ R′(a−1, C(vj)), 0 ≤ ni ≤ b− 1, z + ntvj ∈ b}.

For σ ∈ JF ,

∑
j∈J

∑
z∈R′(a−1,C(vj))

∑
n′

ζp,r(j)(s, bvσ
j , (z + n′tvj)σ)

=
∑
j∈J

∑
z∈R′((ab)−1,C(bvj))

ζp,r(j)(s, bvσ
j , zσ)

=
∑

j′∈J′

∑
z∈R′((ab)−1,C(vj′ ))

(uσ
j′)−sζp,r(j′)(s, vσ

j′ , zσ),

(6.3)

where n′ extends over all n′ = (n′
1, . . . , n

′
r(j)) such that 0 ≤ n′

i ≤ b − 1 and
z + n′tvj ∈ b. The following Lemma is a p-adic analogue of [20, Chapter IV,
Theorem 6.2].

Lemma 6.2. Let the notations be as above. Then for any σ ∈ JF ,

ζp,f(0, c) =
∑
j∈J

∑
z∈R′(a−1,j)

ζp,r(j)(0, vσ
j , zσ).

Proof. By definition, for any j, σ, z,

ζp,r(j)(0, Aj , ξ
µ
j , x(z)) =

∑
k∈{0,1,... }r(j),k �=0

∑k1
l1=0 · · ·

∑kr(j)

lr(j)=0

{
k1
l1

} · · ·{ kr(j)

lr(j)

}
(1− ξ)k

= ζp,r(j)(0, vσ
j , ξµ

j , x(z)).

By (6.1), (6.2), (6.3),

b−1∑
µ=1

∑
j∈J

∑
z∈R′(a−1,j)

ξµ
z ζp,r(j)(0, vσ

j , ξµ
j , x(z))

= (b− 1)
∑
j∈J

∑
z∈R′(a−1,j)

ζp,r(j)(0, vσ
j , zσ).
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Then by (4.4), (4.6),

ζp,f(0, c) =
1

b− 1

b−1∑
µ=1

∑
j∈J

∑
z∈R′(a−1,j)

ξµ
z ζp,r(j)(0, Aj , ξ

µ
j , x(z))

=
1

b− 1

b−1∑
µ=1

∑
j∈J

∑
z∈R′(a−1,j)

ξµ
z ζp,r(j)(0, vσ

j , zσ)

=
∑
j∈J

∑
z∈R′(a−1,j)

ζp,r(j)(0, vσ
j , zσ).

Now we get a p-adic analogue of Shintani’s formurla which expresses the
derivative at s = 0 of the p-adic partial ζ-function in terms of the p-adic multiple
Γ-function and some correction terms.

Theorem 6.1. Let f, c, a, vj,i, R
′(a−1, C(vj)), b = (α), b be as for (4.2),

(4.6) and Theorem 4.2. Let {C(vj′)|j′ ∈ J ′} be a cone decomposition such that
1. vj′,i ∈ af, totally positive.
2. {C(vj′) | j′ ∈ J ′} is a refinement of {C(vj) | j ∈ J}.
3. There exist uj′ ∈ E+

f such that {C(uj′vj′) | j′ ∈ J ′} is a refinement of
{C((b/α)vj) | j ∈ J}.
Then[

d

ds
ζp,f(s, c)

]
s=0

= logp(Na)ζp,f(0, c) +
n∑

k=1

∑
j∈J

∑
z∈R′(a−1,Cj)

LΓp,r(j)(z(k), v
(k)
j )

+
−b

b− 1

n∑
k=1

∑
j′∈J′,uj′ �=1

∑
z′∈R′(a−1,Cj′ )

logp(u(k)
j′ )ζp,r(j′)(0, v

(k)
j′ , z′(k)).

Proof. By Lemma 6.1,[
d

ds
ζp,f(s, c)

]
s=0

=
(

logp(Na) +
b logp(b)

b− 1

)
ζp,f(0, c) +

n∑
k=1

∑
j∈J

∑
z∈R′(a−1,C(vj))

1
b− 1

(
b
∑
n′

LΓp,r(j)((z + n′tvj)(k), bv
(k)
j )− LΓp,r(j)(z(k), v

(k)
j )

)
,

where n′ extends over all n′ = (n′
1, . . . , n

′
r(j)) such that 0 ≤ n′

i ≤ b − 1 and
z + n′vj ∈ b. Let {C(v′j′) | j′ ∈ J ′} be as above. Then {C(αvj′) | j′ ∈ J ′}
satisfies that

1. αvj′,i ∈ abf, totally positive.
2. {C(αvj′) | j′ ∈ J ′} is a refinement of {C(αvj) | j ∈ J}.
3. There exist uj′ ∈ E+

f such that {C(uj′αvj′) | j′ ∈ J ′} is a refinement
of {C(bvj) | j ∈ J}.
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Therefore, by (6.2) and (6.3),∑
j∈J

∑
z∈R′(a−1,C(vj))

∑
n′

LΓp,r(j)((z + n′tvj)(k), bv
(k)
j )

=
∑
j∈J

∑
z∈R′(a−1,C(vj))

LΓp,r(j)(z(k), v
(k)
j )

− logp(α(k))
∑
j∈J

∑
z∈R′(a−1,C(vj))

ζp,r(j)(0, v
(k)
j , z(k))

+
∑

j′∈J′

∑
z∈R′(a−1,C(vj′ ))

(− logp(u(k)
j′ ))ζp,r(j′)(0, v

(k)
j′ , z(k)).

Hence, by Lemma 6.2 and b =
∏n

k=1 α(k), the assertion is clear.

Both of Theorems 3.1 and 6.1 express the derivative of the (p-adic) par-
tial ζ-function using the (p-adic) multiple Γ-function, but the correction terms
seem slightly different. However, the next theorem shows the storong analogy
between two formulas.

Theorem 6.2. Let the notations be as in Theorem 3.1, and assume that
every prime ideal p above (p) divides f. We can take aq, bq ∈ Q

×
(q = 1, . . . , m)

so that T0 =
∑m

q=1 aq log(bq). So we get

[
d

ds
ζf(s, c)

]
s=0

=
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

log

(
Γr(j)(z(k), v

(k)
j )

ρr(j)(v
(k)
j )

)

− log(Naµf)ζf(0, c) +
m∑

q=1

aq log(bq).

Using the same aq, bq, we can transcribe the correction terms of the p-adic
analogue of Shintani’s formula in the same manner as in the original Shintani’s
formula, that is,[

d

ds
ζp,f(s, c)

]
s=0

=
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

LΓp,r(j)(z(k), v
(k)
j )

− logp(Naµf)ζp,f(0, c) +
m∑

q=1

aq logp(bq).

Proof. Let aµ, vj,i, R(c, C(vj)) be as for Lemmas 3.1 and 3.2. Let {ε}
denote a set of units which represent E+

(1)/E+
f . For each c and the corresponding

aµ, fix an integral ideal a ∈ c−1 and an elemnt αa ∈ aµfa such that (αa) =
aµfa. For each z ∈ R(c, C(vj)), let εz denote the unique unit in {ε} such that
zαaεz ≡ 1 mod f. Then a cone decomposition:

R+n =
⊔

(j,ε)∈J×{ε}

⊔
u∈E+

f

uC(εαa(vj,1, vj,2, . . . , vj,r(j)))
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satisfies the condition for (4.2) and there exists a bijective map:

R(c, C(vj))→
⊔

ε∈{ε}
R′(a−1, C(εαavj)),

z �→ εzαaz.

(6.4)

We can take an integral ideal b = (α) which satisfies the condition of Theorem
6.1 for all c and the corresponding cone decomposition. Now put b = Nb and
take a cone decomposition {C(vj′)|j′ ∈ J ′} such that

1. vj′,i ∈ OF , totally positive.
2. {C(vj′) | j′ ∈ J ′} is a refinement of {C(vj) | j ∈ J}.
3. There exist uj′ ∈ E+

f such that {C(uj′vj′) | j′ ∈ J ′} is a refinement of
{C((b/α)vj) | j ∈ J}.
Then we can apply {C(εαavj′)|(j′, ε) ∈ J ′ × {ε}} to Theorem 6.1 and get[

d

ds
ζp,f(s, c)

]
s=0

= logp(Na)ζp,f(0, c) +
n∑

k=1

∑
j∈J,ε∈{ε}

∑
z∈R′(a−1,C(εαavj))

LΓp,r(j)(z(k), (εαavj)(k))

+
−b

b− 1

n∑
k=1

∑
j′∈J′,ε∈{ε},uj′ �=1

∑
z′∈R′(a−1,C(εαavj′ ))

logp(u(k)
j′ )ζp,r(j′)(0, (εαavj′)(k), z′(k)).

Therefore by (6.4), Lemmas 5.4 and 6.2,[
d

ds
ζp,f(s, c)

]
s=0

=
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

LΓp,r(j)(z(k), v
(k)
j )− logp(Naµf)ζp,f(0, c)

+
−b

b− 1

n∑
k=1

∑
j′∈J′,uj′ �=1

∑
z′∈R(a−1,C(vj′ ))

logp(u(k)
j′ )ζp,r(j′)(0, v

(k)
j′ , z′(k)).

Put

T0(c, {C(vj)|j ∈ J}) =
[

d

ds
ζf(s, c)

]
s=0

+ log(Naµf)ζf(0, c)

−
n∑

k=1

∑
j∈J

∑
z∈R(c,C(vj))

log

(
Γr(j)(z(k), v

(k)
j )

ρr(j)(v
(k)
j )

)
.

Since ζp,r(j′)(0, v
(k)
j′ , xtv

(k)
j′ ) = ζr(j′)(0, v

(k)
j′ , xtv

(k)
j′ ), to prove the assertion, it

suffices to show that

T0(c, {C(vj)|j ∈ J})

=
−b

b− 1

n∑
k=1

∑
j′∈J′,uj′ �=1

∑
z′∈R(a−1,C(vj′ ))

log(u(k)
j′ )ζr(j′)(0, v

(k)
j′ , z′(k)).
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By (3.1) and Cl






vσ1
j
...

vσn
j




 = Cl






( b
αvj)σ1

...
( b

αvj)σn




,

T0(c, {C(vj)|j ∈ J}) =
∑
j∈J

∑
z∈R(c,C(vj))

(−1)r(j)

n

∑
l

Cl(Aj)
r(j)∏
i=1

Bli(xi(z))
li!

,

T0(c, {C( b
αvj)|j ∈ J}) =

∑
j∈J

∑
z∈R(c,C(

b
α vj))

(−1)r(j)

n

∑
l

Cl(Aj)
r(j)∏
i=1

Bli(xi(z))
li!

.

Here

R(c, C( b
αvj)) = {z ∈ (aµf)−1 ∩ C( b

αvj)|(z)aµf ∈ c}
= α−1{z + ntvj |z ∈ R(c, C(vj)), n ∈ Qz}.

Here we put Qz = {n | ni = 0, 1, . . . , b− 1, (z + ntvj)aµf ⊂ b} for z ∈ R(c,
C(vj)). Then we get

∑
z∈R(c,C(

b
α vj))

r(j)∏
i=1

Bli(xi(z))
li!

=
∑

z∈R(c,C(vj))

∑
n∈Qz

r(j)∏
i=1

Bli

(
xi(z)+ni

b

)
li!

.

Since b is prime to (αavi,j) and (αa) = aµfa, b is prime to aµf, OF /b = Z/bZ.
Therefore for any i, for each n1, . . . , ni−1, ni+1, . . . , nr(j), there exists unique ni

such that n ∈ Qz, 0 ≤ ni ≤ b−1. Here l extends over all l = (l1, . . . , lr(j)) such
that 0 ≤ li, l1 + · · · + lr(j) = r(j). If l = (1, 1, . . . , 1), Cl(Aj) = 0. We assume
that l �= (1, 1, . . . , 1), that is, there exists i0 such that li0 = 0. In this case

∑
n∈Qz

r∏
i=1

Bli

(
xi(z)+ni

b

)
li!

=
∏
i �=i0

b−1∑
ni=0

Bli

(
xi(z)+ni

b

)
li!

=
∏
i �=i0

1
bli−1

Bli(xi(z))
li!

=
1
b

∏
i �=i0

Bli(xi(z))
li!

.

Therefore

T0(c, {C( b
αvj)|j ∈ J}) =

1
b
T0(c, {C(vj)|j ∈ J}),
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n∑
k=1

∑
j′∈J′,uj′ �=1

∑
z′∈R(c,C(vj′ ))

log(u(k)
j′ )ζr(j′)(0, v

(k)
j′ , z′(k))

=
n∑

k=1

∑
j∈J


 ∑

z∈R(c,C(vj))

log

(
Γr(j)(z(k), v

(k)
j )

ρr(j)(v
(k)
j )

)

−
∑

z∈R(c,C(
b
α vj))

log

(
Γr(j)(z(k), v

(k)
j )

ρr(j)(v
(k)
j )

)
= T0(c, {C( b

αvj)|j ∈ J})− T0(c, {C(vj)|j ∈ J})
=

b− 1
−b

T0(c, {C(vj)|j ∈ J}).
We get

(6.5) T0(c, {C(vj)|j ∈ J})

=
−b

b− 1

n∑
k=1

∑
j′∈J′,uj′ �=1

∑
z′∈R(c,C(vj′ ))

log(u(k)
j′ )ζr(j′)(0, v

(k)
j′ , z′(k)).

7. Applications

7.1. The case of F = Q
Let F = Q, d ≥ 1. Then I(d) = {(a/b) | a, b = 1, 2, . . . , (a, d) = (b, d) = 1}

and P(d)+ = {(a/b) | a, b = 1, 2, . . . , (a, d) = (b, d) = 1, a − b ∈ (d)}. We can
identify

C(d) = (Z/dZ)× by (a/b) �→ ab′ mod dZ, (a)←� a mod dZ,

where a, b ∈ Z such that (a, d) = (b, d) = 1 and b′ ∈ Z such that bb′ ≡ 1 mod d.
Hence we can regard a primitive Dirichlet character χ of conductor d as a
character of C(d). Assume that d is prime to p. Let f = (pd). Then {(a) |
1 ≤ a ≤ pd− 1, (a, pd) = 1} is a complete set of representatives of C(pd). Now
C((1)) is a cone decomposition. By Lemmas 5.4, 6.2 and Theorem 6.2,[

d

ds
ζp,(pd)(s, (a))

]
s=0

= LΓp,1

( a

ad
, (1)

)
− logp(pd)ζp,1

(
0, (1),

a

pd

)
= LΓp,1(a, (pd)),

(7.1)

Let χ be a primitive Dirichlet character of conductor d. By (4.10),[
d

ds
Lp,(pd)(s, χ−1)

]
s=0

=
∑

1≤a≤pd−1,(a,pd)=1

χ ((a)) LΓp,1(a, (pd))

=
∑

1≤a≤d−1,(a,d)=1

χ ((a)) LΓp,1(a, (d)).
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By Lemmas 5.4 and 5.5,[
d

ds
Lp,(pd)(s, χ−1)

]
s=0

=
∑

1≤a≤d−1,(a,d)=1

χ(a) logp(Γp(a/d))

− logp(d)Lp,(pd)(0, χ−1).

(7.2)

We see that this result agrees with Ferrero-Greenberg [8, Proposition 1].

7.2. The order at s = 0 of p-adic L-functions, Gross’ conjecture
In a special case, through the analogy between Shintani’s formula and p-

adic Shintani’s formula, we get the order at s = 0 of the p-adic L-function.
Gross conjectured formulas for the leading term in their Taylor expansion at
s = 0 ([9, Conjecture 2.12]). Let F be a totally real field, K an abelian
extension over F with conductor f0 and χ a primitive character of Cf0

. Put
f = f0 ×

∏
p|(p),p�f0

p. We assume that χ is odd. In this situation, his first
conjecture states:

(7.3) the order at s = 0 of Lf(s, χ) = the order at s = 0 of Lp,f(s, χ−1).

By [9, (2.8), (3.1)], the statement becomes:

(7.4) the order at s = 0 of Lp,f(s, χ−1) = #{p|(p) | χ(p) = 1}.
Here # means the number of elements in the set. Obviously,

(7.5) the order at s = 0 of Lp,f(s, χ−1) = 0 ⇔ #{p|(p) | χ(p) = 1} = 0.

By Theorem 6.2, we can get a partial result toward (7.3).

Theorem 7.1. If #{p|(p) | χ(p) = 1} ≥ 2, the order at s = 0 of
Lp,f(s, χ−1) ≥ 2.

Proof. First we show that d
dsLp,f(s, χθp) |s=0 is written as a finite sum of

terms which take the form of a logp b, a, b ∈ Q when #{p|(p) | χ(p) = 1} ≥ 2.
By (4.10) and Theorem 6.2, we get[

d

ds
�Lp,f(s, χ−1)

]
s=0

=
∑
c∈Cf

n∑
k=1

∑
j∈J

∑
z∈R(c,Cj)

χ(c)LΓp,r(j)(z(k), v
(k)
j )

+ finite sum of terms a logp b, a, b ∈ Q.

(7.6)

Because #{p|(p) | χ(p) = 1} ≥ 2, for each σ ∈ JF , we can take a prime ideal
pσ satisfying that pσ|(p), (pσ)σ �= Mp ∩ OF , χ(pσ) = 1. Let fσ = f/pσ. For
each aµ, there exist aµ′ and πµ,σ ∈ F which satisfy pσaµ = (πµ,σ)aµ′ as ideals.
We replace vj,i and we may assume πµ,σvj,i ∈ OF for all j, i. Put

R(f, aµ, C(vj)) = {z ∈ (aµf)−1 ∩ C(vj) | (zaµf) is prime to f},
R(fσ, aµ, C(vj)) = {z ∈ (aµfσ)−1 ∩ C(vj) | (zaµfσ) is prime to fσ},

R(fσ, aµ′ , C(πµ,σvj)) = {z ∈ (aµ′fσ)−1 ∩ C(πµ,σvj) | (zaµ′ fσ) is prime to fσ}.
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Then

πµ,σR(f, aµ, C(vj)) = {z ∈ R(fσ, aµ′ , C(πµ,σvj) | (zaµ′ fσ) is prime to pσ},
πµ,σR(fσ, aµ, C(vj)) = R(fσ, aµ′ , C(πµ,σvj)) ∩ pσ,

where πµ,σR(f, aµ, C(vj)) denotes the set {πµ,σz | z ∈ R(f, aµ, C(vj))}. We get

R(fσ, aµ′ , C(πµ,σvj)) = πµ,σR(f, aµ, C(vj))
⊔

πµ,σR(fσ, aµ, C(vj)).

Hence the first term of the right hand side of (7.6) is equal to∑
aµ

∑
σ∈JF

∑
j∈J

∑
z∈R(f,aµ,C(vj))

χ((z)faµ)LΓp,r(j)(zσ, vσ
j )

=
∑
aµ

∑
σ∈JF

∑
j∈J

∑
z∈π−1

µ,σR(fσ,aµ′ ,C(πµ,σvj))

χ((z)faµ)LΓp,r(j)(zσ, vσ
j )

−
∑
aµ

∑
σ∈JF

∑
j∈J

∑
z∈R(fσ,aµ,C(vj))

χ((z)faµ)LΓp,r(j)(zσ, vσ
j ).

(7.7)

By Lemma 5.4, the first term of the right hand side of (7.7) is equal to∑
aµ

∑
σ∈JF

∑
j∈J

∑
z∈R(fσ,aµ,C(πµ,σvj))

χ((z)fσaµ)LΓp,r(j)(zσ, vσ
j )

+ finite sum of terms a logp b, a, b ∈ Q.

Since χ(pσ) = 1, the second term of the right hand side of (7.7) is equal to

−
∑
aµ

∑
σ∈JF

∑
j∈J

∑
z∈R(fσ,aµ,C(vj))

χ((z)fσaµ)LΓp,r(j)(zσ, vσ
j ).

According to [19, Lemma 2], we can take a cone decomposition:
R+n =

⊔
j′∈J′

⊔
u∈E+

F
uC(vj′) with vj′ = (vj′,1, . . . , vj′,r(j′)), vj′,i ∈ OF , such

that
1. vj′,i are totally positive, {vj′,1, . . . , vj′,r(j′)} are linearly independent.
2. {C(vj′) | j′ ∈ J ′} is a refinement of {C(vj) | j ∈ J}.
3. There exist uj′ ∈ E+

F such that {C(uj′vj′) | j′ ∈ J ′} is a refinement of
{C(πµ,σvj) | j ∈ J}.
Then∑

aµ

∑
σ∈JF

∑
j∈J

∑
z∈R(fσ,aµ,C(πµ,σvj))

χ((z)fσaµ)LΓp,r(j)(zσ, vσ
j )

−
∑
aµ

∑
σ∈JF

∑
j∈J

∑
z∈R(fσ,aµ,C(vj))

χ((z)fσaµ)LΓp,r(j)(zσ, vσ
j )

=
∑
aµ

∑
σ∈JF

∑
j′∈J′

∑
z∈R(fσ,aµ,C(vj′ ))

χ((z)fσaµ)

× {
LΓp,r(j)(zσ, vσ

j )− LΓp,r(j)((uj′z)σ, (uj′vj)σ)
}

=
∑
aµ

∑
σ∈JF

∑
j′∈J′

∑
z∈R(fσ,aµ,C(vj′ ))

χ((z)fσaµ) logp(uσ
j′)ζp,r(j)(0, vσ

j , zσ),
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where R(fσ, aµ, C(vj′)) = {z ∈ (aµfσ)−1 ∩ C(vj′) | (zaµfσ) is prime to fσ}.
Summing up the calculations above, we conclude that there exist a finite set I
and ai, bi ∈ Q for i ∈ I such that d

dsLp,f(s, χθp) |s=0=
∑

i∈I ai logp(bi). Fur-
thermore we can transform the formula of d

dsLf(s, χ) |s=0 in the same manner,
and using the same I, ai, bi, we get d

dsLf(s, χ) |s=0=
∑

i∈I ai log(bi) because of
Theorem 6.2. Note that in this situation, ζp,r(j)(0, vσ

j , zσ) = ζr(j)(0, vσ
j , zσ). By

[1, Corollary 1.1], for α1, . . . , αn ∈ Q,

if log α1, . . . , log αn, 2πi are linearly independent over Q,

then log α1, . . . , log αn are linearly independent over Q.
(7.8)

Let I ′ be a maximal subset of I such that {log(bi′) | i′ ∈ I ′} are linearly inde-
pendent over Q. Then there exisit m, ni,i′ ∈ Z satisfying log(bi) =

∑
i′∈I′(ni,i′/

m) log(bi′) for all i ∈ I, i′ ∈ I ′. We may assume that m, ni,i′ are even. Hence
bm
i =

∏
i′∈I′ bi′

ni,i′ and we get logp(bi) =
∑

i′∈I′(ni,i′/m) logp(bi′). By (7.8),∑
i∈I aini,i′=0. Consequently d

dsLp,f(s, χθp) |s=0= 0 and we complete the
proof.
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