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On a p-adic analogue of Shintani’s formula

By

Tomokazu KASHIO

Abstract

Shintani expressed the first derivative at s = 0 of a partial (-
function of an algebraic number field in terms of the multiple gamma
function. Cassou-Nogues constructed a p-adic analogue of the partial
¢-function and calculated the derivative at s = 0. In this paper, we
will define a p-adic analogue of the multiple gamma function and give a
p-adic analogue of Shintani’s formula. This formula has a strong resem-
blance to the original Shintani’s formula. Using this formula, we get a
partial result toward Gross’ conjecture concerning the order at s = 0 of
the p-adic L-function.

1. Introduction

In this paper, we will give a formula for the first derivative of the p-adic
partial ¢-function at s = 0 using the p-adic multiple gamma function (Theorem
6.2). For the usual partial (-function, Shintani ([18, Proposition 1]) obtained
a formula which expresses the first derivative at s = 0 in terms of the multiple
gamma function (see Section 3). His formula has the following form: Let F' be
a totally real algebraic number field of degree n, O the ring of integers, E* the
group of all totally positive units, and { an integral ideal of F'. Then we embed
F into R™ by z — (z°,...,2°") where Jp := {01,...,0,} is the set of all
embeddings F' — R. Let {a,} be a complete set of representatives for the nar-
row ideal class group consisting of integral ideals. Let coq, ..., 00, denote the
archimedean primes of F', Cs denote the ideal class group modulo foo; - - - 00y,.
For ¢ € Cf, let (s, ¢) = Y .. N(a)~° denote the partial (-function of the class
¢, where a extends over all integral ideals in the class ¢. For vy,...,v, € RT",
let C((v1,..-,v:)) = {t1v1 + -+ + tpvp | (t1,...,8-) € R} be a cone in
R*". We can take a cone decomposition, i.e., there exist a finite set J and
v = (1}]‘71, - 7Uj,r(j))7.j € J, Vji € Op such that R = |—|j€J l—'uEE‘*‘ UC(U]‘)
where | | denotes the disjoint union and C(v;) = C((vj1,...,vj.())). Let
R(c,C(v)) = {z = 239 wpvjn € (a,)" N C(v;) | 0 < 23 < 1,(2)a,f € ¢}
when a, = ¢ in the narrow ideal class group. Then there exist algebraic num-
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bers aq, by (¢ =1,...,m) such that

d Ly (277, 07%)
sl £ 5 ()

k=1j€J zeR(c,C(v;))

—log(Na,f)¢s(0,¢) + > aglog(by).
q=1

We can write explicitly the last term:

_1)() Ui @) By, (xi(z
Zaqlog Z Z ( 173 Zcz f H zl(li!( )).

JEJZER(C C(’U])) l ,Ua'n i=1

Here I',. denotes the r-ple gamma function. For the other notation, see Section
3.

In [6] and [5], Cassou-Nogues constructed a p-adic analogue ¢ ;(s,¢) of
the partial (-function. Furthermore she expressed the derivative of (, (s, ¢) at
s = 0 in terms of the p-adic multiple gamma function. But her definition of the
p-adic multiple gamma function is rather ad hoc, and may not be regarded as a
proper generalization of Shintani’s formula. We will define the (natural) p-adic
logarithmic multiple gamma function in Section 5. Take 0 < ay,...,a,,a € F.
Let 8 be a prime ideal of F' lying over p. Assume that a; and a are -integral.
Then we can define the p-adic r-ple (-function {, ,(s, (a1, ..., a,),a) by a p-adic
interpolation of the usual r-ple (-function (Theorem 5.1 or [4]). Generalizing
Barnes’ definition [2] to the p-adic case, we define the p-adic logarithmic r-ple
gamma function LT, (a, (a1, ..., a,)) as the derivative of ¢, (s, (a1, ...,a,),a)
at s = 0. For the p-adic partial (-function (, (s, ¢), we obtain a p-adic formula
(Theorem 6.2):

{%Q”f(“)} ZZ Y. (7, )

s=0  p=1jeJ 2eR(c, C(vj))

—log,(Na,f)¢ps(0,¢) + Z aqlog,,(by).

q=1

Through the analogy between these two formulas, we can show that the
derivative at s = 0 of the p-adic L-function is equal to 0 in a special case. In
fact, we prove a partial result toward Gross’ conjecture ([9, Conjecture 2.12]).
In Section 7.2, we show the result (Theorem 7.1): Let F' be a totally real field,
K an abelian extension over F' with conductor f, and x an odd character of
Gal(K/F). Put f = fo X [,()pt. P and assume that the number of prime
ideals p satisfying p|(p), x(p) = 1 is greater than 1. Then the order at s =
0 of Lps(s,x—1) is greater than 1. Here x_; is a character twisted by the
Teichmiiller character.
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The Chowla-Selberg formula shows that there exists a strong correlation
between Shimura’s CM-period and the gamma function. In [19], Yoshida for-
mulated a conjecture: For all 7 € Gal(K/F),

. Lo,
(1.1) [1 pic(o.70) ~ 7 QO 2 | 7 y(r) (0, x)

oeJk Xeéf L(O’X)

Here K is a CM-field which is abelian over a totally real algebraic number
field F, G_ is the set of all odd characters of Gal(K/F), Jk is the set of all
embeddings of K into C. For y € G_, L(s,w) is the Artin L-function attached
to x. For 0,7 € Jk, pi(0,7) denotes Shimura’s CM-period and

1 ifr=1,
pu(t) =< =1 if 7 = the complex conjugation,
0 otherwise.

We write a ~ bif b # 0 and a/b € Q. By Shintani’s formula, this conjecture can
be sharpened so that every Shimura’s CM-period can be expressed in terms of
the multiple gamma function [19]. We obtained a p-adic analogue of the formula
(1.1) in the case of F = Q, K = Q((n), (p,m) = 1, where (,, is a primitive
m-th root of unity. Indeed, we proved:

K ~ ex —x(0) L;(()’Xil)
(1.2) @, (id, 7) M(%:m;q L@x)>'

Here x extends over all odd Dirichlet characters modulo m, x_; denotes the
primitive character associated to the character x twisted by the Teichmiiller
character, Qf){ denotes the p-adic CM-period symbol, L, denotes the Kubota-
Leopoldt p-adic L-function, o, is an element of Gal(K/F) such that (,, — (&,
and exp,, is the p-adic exponential function. In the succeeding paper, a proof of
(1.2) will be given. Now H. Yoshida and I are conducting cooperative research
on this theme [12]. We will investigate the generalization of the formula (1.2)
and its refinement, that is, a p-adic analogue of Conjecture (1.1).

The author expresses gratitude to Professor H. Yoshida for suggesting this
problem, his kind advice and warm encouragement.

2. Notation and Terminology

For an odd prime number p, Q_p denotes an algebraic closure of Q,, C,
denotes a completion of Q,, | |, denotes the valuation on C, such that [p|, =
1/p. Oc, (resp. OQ—p) denotes the ring of integers of C,(resp. Q,) and M,

denotes the maximal ideal of Oc,. We fix an embedding Q— @.

For an algebraic number field F' of degree n, O denotes the ring of in-
tegers, Jr denotes the set of all embedding F — Q and we put Jr = {0, |
i=1,2,...,n}. Then 2V denotes o;(x) for 2 € F. Suppose that F is totally
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real. For an integral ideal f of F', let I; be the group of all fractional ideals of F'
which is prime to f, Fjy = {a € F | a>> 0, (i.e., totally positive), v,(av — 1) >
vp(f) for all prime ideals p dividing f} and Ef+ = O N Fj;. Here v, is the nor-
malized p-adic valuation. Let Pj; = {(o) | « € F};} and Cj = I;/Ps. For
a € Ij, a denotes the class modP;,. For v; € R”, we call C(v1,v2,...,0,) =
{t1v1 +tavy + -+ + t,v, | t; € RT} an open simplicial cone. We embed F' into
R"™ by x — (a:(l),x(2), oz,

We define the Teichmiiller character 6, : Oc, — C,™ as follows: Let
z € Og. If [2], <1 then we put 6,(z) = 0. If ||, = 1 then we take a finite
extensmn K over Q, such that K > z. Let f be the degree of the residue field

of K over Z/pZ. Then we put 0,(z) = lim;_, o 27’ and extend 6, continuously.
We define: 09(x) = 0if |z|, <1, = 1if |z[, = 1. Note that 6,(z) and 0 () are
(p/ — 1)-th roots of unity, or 0. If |z|, = 1 then ,(z) "'z = 1 mod M, and we
put (z) = 0,(z) "

For a Dirichlet character x, x. denotes the associated primitive character
and x, denotes (x8,  ").. For a character x of Cy, x, denotes x(6, o N)™"
where N denotes the norm.

We use the Iwasawa logarithm function: log, : C — C,, defined by the
usual power series on 1 + M, and extended to C; by requiring log,p = 0. I',
denotes Morita’s p-adic I-function [13] defined by I'(n) = (=1)" [[;= 11p+2 7 on
N and extended to a continuous function on Z,,.

Let B,,(X) denote the m-th Bernoulli polynomial and B,,, = B,,,(0) denote
the m-th Bernoulli number. We define for a,b € N U 0:

(—1)b—1<g_ i) if a,b>1,
a _
{b}: 1 ifa=0,
0 ifa>1,b=0.

As the set, | | denotes the disjoint union.

3. Shintani’s formula

First we review the complex case [16], [18]. We define the multiple Riemann
(-function on C by

S

(s, (ar, ..., a, Z Z Z{x—l—Zaml} :

m1=0mo=0 m,-=0

where a;,x € RT. This series converges when Re(s) > r and can be continued
meromorphically to the whole s-plane. We define the multiple gamma function:

08 (e (a1.eowva)) =~ iy { | S G o (arennan)| o

T, (z,(a,...,a.))
Pr ((alv s 7a7”)) ) .

d
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We also consider a meromorphic function on C, such that for Re(s) > r/n,

S

)= 3 30 3 Tl TH{ D wtmv o}

m1=0mo=0 m,.=01=1 j=1
where A = (aj; ) is an n x r-matrix, * = (z1,...,2.), & = (§&1,.-.,&),
aj; > 0, x; > 0, z # 0 and & are roots of unity. Let ¢r(s, A, z) denote
Cr(s, A (1,...,1), ) According to [18, Proposition 1],
(3.1)

feteno]_ - S (BL2842) L O o

s=0 i

Here ! extends over all | = (Iy,...,l.) such that iy +---+ 1. =r, 0 < [; € Z,
Aj = (aj71, . .,ajyr), Cl(A) = Zlgj,kgn,j;ék Clyj,k(A) and

L - du
— Im—1 Im—1
Cusath = [ { TLloso =t - Tl 2

m=1 m=1

Let F be a totally real number field of degree n, Jp = {01,...,0,}, f an
integral ideal, ¢ € (5 and {a,} a complete set of representatives for C(;y. We
define the partial {-function of the class c:

=2 Ne™
g
where g extends over all integral ideals in the class of ¢. The next lemmas are
proved in [16].

Lemma 3.1.  We can take a finite set J and totally positive elements
vji € Op for j € Jyi=1,2,...,7(j) so that vj1,...,v;,;) are linearly inde-
pendent for each j and

—I—I |_| uC(vj,1,Uj727---vvj,r(j))'

cJ +
J uEE(l)

Lemma 3.2. With the above notation, we define an n x r(j)-matriz
Aj= WD) (1 <1<n1<m <), 2 = 2(2) vy, 2(2) = (21(2), - .., 2,5 (2))
for z € C(vj) and

R(c,j) = R(¢, C(v;))

={2€Cv;)N(a, )" | zi(2) € Q,0 < w;(2) < 1,(2)a,f € ¢},
for a, satisfying that ¢ = a,f in C(yy. Then R(c,j) is finite and

=30 > N@f) G (s A, w(2))-

Jj€J z€R(c,j)
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By (3.1) and these lemmas, we get Shintani’s formula.

Theorem 3.1.

d T,y (z®), 0{)
ol Er

k=1j€J zeR(c,C(v; Pr(j)(”j )
—log(Na,f)¢; (0, ¢) + To,

where

1)) i) x:(z
n=y Y S yom el

j€J zeR(¢,C(vy)) l i=1

4. p-adic L-functions, the method by Cassou-Nogueés

In this section, we will review the p-adic L-function over a totally real field
and calculate the derivatives at s = 0 following the method by Cassou-Nogues
[6], [5]. For other method of construction, we refer the reader to [7]. Imai [10]
also defined a p-adic log multiple I" function and formulated a relationship with
a special value of a p-adic analogue of the multiple (-function, not with the
derivatives. But his functions are different from our functions.

First we will define a p-adic analogue of the (-function. We prepare several
Lemmas. We assume that p is an odd prime.

Lemma 4.1.  Let f(s) => 1 gax(}), ax € Cp.

1. Assume that |ag|, — 0. Then f(s) is a continuous function on Z,.

2. Assume that |ag/k|, — 0. Then f(s) is differentiable at s = 0 and
df /ds(0) = Y5, (—1)*ag k.

3. Assume that there exist C > 0, |p\;/(p_1)
Then f(s) is analytic at s = 0.

> 1 > 0 such that |ag|, < Crk.

Proof. When |ag|, — 0, f(s) converges uniformly. Hence the first asser-
tion is clear. Assume that |ay/k|, — 0. Then

4 o

0 = i LIO > ()3 = im S (07)

0 . . . d
By the first assertion, ) .-, a]:( ) is a continuous function, d—f(O) =
s

Z,;“;l(—l)kfl%. To prove the third assertion, it suffices to show that there
exist b, € Fg(n = 0,1,...) such that f(s) = > " Obns for s € Z,. Let b,

be the coefficient of s in >, ak (Z), Le, by =3 oo, ap“pt i where ¢, . is the
coefficient of s™ for s(s —1)---(s — k +1). Since |k!|, > \p|§/(p Y the sum

converges. Furthermore

Cnk =1 k —1\"

2 < sup C’<7"|p|51) :C<7‘|p1"§1> .
p k=n,n+1,...

k!

|bplp < sup ‘ak
k=n,n+1,...
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Hence Y7 b, s™ converges. We have, for every N > 1,

- | £.06)|

» k=N+1
00 N ) c
k
+ E bps™| + E E ak % s"
n=N+1 p  In=0k=N+1 »

1 N+1 e N+1
<orf*tic (Tlp|£‘1> +C (TIM“) :

The right hand side tends to 0 when N — oo and the third assertion follows. [

Lemma 4.2.  Let fo(s) = > rop an,k(,i) with an, € Cp and f(s) =
>0 | fn(s) such that |an,k|, — 0 when k — 0o and sup,eg, [fn(s)lp — 0 when
n — 00. Then

1. f(s) is a continuous function on Z,.
2. Assume that sup,_ 5 |ank/kl, — 0 when k — oo. Then f(s) is

differentiable at s = 0 and df 2(0) = S I (0) = ZZO 1 2211(*1)1671%%-

n=1 ds
3. Assume that there exist C > 0, |p|1/p Y > r > 0 such that
SUP,,_1 o |anklp < Cr*. Then f(s) is analytic at s = 0.

Proof.  Since supy_q ;... [anklp = SubPsez, | fu(s)]lp — 0 when n — oo,
(o) oo
=33 we(}) -3 (Sone) (1)
n=1k=0 k=0

By Lemma 4.1, the assertions are clear. d

Lemma 4.3. Let P(X),Q(X) € Oc,[X1,X2,..., X;],b>1, (b,p) =1
and & # 1 (1 < i < 1) be b-th roots of unity. Assume that P(X) = Q(IIX)
with an element I € M, and P(0) = 1 mod IIO¢,. We can define continuous
functions on Zy:

k1 k,
Ae.p(s) = A (P°) : Z Z Fo{ b P(=

Cpr(8, P ) = Z Me.p(—35)

1ok’
ke{0,1,... }7,k#0 (1-¢)
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and g, p(s) and Cp (s, P,§) are analytic at s = 0. Furthermore

Per Z Z{ {5 Vo, (P(-1)),

11=0 1,=0
sup [ Mg, p(s)], < [Tt e,
SE€EZyp
d
|:dSCp,7’(s, Pa 5):| o
_ Z le—o 'Zﬁrzo { ];f } e { ];: } log, (P(—1))

— o)k
0#£ke{0,1,... }7 (1-9)
Herery =4{j | k; #0,1<j <r}.

Proof. For all I € Z", P(I) = Q(IIl) = Q(0) = P(0) = 1 mod IIO¢, .
Then we can define P(—1)* = > "7 (P(=1)?" — 1)’“(,;), where s = pls’. Let

L = 0. Then
%
<|=—| —0
P k P

By Lemma 4.1, P(—1)* and A\, p(s) are continuous functions on Z, and are
differentiable at s = 0. Furthermore

= Il

when k — oo.

‘(P(—l) -
k

0 - AN k

LASON Z (if D=L~ tog, (P(-1)).
k=

d/\kp il k. .
Z Z {B} b Yrog, (P(-1)).

»=0

Let € = |p|Lsup;_; 5 {[II/i,} and L be large enough to satisfy that ¢ <
IO, Then (PP — 1), = [pb 327, (1) b=y
p

by Lemma 4.1, P(—1)® and Ag p(s) are analytlc at s = 0. By Lemma 4.2,
it suffices to show that sup,cz [Ar,p(s)], < [H[F1+FTh-=r Because A p(s)
is a continuous function and {0,1,2,...} is dense in Z,, it suffices to show
sup,,—g.1.... [Ak,p(n)]p < [H|ErFFh=" - Furthermore, since P(X)" is a poly-

nomial if n =0,1,... and )\k has linearity, it suffices to show that

< €*. Hence,

for all Q(X) = [T X7 (n: = 0), M(QUIX))], < [TT[fr ke,

i=1

If there exists 7 such that k; = 0, n; # 0, then Ay (Q(HX)) = 0. Therefore we
may assume that if k; = 0 then n; = 0. Let {k; } be the set of all

SRR z,l
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k; # 0. Then

ki
Niq+4n; - - k‘ltj -1 io—1,M;
Ae(QUIX)) = (~In)mat+mn TT <1- _1>(‘1)l” 07
J=1l;=1 "

< klfl 1. —1,Mi; *1 kl ]{71 1 ng.+1
i DT = = IV (=DWw T =0
121 <lii B 1>( " ki 121 <liy‘>( e

J

ifnij +1 <kiij.

Hence A\, (Q(I1X)) = 01if > ;n;; < 325 ki; — 1. Therefore, if 37, n; <37, ki —

r1 then [A\g(QUIX))|, = 0 < 2" "™ and if S,n; > S,k — 71 then
. .k}ifT’

A (QUILX)) | < [(—ID)Zeme], < [T, 0

For an n x r-matrix A = (a;;) (a;; € M,) and an r-row vector z =
(z1,...,2) (z; € Oc,) with H;Lzl >y ajiz; =1 mod M, we define a poly-
nomial

PA@(X) = H {Zaj’i(Xi +£C2)} .

Then Py, satisfies the conditions for Lemma 4.3. Let b be a natural number
prime to p. For b-th roots of unity & # 1, we define a p-adic counterpart of
Cr(s, A& x): for s € Zy,

(4'1) Cp,r(sa A,g,.’L‘) = CP,T(Sv PA,mvf)-

Note that Ay (P) = 01if ky +ka+- - -+ k, > deg P+r. According to [6, Theorem
22, Lemma 19], we get the next Theorem.

Theorem 4.1.  Let F' C R be an algebraic number field and fix an em-
bedding F — Cp. Let 0 < a;; € F and 0 < z; € F such that |a;;|, < 1,
lajiz1 + - +ajrax, — 1|, < 1. Let b be a natural number prime to p, & # 1
b-th roots of unity and & = (&1,...,&-). Then for0 <m € Z,

Cp,T(_ma A7 gv JI) = CT(_ma A7 gv JI),

Now we will define a p-adic analogue of the partial {-function. Let F,f, ¢
be as in Section 3 and a an integral ideal € ¢~!. Assume that every prime ideal
p above (p) divides f. With minor variation from Lemma 3.1, we can take a
finite set J and totally positive elements v;; € af for j € J,i =1,2,...,7r(j) so
that v;1,...,v;,(;) are linearly independent for each j and

(42) Rt = |_| |_| uc(vjvla V5,25 - - 7vj,7"(j))'

i€T ueE}
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For integral ideals a, b prime to f, we define:
Cf(sa C(_l, b) = Nhl_scf(sv a_lb_l) - CT(S7F)
Now we assume that b satisfies the following conditions:

i) (b,5)=1,(b,2)=1
(4.3) (i) (b,(vi;)) =1foralljeJ,i=12,..,r(j),
(iii) Op/b~ Z/bZ.

Here ®© denotes the different of F' over Q and b is the positive generator of
bNZ. Let e(x) = exp(2miz). According to [6, Lemmas 2a and 2b, Corollaries
1 and 2],

Lemma 4.4. Take v € D767 so that Tr(v) = ¢/b with 0 # ¢ €
Z, (byc)=1. Then

e(Tr(v; ;v)) is a primitive b-th root of unity for every i,j and

- o ifa€Op,¢b,
I;E(Tr(a“”)) - {Nb —b iface.

Theorem 4.2.  With the above notation, let R'(a™t,j) = {z € C(v;) N
OF | 0< ZEz(Z) S 1 zea = 1 mod f} fj = (§j71,. .. ,fr(j)), {jﬂ‘ = e(Tr(vmy))
and &, = e(Tr(v ZT(Jl) z;(2)v;,)) for z € R'(a™1,j). Then

C( a! b = Na® ZZ Z gggr(j)(stjv ;ivx(z))

u=1j€J zeR'(a—1,j)

Now we define a function on s € Z,:

(44) Cp,f( -t b Na ZZ Z gggp,r(j)(stﬁ f’l‘(z))

u=1j€J zeR/'(a"1,j)
By Theorems 4.2 and 4.1, we have
(4'5) Cp’f(_mv a_lv b) = ep(Na)me(_m7 Cl_l, b) (m 2 O)'

We can take b in Py;. Then there exists a € Fj; NOp such that b = (). Since
ab =@ in Cj, ((s,a7t,b) = (b'7% — 1)¢i(s,a '). We define the p-adic partial
¢-function of the class c:

) _1’ b
(4.6) Cpoy(s,¢) = %
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for a € ¢, b € Pjy. Here b'~* is well-defined since b = N(a) = 1 mod (p). By
(4.5),

(4.7) Cp,j(—m,¢) = (i(—m,¢)  for m > 0,m =0mod (p —1).

Let x be a character of C;. Then we define the L-function:

L(s,x) = Li(s,x) = Y x(e)¢s(s, ).

ceC
We define the p-adic L-function:

(4.8) Lypi(s,x) = g;le )Cp.s(s, €).-

By (4.5), we obtain

(4.9) Lys(1—=m,x)=Li(1—=m,xm) (1<melZ).

Let fo be an integral ideal, f = fo X [,(,).pr
Then x_; is a character of Cj. By (4.8),

(4.10) Lps(s,x-1) = Z x ()¢ 5(s,€).

ceCy

b and x be a character of Cf,.

We get a formula on the derivative of the p-adic partial {-function at s = 0.

Theorem 4.3.  Let § be an integral ideal such that every prime ideal p
above (p) divides §, a € Iy an integral ideal, b # (1) an integral ideal satisfying
(4.3), J, v;; as in (4.2), R'(a™%,4), &, & as in Theorem 4.2. Then

d
[Egm(s, a ! b)} . =log,(Na)(ps(0,a™",b)

b—1 n
D3I DN I TP

nw=1j€J zeR'(a"1,j) k=1 s=0
Proof. By Lemma 4.3,
[ d Cpor(h) (8, Aj, €Y x(z))]
S Spr(g)\o A5yS5
ds P J1 S5 o
My (j m My (j k
zn: > Zitor Yo Ui }{ i) }Ing(z_H,( (1))

(t-¢)

k=10#£me{0,1,... }r)
n

d
=3 | sl o)

k=1 s=0
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Then the assertion is clear. O

5. p-adic multiple gamma functions

In this section, we will define the p-adic multiple gamma function as the
derivative of the p-adic multiple {-function [4] at s = 0. Let r be an integer
and R[X] = R[X},...,X,] denote the polynomial ring over the ring R. For a
map f(X) : Z, — Cp, we define:

pli—1pl2—1  plr—1

(5.1) Jx(f(X))= lim lim .-.llgnoopwg+ Y. > > fn

11 —o00 lg—00
n1=0 no=0 n,-=0

Here n = (n1,...,n,). If f(X) € C,[X], the right hand side converges and we
get the next Lemma.

Lemma 5.1. Forz, € C, (i=1,2,...,r),

Jx (ﬁ(X + ;) ) HBml (x;) (m; >0).

i=1

Proof. Tt suffices to show the assertion for the case r = 1. If m =0, it is
obvious. Assume that m # 0. Then

. Bis1(p') — Bim41(0)
lim — E =1
. " e (m+1)p!

1 dB,+1(X) ‘
m+1 dX X=0

Bo(z) = mo (’7) Biz™ ! = Jy (i (”;) Xla:m_l> = Jx((X +z)™).

= =0

l—o0 p

= Bm(O),

Thus we can define a C,-linear map:
(5.2) Jx : Cp[X] — C,, sending P(X) € Cp[X] to Jx(P(X)) € C,.

Suppose that » = 1 and let P(X) be a polynomial € C,[X], (ﬁ) denote the
polynomial X(X- 1)m(X m+D) for m > 1 and ( ) = 1. Then P(X) is a linear

combination of {( ) |m=0,1,. } that is, there exist a,, € C, such that
P(X) =Y m_gam (). Note that sup,ez |P(s)|p = sup;—q, _|ailp.

()=

Lemma 5.2.
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i)~ () =

Proof. If m = 0, it is obvious. Assume that m > 1. Since (m+1 ma1) =

()

i () =y (G0 ) (o)) = = 5

o
By this lemma,
(=)™ =17
Ix(P(X), < sup |a sup |ailp _sup
|X( ( ))‘p m=0,1,...,M m+1 m:0,1,u.,1W‘ |pm:0,1,~.’M m+1 D
< (M +1) sup |[P(s)]p.
SEZy

)

For general 7, let P(X) = )M M7m1_0 Ay, X100 X € CplX, ..

mi= 0
X,]. In this case, we can show that

(5-3) [Ix (P))lp < (My+1) -+ (M +1) sup [P(s)]p-

s€Zy”
Now we define ||P(X)|, = (M1 + 1)+ (M, + 1)sup,eg » |P(s)], where M; =
SUp,,,, . m2oimit. If P(X) = 0 let [P(X)[l, = 0. We define a space of
continuous functions on Z;:

:ipn(X

n=1

C,[X] = {P(X) 12— C, | P(X

P, (X) € C,[X], |1P.(X)|lr — 0 when n — oo} .

Then we can extend Jx to an C,p-linear map on C,[X] sending P(X) =
oo L Po(X) to 307, Jx (P, (X)) where P, (X) € K[X], ||P,(X)|» — 0 when

n=1
n — oo. JX(f(X)) converges when Jx(f(pX + n’)) converges for all n’ =
(nf,...,n.),n,=0,1,....,p—1(i=1,2,...,r). Therefore we put

CplX]" ={P(X):Z;, —» C, | P(pX +n') € C,[X]
foralln, =0,1,...,p—1, (i=1,2,...,7)},
and we can extend Jx:

"

Jx : Cp[X]" — C,, sending P(X) € C,[X

1= -
]7 Z P(pX +n)).

I —
17.=0

<

Let aj,a € Ocg,,a; #0 (i = 1,2,...,7r) and f(X) = Sy a;X; + a. For
s € Z,, we define Py(X) = 09 (f(X)) f(X)" ( (f (X))_lf(X))_S, that is,
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for n' satisfying 09(f(n’)) = 0 we put Py(pX +n/) = 0 and for n’ satisfying
09(/(n')) £ 0, we put

PX 1) = FX +) (7) 600 50X ) - 1

k=0

Then

|1 0ty (37) @500 10 ) = 1

r

= (k41 sup Lot () @) ) = 1P,

zEZy
< (r+k+1D"[(f(n')) —1]F — 0, when k — co.
Therefore Ps(X) € Cp[X]”. We define the p-adic multiple ¢-function:

(=1)"JIx (Ps(X))
r—s)(r—1-—s)---(1—s)ajaz---a,

(5.4)  Cpr(s,(ar,az,...,a.),a) = (
In particular, for 0 # a; € M, a ¢ M,

(=17 Ix (FX) (Op(a) (X)) )

(5.5)  Cpr(s,(ar,ag,...,a0),a) = =) —1=5) (1 —s)ama -

and for 0 # a; € My, a € M,,,
(5.6) Cpr(s, (a1,a2,...,a.),a) =0.

We extend (p (s, (a1, a2,...,a,),a) on 0 # a; € Cp, a € C, as follows. When
lal, > 1 or |a;|, > 1, there exists the unique positive rational number « such
that sup{|ailp, - -, |arlps|alp} = |[p~|p- Then we define:

(57) Cpﬂ“(sa (ala ag, ..., aT’)v (l) = Cpﬂ“(sa (paal,paa% cee 7paar),paa).

This definition does not depend on the choice of p*. We will check several
properties of the p-adic multiple (-function.

Lemma 5.3. Let0#a; € Cp, a € C,.
1. Gpr(s, (@1,...,ar),a) is analytic at s = 0, and continuous on s € Z,.

2. There ezist 0 # o™ € M, al¥) € Oc, ™ such that
Cpr(s,(a1,...,ar),0) = Z Cpor(s, (agk), . alR)y o)y,
k=1

3. Force O¢,”™

Cpr(s, (cat, ... car),ca) = {c) "Cpr(s, (a1,...,a),a).
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Proof. By definition of ¢, , and (5.3), the last assertion is clear. By (5.5),
(5.6), (5.7) and

p—1 p—1
Cor(s, (a1,...,a0),0) = Z . Z Cor (s, (pax, ..., par), a+nias+---+n,a,),

n1=0 n,=0

the second assetion is also clear. Therefore to prove the first assertion, we
can assume that a; € My, a ¢ M,. Take a non-negative integer L and put
s =pls', s’ € Z,. By definition,

CP,T(Sa (alaa% - -var)va’)(s - T) e (8 - 1)0’1 c Gy

(5.8) _ f: Jx (f(X)T((9p ()t PO — ”k) (l:)
k=0

k

i

< (r+plk+1)" sup pLi (pz'L—_ll) (0,, (@7 f(x) B 1)

T€Zy, 7

p

Now let L be large enough to satisfy |p|Zsup;_; o {|TI*/i[,} < |p|117/(p_1). By
_pLs/

Lemma 4.1, Jx <f(X)’" <0p (a)~" f(X)) > is analytic at s’ = 0. O

Let F be a totally real algebraic number field and fix an embedding F' —
C,. Let B be a prime ideal determined by this embedding and f = [Op /B :
Z/pZ).

Theorem 5.1.  Let a;,a € F be elements such that a;,a > 0, |a;|, <
Llal, <1 (i=1,2,...,7). Then for 0 <k €Z, k=0mod p/* — 1,

Cp,’r‘(_k7 (ah as, ..., ar)7 a’) = C’I“(_ka (a17a27 e 7a7‘)7a)'
Moreover, if |a — 1|, < 1, this equation holds for any 0 < k € Z.

Proof. Take x; € F, x; >0 (i =1,...,r) so that a1z + -+ - + a,2, = a.
(For example, x; = a/ra;.) According to [16, Corollary to Proposition 1] (or
[2, §30]), form =1,2,...,

¢-(1—m,(ar,ae,...,a.),a)
pi—1

=m-nt o > [
|
p1+...+pr>:0m+r—1 i=1,...,7 pl'
pPi;=
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By Lemma 5.1,
(=) Jx (f(X)mFr=1)
r 1-— 3 3 geeeyQr), = .
C( m(al as (l)(l) m(m+1)-~-(m—|—r—1)a1~-~ar
Hence the assertion is clear. O

Now we define the p-adic logarithmic r-ple I'-function for 0 # a; € C,,
ac Cy:

d ris,a1,a2,...,a0,),a
(5.10) LTy (a, (a1, az,...,a,)) = purls, (1 d; r):) =0’

By Lemma 3, (5.8) and Lemma 4.1 (b), for 0 # a; € Oc,,a € Oc,,

(5.11)
LT, ,(a,(a1,as2,...,a.))

1 1
= <1+§+—|—;> Cp,r(O,(al,ag,...,ar),a)+

(="

prrlaias - - - ay

o (=17 (FX ) (8, (F00) 7 0 ) 1))
D DD p ~
0<n;<p—1(i=0.....r) k=1
89 (£ (n)#0

In particular, for 0 # a; € M, a = 1 mod M,,

(5.12)
LTy (a,(a1,az,...,a,))

-1 © (_1)k
:7@71-).-@‘])‘ (f(X)’"<1+%+---+%+Z( ;) (f(X)—1)‘“>>.

k=1

We will check several properties of the p-adic logarithmic multiple I'-function.

Lemma 5.4.
1. LT, . (a, (a1, ..., a)) is a continuous function on 0 # a; € C,p, a € C,.
2. There em’st();éal(»k) eM,, a®) 1+M, (i=1,...,r, k=1,...,m)
such that

. k
LTy (a, (a1, ... ap)) = LTy, (a™), @®, ... a®)y).
k=1

3. Forc€ O¢c_ ~

P ’

LTy (ca,(cay,. .., ca,)) = LT} .(a, (a1, ..., a;)) —log,(c)(pr(0, (a1, .., ar),a).
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Proof. By definition, the last assertion is clear. By Lemma 3, there exist
0 # agk) € M,,a® € O¢, ™ such that

m

k
LTy (a, (a1, ... ap)) = Y LTy, (a™), @®, ... a®)).
k=1

By the last assertion,
LTy, (a®, (@, ... a®)) = LT, . ((a®)), (0,(a*) " al?, ..., 6,(a") " al?)),

therefore we get the second assertion. Since log, and ¢, -(0, (a1, ..., a;),a) are
continuous functions, we may assume that a; € My, a = 1 mod M,, to prove
the first assertion. In this case, by (5.12), (5.3), we get this assertion. O

Lemma 5.5. Ifr > 2, then

CPW(S’ ((11, as, ..., aT)a a)fcpﬂ“(sa (ala ag, ..., a’T’)v a—+ ai)

= Cp7r_1(s, ((11, ey Ag—1, A4 15 - - - ,ar),a),

LT, (a,(a1,a2,...,a.))—LL, (a + a;, (a1,a2,...,a0.))
= Lprr_l(a, ((ll, ey Qi—1, ai+1, ey ar)).

If r =1, then

(p¥a)=* if|a‘p > ‘a1|p’ |a‘P > 1,
0 if lalp < la1lp orlalp, <1,

Cpa(s,(a1),a) — Cpa(s, (a1),a+a1) = {
LTpa(a, (a1)) — LTy a(a + a1, (a1)) = —log,(a),

where o is a rational number such that |a|, = |p~*|,. Furthermore, if a € Z,,
then

L].—‘p’l(a, (1) = Ing(Fp(a))~

Proof. Because of the definition (5.7), it suffices to show the assertions
when a;,a € Oc,. We assume that a;,a € Oc,. Let 7 > 2, k>0 and f(X) =

a1 X1+ a, X +a. Weput Pu(X) = 05 (£(X)) F(X)7 (6, (F(X))™ f(X))_k
Then

(Cpr(—k,(ar,az2,...,a:),a) — G r(—Fk, (a1, a2,...,a:),a+ a;))
x(r+k)(r+k—1)---(k+1Dajaz---a,

1
= (-1)" lim ———
( ) LJJI—E;ic ij;éilj
. 1
x> (lllm P (Pe(X) x,=0 —Pr(X) Xi—pli)) PR
! i—oo pr ;’#iJ

0<z;<p J—1
Jj#i
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Since

. 1
lim — (Py(X) [x,=0 —Pr(X) |x,—pt:)

li—oo P
L OF(X r+k
= —0, (f(X) |x,=0) " f(aT).‘xi:O

= —0, (f(X) |x,=0) " (r + K)ai f(X)" " |x,—o,
<p,7”(_k7 (alu ag, . .. 7a7“)7 (I) - <p,7”(_k7 (alu az, ..., a”l“)u a—+ a’io)

(’r+k_1)“'(k+1)a’1'.'aiflaiJrl“'a”l”
= Cp,r—l(_kv (al, cee s A—1, Q541 - . .,ar),a).

Because {n € Z | n < 0} is dense in Z,, the case of r < 2 is clear. If r = 1,
similarly we obtain the assertion

Cpa (s, (a1),a) = Gpa(s, (ar),a+ar) = Op(a) (6,(a)'a)

By Lemma 4.1,

—S

0o 1\k—1 a)la — k
I (0 (00) ~ L+ an, (o)) = - Y- L Gl T )
k=1
= —log, (a).
Since ¢p1(0, (1),0) = =2 3071 Jx (pX +n) = 0, by (5.11),
_ 1 gy O D LIV ey 1 k
LTy (0,(10) = 2 3257550 fim 5 3 () (Byto) ™ )= 1)"
Here
> (pz+n)(0p(n) " (pz +n) — 1)F
= ((pz+n)(Op(n) " (pz +n) — 1)*
+ (pz +p—n)(=0,(n) "' (pz +p—n) — 1)"),
> (pr+p—n) (~0y(n) " (pz+p—n)—1)
x=0
=" (pr — ) (~0p(n) " (pr —n) = 1)" + 0 (~0,(n) " (~n) — 1)"
=0
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(pz +n) (,(n) " (pr+n) — 1)* + (pz — n) (=0,(n) " (pz —n) — 1)"
D S O R Y

0<i<k,iteven

+ Z 2 (]:) 0,(n) " (pz)'n (0,(n) " 'n — 1)k_i ,
0<i<k,i:odd

n (~0,(n) "1 (=n) = 1)" + (o' — ) (~0,(n) " (pp! —n) — 1)"

k 4 ,
=3 (5) om0 @yt - 1)

=0

k . .
=3 (5) o007 0 - )

Since Bay,q1 = 0 for m > 1 and lim;_ (1/p") (p!*1)! = 0 for i > 2,

p,1(0, (1))

3 k+1

S U 0By (6, () " — 1) + 288, () " pBan(0y(n)1n — 1)

n=1 k=1

+p(0p(n) "' = 1)F + kb, (n) " pn(B,(n) 'n — 1)F 71
Then for n =0,1,..., LT, 1(n, (1)) = ZZ;; log, (k) = log,,(I'y(n)). Hence for
all a € Zy,, LT, 1(a, ( )) logp(Fp(a)). O
6. Main Theorem

In this section, we will formulate a p-adic analogue of Shintani’s formula,
and show that there exists the strong analogy. Let the notations be as in
Section 4. We transform Theorem 4.3 to the style of Shintani’s formula.

Lemma 6.1.  Let the notations be as in Theorem 4.3. Then
d -1 -1
CTCPJ(Sa a -, b) = Ing(Na)CP,f(O’ a -, b)
& s=0

- k k
DS (szFwU)((z+”'tvj)(k)vb”§ )= LDy (2, 0 ))>’

k=1j€J z€R'(a"1,j) n’

where n' extends over all v’ = (nf,...,n; ;) such that 0 < nj < b—1 and
z+n'tv; € b.
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Proof. By Theorem 4.3, it suffices to show that for each &, z,

b—1
(61) Zgng,r(j)(Savj(‘k)agfax(z))

p=1
k k
= bz Cp,r(j)(sv b’UJ( )7 (Z + n/tvj)(k)) - Cp,r(j)(sa UJ(' )a Z(k))
By Lemma 4.4,
b—1 b—1 .
-1 if (x+n)v; ¢b
Hekmn e(T 4 % — Jj )
> e = Setrn(oemucmy= {1, TS
p=1 pn=1
Therefore, by Theorems 5.1 and 4.1, the assertion is clear. o

Let a,v;;, R'(a™*,C(v;)),b = (), b be as for (4.2), (4.6) and Theorem 4.2.
Now we consider two cone decompositions:

R =| | || «Clbvj1,bvja,..., 005,
JjeJ uEE?’

+n _ . . s
R™ = uC(awj 1, avja, ..., V) 1)),
J€JucES
f

and define R'((ab)~!, C(bv;)), R'((ab)~!, C(av;)) respectively as in Theorem
4.2. According to [19, Lemma 2|, we can take a cone decomposition {C(v;/) |
C(vy) = C(vjr1,- .. v 0(jny),J" € J'} such that

1. vy ; € abf, totally positive.

2. {C(vyr) | j' € J'} is a refinement of {C(av;) | j € J}.

3. There exist u; € E;‘ such that {C'(ujv;) | j/ € J'} is a refinement of
{Cboy) |7 € T},
Now z{(aw;) € ab(= aa) is equivalent to z'v; € a. If z'v; € Op, then z'(av;)
1 mod f is equivalent to z'v; = 1 mod §. Hence we get

R ((ab)™',C(aw;)) ={az | z € R'(a™!,C(v;))}.

For o € Jp,

YooY (s

JEJ zeR/'(a=1,C(v;))

(6.2) = ) (@7)*Cpr(s (s, (awy)?, 27)

j€J z€R/((ab)~1,C(av;))

=D > (@) Cpr(ir) (5,05, 27).

J'€J 2R/ ((ab)=1,C(v;0))

Let z € R'((ab)™*, C(bv;)). Then z(2)%(bv;) = (bx(z))v; € a,= 1 mod f. Hence
there exist n € {0,1,...}"0) and 2’ € R'(a™*,C(v;)) such that bz(z) = (z') +
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n. Here 0 < z;(z) <1 and 0 < z;(2') < 1, then 0 < n; < b— 1. Furthermore
z(2){(bv;) = z(2")v; + n'v; € b. Conversely, let 2/ € R'(a™!,C(v;)) and n €
{0,1,...}70) satisfying that 0 < n; < b— 1 and x(2')v; + nfv; € b. Let 2 =
(z(2') +n)/b. Then 0 < z; < 1 and z'(bv;) = 2(2')v; + n'v; = 1 mod f. Since
b is prime to (vj;), b is prime to a. Then z(bv;) = 2(2’); + nfv; € aNb = ab.
Therefore

R'((ab)~", C(bvy))
={z+nW; | z€ R(a”",Cv;)),0<n; <b—1,2+n"; €b}.
For o € Jp,

(6.3)
oY D G (s bl (24 0"My)7)

JE€EJ z€R/(a=1,C(v;)) n'
> > Cpur(3) (85 007, 27)

Jj€J z€R/((ab)=1,C(bv;))

Z Z (u?’)isgp,r(j’)(sv qu’v 2%),

J'eJ" zeR/((ab)=1,C(v;1))

where n' extends over all n’ = (n],.. .,n’r(j)) such that 0 < n} < b—1 and

z+n'v; € b. The following Lemma is a p-adic analogue of [20, Chapter IV,
Theorem 6.2].

Lemma 6.2.  Let the notations be as above. Then for any o € Jp,

(p,i(0,¢) Z Z Cpr(5) (0, V7,2 )

J€J z€R/(a~1,j)

Proof. By definition, for any j, o, z,

Shy S (B e
(1-¢)*F

Cor((0, A5, €%, 2(2)) = >

k€{0,1,... }r(&) k0

= Cor(i) (0,07, &5, 2(2)).
By (6.1), (6.2), (6.3),
b—1
SN Y G (0.07.¢8 w(2))
n=1lj€J 2eR/'(a"1,j)
:(bil)z Z CP’“(J)(’ J’Z )

j€J 2€R (a=1,5)
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Then by (4.4), (4.6),

C;Df O C ZZ Z gg(p,?"(j)(ovAjv ;L’x(z))

;A 1jeJ zeR/ (a=1,5)

1 b—1
LYY Y 005

p=1je€J zeR'(a"1,5)

:Z Z Cp.r(i) (0,07, 27).

JE€J zER/(a—1,j5)
O

Now we get a p-adic analogue of Shintani’s formurla which expresses the
derivative at s = 0 of the p-adic partial (-function in terms of the p-adic multiple
I'-function and some correction terms.

Theorem 6.1.  Let f,c,a,v;,;, R/ (a=!,C(v;)),b = (a),b be as for (4.2),
(4.6) and Theorem 4.2. Let {C(vj/)|j" € J'} be a cone decomposition such that
1. v ;5 € af, totally positive.
2. {C(vj) | j/ € J'} is a refinement of {C(v;) | j € J}.
3. There exist uj € Ef+ such that {C(ujvy) | j* € J'} is a refinement of
{C(bfaye;) | € I},
Then

d
|:£Cp,f(8, C):| o 1ng(NCl Cp7 0 C + Z Z Z LFPV’"(]') (Z(k)’ U§k))

s=0 k=1j€J zeR'(a=1,C;)

- &
D DY o dog, (ul)G i (0,08, 28,
k:lj’EJ',uj/;él ZIER/(C[_17CJ)

Proof. By Lemma 6.1,

[ets0] = (logyve) + blogp(b))@NHZZ >

s=0 k=1j€J z€R/(a=1,C(v;))
1 k
- (bZLFp’T(j)((Z+n'tvj)(k),bvj(- ) = LT, (2™, >)> ,
where n’ extends over all n’ = (n’l,...,n’r(j)) such that 0 < n, < b—1 and

z+mn'v; € b. Let {C(v},) | j' € J'} be as above. Then {C(avy) | j' € J'}
satisfies that

1. awj ; € abf, totally positive.

2. {C(avj) | j" € J'} is a refinement of {C(aw;) | j € J}.

3. There exist u;r € Ef+ such that {C(ujavj) | 5/ € J'} is a refinement
of {C(bv;) | j € J}.
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Therefore, by (6.2) and (6.3),

YooY ()W, )

JET 2eR (a-1,C(v))) 0!

= Z Z Lrpm(j)(z(k)v U§k))

j€J 2R (a=1,C(v;))

k
- Ing(a(k)) Z Z Cp,r(j) (O, 'U; )a Z(k))

j€J 2€R (a=1,C(v;))

k k
+ Z Z (—logp(ug-,)))cp,r(j/)(o,v](-,),z(k)).

J'€J" zeR (a=1,C(vjr))
Hence, by Lemma 6.2 and b = [[_, a®), the assertion is clear. O

Both of Theorems 3.1 and 6.1 express the derivative of the (p-adic) par-
tial (-function using the (p-adic) multiple I'-function, but the correction terms
seem slightly different. However, the next theorem shows the storong analogy
between two formulas.

Theorem 6.2.  Let the notations be as in Theorem 3.1, and assume that

every prime ideal p above (p) divides f. We can take aq, by € QX (g=1,...,m)
so that Ty = > | azlog(b,). So we get

qg=1
n T (k), (k)
YY)

d
{%Cf(sa C):| =
5=0  k=1jeJ 2eR(c,C(v;)) Pr(j)(”j )

m
—log(Na,f)¢s(0,¢) + > aglog(by).
q=1
Using the same agq, by, we can transcribe the correction terms of the p-adic

analogue of Shintani’s formula in the same manner as in the original Shintani’s
formula, that is,

d ~ k
{EC”’*(S’C)L_O =33 Y L)

k=1j€J 2€R(c,C(v)))

—1og,(Na,f)Gp,i(0,¢) + ) aglog,(by).

q=1

Proof. Let a,,vj;, R(c,C(v;)) be as for Lemmas 3.1 and 3.2. Let {e}
denote a set of units which represent E(‘E) / E;‘ . For each ¢ and the corresponding
a,, fix an integral ideal a € ¢~! and an elemnt o, € a,fa such that (a4) =
a,fa. For each z € R(c,C(v})), let €, denote the unique unit in {e} such that

zag€, = 1 mod f. Then a cone decomposition:

R™ = |_| |_| uC'(eaq (V51,0525 -+ Vjr(5)))

()€t x{e} ue
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satisfies the condition for (4.2) and there exists a bijective map:

Re,C(o) — || R, Cleaqny)),
(64) ec{e}

Z o €,0042.

We can take an integral ideal b = () which satisfies the condition of Theorem
6.1 for all ¢ and the corresponding cone decomposition. Now put b = Nb and
take a cone decomposition {C(v;/)|j" € J'} such that

1. vy ; € OF, totally positive.

2. {C(vj) | j/ € J'} is a refinement of {C(v;) | j € J}.

3. There exist uj € E;r such that {C'(ujv;) | j/ € J'} is a refinement of

{C((b/)vy) [ 7 € T}
Then we can apply {C(eaqvj/)|(j',€) € J' x {€}} to Theorem 6.1 and get

d
el

= log,(Na)(p1(0,¢) + Z Z Z LFp,r(j)(z(k), (eaavj)(k))

k=1jeJec{e} zeR'(a=1,C(eaqv;))
&
OIS >
k=1j'eJ’ e€{e},uj#1 2’€R' (a=1,C(eaqv;r))
Ing(ug‘]f))Cp,r(j’)(Oa (Eaavj/)(k)a Z/(k))'
Therefore by (6.4), Lemmas 5.4 and 6.2,

d n
[Ecp,xs,c)} =200 > Il ofY) — log, (NG (0.

s=0  k=1j€J 2eR(c,C(v;))
b <
b—1 Z Z Z Ing(u )i 0, U(’)7 ).
k=1j'€J u;#1 2/ €R(a=1,C(v;1))

Put

Tofe (€)1 € 7)) = | 6050 -+ 1og(Na (0.9

T(J)( 2 )’Ua(k))
—ZZ Z log #k)) .

k=1j€J zeR(c¢,C(v;))

Since Cp. (7 )(O,U](,),:L‘tv(,)) = Gn(0,v ](,),xtv(/)) to prove the assertion, it

suffices to show that

To(c, {C(vj)l7 € J})

n

k=1j'€J u;#1 2/ €R(a=1,C(v;1))
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vy (ev)™
By (3.1) and C =C ;
(B

_1\r() r(5) (2
D {Clie N =2 > 1) Z@(Aﬁﬂw,

n
Jj€J z€R(c,C(v;)) l i=1

T fcCuplien=Y Y LS o) [] 2
l . 1

7€ seRr(e,0(2vy))

Here

R(c, C(3v;)) = {z € (0uf) ' N C(Fv)l(2)auf € ¢}
=a Mz +nj|z € R(c,C(v))),n € Q. }.

Here we put Q. = {n|n; =0,1,...,b—1,(z + n';j)a,f C b} for z € R(c,
C(v;)). Then we get

r(j M
SIS G CIE S ) (el

2€R(e, C(a’UJ)) 2€R(¢,C(v;)) n€Q; i=1

Since b is prime to (aqv; ;) and (aq) = a,fa, b is prime to a,f, Op/b = Z/bZ.
Therefore for any 4, for each n1,...,n;_1,ni41,...,n,.(;), there exists unique n;
such that n € Q,,0<n; <b—1. Herel extends over all [ = (ly,...,l(;)) such
that 0 < l;, 01 + -+ + 1,5y = 7(j). If Il =(1,1,...,1), Ci(A;) = 0. We assume
that { # (1,1,...,1), that is, there exists ig such that {;, = 0. In this case

S (M)HZ il G B SR NE

neq, i=1 z;ézg n;=0 i#ig
Bl xz
i#ig
Therefore

Tole {C(Eog)lj € T1) = 3 To(e, {C(wy)j € D),
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> ST log(ul)¢(ny (0,087, 2/ ®)

1j€d" ujr#1 2/ €R(c,C(vyr))

n ) ()
Z Z log <F7"(J)( 2k )(a ]) ))

k=1j€J \z€R(c,C(v;)) p?"(j)(

T z(k),v(k)
Y log< G (7 0)

(k)
2eR(e,0(Lv;)) Pr(i) (V)

To(e {C(Luy)lj € 1) ~ To(e, {C(w)lj € T)
= bjbl To(c, {Clv;)lj € 7).

We get

NE

>
Il

— _le Z Z log(u ))CT(J)(O v(,)7 /(k))

k=1j'€J" u;i#1 2/ €R(c,C(v;1))

O

7. Applications

7.1. The case of F =Q
Let F =Q,d>1. Then I gy = {(a/b) | a,b=1,2,...,(a,d) = (b,d) = 1}
and P+ = {(a/b) | a,b =1,2,...,(a,d) = (b,d) = 1, afb € (d)}. We can
identify
C(ay = (Z/dZ)* by (a/b) — ab’ mod dZ, (a) <+ a mod dZ,

where a,b € Z such that (a,d) = (b,d) = 1 and & € Z such that bb’ = 1 mod d.
Hence we can regard a primitive Dirichlet character x of conductor d as a
character of C(q). Assume that d is prime to p. Let f = (pd). Then {(a) |
1 <a<pd—1,(a,pd) =1} is a complete set of representatives of C(,q). Now
C((1)) is a cone decomposition. By Lemmas 5.4, 6.2 and Theorem 6.2,

d — a a
[Ecp,@d)(s, (a»] = LTy (2. (1)) = log, (pd)Gya (o, (1), E)
= LFP,I(av (pd)),
Let x be a primitive Dirichlet character of conductor d. By (4.10),

[%med)@,x_l)] =Y @) e ()

1<a<pd—1,(a,pd)=1

(71) s=0

= Y X((@)LTpi(a, ().

1<a<d-1,(a,d)=1
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By Lemmas 5.4 and 5.5,

Shrea] = @ og(Tyla/a)

5=0  1<a<d—1,(a,d)=1
- logp(d)va(pd) (0, x—1).

We see that this result agrees with Ferrero-Greenberg [8, Proposition 1].

(7.2)

7.2. The order at s =0 of p-adic L-functions, Gross’ conjecture

In a special case, through the analogy between Shintani’s formula and p-
adic Shintani’s formula, we get the order at s = 0 of the p-adic L-function.
Gross conjectured formulas for the leading term in their Taylor expansion at
s = 0 ([9, Conjecture 2.12]). Let F be a totally real field, K an abelian
extension over F' with conductor f, and x a primitive character of Cf,. Put
f=fox le(p),p’rfo p. We assume that x is odd. In this situation, his first
conjecture states:

(7.3) the order at s =0 of Li(s,x) = the order at s =0 of L, (s, x—1)-
By [9, (2.8), (3.1)], the statement becomes:
(7.4) the order at s = 0 of L, s(s, x—1) = #{p|(p) | x(p) = 1}.

Here # means the number of elements in the set. Obviously,
(7.5) theorder at s=0o0f Lp;(s,x—1) =0 < #{pl(p) | x(p) =1} =0.
By Theorem 6.2, we can get a partial result toward (7.3).

Theorem 7.1.  If #{p|(p) | x(p) = 1} > 2, the order at s = 0 of
LPT(SaX—l) > 2.

Proof. First we show that <L L, (s, x0,) |s=o is written as a finite sum of

terms which take the form of alogp b, a,b € Q when #{p|(p) | x(p) =1} > 2.
By (4.10) and Theorem 6.2, we get

CZLP’T(S’X_O] =2 ZZ Yo XOLT, i (20, 0f)

5=0  ¢eCj k=1j€J z€R(c,Cy)

(7.6) {
+ finite sum of terms alog, b, a,b € Q.

Because #{p|(p) | x(p) = 1} > 2, for each o € Jp, we can take a prime ideal

po satisfying that p,|(p), (po)? # M, N Op, x(ps) = 1. Let f, = f/p,. For
each a,,, there exist a,, and 7, , € F' which satisfy p,a, = (7,,,)a, as ideals.
We replace v;; and we may assume 7, ,v;; € Of for all j,i. Put

R(§,a,,C(v;)) = {z € (a,/) "' N C(v;) | (za,f) is prime to f},
R(fo, a,, C(v5)) = {z € (aufo) "' N C(vy) | (2,f5) is prime to f,},
R(fo,a,,C(mu,0v5)) = {2z € (au/fg)_1 NC(mu,0vj) | (2a,f5) is prime to f, }.
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Then
TuoR(f, a,, C(vy)) = {2 € R(Js, 0, C(m,6v5) | (z0,/f5) is prime to ps},
7TH70'R(fU7 Qs C(UJ)) = R(fU’ au’s C(ﬂ'u,gvj)) NP,
where 7, »R(f, a,,C(v;)) denotes the set {7, ,z | z € R(f,a,,C(v;))}. We get

R(fg; Aury C(ﬂ'u,ovj)) = WM,UR(f, Qs C(Uj)) |_| WM,UR(fm Aus C(Uj))'
Hence the first term of the right hand side of (7.6) is equal to

Y2 Y X)L (7, )

a, o€Jp jE€J zeR(f,a,,C(v;))

e T2 > X)) LT ) (27 05)

au 0€JF J€J zeny L R(fo,0,/,C(Tp,0v5))
22 X @Il ().
ay 0€Jp JEJ 2ER(fo,a,,C(v;5))
By Lemma 5.4, the first term of the right hand side of (7.7) is equal to
Z Z Z Z X((z)foau)LFp,T(j)(zo’UJq)
Ay 0€Jp j€J 2ER(fo,0,,C(Tp,0v5))

+ finite sum of terms alog, b, a,b € Q.

Since x(ps) = 1, the second term of the right hand side of (7.7) is equal to

_Z Z Z Z X((Z)faau)LFp,r(j)(ZU,11;).

ap o€Jr jE€J z€R(fo,a,,C(v5))

According to [19, Lemma 2], we can take a cone decomposition:
RT" = |_|j'eJ’ LlueE}' UC(Uj/) with v = (Uj’,l, RN vj/m(j/)),vj/,i € Op, such
that
1. v;r ; are totally positive, {v;/1,...,v;/ ;) } are linearly independent.
2. {C(vy) | j € J'} is a refinement of {C(v;) | j € J}.
3. There exist uj € E}. such that {C(ujv;) |5 € J'} is a refinement of
{C(mu0v5) [ € T}
Then

DI > X((2)o @) LTy (27, 0F)

ay o€Jr J€J z€R(f5,a,,C(mp,0v5))

>33 Y X)Ll (27,0

a, o€Jr j€J zER(fo,a,,C(v5))

=> > > Yo x(()iowy)

ay 0€Jr j'€J 2€R(f5,a,,C(v;1))
X LDy () (27,05) = LTy 1y ((uje2) 7, (wyrv7)7) }

- Z Z Z Z X((Z)ff’a#) logp(u?’)c;o,r(j)(ovU?aza);

a, 0€Jr j'€J 2€R(f5,a,,C(v;1))
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where R(f,,a,,C(vj)) = {z € (a,f,)"' N C(vj) | (za,f,) is prime to f,}.
Summing up the calculations above, we conclude that there exist a finite set I
and a;,b; € Q for i € I such that %Lp7f(s,x9p) ls=0= > _;es ailog,(bi). Fur-
thermore we can transform the formula of < L(s, x) |s—o in the same manner,
and using the same I, a;, b;, we get dilSLf(s7 X) ls=0= D _;c; ailog(b;) because of
Theorem 6.2. Note that in this situation, ¢, »(;)(0,v7,27) = ((;)(0,v7, 27). By
[1, Corollary 1.1], for ay,...,a, € Q,

(78) if logay,...,logay,,2mi are linearly independent over Q,
’ then logay,...,loga, are linearly independent over Q.

Let I’ be a maximal subset of I such that {log(b;) | ' € I'} are linearly inde-
pendent over Q. Then there exisit m, n; i € Z satisfying log(b;) = >, < (n4,i7/
m)log(by) for all i € 1,7’ € I'. We may assume that m,n; ; are even. Hence
b = Hi’e[’ by and we get 1ogp(bi) = Zizep(ni,i’/m) logp(bz")- By (7.8),
> icr @ingiv=0. Consequently %Lm(s,xﬁp) |s=o= 0 and we complete the
proof. O
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