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Samelson products in the exceptional Lie group
of rank 2∗

By

Hideaki Ōshima

1. Introduction

Samelson products [7] have been studied extensively for classical Lie groups
[2], [11], [12], but few results are known for exceptional Lie groups. The purpose
of this note is to study the Samelson products

(1.1) 〈 , 〉 : πn(G2) × π11(G2) → πn+11(G2) (n ∈ {3, 11}),

where G2 is the exceptional Lie group of rank 2. Note that πm(G2) is infinite
if and only if m ∈ {3, 11}, and that 〈π3(G2), π3(G2)〉 = π6(G2) = Z3 by [15].
We determine (1.1) when n = 3, and the odd component of (1.1) when n = 11.
We have two applications: (1) we determine the nilpotency class of H(G2)(p),
where H(G2) is the group of homotopy classes of self maps of G2 and ( )(p) is
the localization at a prime number p; (2) we decide odd primes p for which the
typical map ϕ : S3×S11 → G2 (see (2.17) below) is a mod p H-map with respect
to a product multiplication for S3

(p) × S11
(p) and the canonical multiplication for

G2(p).
In Section 2, we list up known results on homotopy groups of spheres and

Lie groups we need, and we state our results. In Section 3, we prove that
the image of (1.1) contains the odd component. In Section 4, we complete
the proof of our main theorem (Theorem 2.1). In Section 5, we determine the
nilpotency class of H(G2)(p) for every prime p (Corollary 2.1). In Section 6, we
decide whether or not ϕ(p) is an H-map (Corollary 2.2). In Section 7, we give
a remark on 〈π3(G), π11(G)〉 for G = Spin(7), Spin(8), Spin(9),F4.

2. Notations and results

We do not distinguish in notation between a map and its homotopy class.
Let ιn denote the identity map of Sn. We use the following fibrations (cf. [23,
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Appendix A])

S3 i′3−−−−→ SU(3)
p′−−−−→ S5,

SU(3)
j−−−−→ G2

p−−−−→ S6,(2.1)

G2
i−−−−→ Spin(7) −−−−→ S7,(2.2)

and the following elements of [22]:

νn ∈ πn+3(Sn) (n ≥ 4), εn ∈ πn+8(Sn) (n ≥ 3), νn ∈ πn+8(Sn) (n ≥ 6).

The following results are contained in [14], [15], [22]:

πn+3(Sn) = Z8{νn} ⊕ Z3 for n ≥ 5, πk(S7) = 0 for k = 11, 12,(2.3)

π11(S6) = Z{[ι6, ι6]}, [ι6, ι6] is the Whitehead product,(2.4)

π14(S6) = Z8{ν6} ⊕ Z2{ε6} ⊕ Z3, π14(S7) = Z120,(2.5)
π3(SU(3)) = Z{i′3}, π13(SU(3)) = Z6,(2.6)

π10(SU(3)) = Z30, π11(SU(3)) = Z4{[ν2
5 ]}, p′∗[ν

2
5 ] = ν5 ◦ ν8,(2.7)

π14(Spin(7)) = (Z8)2 ⊕ Z2 ⊕ Z9·5·7,(2.8)
πk(G2) = 0 for k = 10, 13,(2.9)

π3(G2) = Z{i3}, i3 = j ◦ i′3, π11(G2) = Z{γ} ⊕ Z2{j∗[ν2
5 ]},(2.10)

π14(G2) = Z8{[ν6 + ε6]} ⊕ Z2{j∗[ν2
5 ] ◦ ν11} ⊕ Z3·7, p∗[ν6 + ε6] = ν6 + ε6,

(2.11)

π22(G2) = Z8 ⊕ Z2 ⊕ Z9·7·11,(2.12)

π22(Spin(7)) = (Z8)2 ⊕ (Z2)4 ⊕ Z27·5·7·11,(2.13)

π22(S7) = Z8 ⊕ (Z2)3 ⊕ Z3·5, π22(S11) = Z8 ⊕ Z9·7.(2.14)

By (2.5), (2.6), (2.9) and (2.11), we have

(2.15) Ker{p∗ : π14(G2) → π14(S6)} = Z2{j∗[ν2
5 ] ◦ ν11} ⊕ Z21.

Choose γ ∈ π11(G2) so as to satisfy [18, Lemma 5.8] (cf. [20, Proposi-
tion 2.1(4)]). Then γ is unique up to sign. Our main result is

Theorem 2.1. The order of 〈i3, γ〉 is 3 · 7.
This theorem contains a known result that the order of 〈i3, γ〉 is a multi-

ple of 7 (see [9, Corollary 2.6]). But our proof is new even for 7-component.
Furukawa [5] proved the identity:

(2.16) 〈i3, j∗[ν2
5 ]〉 = j∗[ν2

5 ] ◦ ν11.
By this identity and Theorem 2.1, we know the image of (1.1) for n = 3 as
follows:

〈π3(G2), π11(G2)〉 = Z2{j∗[ν2
5 ] ◦ ν11} ⊕ Z21.
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Let H(G2) = [G2,G2] be the set of all homotopy classes of based self maps
of G2. It inherits a group structure from G2. Let nil Γ denote the nilpotency
class of the group Γ. We proved in [20] (and will recall in Section 5) that
nil H(G2) = 3.

Corollary 2.1. nil(H(G2))(p) is 3, 2 or 1 according as p = 2, p ∈ {3, 7}
or p 	∈ {2, 3, 7}.

Let us define

(2.17) ϕ : S3 × S11 → G2, ϕ(x, y) = i3(x)γ(y).

Recall from [10], [21] that, for a prime p, ϕ(p) : (S3×S11)(p) = S3
(p)×S11

(p) → G2(p)

is a homotopy equivalence if and only if p ≥ 7. As is well-known [1], for a
prime p, S2n+1

(p) (n 	= 0, 1, 3) has an H-multiplication if and only if p is odd.
For an odd prime p, let µ′ and µ′′ be H-multiplications for S3

(p) and S11
(p),

respectively, and let µ be the usual multiplication for G2. Let µ′ × µ′′ be the
product multiplication for S3

(p) × S11
(p), that is, (µ′ × µ′′)((x1, y1), (x2, y2)) =

(µ′(x1, x2), µ′′(y1, y2)).

Corollary 2.2. Let p be an odd prime. Then the following statements
are equivalent:

(1) ϕ(p) : (S3
(p) × S11

(p), µ
′ × µ′′) → (G2(p), µ(p)) is an H-map for some µ′

and µ′′;
(2) ϕ(p) : (S3

(p) × S11
(p), µ

′′′) → (G2(p), µ(p)) is an H-map for all H-multi-
plications µ′′′ on S3

(p) × S11
(p);

(3) p = 5 or p ≥ 13;
(4) S3

(p) × S11
(p) has only one H-multiplication;

(5) G2(p) has only one H-multiplication.

Remark. By [13], the above statement (3) is equivalent to
(6) µ(p) is homotopy commutative.

3. Odd components of 〈i3, γ〉 and 〈γ, γ〉
The purpose of this section is to prove

Proposition 3.1. The orders of 〈i3, γ〉 and 〈γ, γ〉 are multiples of 3 · 7
and 9 · 7 · 11, respectively.

We need

Lemma 3.1. The homomorphism i∗ : πk(G2) → πk(Spin(7)) is an iso-
morphism for k = 3, 11 and a monomorphism for k = 14, 22.

Proof. Consider the homotopy exact sequence of (2.2). Then the asser-
tions follow from (2.3), (2.5), (2.8), (2.11)∼(2.14).
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Proof of Proposition 3.1. Let π : Spin(7) → SO(7) be the covering map.
Let n be 3 or 11. We have the following commutative diagram:

(3.1)

πn(G2) × π11(G2)
〈 , 〉−−−−→ πn+11(G2)

i∗×i∗


�∼=



�i∗

πn(Spin(7)) × π11(Spin(7))
〈 , 〉−−−−→ πn+11(Spin(7))

π∗×π∗



�∼= ∼=



�π∗

πn(SO(7)) × π11(SO(7))
〈 , 〉−−−−→ πn+11(SO(7)).

By [4, Theorem 2.1], for every natural number m, there exists a homotopy
equivalence between localized classifying spaces

Φ : (B SO(2m+ 1)) 1
2
→ (B Sp(m)) 1

2
,

where ( ) 1
2

denotes localization away from the prime 2. Hence

ΩΦ : Ω(B SO(2m+ 1)) 1
2
→ Ω(B Sp(m)) 1

2

is an H-equivalence (i.e. a homotopy equivalence which is an H-map), where
ΩX is the space of loops in the space X. Therefore we have an H-equivalence

φ : SO(2m+ 1) 1
2
→ Sp(m) 1

2
,

and so the commutative square

πn(SO(7) 1
2
) × π11(SO(7) 1

2
)

〈 , 〉−−−−→ πn+11(SO(7) 1
2
)

φ∗×φ∗



�∼= ∼=



�φ∗

πn(Sp(3) 1
2
) × π11(Sp(3) 1

2
)

〈 , 〉−−−−→ πn+11(Sp(3) 1
2
).

By combining the last square with (3.1), we have the following commutative
square

(3.2)

πn(G2) 1
2
× π11(G2) 1

2

〈 , 〉−−−−→ πn+11(G2) 1
2

∼=


�



�ψ

πn(Sp(3)) 1
2
× π11(Sp(3)) 1

2

〈 , 〉−−−−→ πn+11(Sp(3)) 1
2
,

where ψ = φ∗◦(π∗◦i∗) 1
2

is a monomorphism by Lemma 3.1. Since the inclusion
induces a monomorphism π22(Sp(3)) 1

2
→ π22(Sp(5)) 1

2
(see [16]), it follows from

[2, Theorem 2] that the image of

〈 , 〉 : π11(Sp(3)) 1
2
× π11(Sp(3)) 1

2
→ π22(Sp(3)) 1

2
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is a subgroup of order 9·7·11 so that 〈γ, γ〉 is of order 9·7·11 in π22(G2) 1
2

by (3.2).
For similar reasons, 〈i3, γ〉 is of order 3 · 7 in π14(G2) 1

2
. Hence Proposition 3.1

follows.

4. The 2-component of 〈i3, γ〉
The purpose of this section is to prove

Proposition 4.1. The order of 〈i3, γ〉 is a divisor of 3 · 7.
If this is true, then the order of 〈i3, γ〉 is 3 · 7 by Proposition 3.1 and so

Theorem 2.1 follows.
The relative Samelson products 〈 , 〉r associated with (2.1) are pairings

〈 , 〉r : πs(SU(3)) × πt(S6) → πs+t(S6),

〈 , 〉r : πt(S6) × πs(SU(3)) → πs+t(S6)

and they satisfy 〈α, β〉r = (−1)st−1〈β, α〉r for α ∈ πs(SU(3)), β ∈ πt(S6) (cf.
[7]).

Let ∆ : πs+1(S6) → πs(SU(3)) be the connecting homomorphism of (2.1).
The homotopy exact sequence of (2.1) implies the identity p∗(γ) = ±30[ι6, ι6] by
(2.4), (2.7), (2.9) and (2.10). On the other hand, we have p∗〈i3, γ〉 = 〈i′3, p∗γ〉r
by [7, (15.14)]. Hence

(4.1) p∗〈i3, γ〉 = ±30〈i′3, [ι6, ι6]〉r.
Lemma 4.1. 6〈i′3, [ι6, ι6]〉r = 0.

If Lemma 4.1 holds, then 〈i3, γ〉 ∈ Z2{j∗[ν2
5 ]◦ν11}⊕Z21 by (4.1) and (2.15)

and hence 21〈i3, γ〉 = 0 by (2.11), since 〈i3, γ〉 is divisible by 4, as was proved
in [20] and will be recalled in the next section, and so Proposition 4.1 follows.

We devote the rest of this section to the proof of Lemma 4.1. We have

(4.2) [ι6, ι6] = ±〈∆ι6, ι6〉r
by [7, (16.3)], and so

(4.3) 〈i′3, [ι6, ι6]〉r = ±〈i′3, 〈∆ι6, ι6〉r〉r.
The following Jacobi identity holds (cf. [7, (15.12)]):

〈ι6, 〈i′3, ∆ι6〉〉r − 〈∆ι6, 〈ι6, i′3〉r〉r + 〈i′3, 〈∆ι6, ι6〉r〉r = 0.

Since 〈i′3, ∆ι6〉 = 〈∆ι6, i′3〉 (cf. [7, (15.10)]), we then have

(4.4) 〈i′3, 〈∆ι6, ι6〉r〉r = 〈∆ι6, 〈ι6, i′3〉r〉r − 〈ι6, 〈∆ι6, i′3〉〉r.
Lemma 4.2. There exists an integer m such that, in π14(S6)(2), we

have

〈∆ι6, 〈ι6, i′3〉r〉r = 2mν6,(4.5)
〈ι6, 〈∆ι6, i′3〉〉r = ±2mν6.(4.6)
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If Lemma 4.2 holds, then 〈i′3, [ι6, ι6]〉r = 2m(1±1)ν6 in π14(S6)(2) by (4.3)
and (4.4), and so 6〈i′3, [ι6, ι6]〉r = 0 by (2.5), and hence Lemma 4.1 follows.

Proof of Lemma 4.2. In this proof, all groups are localized at 2. By (2.3),
we can write

(4.7) 〈ι6, i′3〉r = kν6, k ∈ Z.

By [2, Corollary], [7, (15.13)], [14] and [15], we can easily show that k is odd.
We omit its proof, since we do not use this fact below. Now

(4.8) 〈∆ι6, 〈ι6, i′3〉r〉r = k〈∆ι6, ν6〉r.

We have
〈∆ι6, ν6〉r = 〈∆ι6 ◦ ι5, ι6 ◦ ν6〉r

= 〈∆ι6, ι6〉r ◦ ν11 (by [7, (15.11)])
= ±[ι6, ι6] ◦ ν11 (by (4.2))
= ±2ν6 (by [22, Lemma 6.2]),

that is, we have

(4.9) 〈∆ι6, ν6〉r = ±2ν6.

Hence 〈∆ι6, 〈ι6, i′3〉r〉r = ±2kν6 by (4.8). Therefore, by taking m = ±k, we
obtain (4.5).

We have 〈∆ι6, i′3〉 = ±∆〈ι6, i′3〉r by [7, (15.10), (15.13)], and

〈ι6, 〈∆ι6, i′3〉〉r = ±〈ι6, ∆〈ι6, i′3〉r〉r
= ±k〈ι6, ∆ν6〉r (by (4.7)).

Since 〈ι6, ∆ν6〉r = ±〈∆ι6, ν6〉r by [7, (16.3)] and [23, (7.5) on p. 474], it follows
from (4.9) that we have 〈ι6, ∆ν6〉r = ±2ν6 so that 〈ι6, 〈i′3, ∆ι6〉〉r = ±2kν6.
Therefore we obtain (4.6). This completes the proof of Lemma 4.2.

5. Proof of Corollary 2.1

We use the usual cell structure of G2 (cf. [18], [20]). Let G(11)
2 be the

11-skeleton of G2. Let q14 : G2 → G2 /G
(11)
2 = S14 be the quotient map and let

i11 : G(11)
2 → G2 be the inclusion map.

Theorem 5.1 (Theorem 2.2 of [20]).
(1) The sequence

0 −−−−→ π14(G2)
q∗14−−−−→ H(G2)

i∗11−−−−→ [G(11)
2 ,G2] −−−−→ 1

is a central extension of groups.
(2) There exists α ∈ H(G2) such that
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(a) H(G2) is generated by 1, α and Im(q∗14), where 1 denotes the iden-
tity map,

(b) [1, [1, α]] = q∗14(j∗[ν
2
5 ] ◦ ν11), where [ , ] denotes the commutator,

(c) there exists x0 ∈ π14(G2) such that 2[1, α] = 2q∗14(x0) and 〈i3, γ〉 =
±4x0.

(3) nil[G(11)
2 ,G2] = nil[G(11)

2 ,G2](2) = 2 and nil[G(11)
2 ,G2](p) = 1 for every

odd prime p.

Hence nil H(G2) = 3 = nil H(G2)(2) and nil H(G2)(p) ≤ 2 for every odd
prime p. If p = 5 or p > 7, then H(G2)(p) ∼= [G(11)

2 ,G2](p) by the above exact
sequence and (2.11), and so nil H(G2)(p) = 1. It follows from Theorem 2.1 and
(2)(c) that the order of [1, α] is a multiple of 21 so that nilH(G2)(p) ≥ 2, and
hence nil H(G2)(p) = 2, for p = 3, 7. This completes the proof of Corollary 2.1.

6. Proof of Corollary 2.2

Let e : Y → Y(p) be the p-localization map for any nilpotent space Y .
“(2) ⇒ (1)” is obvious.
To prove “(1) ⇒ (3)” by a contradiction, suppose that p is 3, 7 or 11 and

that ϕ(p) : (S3
(p) × S11

(p), µ
′ × µ′′) → (G2(p), µ(p)) is an H-map for some µ′ and

µ′′. Firstly we consider the cases p = 3, 7. We denote by j3 : S3 → S3
(p) × S11

(p)

and j11 : S11 → S3
(p) ×S11

(p) the compositions of e and the inclusion maps. Then
〈j3, j11〉 = 0 by the definition of the Samelson product (cf. [19]). Hence we have

0 = ϕ(p)∗〈j3, j11〉 = e∗〈i3, γ〉 ∈ π14(G2)(p).

This contradicts Proposition 3.1. Secondly we consider the case p = 11. As is
easily seen, γ(11) : (S11

(11), µ
′′) → (G2(11), µ(11)) is an H-map under the assump-

tion. We have 〈e ◦ ι11, e ◦ ι11〉 = 0, since π22(S11)(11) = 0 by (2.14). Therefore

0 = γ(11)∗〈e ◦ ι11, e ◦ ι11〉 = e∗〈γ, γ〉 ∈ π22(G2)(11).

This contradicts Proposition 3.1.
To prove “(3) ⇒ (2)”, let p = 5 or p ≥ 13, and let µ′′′ be any H-

multiplication for S3
(p) × S11

(p). Let

D = D(ϕ(p), µ
′′′, µ(p)) ∈ [X(p),G2(p)] = [X,G2](p)

be the H-deviation of ϕ(p) (see [24, 1.4.1]), where X = (S3 × S11)∧ (S3 × S11).
Then ϕ(p) is an H-map with respect to µ′′′ and µ(p) if and only if D = 0. We
prove the assertion by showing [X,G2](p) = 0. Since X has a cell structure

(6.1) X = S6 ∪ e14 ∪ e14 ∪ e22 ∪ e28,
it suffices to prove that πm(G2)(p) = 0 for m = 6, 14, 22, 28. By [15], we have
πm(G2)(p) = 0 for m = 6, 14, 22. By [22, Chapter XIII] and [6], we have

π28(G2)(p) ∼= π28(Spin(7))(p) ∼= π28(Sp(3))(p) ∼= π28(Sp(2))(p) = 0.
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Hence (2) follows.
Recall from [3, Theorem 5.5A] that if Y is a CW-H-space, then the set of

H-multiplications for Y is in 1 − 1 correspondence with [Y ∧ Y, Y ]. We have

[(S3
(p) × S11

(p)) ∧ (S3
(p) × S11

(p)), S
3
(p) × S11

(p)] = [X, S3
(p)] × [X, S11

(p)].

By using (6.1) and [22], we can show that [X, S3
(p)] and [X, S11

(p)] are trivial if
and only if p = 5 or p ≥ 13. Hence (3) and (4) are equivalent.

In the rest of the proof, we show that (3) and (5) are equivalent. Let p ≥ 7.
Then S3

(p) × S11
(p) � G2(p) as recalled in Section 2, and so G2(p) has only one

H-multiplication if and only if p ≥ 13 by the above discussion. By [17], G2(5) �
B1(5)(5), where B1(5) is a S3-bundle over S11. Hence [G2(5) ∧G2(5),G2(5)] ∼=
[B1(5) ∧ B1(5), B1(5)(5)]. By using [22, Chapter XIII] and a cell structure
B1(5) = S3 ∪ e11 ∪ e14 (cf. [8]), we can show that [B1(5) ∧ B1(5), B1(5)(5)] is
trivial. Hence G2(5) has only one H-multiplication. Let C : G2 ∧G2 → G2 be
the commutator map, that is, C(x∧y) = xyx−1y−1. Since C ◦(i3∧i3) = 〈i3, i3〉
and π6(G2) = Z3{〈i3, i3〉} by [15], it follows that the order of C is a multiple
of 3. Hence [G2(3) ∧G2(3),G2(3)] is not trivial and so G2(3) has at least three
H-multiplications. Therefore (3) and (5) are equivalent.

7. A remark

By [15] and (2.16), we can show that inclusions (cf. [23, Appendix A])

(7.1) G2 ⊂ Spin(7) ⊂ Spin(8) ⊂ Spin(9) ⊂ F4

induce isomorphisms

〈π3(G2), π11(G2)〉 ∼= 〈π3(Spin(7)), π11(Spin(7))〉 ∼= 〈π3(Spin(8)), π11(Spin(8))〉,
(7.2)

〈π3(Spin(9)), π11(Spin(9))〉 ∼= 〈π3(F4), π11(F4)〉 = π14(F4)(7.3)

and an epimorphism

〈π3(Spin(8)), π11(Spin(8))〉 → 〈π3(Spin(9)), π11(Spin(9))〉.
Groups in (7.2) and (7.3) are, respectively, isomorphic to Z2 ⊕ Z21 and Z2.
Here, for every G in (7.1), Z2 is a direct summand of π14(G) and generated by
the image of 〈i′3, [ν2

5 ]〉 ∈ π14(SU(3)) under the inclusion of SU(3) into G.

Ibaraki University
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Japan
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