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3-graded decompositions of exceptional Lie
algebras g and group realizations of

Jev, 90 and Yed
Part II, G = E7, Case 1

By

Toshikazu MI1YASHITA and Ichiro YOKOTA

The 3-graded decompositions of simple Lie algebras g,

=90 3Pg 209 1DPg0 DI DI Dg3, [0k 01 C Gt

are classified and the types of subalgebras ge, = g_2®go P g2, go and geq = g—3
@ go @ g3 of g are determined. The following table is the results of ge,, go and
gea for the exceptional Lie algebras of type Er ([1]).

Case 1 g Jev go
Fed dim g1, dim g2, dim g3
¢ sl

,O)®s0(12,C) s1(2,C) @ C @ sl(6,0)
C)@sl(6,C)  30,15,2

(2

(3
erry sl(2,R)©s0(6,6) sl(2,R)® RDsl(6,R)

(3

(2

(3

R)
sl(3,R) @ sl(6,R) 30,15,2
er(—s) Sl(2, R)®s0*(12) sl(2, R) ® R® su*(6)
sI(3,R) ®su(6)  30,15,2
Case 2 g fev o
Ged dim g5, dim go, dim g3
¢ sl(2,0)@s0(12,0) C@C@sl(6,0)
C @sl(7,C) 26,16, 6
ery sl(2,R)©s0(6,6) RO ROsI(6,R)
R&sl(7,R) 26, 16, 6
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Case 3 ¢ Gev 90
Ged dim g1, dim go, dim g3
7  Cde® C®C @50(10,0)
C ®s0(12,0) 17,16,10
ery R D ego) R® R®so(5,5)
R @ s0(6,6) 17,16, 10
€7(—25) R@QG(_QG) R3® R®s0(1,9)
R ®s0(2,10) 17,16, 10
Case 4 g Gev o
Ged dim g1, dim g2, dim g3
er¢ C @ e C®C@s0(10,0)

s((2,C) @ C @ s0(10,0)
e7(7) R& €6(6)

26,16, 1
R3® R®s0(5,5)

sl(2, R) ® R®so(5,5)  26,16,1

e7(—25) R €6(—26) R3® R®s0(1,9)
sl(2,R) ® R®so(5,5) 26,16,1

Case 5 g Gev o

Ged dim g1, dim g2, dim g3

er¢ sl(8,C) sI(3,0) @ C @ sl(5,0)
s1(3,C) @ s1(6,C) 30,15, 5

e7(7) sl(8, R) s5((3,R)® R®sl(5, R)
s[(3, R) @ sl(6, R) 30,15, 5

In the previous paper [7], we gave the group realizations of ge,, go and geq
for the exceptional universal linear Lie groups G of type Go, Fy and Eg. In
the present paper, for exceptional universal linear Lie groups G of type E;, we
realize the subgroups G, Gy and G¢q of G corresponding t0 geq, g0 and geq
of g = Lie G. The result of the present paper is only shown about the case 1,
so we continue to report the remaining cases. Our results of the case 1 are as

follows:

G Gew Go
Ged

E:°  (SL(2,C) x Spin(12,C))/Z>  (SL(2,C) x C* x SL(6,C))/(Zs x Z2)
(SL(3,C) x SL(6,C))/Zs

Ez¢ry (SL(2,R) x spin(6,6))/Z2 x 2 (SL(2,R) x RT x SL(6, R))/Z> x 2*
SL(3,R) x SL(6, R)

E;—sy (SL(2,R) x spin*(12))/Z2 x 2 (SL(2,R) x R x SU*(6))/Z2 x 2°

SL(3,R) x SU*(6)
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This paper is a continuation of [7], so the numbering of sections and the-
orems start from 4. We use the same notations as that in [7].

4. Group FE;

Let J¢ (resp. J') be the exceptional C-Jordan algebra (resp. the split
exceptional R-Jordan algebra) and we define the C-vector space B¢ (resp. the
R-vector space B’) by

PC=3"@3°@CaC (resp. P =3 Y ®ROR),
with inner products
(P,Q)=(X,2)+ (Y, W)+ & +nw, {P.Q}=(XW)—(Y,Z)+Ew—nC,

where P = (X,Y,£,n), Q = (Z,W,(,w) € B (resp. P).

For ¢ € ¢“,A,B € 3¢ and v € C, we define the C-linear mapping
®(¢, A, B,v) of B by

X ¢X—%VX+2B><Y+7)A

Y 1
@((ﬁ,A,B,V) — 2A XX—t¢Y+ gVY+€B

¢ (A,Y) + v

n (B,X)—vn

For P = (X,Y,&,1),Q = (Z,W,(,w) € B, we define the C-linear mapping
P x Q of BC by

1
o= (XVW+ZVY)

A:—1(2YxW—gZ—<X)
P xQ=9o(¢,A,B,v), 1
B= Z(QXxZ—nW—wY)

Y= %((x, W) +(2,Y) = 3(¢w + (n)),

~

~ —~ 1
where X VW € ¢6C is defined by X VW = [X, W] + (Xow_ §(X,W)E) :
here)zzjc — 3% is defined by )?Z:XOZ, Z e 3°.

We arrange C-linear transformations of 8¢ used later. By using the map-
ping ¢ : Sp(1, HY) x Sp(1, HY) — G°,

p2(p. a)(a + bes) = qag + (pbg)es, a+bes € HE & H %y =27,
we define C-linear transformations v, 7', v1,¢€1, €2, w3 and 0, of €€ by

v=p2(1,-1), ' =¢aler,e1), 71 = p2(ez, e2),
g1 =ale1, 1), €2 =ale2,1), ws=2(1,W1), 1= pa(l,—e1),
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where w; = e2™1/3 ¢ ¢ ¢ ¢€C. These C-linear transformations of €€ are
naturally extended to C-linear transformations v, ', v1, €1, €2, w3 and &4 of P¢
as

VX, Y, & m) = (X, 7Y, &)
etc. Then ~,7,71,e1,62,ws,04 € (G29) € G2 ¢ F,Y ¢ Es® ¢ E;Y and
v = A2 = mi=1lwsd =1t =et=6,"=1.

The connected universal linear Lie groups E;°, E7(7y and E7(_s) are given
by

E:% = {a €Tsoc(P) |a(P x Q)a~! = aP x aQ},
By = {a € Isor(P) |a(P x Q)a™ ' = aP x aQ},
Er(_s) = {a € Isoc(P) | a(P x Q)a™" = aP x aQ, (aP,aQ), = (P,Q),},
where (P, Q). = (t7P,Q), P,Q € B°.
The Lie algebra ;¢ of the group E.% is given by
7" = {0(¢,A,B,v)|p€e”, A, Be I veC}
The Lie bracket [®;,®3] of e;¢ is given by
(®(¢1, A1, B1,v1), P(¢2, Ag, Ba,12)] = (4, A, B,v),
¢ = [¢1,02] + 241V By — 242V By

A= (¢1 + §V1)A2 - (¢2 + ;Vz)fh
B = —(t¢1 + §V1)Bz + (t¢2 + §V2)Bl
v = (41, Bs) — (B, A2).

In the Lie algebra ¢;¢, we use the same notations Gij, Zlk(ei), (Ex—Ep)",
Fy(e:), Ey, Ey, Fi(e;), Fi(ei), 1 as that used in the preceding papers [5], [6],
or [7].

4.1. Subgroups of type 4:° ® D%, 4, ® C @ 45° and A,° @ A5C of
E;¢

Since v and 7, are conjugate in (G29)™ € G2 ¢ E7% (]3], [4]), we have
Er(ry = (B:9)™ = (B,
In the Lie algebra e;¢, let
Z = &(i(—2Ga3 + Gus + Ger),0,0,0).

Theorem 4.1.  The 3-graded decomposition of the Lie algebra er¢7y =
(e79)™ (or e7),

e7(7) = 9-3DPg2Dg-1DgDPg1 DP2D g3
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with respect to adZ, Z = P(i(—2G23 + G45 + Ge7),0,0,0), is given by

iGo1,1G23,1G4s5,1Ge7, Gas + Gs7,1(Gar — Gse),
go=14 Ar(1),iAy(e1), (By — )™, (By — E3)™, Fp(1),iFy(e1)
Ey, B, Fy(1),iF(e1), By (1), iFy(er), k= 1,2,3, 1 39
Goa +1Gos, Gos + iGor,1G14 — G15,1G16 — G,
(2G15 + G2 — G37) — i(2G 14 + Gar + G36),
g_1=2 (2G17 — Gas + G35) — i(2G16 — Ga5 — G34),
Ap(eq +ies), A(eg + ier), Fy(eq + ies), Fi(eg + ier),
Fy(eq +ies), (e +ier), Fy(eq + ies), Fpeg +ier), k=1,2,3 ) 30
Go2 — iGo3,iG12 + G1s,
g-2=% (=2G13 + Gy — G57) — i(2G12 — Gar — G56),
gk(eg — i63),ﬁk(62 — ies), Fk(eg —ies), Fk(eg —iez),k=1,2,3 15
g-3={ (G214 + G35) + i(Ga5 — G34), (G26 + Ga7) + i(Gar — Gs6) } 2
g1=7(g-1)7, 92 =7(g9-2)7, g3 = 7(g-3)7
Proof. 'We can prove this theorem in a way similar to [6, Theorem 4.5],

by using [6, Lemma 4.4]. O

As is shown in G2, F,© or EgC ([7]), we have
2mi

211 21
ZQZGXP%Z:’Y, 24:exp%Z=(54, zg:expTZ:wg,.

. 5
Now, since (e79),, = (e79)™ = (e79)7, (e79)y = (e79)* = (e79)™, (¢79) g =

(e29)% = (%)™, we shall determine the structures of groups
B
= (B9 = (B:°), (B9 = (Br) = (B:)™,

(E:°) -
(E79)oq = (B:9)% = (B,9)"™".

ev

4.1.1. Involution v and subgroup (SL(2,C) x Spin(12,C))/Zy of E;°
Let (B;9)Y = {a € E;% |ya = ay} and we will show
(B:C) = (SL(2,C) x Spin(12,C))/Zs

(Theorem 4.1.1). For this end, we have to find subgroups which are isomorphic
to SL(2,C) and Spin(12,C) in the group (E;°)7. As for SL(2,C), by using
the mapping @5 : Sp(1, HY) x Sp(l,HC) — (2%, we may prefer

Sp(L,HS) = {¢2(p,1) |p € Sp(1, H)},

which is isomorphic to SL(2,C). As for Spin(12,C), we prefer
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()52 = {a € B;C |e1a = aey, esa = ey}
Since £12 = v, if @ € E; satisfies ea = ey, then ya = ay is automatically
satisfied, so (F79)°12 is a subgroup of (F;%)7. (E;%)e12 = Spin(12,C) will
be proved in Proposition 1.1.7. In oder to show the connectedness of the group
(E;%)e122 we consider a series of subgroups

(Br©)e 5 ((B9)); > (Ba),

and we will show the connectedness of these groups in the order. We will start
on a study of the group (EGC)El’E"‘.

Proposition 1.1.1.  (E;9)s=2 = SU*(6,C°).
In particular, the group (EgC)e1°2 is connected.

Proof. Let SU*(6,C°) = {A € M(6,C°)|JA = AJ,detA = 1},J =

diag(J, J,J),J = (_01 é) The mapping ¢g : Sp(1, HY) x SU*(6,CY) —

(EsC)7 is defined by

@6(p, A)(M +mn) = (K" A)M(k™"A)* + pn(k~"A)7,
M+ne33,H e (H)? =3,

where k : M(3, HC) — M (6, CC) is defined by k((a—l—bez)) = ( (_ab g) )70,

b € CC. Then g induces the isomorphism (E¢©)72 (Sp(1, HY)x SU*(6,C°))
/Zs,Zy = {(1,E),(=1,—E)} (see [5], [7] for details). Now, we define a map-
ping @g,, : SU*(6,CC) — (Es%)e=2 by

wo,r(A) = p6(1, A)

as the restriction mapping of g : Sp(1, HY) x SU*(6,C%) — E¢“. It is
easily verified that g, is well-defined and a homomorphism. We shall show
that g, is onto. For a € (Eg9)*1%2 C (Eg®)7, there exist p € Sp(1, HE)
and A € SU*(6,C°) such that a = @g(p, A). From the condition eza =
agk, k = 1,2, we see that a = pg(1,A) or a = @g(—1,A). In the latter
case, o = @g(—1,A) = ps(1,—A) = @er(—A). Hence pg, is onto. It is
easily obtained that Ker ¢g, = {E}. Thus we have the required isomorphism
SU*(6,C) = (Ee%)er=2. 0

CLemma 1.1.2. (1) The Lie algebra (e;%)%1°2 of the Lie group
(E7Y)ev22 s given by
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(e:C)5152 = {@(D +S+T,A, B,v)€e;€

0 do1 do2 dos 0 0 0 0
_dOI 0 d12 d13 0 0 0 0
—dog —d12 0 d23 0 0 0 0
| —dos —dis —dys 0O O 0 0 0
D=1 06" o 0 0 0 d d ds |G
0 0 0 0 —-di 0 d3 —ds
0 0 0 0 —dy —d3 0 d
0 0 0 0 —d3 do —di O
0 S3 —3S9
S=[-3 0 s |,si GHC,T€3(3,HC)O,A,B63(3,HC),1/€C}.
Sy —81 0

In particular, dime((e79)50%2) =94+ 12+ 14+ 15 x 2+ 1 = 66.
(2) The Lie algebra ((e:°)51°2); of the Lie group ((E;°)1?); is given by
((er)v=2); = {B(D+ S+ T,A,B,v) € ()72 |B = 0,v = 0}
The Freudenthal manifold ¢ is defined by
ME ={PecP|PxP=0, P#0}

XVY=0,XxX=nY,Y xY =¢X, }

B _ c
{P(X;ngn)em (X,Y):ggn,P#O

We define a submanifold (91¢) o of M by

M), 1 ={PeP|PxP=0, P =P, {i,P} =1}
XVY=0,XxX=nV,Y XY =¢£X,
(X,Y) =3¢, X,Y € 3(3, HY),
{i,pPt =1

= {(X,X x X,detX,1)| X € 3(3, HY), X V (X x X) =0}.

= P=(X,Y,&n) € B°

Proposition 1.1.3.  ((E;%)e1e2); /(EsC)ee> ~ (M)
In particular, the group ((E7C)51’62)1 is connected.

€1,1°

Proof. The group ((E;9)°1:2); acts on (sz)Ehi. We shall show that
this action is transitive. To prove this, it is sufficient to show that any ele-
ment P € (smc)shi can be transformed to 1 = (0,0,0,1) € (EUIC)shi by some
o € ((B;)e122);, moreover by some a € (((E;)?12);)° (which is the con-
nected component subgroup of ((E7;9)°12);). Now, for a given P = (X, X x
X,detX,1) € (M), i, we see that (0, X,0,0) € ((e7°)*=*); (Lemma 1.1.2.
(2)). Hence a(X) = exp(®(0, X,0,0)) € (((E;9)72);)°. Operate a(X) on
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1, then we have a(X)1l = (X, X x X,detX,1). This shows the transitivity
of (E 0)51’52)1. Since (SD?C)E1 ((( 70)517‘52)1)017 (smc)shi is connected.
The isotropy subgroup of ((E7C)51’52)1 at 1 is (Eg®)°0%2. Thus we have
the required homeomorphism ((E,C)e1°2); /(EgC)12 ~ (M) (M)
and (Fg® )22 are connected (Proposition 1.1.1), so ((E79)s12); is also con-
nected. O

£1,1° 1,1

Lemma 1.1.4.  For (0,0, B,v), B € 3(3, HY),v € C, there exist Y €
J(3,HC) and € € C,& # 0 such that

(exp(9(0,0, B, v)))i = (%(Y XY), V.6, (detY))

&

1
Conversely, for (§(Y xY),Y, ¢ = (detY)) € PO, there exist B € J(3, HO)

¢
and v € C such that (—(Y xY),Y,¢,

: (detY)) = (exp(®(0,0, B, v)))1.

&
Proof.

(e¥ —2e5 +e*%)419/ (B x B)
(e¥ fe%)iB
(exp(€(0,0, B,v)))1 = 2v SR

eU

((e" —e™) = 3(eS —e75))
(in the case of v = 0, the parts of ¥ = 0 need to replace by lin%). Now, put

Y = (e’ - e%);B, & =e” (x), then we have
v

27detB
8u3

(exp(9(0,0, B, v)))i = (% (Y x Y), Y., (detY))

e
1 1 .

Conversely, for P = (E (Y xY),Y, ¢, e (detY)) we can choose B € J(3, H”)

and v € C satisfying the condition () above. Then we obtain (exp(%(0, 0, B, 1/)))

1=P.

We define a submanifold (9¢),, of the Freudenthal manifold ¢ by
(M), ={P eP°|Px P =0, e,P =P, P+#0}
XVY =0,XxX=nY,Y xY =¢X, }

. B C
B {P S ERT (¥ vy~ 3¢, X,y €36, HO), P £0

Proposition 1.1.5. (E7C)81’€2/((E7 )Ere2); & (MO).,.

In particular, the group (E7C)e:°2 is connected.
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Proof. The group (E;°)1°2 acts on (MC).,. We shall show that this
action is transitive. To prove this, it is sufficient to show that any element
P € (MY)., can be transformed to 1 = (0,0,1,0) € (M®)., by some a €

(E;%)=1=2 moreover by a € ((E;9)e1:2)0 (which is the connected component
subgroup of (E;)s1e2),

Case (1) P = (X,Y,£,n),€ # 0. From the condition of (MY).,, we see
1 _ 1
3 ¢
For these Y and ¢, choose B € J(3, HY) and v € C' of Lemma 1.1.4, then we
see (0,0, B,v) € (e79)1°2 (Lemma 1.1.2.(1)). Hence a = exp(®(0,0, B,v))
€ ((B;%)e1*2)° and we have ai = P.

Case (2) P = (X,Y,0,n), Y # 0. For a given P, we see ¢(0,7Y,0,0) €

(e79)s1°2 (Lemma 1.1.2.(1)). Hence exp(®(0,7Y,0,0)) € ((E;%)e12)0. We
have

X==-(YxY), n (detY).

(exp(2(0,7Y,0,0)))(X,Y,0,n) = (X +n(7Y),Y +27Y x X, (7Y, Y),n).

If Y # 0, then (7Y,Y) # 0. Hence this case is reduced to the case (1).

Case (3) P = (X,0,0,n), X # 0. exp(®(0,E,0,0)) € ((E7C)51752)0 and
we have
(exp(P(0, £,0,0)))(X,0,0,n) = (X +nE, (tr(X) + n)E — X, tr(X) +1,0) (x).
If (tr(X) 4+ n)E — X # 0, then this is reduced to the case (2). In the case of
(tr(X)+n)E — X = 0, we see that () is equal to —%tr(X)(E, 0,—1,0), so this
case is reduced to the case (1).

Case (4) P = (0,0,0,7n), n # 0. exp(®(0, F1,0,0)) € ((E7C)51752)0 and

we have
(exp(2(0, £1,0,0)))(0,0,0,n) = (nE1,0,0,7).

Hence this case is reduced to the case (3).
Thus the proof of the transitivity of ((E79)512)% on (IMY)., is completed.

Now, the group (E;9)s12 acts on (9MC),, transitively and the isotoropy
subgroup of the group (E;%)e1°2 at 1 is ((E;)°1¢2);. Hence we have the home-
omorphism (E;9)%122 /((E;9)*152); ~ (MY).,. Since (M).,=((E,%)e1=2)01,
(MC)., is connected, and ((E7;9)%2); is connected (Propositions 1.1.3), hence
(E;%)e122 is also connected. O

To prove the following proposition, we use the following two mappings
#1(0), \. For § € C*, we define the C-linear transformation ¢, () of B by

1 (0)(X,Y,&,m) = (07'X,0Y,0°€,073n), (X,Y,&n) € P,
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and we define the C-linear transformation X of B¢ by
MX,Y. &) = (Y, =X,n.—€),  (X,Y.&n) € P
Then ¢(0), X € (E;C)1=2,

Proposition 1.1.6.  The center z((E;%)1¢2) of the group (E;°)e1e
18 isomorphic to the direct product group of two cyclic groups of order 2:

A(BC)) = {1,} x {1,~7} = Z5 x Zs.
Proof. Let a € z((E;9)*152). For § € (E¢9)*12 C (FB;%)e°2, we see
Bal = apl = ad.
Denote al = (X,Y,€,n). From (8X,!371Y,€,n) = (X,Y,€,n), we have
X =X, 'p7ly =Y forall g

Choose wl € (Fg%)*°* (w € C,w?® = 1) as (3, then we have X =Y = 0. Hence
al is of the form

al =(0,0,¢,n), &ned.
From ol € MC, we have £ = 0. Suppose & = 0, then we see al = n,n # 0.

Since o commutes with ¢ (8) € (E;%)e1°2, we have
07°n = ¢1(0)n = d1(0)al = a1 (0)1 = a(6°1) = 6%y

for any 8 € C*, so that we have n = 0. This is a contradiction. Hence £ # 0,
that is, n = 0. Thus al = £. By a similar argument as above, we have
al = (. Since £ = {5,(} = {al,al} = {i,1} = 1, that is, £ = 1, we have

ol =€ al = €. Moreover, o commutes with \ € (E7C)51’527 so we have

= 2=l =i = ()= ¢

Hence E =¢ Y soé=1or € =—1.

(i) Case ¢ = 1.Since ai = 1 and al = 1, we see a € Fs“. Hence
a € z((Eg9)ee2). Since (Eg®)ev2 = SU*(6,CY) (Proposition 1.1.1), we
have

2((E6“)™%2) = (6, (SU*(6,C))
= {QPG,T(CE) | c= 17w7w2a _17 —w, _w2}7

where w = €2™/3. However g ,.(cE) ¢ 2((F;°)71°2) for ¢ = 4w, +w?. Hence
we see o = g (E) =1or a =g, (—FE) =1.
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(ii) Case & = —1. By asimilar argument as (i), we have —a € z((Eg®)e1°2).
Hence we have —a =1 or —a =7, that is, a = —1 or a = —7.

Therefore we get z((E79)*2) c {1,7,—1,—7}. The converse inclusion is
trivial. Thus we have z((E;%)e02) = {1,7, -1, —7}. O

We define a 12-demensional C-vector space (V)2 by

(VY2 = (P c P |, P = —iP}

0 x3 =9 0 y3 Yo
- T3 0 x1 |, y3 0 1, 070 Tk, Yk S (Hce4)51 B
ro T1 0 y2 Y 0

with a norm

1
(P, P)., = §{P’ eo P},

where (H%e4)., = {z € €% |z = p(es + ies) + q(es — ie7), p,q € C}. For

P e (VO)2, ay, = prea +ies) + qrles — ie7), yr = s(ea +ies) + tx(es — ier), k
= 1,2, 3, the explicit form of (P, P)., is given by

(P, P)e, = (p1t1 — qu51) + (pat2 — g2s2) + (psts — 3s3).
Proposition 1.1.7.  (E;9)¥°* = Spin(12,C).

Proof. The group (E79)°1:2 acts on (V°)'? and any element o€ (F;¢)1e2
leaves invariant the norm (P, P)., of (V)2 Furthermore, the group (E;%)1-
is connected (Proposition1.1.5), so we can define a homomorphism 7 : (F;)1-2
— SO((VE)1?) = SO(12,C) by m(a) = a|(VE)'2. We shall find Ker 7. For this
end, we will show that the kernel of the differential mapping m, : (e7¢)1:°2 —
s0((VE)12) of 7 is trivial, that is, Ker 7, = 0 (which is easily obtained). Hence
Ker 7 is a discrete group. Moreover, the group (E7C)‘51’52 is connected, so we
have

Ker C 2((E,°)*%2) = {1,7, —1, -}

(Proposition 1.1.6). However —1,v ¢ Kerw. Hence we get Kerm = {1, —v} =
Z,. Since dime((e79)%+°2) = 66 (Lemma 1.1.2.(1)) = dimg(s0(12,0)), =
is onto. Thus we have (FE;9)12/Z, = SO(12,C). Therefore (E;°)e1 2 is
Spin(12,C) as a double covering group of SO(12,C). O

By using the mapping ¢s : Sp(l,HC) X Sp(l,HC) — G129, we define a
mapping g : Sp(l,HC) — Gy by

©2.1(p) = p2(p, 1)

Then (pg,l(p) S GQC C F4C C E@C C E7C.
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Lemma 1.1.8.  In the Lie algebra ¢;€, the Lie algebra sp(1, HC) of the
Lie group Sp(1, HY) = ¢9,(Sp(1, HY)) is given by

sp(1, HY) = {@(D,o,o,()) €e;¢
0 0 0
(o g 0 0 (0 1
D= 0 0 doJ 0 € s0(8,0), J_(—l O)}
0 0 0

Proposition 1.1.9.  The subgroups Sp(1, HY) and Spin(12,C) of E;¢
are commutative elementwisely.

Proof. Any &, € sp(1, HY) = @a, (sp(1, H)) (p2,, is the defferential
mapping of ¢, ;) commutes with any @5 € spin(12,C) = (e77)51:52 : [Py, Py =
0 (Lemma 1.1.8 and Lemma 1.1.2), furthermore the groups Sp(1, HY) and
Spin(12,C) = (E;9)*1*2 are connected. Hence, any ¢ ;(p),p € Sp(1, HY)
commutes with 3 € Spin(12,C) : p21(p)S = B2, (p). O

Now, we will prove the main theorem of this section by using the prepa-
rations above.

Theorem 4.1.1.  (E;%)., = (SL(2,C)xSpin(12,C))/ Za, Zo = {(E, 1),
(—E,7)}

Proof. We define a mapping ¢, : Sp(1, HY) x Spin(12,C) — (EB;%)" =
(E7C)ev by

oy (p, B) = w2,(p)B.

©a1(p) € (E79)7 is clear and Spin(12,C) = (E;“)*=> (Proposition 1.1.7)
C (E:9)7, so ¢, is well-defined. Since @9 ,(p) commutes with 3 : @a,(p)3 =
Bp2,1(p) (Proposition 1.1.9), ¢, is a homomorphism. Kere, = {(1,1), (-1,
v)} = Z,. The group (E7%)7 is connected and dime (sp(1, HY) ®5pin(12 )
=3 + 66 =69 =39+15x 2 =dimc((e7")er) (Theorem 4.1) = dime((er ) )
hence ¢, is onto. Thus we have the required isomorphlsm (E79)en = (Sp(1, H)
xSpin(12,C))/Z2(Z5 = {(1,1),(-1,7)}) = (SL(2,C) x Spin(12, C’))/ZQ,
ZQZ{(Ev 1)7(_E77)} 0

4.1.2. Automorphism J, of order 4 and subgroup (SL(2,C) x C*
xXSL(6,C))/(Zy x Zg) of E;¢

Let (E7;9)% = {a € E;Y| 8,0 = ad,} and we will show

(E;9)0 = (SL(2,C) x C* x SL(6,C))/(Z2 x Zs).
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(Theorem 4.1.2). As for SL(2,C), we may prefer Sp(1, HY) as in the case of
(E7%)ey. Before we consider the remainder part C* x SL(6,C), we find a sub-
group of (E7C)‘54 of type GL(6, C), that is, consider the subgroup (F;)e1:c2:%
= {a € E;% |e1a = aey, e000 = ey, 450 = ady} of the group (E;%)% and we
will show

(B£C)ere284/ 2, 2 GL(6,C)

(Proposition 1.2.4). And then we decompose GL(6,C) into C* x SL(6,C). For
this end, we need to find subgroups C* and SL(6,C) in the group (F;)%. We
will start on a study of the group (F,<)1=2:%,

Proposition 1.2.1.  (F,©)ere20 = 7(3,C°).
Proof. The mapping ¢4 : Sp(1, HC) x Sp(3, HC) — (F4C)7 is defined by
@a(p, A)(M +n) = AMA* + pnA*, M +ncJ3,HY) o (H)® =3°.

Then ¢4 induces the isomorphism (F,9)7 2 (Sp(1, HY) x Sp(3, HY))/Z4, Z,
= {(1,E),(—1,—E)} (see [5] for details). Now, we define a mapping ¢4, :
U(3,C%) — (F,©)e1=2:94 by

Pa,r(A) = ¢a(1, A),

as the restriction mapping of ¢4 : Sp(1, HY) x Sp(3, HY) — (F,9)7. It
is easy to verify that ¢4, is well-defined and a homomorphism. We shall
show that ¢4, is onto. For a € (Fy°)e=29 < (F,9)7, there exist p €
Sp(1,H®) and A € Sp(3,HC) such that o = @4(p, A). From the condi-
tions ey = aeg, k = 1,2 and dsv = ady, we have a = p4(1,4) = @a,(A)
or a = py(—1,A) = p4,.(—A),A € U3,C%). Hence @, is onto. It is eas-
ily obtained that Kerp,, = {E}. Thus we have the required isomorphism
U(3,CC) =2 (F,©)51e204, O

Lemma 1.2.2.  The Lie algebra (e;)%152:% of the Lie group
(E;C)e12:9 s given by

(27C)61,€2’54 — {QS(D + §+f7A,B,V) S 970 ‘

diJ 0 0 0
o das o o (0 1
D= 0 0 dsJ 0 €s50(8,C), J= <_1 0) ,
0 0 0 dsJ
0 S3 —So
S=|-3 0 s |,5,€C%Te33,C%ABcI3,C%,ve C}.
S92 7?1 0

In particular, dime ((e79)5052:%4) =3 4+ 6 +8 +9 x 2+ 1 = 36.
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Proposition 1.2.3.  The center z((E;°)152:94) of the group
(E;C)=12:9 s given by

z((E7C)51’62’54) ={a, —ala=ps,(cE), c€ U(l,CC)}.

Proof. Let o € z((E;%)12:94). Note that ¢, (0), X € (E;%)e12:%, Then
by the same argument as in Proposition 1.1.6, we have

al =(0,0,£,0), ¢€=1 or ¢&=—1.
(i) Case € = 1. Since al =1 and al = 1, we see a € EsC. Hence
a € z((E7)o).
For 3 € (F,©)e1:e2:04 ¢ (EgC)e1e2:94  we see
paFE = afE = aF.
Putting aF =Y =Y (n,y) € 3¢, we have

BY =Y forall 8¢ (F4C)E1762,64.

1 0 O -1 0 0 0 0 1
ForT=10 -1 01,10 1 01],({1 0 0}, we define mappings
0o 0 -1 0 0 -1 010

§:39 -3 by 6X =TXT™ ', then § € (F4C)51’52’54. From the condition of
0Y =Y, we have

Y=v2=y3=0, m =m=mn(=w).

Hence aF = wE, w € C. Moreover w? = det(wE) = detaF = detE = 1. So
we see w™raF = E, hence w™la € (F4C)51752754. Thus

wila c Z((F4C)€1,62,54)'

Since (F3©)e1e2:94 = U/(3,CY) (Proposition 1.2.1) and 2(U(3,C%)) = {cE | c €
U(1,C%)}, we see

2((F©)752%) = 204, (U(3,C9))) = {par(cE) |c € U(1,C)}.
Hence there exists ¢ € U(1, C°) such that wla = ©4,r(cE), that is,
a=wps (cE), wel, w=1, cc U(l,CC).

The condition a € z((E;7)%12:9) implies that a commutes with all elements
D(p, A, B,v) € (e;9)7152:%4 that is,

wpsr(cE)P(p, A, B,v) = ®(¢, A, B, V)wps ,(cE).
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Hence, for all ¢ € (¢6C)5°2% A, B € 3(3,C°) (Lemma 1.2.2), we have

904,T(CE)¢S04,T(EE) = ¢ """ (1)
woa(cE)A=A e (2)
wlps,(cEY B=B .- (3).

Since wpy r(cE)A = w(cE)A(cE)* = w(cc)A = wA, from the condition (2), we
have w = 1, thereby we see the condition (3). The condition (1) is always valid.
Thus we see that « is of the form @4 ,(cE).

(ii) Case £ = —1. By a similar argument as (i), there exists ¢ € U(1,C°)
such that —a = ¢4, (cE). Hence « is of the form —¢q ,(cE).

Thus this proposition is completely proved. [l
We define a C-vector subspace (V)6 of the C-vector space (V¢)'2 by

(VO ={P e (VE)12|§,P = —iP}

0 z3 T 0 ys3 %y .
= Zz 0 x|, |¥s O wyi |, 0,0 |2k, yx € (H €4)ey,50 ¢ >
i) fl 0 Y2 yl O

where (H%e4)c, 5, = {z € €% |z = p(eq + ies), p € C}.
Proposition 1.2.4.  (E;9)s12% /Z, ~ GL(6,C), Zy = {1,—7}.

Proof. Let GL(6,C) = Isoc((V)®). Any element a € (E,%)e1:e2:%
leaves invariant the space (V)¢ so a induces an element of GL(6,C). Hence
we can define a mapping g : (E7C)51’52’54 — GL(6,C) by

9(0) = al(VO), e (BO) st

It is clear that g is a homomorphism. We shall calculate Ker g. For this end,
first, we show that the kernel of the differential mapping g. : (e;&)%152% —
gl(6,C) of g is trivial : Ker g. = {0} (which is easily obtained). Hence Ker g is
a discrete group. Moreover since the group (E7C)51’52’54 is connected (because
(E;9)%122 is simply connected (Proposition 1.1.7)), we have

Kerg C z((E;)724),

Let o € Kerg. Then « is of the form o = ¢4, (cE) or o = —4,(cE) for some
c € U(1,C%) (Proposition 1.2.3). ¢4,,(cE) is nothing but ¢s,.(c) = wa(l,¢).
Since 2.(c)(es + ie5) = €(es + ies), from the condition o, (c)(es + ie5) =
eq + ies, we see ¢ = 1, that is, @ = 1. In the case of @ = ¢4,(cE), by a
similar way above, we see &« = —py,(—FE) = —v. Hence Kerg = {1, —} =
Z,. Furthermore dimg((e;¢)%1°2:%) = 36 (Lemma 1.2.2) = dim¢(gl(6,C))
and (E;%)e1:2:% ig connected, hence g is onto. Thus we have the required
isomorphism (E;9)%12:%4 / Z, = GL(6, C). O
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Proposition 1.2.5.  (E;9)s2:9% =~ (C* x SL(6,C))/Zs, Zs = {(a,
a"'E)|a€ C,ab=1}.

Proof. The general linear group GL1(6,C) = {A € M(6,C)|detA # 0}
is decomposable as

GL1(6,C) = Cl*SLl(G,C), Cl* N SL1(6,C) = {CLE | a€C, ab = 1},
where C1* = {aE | a € C*} which is the connected component subgroup of the
center of GL1(6,C) and SL1(6,C) = {A € GL1(6,C) | detA = 1}. On the other

hand, the connected component subgroup of (E;9)*1:52% is {p,,.(cE)|c €

U(1,C°)} (Proposition 1.2.3). If we give the isomorphism h : C* — U(1,C°)
by

+a ' a—al. _ 1+
h(a)za SR iep =ta+ia"t, L= 2261,

we have
@1, (h(a)E)Fy(z) = Fy(az), z€ (H%4):, 5, k=1,2,3.
Hereafter, for a € C*, we denote ¢4 ,(h(a)E) by ((a):
((a) = par(h(a)E).
Then the restriction mapping of ¢(a) to (V)% is given by
¢(a)(X,Y,0,0) = (aX,aY,0,0).

Hence we see g(¢(a)) = aF for a € C* (as for g, see Proposition 1.2.4), so g
induces an isomorphism g : C* — C;*. Next we will find a subgroup SL(6,C)

of (E;%)e1¢2%4 which is isomorphic to the group SL;(6,C) under g. Consider
the subgroup SL = g~1(SLy(6,C)) of (E;°)s<2:% Then SL/Zs = SLy(6,C).
Since SL1(6,C) is simply connected, SL is never connected. Let SL(6,C) be

the connected component subgroup of 5’72, then SL(6,C) is the requiered one.
Then we have the following diagram

C* x SL(6,C) = (B;%)7=2%
g 1l g lg
Ci* x SLi(6,C) 5 GL1(6,0),

where p, 11 are multiplication mappings in the groups, respectively. Obviously
p is a surjective homomorphism. We shall find the kernel of p. Let (¢(a), 5) €
Ker p. From the diagram above, we have g(¢(a))g(8) = g((¢(a)B)) = g(1) = E.
Hence we obtain Ker = {(¢(a),((a" ) |a € C,a® = 1} = Z¢. Since g : C* —
C1* is isomorphic, Ker p is denoted by {(a,a"'E)|a € C,a% = 1}. Thus we
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have the required isomorphism (E;%)1:2:% = (C* x SL(6,C))/ Z. O
Hereafter, we identify two groups SL(6,C), SL;(6,C) and C*, C1*, respec-
tively.

Now, we will prove the main theorem of this section by using the prepa-
rations above.

Theorem 4.1.2.  (E;%)o = (SL(2,C) x C* x SL(6,C))/(Zy x Zs), Z2
= {(E,1,E),(-E,1,-E)},Zs = {(E,a,a"'E)|la = 1,w,w? —1,—w, —w?},
where w = 2™/3,

Proof. 'We define a mapping @5, : Sp(1, HY)xC*xSL(6,C) — Sp(1, H®)
X(E7C)sl,52,64 N (E7C)64 _ (E7C)O by

©5,(pa, ) = p2,(p)C(a)B.

©s, is well-defined because @y (p) € (E77)% and ¢(a), 8 € (E;9)%1:52:% (Propo-
sition 1.2.5) € (E;9)%. Since @o,;(p) commutes with ¢(a)8 : @2,(p)¢(a)
B = ¢(a)By2,(p) (Proposition 1.1.9), ¢s, is a homomorphism. It is easily
obtained that Ker s, = {(1,1,1),(=1,1,7)} x {(1,¢(a),¢((a™1)) | a = 1,w,w?,
—1,—w, —w?} = Zy x Zg. Moreover dime(sp(1, HY) @ C ®5((6,C)) = 3+1+
35 = 39 = dimg((e7%)0) (Theorem 4.1) = dime((e79)%), hence s, is onto.
Thus we have the isomorphism (E;“)% = (Sp(1, HY) x C* x SL(6,C))/(Z4 x
ZG) (ZQ = {(171’1)7(_17177)}) = (SL(sz) x C* x SL(GaO))/(ZQ X Z6)7
Z,={(E,1,E),(—E,1,—E)}. O

4.1.3. Automorphism w3 of order 3 and subgroup (SL(3,C)x
SL(6,C))/Zs of E;“
Let (E;9)"s = {a € E;“ |wga = aws} and we will show
(E;%)"s = (SL(3,C) x SL(6,C))/Z3

(Theorem 4.1.3). For this end, we have to find subgroups which are isomor-
phic to SL(3,C) and SL(6,C) in the group (E7C)w3. As for SL(3,C), we
use the embedding ¢3; : SU(3,C%) — G2°. As for SL(6,C), we prefer
(E7C)w3’51752*73 ={ac€ E;¢ |wsa = aws,e1a0 = aey, g0 = aeg, Y30 = a3}
(Proposition 1.3.7).

The mapping @3, : SU(3,C°) — G, is defined by
e31(A)a+m)=a+Am, a+meC® @ (CY)?>=c".

Then (3, induces the isomorphism SU (3, C) 22 (Go%)"s (see [2] for details).
By using this mapping ¢s; : SU(3, CC) — G99, we define a C-linear transfor-
mation 3 of €€ by

0 0 1
y3=p3;:(1 0 O
0 1 0
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Then 3 € G.¢ c F,° C E6C - E7C and v3% = 1. Note that using the
mapping ¢s;, the C-linear transformations ; and w3 are expressed as follows:

1 0 0 wy 0 0
e1=¢w3;, ({0 e O , W3 = Q3 0 wy O
0 0 —e 0 0 w

We use the mappings h and @3 of [2], so we will review of these mappings.
First, the mapping h : M(3,C°) x M(3,C%) — M(3,C°) is defined by

A+B+A7B
2 2

1
h(A,B) = ieg =LA +1B, L=§(1+i€1).

The mapping @3 : SU(3,C%) x SU(3,C) x SU(3,C¢) — (Eg°)"s is defined
by

03(P, A, B)(X + M) = h(A, B)Xh(A, B)* + PMrh(A, B)*,
X+Me33,c%eaM(3,C% =3°

Then 3 induces the isomorphism (Eg)¥s = (SU(3,C¢) x SU(3,C°) x
SU(3,C%))/Zs3, Zs = {(E,E,E), (w E,w,E,u\E), (w,;2E, w,2E, w;*E)}.
The mapping 3 is an extension of the mapping ¢3; : SU(3, CC) — @,Y, that
is, the following holds.

@3.1(A) = w3(A,E,E), AeSU(3,C%).
Now, we will begin on a study of the group (Egc)“’ii’sl’”%.

Proposition 1.3.1.  (EC)wsene2m > §U(3,C%) x SU(3,C°).

In particular, the group (Eﬁc)“’3’51’52’73 is connected.

Proof. We define a mapping @3, : SU(3,C%) x SU(3,CY) —
(Eﬁc)w37€1’62,“/3 by

303,T<A7B) = 903(E7 Aa B)a

as the restriction mapping of @5 : SU(3,C%) x SU(3,C%) x SU(3,C°) —
(Eg9)ws. Tt is not difficult to verify that s, is well-defined and a homomor-
phism. We shall show that s, is onto. For a € (EgC)wsc1:e27  (Eg)ws,
there exist P, A, B € SU(3,C°) such that o = ¢3(P, A, B). From the con-
ditions of exa = aeg, k = 1,2 and y3a = arys, we have a = p3(E, A, B) =
3. (A, B). Hence g, is onto. It is easily obtained that Ker ¢z, = {(E, E)

}.
Therefore we have the required isomorphism SU(3,C¢) x SU(3,C°) =
(EGC)'W&EMEZ’,’YB' O

Lemma 1.3.2. (1) The Lie algebra (e;%)"2:51:5273 of the Lie group



3-graded decompositions of exceptional Lie algebras g and group realizations 401

(E7C)w3751762n3 is given by

(27C)UJ3,€17527'}/3 = {@(D + §+ Ty A7 B7 U) € 670

0
0o dg 0 0 (0 1
D= 0 0 dyJ 0 €s50(8,C), J= (_1 0> ,
0 0 0 doJ
0 S3 —S82
S=|-353 0 s |,s eCC,T€3(3,CC)0,A,B63(3,00),V€C}.
So —351 0

In particular, dime((e7C)w3515273) =246+ 8 +9 x 2+ 1 = 35.

(2) The Lie algebra ((e;C)"s5152%); of the Lie group ((E;)ws =123,
1s given by

((Q7C>w3761,52,73)i = {&(D + §+TV,A7B7V) c (67C)w3,€1,52ﬁa | B=0,v =0}

We define a submanifold (9M°),,, ., i of the Freudenthal manifold 9 by
(M) e, i ={PEP|PXxP=0,wsP =P, ;P =P {i,P} =1}
XVY =0, X x X =nY,
=P =(X,Y.&n) € BT | Y xY =¢X, (X,Y) =3¢,

X, Y e33,c%, {i,p} =1

={(X,X x X,detX,1)| X € 3(3,CY), X V(X x X) =0}

Proposition 1.3.3.  ((E;%)ws15273), /(Ee®)wse1.5278 o~ (9NC)

ws,e1,1°
In particular, the group ((E;)"s1:293); is connected.

Proof. We can prove this proposition in a way similar to Proposition 1.1.3
by replacing H ¢ by ce.

O
We define a submanifold (91¢),,, ., of the Freudenthal manifold 9t by

(Mg, ={PEPC|Px P=0, w3P =P, e,P =P, P#0}
Cl XVY =0, X x X =9VV xY =X,
= P: (Xa}/v§7n)€q3 ~ C .
(X,Y) =3, X, Y € 3(3,C7),P#0
Proposition 1.3.4.

(E7C)w3,s1,82,73/((E7C)w3,61,62773)1 ~ (gﬁc)u}a,al.
In particular, the group (E7C)“’3’51’E2’73 18 connected.

Proof. We can prove this proposition in a way similar to Proposition 1.1.5
by replacing HC by C©.

O
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Proposition 1.3.5.  The center of z((E7C)w3’€1’52773) of the group
(E7C)w3’51752’73 is the cyclic group of order 6:
Z((E7C)w3781,82773) = {la w3aw327 _1a —ws, _w32} = ZG'

Proof. Let a € z((E;9)ws<1:5273), Note that ¢ (), € (E;C)ws 15278,
Then by the same argument as in Proposition 1.1.6, we have

al =(0,0,6,0), £&=1 or &=-1.
(i) Case ¢ = 1. Since al =1 and al = 1, we see a € E€. Hence
o € z((EgC)wsereens),
Since (EgC)ws 127 = SU(3,C¢) x SU(3,C) (Proposition 1.3.1), we have
2((Ee©) " o=05270) = 23,0 (SU(3,C%) x SU(3,C))
= {3 (WE, w'E) |w,w' € C,uw* =w" =1}.

We shall find the the condition ¢3,.(wE,w'E) € z((E,;%)®"s1:527% . For this
end, we shall find the condition that o3, (wE,w'E) commutes with all elements
D(p, A, B,v) € (e,9)w3:°1:2273  that is,

903,7" (’U)E, le)@(¢, Aa Ba V) = @(d)’ Av Ba V)SD&T(wEa U)/E)
Hence, for all ¢ € (¢egC)¥s1273 A B € 3(3,CY) (Lemma 1.3.2.(1)), we have

(
903,7‘(U)Eaw,E)¢<P3,T(wE7w/E)_1 = (b """ (1)
o3 (WE,2WEYA=A . (2)
ros(WE,w'EYTB=B .. (3).

From the condition (2),

3. (WE, W' E)A = h(wE,w' E)Ah(wE,w'E)*
= h(wE,w'E)Ah(W E,wE) = (1(ww’) + 7(w'w)) A,
we have ((ww’) +7(w'w) = 1. This relation implies ww’ = 1, that is, w = v’ =
1,w; or wy2. We get the same result from the condition (2). Furthermore,

from @3, (WE, w'E) = @3 (w1 E,w; E) = w32, the condition (1) is clear. Thus
we see that an element of z((E;7)e1273:@3) is either one of the following

3,-(E,E) =1, @3,(w1E,wiE) =ws> ¢3,(w°E,w°E) = w;.

(ii) Case £ = —1. By a similar argument as (i), we see that an element of
2((E7%)ws:e1:2275) ig either one of the following

—p3r(EE)=—1, —p3,. (w1 E,unE) = —w3?, —@3,.(wi’E,w*F) = —ws.

Thus we have z((E;“)ws:c1e273) ¢ {1, w3, w3?, —1, —ws, —w3>}. The con-
verse inclusion is trivial. Therefore we have z((E;C)ws:15273) = {1 ws, ws?,
—1,—11}3,—11}32} = ZG~ O
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Proposition 1.3.6.  (e;C)ws<152% = g(6, CY).

C)PTOOJ(‘. TIC};: mappings ¢¢ : su(S,CC) @ su(3, CC) — 6% and he @ M(3,
C~) — J(3,C%) are defined by

dc(A, B)X = h(A,B)X + Xh(A,B)*, X €3(3,C°),

I'+L | L"-1L 14
ho(L) = ; e L +2Zel,

respectively. Now, the mapping ¢, : su(6, cY — (e7C)wa-e1:52:7s
B L v(E 0 .
P <(_L* C> +§ <0 _E)) :@(¢C(Bvc)th(L)a7ThC(L)a7161V)7

where B,C € su(3,C%),L e M(3,CC),V € e1C, gives the isomorphism (see
[2] for details). O

Proposition 1.3.7. (E;%)wscte2 =~ SU(6,CY).

Proof. The group (E;%)%s12% is connected (Proposition 1.3.4).
Hence, from Proposition 1.3.6, the group (F;%)¥s:<1:2:7 is isomorphic to either
one of the following groups

SU(6,C%), SU(6,C°)/Zy, SU(6,C°)/Zs or SU(6,C)/Zs.

Since z((E7C)“’3’51’E2773) = Zg (Proposition 1.3.5), it cannot but become that
(B, )ws:e1.227 22 SU(6,C). O

Lemma 1.3.8.  In the Lie algebra ¢;¢, the Lie algebra su(3, CC) of the
Lie group SU(3,C°) = 3,(SU(3,C°)) is given by

su(3,CC) = {@(D,0,0,0) € erC |

0 0 0 0 0 0
0 0 0 0 0 0
0 daz  day  dos  dag  dor
—da3 0 —dos  dos  —dor dag
—dog  das 0 dgs  dig  day
—dos —dpy —dys 0 —dyr dgs
—dog dar  —dss  dar 0 der
—dar —dys —dy7r —dgg —der O

dij € C,dog + dus + de7 = 0}~

€ 50(8,C),

OO DODO OO OO
OO DD DO O OO

Now we will prove the main theorem of this section by using the prepara-
tions above.

Theorem 4.1.3.  (E;%).q = (SL(3,C) x SL(6,0))/Z3,Z3 = {(E, E),
(WE,wE), (W*E,w?E)}, where w = e27i/3,
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Proof. 'We define a mapping @, : SU(3,C°) x SU(6,C¢) — (B, )% =
(E7%)eq by
Pus (A, B) = p31(A)8.

Pw, is well-defined because ¢3;(A4) € (E7C)w3 and 8 € SU(6, CC) =
(E,C)ws:e12273 (Proposition 1.3.7) € (E79)“s. Any &, € su(3,C) commutes
with any @y € su(6,CY) : [@1, B3] = 0 (Lemma 1.3.2.(1) and Lemma 1.3.8) and

groups SU(3,C) and SU(6,C) are connected, so @3 ;(A) commutes with 3
© p31(A)B = Bwsi(A). Hence ¢, is a homomorphism. It is obtained that

Ker oy, = {(E,1), (w1 E, 03 (w?E)), (w1?E, 3,(w E))} (in SU(3,CY) x
(B,C)wse1:e298) = [(E, E), (w1 B, w E), (w1>E, w;>E)} (in SU(3,C)x SU (6,
CY)) = Zs. Moreover dimg(su(3,C%) @ su(6,C°)) = 8 + 35 = 43 =
394+ 2 x 2 = dimg((e79)eq) (Theorem 4.1) = dime((e79)"2), hence py,, is
onto. Thus we have the required isomorphism

(B;%)w2 = (SU(3,C%) x SU(6,C°))/ Z3,
Z3 = {(E,E), (w1 E,wE), (wi*E,w;*E)}.
Since the group SU(6,C) is isomorphic to SL(6,C) under the mapping

o 1+’i€1
= 5 ,

f:SL(6,C) — SU6,C%), f(A)=1A+7!A7,

we have the isomorphism (E;9)"s = (SL(3,C) x SL(6,C))/Zs, Z3s = {(E, E),
(WE,wE), (W?E,w?E)}. Note that wE is transformed to w; E under the iso-
morphism f. O

4.2. Subgroups of type A1) ® Dgg), A1(1) D R As5) and Ay2y® As(s)
of E7(7)

Since (e7(7))ev = (67)ew N (7)™ = (e79)7 N (e7)™, (67(7))0 = (e7%)oN
(7)™ = (e79)% N (ex9) ™, (er(n))ea = (e79)ea N (e29)™ = (e79)*2 N
¢7¢)™1, we shall determine the structures of groups
(e7%) group
(Brt))eo = (Br9)eo N (B7)™ = (B79) N (e79)™,
(Er(ry)o = (B0 N (B9)™ = (B9) n (B;)™,
(Er(n))ea = (Br9)ea N (B9)™ = (B;9)"* 0 (B;)™.
(7)
Theorem 4.2. (1) (E7(7))ev = (SL(2, R) X spin(6,6))/ Z2 x {1,v}, Z2

= {(E7 1)7 (_E ’7)}

(2) (Er))o = (SL(2,R) x RT x SL(6,R))/Z2 x {1,7,7,7Y'}, Z2 =
{(E,1, E),(-E,1,—E)}.

(3) (Er(7))ea = SL(3,R) x SL(6, R).
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Proof. (1) For @ € (Err)ew C (E19)ew = (E7°), there exist p €
Sp(1, HY) and 3 € Spin(12,0) such that o = ¢, (p, 3) = ¢2.(p)B (Theorem
4.1.1). From the condition 7y10y17 = «, that is, 7y192,(p)Bn7T = w2.(p)s,
we have o 1 (T71p)TYV1871 T = @2, (p)B. Hence

{ NP =P { TP = —P
or
BT = TV BNT = V0.

In the former case, from 7y1p = p, we have p € Sp(1, H'). The group {8 €

Spin(12,C) |ty 8yt = B} = Spin(12,C)™ = (E;9)s127™ acts on the R-
vector space

VS = (P e P |e P = —iP, 7y P = P}

0 x3 T 0 y3 7y .
= Tz 0 x|, Uz O wi|, 0,0 | @k, yu € (H €4)ey s ¢ »
To I 0 Y2 Yy 0

with the norm
1
(Pap)ez = g{P’EQP}a

where (H%e4)z, 7, = {x € €% |z = ples+ies)+qles—ier), p, ¢ € R}. Since
Spin(12, C) is simply connected, Spin(12,C)™" is connected, so we can define
a homomorphism 7 : Spin(12,C)™ — O(V55)? = 0(6,6)° (which is the
connected component subgroup of O(6,6)) by 7(a) = «|V55. Tt is easily ob-
tained that Ker7n = {1, —v}. Moreover dim(spin(12,C)"™) = dim((e7(7))ev) —
dim(sp(1, H')) = 39415 x 2 —3 (Theorem 4.1) = 66 = dim(0(6,6)), hence 7 is
onto. Therefore Spin(12,C)™" is denoted by spin(6,6) as a covering group of
0(6,6)°. Therefore the group of the former case is (Sp(1, H') xspin(6,6))/Z>
(Z2 = {(17 1)7 (_177)}) = (SL(27R) X spin(G, 6))/Z27 Zy = {(E7 1>7 (_E77)}'
In the latter case, p = e1,3 = e; satisfy the conditions, and ¢, (e1,e1) =
wa(erer, 1) = pa(—1,1) = ~. Thus we have the required isomorphim (E7 (7)) ey =
(SL(z’R) X spin(6,6))/Z2 X {la'}/}a Zy = {(E7 1)’ (_E7’7)}'

(2) For a € (E7(7))o C (E7%)o = (E7C)54, there exist p € Sp(l,HC),a €
C* and B8 € SL(6,C) such that a = s, (p,a,8) = 2,(p){(p)B (Theorem
4.1.2). Note that 7v192,(p)117 = @2, (T71p) and 7y1{(a)y1 T = Ty1¢4,r(h(a)E)
T = @ar(h(ty10T)E) = @ar(h(ra)E) = ((1a). Now, from the condition
TyiaNT = a, that is, 77102 1(p){(a) BT = v2,((a)B, we have py ;(Ty1p)((Ta)
™BNT = p2,(p)((a)3. Hence
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TNp =P T™Nnp = —p

(i) § <(ra) = ((a) (if) § ¢(ra) = ((a)
™BNT =B, ™BNT =70,
T™p =P TP = —P

(iii) ¢ ¢(ra) =¢(a) (iv)§ ¢(ra) =~((a)
™BNT =70, ™BNT = B,
™MpP =P T™Nnp = —p

) ¢(ra) = ¢(Fw*)¢(a) (vi) ¢(ra) = ¢(Fw*)¢(a)
™BnT = ((FwF)p ™BnT = ((Fw F)yp

k=12, k=1,2.

Case (i) From 7v1p = p, we have p € Sp(1, H'), and from ((ra) = ((a),
that is, 7a = a, hence we have a € R*. To determine the structure of the group
{B e SL6,C)|mnpyT =B} =SL(6,C)™ ", consider an R-vector space

Vi={Pe (V)P =P}
and let GL(6, R) = Isog(V'®). Then by the correspondence
a € Tsoc (VO™ — | VO € Tsog(VF),

we have the isomorphism Isoc((V®)¢)™ = Isor(V®), so that GL(6,C)™"
=~ GL(6, R) and so we have SL(6,C)™" = SL(6, R). Hence for a € (E7(7))o,
there exist p € Sp(1, H'),a € R* and 3 € SL(6, R) such that o = s, (p, a, 3).
Denote the group of (i) by G ;). The mapping ¢s, : Sp(1, H')x R* xSL(6,R)
— G4 Is a surjective homomorphism and Ker ¢s, = {(1,1,1), (=1, -1,1)} x
{(1,1,1),(=1,1,7)} = Z2 x Z5. Therefore we have the isomorphism G(i) =
(Sp(1,H') x R* x SL(6,R))/(Z3 x Z5) = (Sp(1, H') x RT x SL(6,R))/Z
(Zy = {(1,1,1),(=1,1,7)}) = (SL(2,R) x R" x SL(6,R))/Z3,Z> = {(F,1,
E),(-E,1,—-E)}.

Case (ii) s, (€1,1,04) = pa(e1,1)pa(l, —e1) = @a(e1, —e1) = 77"

Case (111) 5054(17Z'a 54) = 902(17 761)302(17 761) = 902(]-3 71) =7

Case (iv) s,(e1,—1,1) = pa2(e1, 1) pa(l,e1) = pa(er,e1) =7

Cases (v) and (vi) are impossible. Because there exists no element a € C*
satisfying the condition 7a = (£w*)a for k = 1, 2.

Thus we have the required isomorphism (E7 (7))o 2 (SL(2, R)x R* x SL(6, R))
/Z2 X {17777/777/}7 Z2 = {(E7 17 1)3 (_E7 17 _E)}

(3) For a € (E7(7))ea C (E79)ea = (E79)"s, there exist A € SU(3,C°)
and B € SU(6,C) such that a = @,,(A,3) = p3,(A)F (Theorem 4.1.3).
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From 7y,a71 7 = o, that is, 7y1¢3,1(A) 71T = ¢3,1(A) 8, we have @3 (771 A)T7
Byt = ¢3,(A)B. Hence

, TA=A [ ™A=wA
1 11
™1 BnT =B, T PNT = wif,
™A =w %A
(i ,
™BNT = w1 P
Case (i) From 791 A = A, we have A € SU(3,C"). To determine the structure

of the group {3 € SU(6,C°) |y fnr = B} = SU(6,C°)™, we use the
following fact.

(27C)w3,51,62,737‘r"/1 o 51;,(67 C").

In fact, since the C-Lie isomorphism ¢, : su(6, CC) — (e79)ws:£1:2:73 of Propo-
sition 1.3.6 satisfies

o (5 )55 )
e (5 825 %)

¢, induces a Lie isomorphism ¢, : su(6,C’) — (e;C)Ws:c1:62:737 71

C(( 5 E)+ 5 (5 1)) = #etd.01hem) ~rhotn). ~iew)

B,C € s5u(3,C"),L € M(3,C"),v € e1(iR). Therefore we have the required
isomorphism su(6, C’) = (e;&)wsc1:52:73, 771,

Now, the group (E;¢)%s1:2:%:771 is connected (because (F;¢)ws:€1-2.73
>~ SU(6, C) (Proposition 1.3.7) = SL(6,C) is simply connected). Further-
more (e;C)Ws1:227377 = gu(6,C"), hence the group (E;C)ws<1e277™n jg
isomorphic to either one of the groups

SU(6,C") or SU(6,C")/Zs.

Moreover, since it is easily obtained that z((E;C)ws:eve27mm) 5 {1, -1}
Z 5, we have

(E,C)wsere2ym = §U(6,C").
Therefore the group of case (i) is SU(3,C") x SL(6,C").
Case (ii) @u,(w1E,u E) = 1.
Case (iii) @, (w12E,w1%E) = 1.

Thus we have the required isomorphism (E7(7))eq = SU(3,C") x SU(6,C")
~ SL(3,R) x SL(6, R). O
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4.3. Subgroups of type A;(1)®Dg(—¢), A1(1) DPROAs(—7) and Ay D As5_7)
of E7(_5)

Since v and 7, are conjugate in (G2°)™ C (E;%)™ ¢ E;¢, we have

Er_s) = (B;9)™ = (E;%)7 .

Theorem 4.3.  The 3-graded decomposition of the Lie algebra er(_s)
= (e79) (orer©),

e7(—5) = 9-3Dg2Dg-1 DY D g1 Dg2 D g3
with respect to adZ, Z = P(i(—2G23 + G45 + Ge7),0,0,0), is given by

iGo1,1G23, 1G5, Gag, iGar, iGer
Ar(1),iAn(e;),i(By — B)™,i(Ey — E3)™,iFy(1), Fy(e1)
f?k — Ey, Z-A(Ek + Ek} Fi(1) - Fi(1),i(Fr(1) + Fr(1)),
Fi(e1) + Fr(e1),i(Fi(e1) — Fr(er)), k=1,2,3, il
Gos +1Gos, Gos + iGo7,1G1a — G5, iG16 — G,
(G214 — G35) — i(Ga5 + G34), (Gos — G37) — i(Gar + Gs6),
gk(e4 +ies), gk(eg + ier), iﬁk(e4 + ies), iﬁk(eg +ier),
F.(eq + ies) Fk(e4 +ies), i(Fl(eq + ies) + Fk(e4 +ies)),
Fy(e +ier) — Fy(eg +ier),i(Fy(es + ier) + Fi(es + ier)),
k=1,2,3 30

Goz = iGos, iGo2 + Gi3, (Gas — Gs7) +i(Gar + Gse),
g_o =< Ar(ez —ies), Fr(ea —ie3) — Fr(ea —ies),

Fr(ey —ies),i(Fy(eq — ies) + Fy(ex —ies)),k=1,2,3 | 19
g3 ={ (Gas + G35) +i(Ga5 — G34), (G2 + G37) + i(Gar — G3) } 2

g1 =7(9-1)7, 92 =7(9-2)7, 93 = 7(g-3)7T

go =
39

Proof. 'We can prove this theorem in a way similar to [6, Theorem 4.13],
using [6, Lemma 4.12]. O

Since (e7(—5))ev = (7%)ew N (e79)™7 = (e79)7 N (e29)™7, (e7(—5))0 =
(790 N (ez9)™7 = (e79)% N (e79)™, (e7(=5))ea = (e7%)ea N (e29)A 7 =

(e79)ws N (e79)7™ 71 | we shall determine the structures of groups

(Br(=5))ev = (Br)ew N (B79) = (B;) 0 (B,)™,
(Br—s5))o = (E79)o N (E:9) = (B;9)% 0 (B;9)™",
(Er(—5))ed = (B79)ea N (B9)™ 1 = (E;9)"s 0 (B,)™ 1.

(=5)

Theorem 4.3.1. (1) (E7(—5))ev = (SL(2, R)xspin*(12))/ Z2x{1,77'},
Zy = {(E, 1), (_E77)}'
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(2) (B7(—s5))0 = (SL(2,R) x R* x SU*(6))/Z2 x {1,774, 77}, Zs =
(B,1,E),(~E, 1,-E)}.

(3) (Br(_sy)ea = SL(3, R) x SU*(6).
Proof. (1) For a € (Ez_s))es C (B7%)ew = (E7°)7, there exist p €
Sp(1, HY) and 3 € Spin(12,0) such that o = ¢, (p, 3) = ¢2.(p)B (Theorem

4.1.1). From the condition TAy;ay1 A7 7 = a, that is, TAY1p2,(p) 1A "1 =
©2.1(p)B3, we have a1 (T71p)TANBNAT'T = @2.(p)3. Hence

T™Nnp =P ™p = —P
or
TANPNATIT =1 TANBNATIT =20
In the former case, from 7vy;p = p, we have p € Sp(1, H'). In order to de-
termine the structure of the group {3 € Spin(12,C)| T A1 B8n A"t = B8} =

Spin(12,C)™ 1 = (E;%)e1:22:7A  we consider a C-vector space

(VY2 = (P c P | P = —iP}

0 x3 o 0 ys 7y
- P = T3 0 x|, y3 0 1], 070 Tk, Yk S (H€4)51 3
ro T1 0 y2 Y1 0

with norms
1 1
(P7 P)Sg = g{Pa €2p}7 (P7 P)T)\"/I,EQ = Z{T/\%P, 52P}7

where (Hey)., = {x € €|z = p(es+ies) +q(es —ier), p,q € C}. The explicit
forms of (P, P)., and (P, P)yxq,.e, for P € (VE)2 2p = pr(eq +ies) + qr(es —
ier), yr = Sk(esa +ies) + tip(eg — ie7), k = 1,2,3 are given by

(P, P)c, = (p1t1 — q151) + (p2t2 — q252) + (p3tz — g3s3),

(P, P)rayi,e, = %((TPI)QI — (Tq1)p1 + (Tp2)g2 — (Tq2)p2 + (Tp3)qs — (7¢3)ps3

+ (Ts1)t1 — (Tt1)s1 + (Ts2)ts — (Tt2)s2 + (Ts3)ts — (Tt3)s3),
respectively. By the following coordinate transformation (my € C)
{ p1 = my +ime, 1 =m1 —img,

g1 =m3+1imyg, 81 = —m3+ imy,

p2 = ms +img, t2 = ms — img,
G2 = my7 +1img, Sz = —m7+ims,

p3 = mg +1imyg, t3 = mg — 1Mo,
g3 = mq1 +1tmi2, S3 = —Mm11 +1M12,
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we have

(P,P)52 :m12—|—m22+...+m112+m122 :tmm7
(P, P)T)\71752 = (Tml)mg — (ng)ml —+ (ng)m4 — (Tm4)m2 + -

+ (ng)m11 — (Tm11)m9 + (me)mlg - (Tm12)m10

='rm)J ' m
Q 0 0 0 0 01
where m = *(my,ma,...,mi2),J = [0 Q 0[,Q = -1 0 00
00 @Q 0 -100

This shows that we have an isomorphism

{a e ISOC((VC)IQ) | (aP,aP)e, = (P, P)ey, (AP, aP)rxyy e, = (P P)rayen }
~{AcM(12,0)|"AA=E,JA = (tA)J'}.

Since

0*(12) = O*((V9)'?) = {A € M(12,C) |'AA = E,JA = (1A)J}
~{Ae M(12,C)|'"AA=E,J' A= (1A)J'},

we have

0*(12) =
{ae ISOC((VC>12) | (@P,aP)., = (P, P)e,, (aP, aP)T)\'Yl’52 = (P, P)TAM,Eg}'

Now, since the group Spin(12,C)™" is connected, we can define a ho-
momorphism 7 : Spin(12,C)™ " — 0*(12)° (which is the connected com-
ponent subgroup of O*(12)) by w(a) = af(VE)!2. dim(spin(12,C)™A 1) =
dim((e7(_5))ev) — dim(sp(1, H')) = 39 4 15 x 2 — 3 (Theorem 4.3) = 66 =
dim(0*(12)) and Ker7 = {1, —v}. Hence

Spin(12,C)™ / Zy =2 0*(12)°.

Thus Spin(12,C)™ " is denoted by spin*(12) as a double covering group of
0*(12)°] that is, Spin(12,C)™ " = spin*(12). Hence the group of the former
case is (Sp(1, H') x spin*(12))/Z2 (Z2 = {(1,1),(1,—)}) = (SL(2,R) x
spin*(12))/Za, Z2 = {(E, 1), (—E,~)}. In the latter case, p = e1, 8 = d4 satisfy
these conditions and ¢, (e1,ds) = v7'. Therefore (E7(_5))ev = (SL(2, R) x
spin*(12))/ Zs x {1,77'}, Za = {(, 1), (~F,7)}.

(2) For a € (E7(—5))0 C (E7%)o = (E;9)%, there exist p € Sp(1, H),a €
C* and f € SL(6,C) such that a = ¢s,(p,a,8) = ¢2:(p)((a)s (Theorem
4.1.2). From the condition TAy;ay1 A~ 1 = a, that is, TAy102,(p)¢(a)BnA~1T
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= ¢2.1(p)¢(a)B, we have a1 (T71p)(Ta)TAYLBYA™'T = ©2,(p)¢(a)3. Hence

TNp =7p TP = —P

(i) ¢ <(ra) =((a) (ii) § ¢(ra) = ((a)
THABNATIT = B, TNABNATIT =44,
TNp =7p TNp = —Pp

(ili) ¢ ¢(ra) =((a) (iv) § ¢(ra) =~¢(a)
THABATINT =20, TNABYATIT = 3,
TP =7p TNp = —Pp

© ((ra) = ((+w")((a) (vi) ((ra) = ((Fw*)¢(a)
THABNATIT = ((+w )3 THABNATIT = ((Fw )8

=1,2, k=1,2.

Case (i) From 7yip = p, we have p € Sp(1,H'), and from ((ra) =
¢(a), we have a € R*. We will determine the structure of the group {8 €
SL(6,C) | TAv181A~ 't = B} = SL(6,C)™ 1. For this end, consider the cor-
respondence

0 psles +ies)  —pa(eq +ies) 1

(VC)G > ((—p3(€4 + ies) 0 p1(eq + ies) ) , s1
p2(es +ies)  —pi(eq +ies) 0 e e
0 ss(es +ies) —so(eq +ies) 82 '

—83(64 +’i€5) 0 81(64 +’i€5) ,0,0 b3

52(64 + i65) —51(64 + i65) 0 S3

Under this correspondence, the actions A and 7; on (V)8 correspond to the
actions J and 7 on C°, respectively. Let B € M (6, C) be the matrix corresponds
to 3 € SL(6,C), then we see that the condition A7y, 37y A~! = 3 corresponds
to the condition J(7B)J~! = B, that is, JB = (7B).J. Hence we have

B € SL(6,0)™ " = SU*(6) = {B € M(6,C)|JB = (7B)J,detB = 1}.

Thus we see that for o € (E7(_5))o, there exist p € Sp(1,H’),a € R* and
B € SU*(6) such that a = s, (p,a, ). As similar to Theorem 4.2.(2), the
group of (i) is isomorphic to (Sp(1, H') x R* x SU*(6))/(Z2 % Z2) (Z2x Z3 =
{(1,1,1), (=1, =1, D)} x {(1,1,1), (=1,1,7)}) = (Sp(1, H') x RT x SU*(6))/ Z
(Z2={(1,1,1),(=1,1,7)}) = (Sp(1, Hl) x R" x SU*(6))/Z2(Z2 = {(1,1,1),
(—1,1,9)}) = (SL(2,R) x R" x SU*(6))/Z3,Z> = {(E,1,E),(—E, 1,—E)}.
Case (ii) s, (€1,1,04) =77
Case (iii) s, (1,4,04) = 7.
Case (iv) s,(e1,—1,1) =7+,
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Cases (v) and (vi) are impossible. Because there exists no a € C* satisfying
the condition 7a = (+w*)a for k = 1, 2.

Thus we have the required isomorphism (E7(_5))o = ((SL(2, R)x R* x SU*(6))
/Z2 X {17777/777/}7 Zy = {(E717E)7 (_Ev 1,-F }

(3) For a € (E7(—5))ea C (E7C)€d = (E7C)w3, there exist A € SU(3, CC)
and 3 € SU(6,C) such that a=p,, (4, 8) = ¢3,(A)3 (Theorem 4.1.3). From
the condition TAyiay AT = a, that is, TAy103,(A)BNATIT = ¢3,(A)B, we
have @31 (771 A)TAM B AT = @3,(A)B3. Hence

TnA=A . ™A =w A
7')\"}/15’}/1)\_1’7' = /6,

Gi Ty A =w2A

iii
T)\’ylﬂ’}/l)\_l’r = ’U.)12/6.

Case (i) From 77914 = A, we have A € SU(3,C"). From the proof of (2
above, we see 3 € SU*(6). Therefore the group of (i) is SU(3,C") x SU*(6) =
SL(3,R) x SU*(6).

Case (ii) @u,(w1E,uE) = 1.
Case (iii) @, (w12E,w1%E) = 1.

Thus we have the required isomorphism (E7(_5))eq = SU(3,C") x SU*(6) =
SL(3,R) x SU*(6). 0

TANBNATIT = w1 B,
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