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3-graded decompositions of exceptional Lie
algebras g and group realizations of

gev, g0 and ged

Part II, G = E7, Case 1

By

Toshikazu Miyashita and Ichiro Yokota

The 3-graded decompositions of simple Lie algebras g,

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3, [gk, gl] ⊂ gk+l

are classified and the types of subalgebras gev = g−2⊕g0⊕g2, g0 and ged = g−3

⊕ g0 ⊕ g3 of g are determined. The following table is the results of gev, g0 and
ged for the exceptional Lie algebras of type E7 ([1]).

Case 1 g gev g0

ged dim g1, dim g2, dim g3

e7
C sl(2, C) ⊕ so(12, C) sl(2, C) ⊕ C ⊕ sl(6, C)

sl(3, C) ⊕ sl(6, C) 30, 15, 2
e7(7) sl(2, R) ⊕ so(6, 6) sl(2, R) ⊕ R ⊕ sl(6, R)

sl(3, R) ⊕ sl(6, R) 30, 15, 2
e7(−5) sl(2, R) ⊕ so∗(12) sl(2, R) ⊕ R ⊕ su∗(6)

sl(3, R) ⊕ su∗(6) 30, 15, 2

Case 2 g gev g0

ged dim g1, dim g2, dim g3

e7
C sl(2, C) ⊕ so(12, C) C ⊕ C ⊕ sl(6, C)

C ⊕ sl(7, C) 26, 16, 6
e7(7) sl(2, R) ⊕ so(6, 6) R ⊕ R ⊕ sl(6, R)

R ⊕ sl(7, R) 26, 16, 6
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Case 3 g gev g0

ged dim g1, dim g2, dim g3

e7
C C ⊕ e6

C C ⊕ C ⊕ so(10, C)
C ⊕ so(12, C) 17, 16, 10

e7(7) R ⊕ e6(6) R ⊕ R ⊕ so(5, 5)
R ⊕ so(6, 6) 17, 16, 10

e7(−25) R ⊕ e6(−26) R ⊕ R ⊕ so(1, 9)
R ⊕ so(2, 10) 17, 16, 10

Case 4 g gev g0

ged dim g1, dim g2, dim g3

e7
C C ⊕ e6

C C ⊕ C ⊕ so(10, C)
sl(2, C) ⊕ C ⊕ so(10, C) 26, 16, 1

e7(7) R ⊕ e6(6) R ⊕ R ⊕ so(5, 5)
sl(2, R) ⊕ R ⊕ so(5, 5) 26, 16, 1

e7(−25) R ⊕ e6(−26) R ⊕ R ⊕ so(1, 9)
sl(2, R) ⊕ R ⊕ so(5, 5) 26, 16, 1

Case 5 g gev g0

ged dim g1, dim g2, dim g3

e7
C sl(8, C) sl(3, C) ⊕ C ⊕ sl(5, C)

sl(3, C) ⊕ sl(6, C) 30, 15, 5
e7(7) sl(8, R) sl(3, R) ⊕ R ⊕ sl(5, R)

sl(3, R) ⊕ sl(6, R) 30, 15, 5

In the previous paper [7], we gave the group realizations of gev, g0 and ged

for the exceptional universal linear Lie groups G of type G2, F4 and E6. In
the present paper, for exceptional universal linear Lie groups G of type E7, we
realize the subgroups Gev, G0 and Ged of G corresponding to gev, g0 and ged

of g = LieG. The result of the present paper is only shown about the case 1,
so we continue to report the remaining cases. Our results of the case 1 are as
follows:

G Gev G0

Ged

E7
C (SL(2, C) × Spin(12, C))/Z2 (SL(2, C) × C∗ × SL(6, C))/(Z6 × Z2)

(SL(3, C) × SL(6, C))/Z3

E7(7) (SL(2, R) × spin(6, 6))/Z2 × 2 (SL(2, R) × R+ × SL(6, R))/Z2 × 22

SL(3, R) × SL(6, R)

E7(−5) (SL(2, R) × spin∗(12))/Z2 × 2 (SL(2, R) × R+ × SU∗(6))/Z2 × 22

SL(3, R) × SU∗(6)
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This paper is a continuation of [7], so the numbering of sections and the-
orems start from 4. We use the same notations as that in [7].

4. Group E7

Let JC (resp. J′) be the exceptional C-Jordan algebra (resp. the split
exceptional R-Jordan algebra) and we define the C-vector space PC (resp. the
R-vector space P′) by

PC = JC ⊕ JC ⊕ C ⊕ C (resp. P′ = J′ ⊕ J′ ⊕ R ⊕ R),

with inner products

(P, Q) = (X, Z) + (Y, W ) + ξζ + ηω, {P, Q} = (X, W ) − (Y, Z) + ξω − ηζ,

where P = (X, Y, ξ, η), Q = (Z, W, ζ, ω) ∈ PC (resp. P′).

For φ ∈ e6
C , A, B ∈ JC and ν ∈ C, we define the C-linear mapping

Φ(φ, A, B, ν) of PC by

Φ(φ, A, B, ν)


X

Y

ξ

η

 =


φX − 1

3
νX + 2B × Y + ηA

2A × X − tφY +
1
3
νY + ξB

(A, Y ) + νξ

(B, X) − νη

 .

For P = (X, Y, ξ, η), Q = (Z, W, ζ, ω) ∈ PC , we define the C-linear mapping
P × Q of PC by

P × Q = Φ(φ, A, B, ν),



φ = −1
2
(X ∨ W + Z ∨ Y )

A = −1
4
(2Y × W − ξZ − ζX)

B =
1
4
(2X × Z − ηW − ωY )

ν =
1
8
((X, W ) + (Z, Y ) − 3(ξω + ζη)),

where X ∨W ∈ e6
C is defined by X ∨W = [X̃, W̃ ] +

(
X ◦W − 1

3
(X, W )E

)∼
,

here X̃ : JC → JC is defined by X̃Z = X ◦ Z, Z ∈ JC .

We arrange C-linear transformations of PC used later. By using the map-
ping ϕ2 : Sp(1, HC) × Sp(1, HC) → G2

C ,

ϕ2(p, q)(a + be4) = qaq + (pbq)e4, a + be4 ∈ HC ⊕ HCe4 = CC ,

we define C-linear transformations γ, γ′, γ1, ε1, ε2, w3 and δ4 of CC by

γ = ϕ2(1,−1), γ′ = ϕ2(e1, e1), γ1 = ϕ2(e2, e2),
ε1 = ϕ2(e1, 1), ε2 = ϕ2(e2, 1), w3 = ϕ2(1, w1), δ4 = ϕ2(1,−e1),
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where w1 = e2πe1/3 ∈ C ⊂ CC . These C-linear transformations of CC are
naturally extended to C-linear transformations γ, γ′, γ1, ε1, ε2, w3 and δ4 of PC

as

γ(X, Y, ξ, η) = (γX, γY, ξ, η)

etc. Then γ, γ′, γ1, ε1, ε2, w3, δ4 ∈ (G2
C)τ ⊂ G2

C ⊂ F4
C ⊂ E6

C ⊂ E7
C and

γ2 = γ′2 = γ1
2 = 1, w3

3 = 1, ε1
4 = ε2

4 = δ4
4 = 1.

The connected universal linear Lie groups E7
C , E7(7) and E7(−5) are given

by

E7
C = {α ∈ IsoC(PC) |α(P × Q)α−1 = αP × αQ},

E7(7) = {α ∈ IsoR(P′) |α(P × Q)α−1 = αP × αQ},
E7(−5) = {α ∈ IsoC(PC) |α(P × Q)α−1 = αP × αQ, 〈αP, αQ〉γ = 〈P, Q〉γ},

where 〈P, Q〉γ = (τγP, Q), P, Q ∈ PC .

The Lie algebra e7
C of the group E7

C is given by

e7
C = {Φ(φ, A, B, ν) |φ ∈ e6

C , A, B ∈ JC , ν ∈ C}.
The Lie bracket [Φ1, Φ2] of e7

C is given by

[Φ(φ1, A1, B1, ν1), Φ(φ2, A2, B2, ν2)] = Φ(φ, A, B, ν),

φ = [φ1, φ2] + 2A1 ∨ B2 − 2A2 ∨ B1

A =
(
φ1 +

2
3
ν1

)
A2 −

(
φ2 +

2
3
ν2

)
A1

B = −
(

tφ1 +
2
3
ν1

)
B2 +

(
tφ2 +

2
3
ν2

)
B1

ν = (A1, B2) − (B1, A2).

In the Lie algebra e7
C , we use the same notations Gij , Ãk(ei), (Ek −El)∼,

F̃k(ei), Ěk, Êk, F̌k(ei), F̂k(ei), 1 as that used in the preceding papers [5], [6],
or [7].

4.1. Subgroups of type A1
C ⊕ D6

C , A1
C ⊕ C ⊕ A5

C and A2
C ⊕ A5

C of
E7

C

Since γ and γ1 are conjugate in (G2
C)τ ⊂ G2

C ⊂ E7
C ([3], [4]), we have

E7(7) = (E7
C)τγ ∼= (E7

C)τγ1 .

In the Lie algebra e7
C , let

Z = Φ(i(−2G23 + G45 + G67), 0, 0, 0).

Theorem 4.1. The 3-graded decomposition of the Lie algebra e7(7) =
(e7C)τγ1 (or e7

C),

e7(7) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3
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with respect to adZ, Z = Φ(i(−2G23 + G45 + G67), 0, 0, 0), is given by

g0 =


iG01, iG23, iG45, iG67, G46 + G57, i(G47 − G56),

Ãk(1), iÃk(e1), (E1 − E2)∼, (E2 − E3)∼, F̃k(1), iF̃k(e1)

Ěk, Êk, F̌k(1), iF̌k(e1), F̂k(1), iF̂k(e1), k = 1, 2, 3, 1

 39

g−1 =



G04 + iG05, G06 + iG07, iG14 − G15, iG16 − G17,

(2G15 + G26 − G37) − i(2G14 + G27 + G36),
(2G17 − G24 + G35) − i(2G16 − G25 − G34),

Ãk(e4 + ie5), Ãk(e6 + ie7), F̃k(e4 + ie5), F̃k(e6 + ie7),

F̌k(e4 + ie5), F̌k(e6 + ie7), F̂k(e4 + ie5), F̂k(e6 + ie7), k = 1, 2, 3

 30

g−2 =


G02 − iG03, iG12 + G13,

(−2G13 + G46 − G57) − i(2G12 − G47 − G56),

Ãk(e2 − ie3), F̃k(e2 − ie3), F̌k(e2 − ie3), F̂k(e2 − ie3), k = 1, 2, 3


15

g−3 =
{

(G24 + G35) + i(G25 − G34), (G26 + G37) + i(G27 − G36)
}

2
g1 =τ (g−1)τ, g2 = τ (g−2)τ, g3 = τ (g−3)τ

Proof. We can prove this theorem in a way similar to [6, Theorem 4.5],
by using [6, Lemma 4.4].

As is shown in G2
C , F4

C or E6
C ([7]), we have

z2 = exp
2πi

2
Z = γ, z4 = exp

2πi

4
Z = δ4, z3 = exp

2πi

3
Z = w3.

Now, since (e7C)ev = (e7C)z2 = (e7C)γ , (e7C)0 = (e7C)z4 = (e7C)δ4 , (e7C)ed =
(e7C)z3 = (e7C)w3 , we shall determine the structures of groups

(E7
C)ev = (E7

C)z2 = (E7
C)

γ
, (E7

C)0 = (E7
C)z4 = (E7

C)
δ4

,

(E7
C)ed = (E7

C)z3 = (E7
C)

w3
.

4.1.1. Involution γ and subgroup (SL(2, C)× Spin(12, C))/Z2 of E7
C

Let (E7
C)γ = {α ∈ E7

C | γα = αγ} and we will show

(E7
C)γ ∼= (SL(2, C)× Spin(12, C))/Z2

(Theorem 4.1.1). For this end, we have to find subgroups which are isomorphic
to SL(2, C) and Spin(12, C) in the group (E7

C)γ . As for SL(2, C), by using
the mapping ϕ2 : Sp(1, HC) × Sp(1, HC) → G2

C , we may prefer

Sp(1, HC) = {ϕ2(p, 1) | p ∈ Sp(1, HC)},
which is isomorphic to SL(2, C). As for Spin(12, C), we prefer
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(E7
C)ε1,ε2 = {α ∈ E7

C | ε1α = αε1, ε2α = αε2}.
Since ε1

2 = γ, if α ∈ E7
C satisfies ε1α = αε1, then γα = αγ is automatically

satisfied, so (E7
C)ε1,ε2 is a subgroup of (E7

C)γ . (E7
C)ε1,ε2 ∼= Spin(12, C) will

be proved in Proposition 1.1.7. In oder to show the connectedness of the group
(E7

C)ε1,ε2 , we consider a series of subgroups

(E7
C)ε1,ε2 ⊃ ((E7

C)ε1,ε2)1̇ ⊃ (E6
C)ε1,ε2 ,

and we will show the connectedness of these groups in the order. We will start
on a study of the group (E6

C)ε1,ε2 .

Proposition 1.1.1. (E6
C)ε1,ε2 ∼= SU∗(6, CC).

In particular, the group (E6
C)ε1,ε2 is connected.

Proof. Let SU∗(6, CC) = {A ∈ M(6, CC) | JA = AJ, detA = 1}, J =

diag(J, J, J), J =
(

0 1
−1 0

)
. The mapping ϕ6 : Sp(1, HC) × SU∗(6, CC) →

(E6
C)γ is defined by

ϕ6(p, A)(M + n) = (k−1A)M(k−1A)∗ + pn(k−1A)−1,

M + n ∈ J(3, HC) ⊕ (HC)3 = JC ,

where k : M(3, HC) → M(6, CC) is defined by k
(
(a+be2)

)
=

( (
a b

−b a

) )
, a,

b ∈ CC. Then ϕ6 induces the isomorphism (E6
C)γ ∼= (Sp(1, HC)×SU∗(6, CC))

/Z2, Z2 = {(1, E), (−1,−E)} (see [5], [7] for details). Now, we define a map-
ping ϕ6,r : SU∗(6, CC) → (E6

C)ε1,ε2 by

ϕ6,r(A) = ϕ6(1, A)

as the restriction mapping of ϕ6 : Sp(1, HC) × SU∗(6, CC) → E6
C . It is

easily verified that ϕ6,r is well-defined and a homomorphism. We shall show
that ϕ6,r is onto. For α ∈ (E6

C)ε1,ε2 ⊂ (E6
C)γ , there exist p ∈ Sp(1, HC)

and A ∈ SU∗(6, CC) such that α = ϕ6(p, A). From the condition εkα =
αεk, k = 1, 2, we see that α = ϕ6(1, A) or α = ϕ6(−1, A). In the latter
case, α = ϕ6(−1, A) = ϕ6(1,−A) = ϕ6,r(−A). Hence ϕ6,r is onto. It is
easily obtained that Kerϕ6,r = {E}. Thus we have the required isomorphism
SU∗(6, CC) ∼= (E6

C)ε1,ε2 .

Lemma 1.1.2. (1) The Lie algebra (e7C)ε1,ε2 of the Lie group
(E7

C)ε1,ε2 is given by
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(e7C)ε1,ε2 =

{
Φ(D + S̃ + T̃ , A, B, ν) ∈ e7

C

∣∣∣∣∣

D =



0 d01 d02 d03 0 0 0 0
−d01 0 d12 d13 0 0 0 0
−d02 −d12 0 d23 0 0 0 0
−d03 −d13 −d23 0 0 0 0 0

0 0 0 0 0 d1 d2 d3

0 0 0 0 −d1 0 d3 −d2

0 0 0 0 −d2 −d3 0 d1

0 0 0 0 −d3 d2 −d1 0


∈ so(8, C),

S =

 0 s3 −s2

−s3 0 s1

s2 −s1 0

 , sk ∈ HC , T ∈ J(3, HC)0, A, B ∈ J(3, HC), ν ∈ C

}
.

In particular, dimC((e7C)ε1,ε2) = 9 + 12 + 14 + 15 × 2 + 1 = 66.

(2) The Lie algebra ((e7C)ε1,ε2)1̇ of the Lie group ((E7
C)ε1,ε2)1̇ is given by

((e7C)ε1,ε2)1̇ = {Φ(D + S̃ + T̃ , A, B, ν) ∈ (e7C)ε1,ε2 |B = 0, ν = 0}.
The Freudenthal manifold MC is defined by

MC = {P ∈ PC |P × P = 0, P �= 0}

=

{
P = (X, Y, ξ, η) ∈ PC

∣∣∣ X ∨ Y = 0, X × X = ηY, Y × Y = ξX,

(X, Y ) = 3ξη, P �= 0

}
.

We define a submanifold (MC)ε1,1̇ of MC by

(MC)ε1,1̇ = {P ∈ PC |P × P = 0, ε1P = P, {1̇, P} = 1}

=

P = (X, Y, ξ, η) ∈ PC

∣∣∣∣∣
X ∨ Y = 0, X × X = ηY, Y × Y = ξX,

(X, Y ) = 3ξη, X, Y ∈ J(3, HC),

{1̇, P} = 1


= { (X, X × X, detX, 1) |X ∈ J(3, HC), X ∨ (X × X) = 0}.

Proposition 1.1.3. ((E7
C)ε1,ε2)1̇/(E6

C)ε1,ε2 � (MC)ε1,1̇.
In particular, the group ((E7

C)ε1,ε2)1̇ is connected.

Proof. The group ((E7
C)ε1,ε2)1̇ acts on (MC)ε1,1̇. We shall show that

this action is transitive. To prove this, it is sufficient to show that any ele-
ment P ∈ (MC)ε1,1̇ can be transformed to 1. = (0, 0, 0, 1) ∈ (MC)ε1,1̇ by some
α ∈ ((E7

C)ε1,ε2)1̇, moreover by some α ∈ (((E7
C)ε1,ε2)1̇)

0 (which is the con-
nected component subgroup of ((E7

C)ε1,ε2)1̇). Now, for a given P = (X, X ×
X, detX, 1) ∈ (MC)ε1,1̇, we see that Φ(0, X, 0, 0) ∈ ((e7C)ε1,ε2)1̇ (Lemma 1.1.2.
(2)). Hence α(X) = exp(Φ(0, X, 0, 0)) ∈ (((E7

C)ε1,ε2)1̇)
0. Operate α(X) on
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1. , then we have α(X)1. = (X, X × X, detX, 1). This shows the transitivity
of ((E7

C)ε1,ε2)1̇. Since (MC)ε1,1̇ = (((E7
C)ε1,ε2)1̇)

01. , (MC)ε1,1̇ is connected.
The isotropy subgroup of ((E7

C)ε1,ε2)1̇ at 1. is (E6
C)ε1,ε2 . Thus we have

the required homeomorphism ((E7
C)ε1,ε2)1̇/(E6

C)ε1,ε2 � (MC)ε1,1̇. (MC)ε1,1̇

and (E6
C)ε1,ε2 are connected (Proposition 1.1.1), so ((E7

C)ε1,ε2)1̇ is also con-
nected.

Lemma 1.1.4. For Φ(0, 0, B, ν), B ∈ J(3, HC), ν ∈ C, there exist Y ∈
J(3, HC) and ξ ∈ C, ξ �= 0 such that

(exp(Φ(0, 0, B, ν)))1̇ =
(1

ξ
(Y × Y ), Y, ξ,

1
ξ2

(detY )
)
.

Conversely, for
(1

ξ
(Y × Y ), Y, ξ,

1
ξ2

(detY )
)
∈ PC , there exist B ∈ J(3, HC)

and ν ∈ C such that
(1

ξ
(Y × Y ), Y, ξ,

1
ξ2

(detY )
)

= (exp(Φ(0, 0, B, ν)))1̇.

Proof.

(exp(Φ(0, 0, B, ν)))1̇ =



(eν − 2e
ν
3 + e−

ν
3 )

9
4ν2

(B × B)

(eν − e
ν
3 )

3
2ν

B

eν

((eν − e−ν) − 3(e
ν
3 − e−

ν
3 ))

27detB
8ν3


∈ PC ,

(in the case of ν = 0, the parts of ν = 0 need to replace by lim
ν→0

). Now, put

Y = (eν − e
ν
3 )

3
2ν

B, ξ = eν (∗), then we have

(exp(Φ(0, 0, B, ν)))1̇ =
(1

ξ
(Y × Y ), Y, ξ,

1
ξ2

(detY )
)
.

Conversely, for P =
(1

ξ
(Y ×Y ), Y, ξ,

1
ξ2

(detY )
)
, we can choose B ∈ J(3, HC)

and ν∈C satisfying the condition (∗) above. Then we obtain (exp(Φ(0, 0, B, ν)))
1̇ = P .

We define a submanifold (MC)ε1 of the Freudenthal manifold MC by

(MC)ε1 ={P ∈ PC |P × P = 0, ε1P = P, P �= 0}

=

{
P = (X, Y, ξ, η) ∈ PC

∣∣∣∣∣ X ∨ Y = 0, X × X = ηY, Y × Y = ξX,

(X, Y ) = 3ξη, X, Y ∈ J(3, HC), P �= 0

}
.

Proposition 1.1.5. (E7
C)ε1,ε2/((E7

C)ε1,ε2)1̇ � (MC)ε1 .
In particular, the group (E7

C)ε1,ε2 is connected.
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Proof. The group (E7
C)ε1,ε2 acts on (MC)ε1 . We shall show that this

action is transitive. To prove this, it is sufficient to show that any element
P ∈ (MC)ε1 can be transformed to 1̇ = (0, 0, 1, 0) ∈ (MC)ε1 by some α ∈
(E7

C)ε1,ε2 , moreover by α ∈ ((E7
C)ε1,ε2)0 (which is the connected component

subgroup of (E7
C)ε1,ε2).

Case (1) P = (X, Y, ξ, η), ξ �= 0. From the condition of (MC)ε1 , we see

X =
1
ξ
(Y × Y ), η =

1
ξ2

(detY ).

For these Y and ξ, choose B ∈ J(3, HC) and ν ∈ C of Lemma 1.1.4, then we
see Φ(0, 0, B, ν) ∈ (e7C)ε1,ε2 (Lemma 1.1.2.(1)). Hence α = exp(Φ(0, 0, B, ν))
∈ ((E7

C)ε1,ε2)0 and we have α1̇ = P .

Case (2) P = (X, Y, 0, η), Y �= 0. For a given P , we see Φ(0, τY, 0, 0) ∈
(e7C)ε1,ε2 (Lemma 1.1.2.(1)). Hence exp(Φ(0, τY, 0, 0)) ∈ ((E7

C)ε1,ε2)0. We
have

(exp(Φ(0, τY, 0, 0)))(X, Y, 0, η) = (X + η(τY ), Y + 2τY × X, (τY, Y ), η).

If Y �= 0, then (τY, Y ) �= 0. Hence this case is reduced to the case (1).

Case (3) P = (X, 0, 0, η), X �= 0. exp(Φ(0, E, 0, 0)) ∈ ((E7
C)ε1,ε2)0 and

we have

(exp(Φ(0, E, 0, 0)))(X, 0, 0, η) = (X + ηE, (tr(X) + η)E − X, tr(X) + η, 0) (∗).
If (tr(X) + η)E − X �= 0, then this is reduced to the case (2). In the case of

(tr(X)+ η)E −X = 0, we see that (∗) is equal to −1
3
tr(X)(E, 0,−1, 0), so this

case is reduced to the case (1).

Case (4) P = (0, 0, 0, η), η �= 0. exp(Φ(0, E1, 0, 0)) ∈ ((E7
C)ε1,ε2)0 and

we have

(exp(Φ(0, E1, 0, 0)))(0, 0, 0, η) = (ηE1, 0, 0, η).

Hence this case is reduced to the case (3).
Thus the proof of the transitivity of ((E7

C)ε1,ε2)0 on (MC)ε1 is completed.

Now, the group (E7
C)ε1,ε2 acts on (MC)ε1 transitively and the isotoropy

subgroup of the group (E7
C)ε1,ε2 at 1̇ is ((E7

C)ε1,ε2)1̇. Hence we have the home-
omorphism (E7

C)ε1,ε2/((E7
C)ε1,ε2)1̇ � (MC)ε1 . Since (MC)ε1=((E7

C)ε1,ε2)01̇,
(MC)ε1 is connected, and ((E7

C)ε1,ε2)1̇ is connected (Propositions 1.1.3), hence
(E7

C)ε1,ε2 is also connected.

To prove the following proposition, we use the following two mappings
φ1(θ), λ. For θ ∈ C∗, we define the C-linear transformation φ1(θ) of PC by

φ1(θ)(X, Y, ξ, η) = (θ−1X, θY, θ3ξ, θ−3η), (X, Y, ξ, η) ∈ PC ,
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and we define the C-linear transformation λ of PC by

λ(X, Y, ξ, η) = (Y,−X, η,−ξ), (X, Y, ξ, η) ∈ PC .

Then φ(θ), λ ∈ (E7
C)ε1,ε2 .

Proposition 1.1.6. The center z((E7
C)ε1,ε2) of the group (E7

C)ε1,ε2

is isomorphic to the direct product group of two cyclic groups of order 2:

z((E7
C)ε1,ε2) = {1, γ} × {1,−γ} = Z2 × Z2.

Proof. Let α ∈ z((E7
C)ε1,ε2). For β ∈ (E6

C)ε1,ε2 ⊂ (E7
C)ε1,ε2 , we see

βα1̇ = αβ1̇ = α1̇.

Denote α1̇ = (X, Y, ξ, η). From (βX, tβ−1Y, ξ, η) = (X, Y, ξ, η), we have

βX = X, tβ−1Y = Y for all β.

Choose ω1 ∈ (E6
C)ε1,ε2 (ω ∈ C, ω3 = 1) as β, then we have X = Y = 0. Hence

α1̇ is of the form

α1̇ = (0, 0, ξ, η), ξ, η ∈ C.

From α1̇ ∈ MC , we have ξη = 0. Suppose ξ = 0, then we see α1̇ = η. , η �= 0.

Since α commutes with φ1(θ) ∈ (E7
C)ε1,ε2 , we have

θ−3η. = φ1(θ)η. = φ1(θ)α1̇ = αφ1(θ)1̇ = α(θ31̇) = θ3η.

for any θ ∈ C∗, so that we have η = 0. This is a contradiction. Hence ξ �= 0,
that is, η = 0. Thus α1̇ = ξ̇. By a similar argument as above, we have
α1. = ζ. . Since ξζ = {ξ̇, ζ.} = {α1̇, α1.} = {1̇, 1.} = 1, that is, ξζ = 1, we have

α1̇ = ξ̇, α1. = ξ.
−1. Moreover, α commutes with λ ∈ (E7

C)ε1,ε2 , so we have

−ξ. = λξ̇ = λα1̇ = αλ1̇ = α(−1.) = −ξ.
−1.

Hence ξ = ξ−1, so ξ = 1 or ξ = −1.

(i) Case ξ = 1. Since α1̇ = 1̇ and α1. = 1. , we see α ∈ E6
C . Hence

α ∈ z((E6
C)ε1,ε2). Since (E6

C)ε1,ε2 ∼= SU∗(6, CC) (Proposition 1.1.1), we
have

z((E6
C)ε1,ε2) = z(ϕ6,r(SU∗(6, CC))

= {ϕ6,r(cE) | c = 1, ω, ω2,−1,−ω,−ω2},

where ω = e2πi/3. However ϕ6,r(cE) �∈ z((E7
C)ε1,ε2) for c = ±ω,±ω2. Hence

we see α = ϕ6,r(E) = 1 or α = ϕ6,r(−E) = γ.
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(ii) Case ξ = −1. By a similar argument as (i), we have −α ∈ z((E6
C)ε1,ε2).

Hence we have −α = 1 or −α = γ, that is, α = −1 or α = −γ.

Therefore we get z((E7
C)ε1,ε2) ⊂ {1, γ,−1,−γ}. The converse inclusion is

trivial. Thus we have z((E7
C)ε1,ε2) = {1, γ,−1,−γ}.

We define a 12-demensional C-vector space (V C)12 by

(V C)12 = {P ∈ PC | ε1P = −iP}

=


 0 x3 x2

x3 0 x1

x2 x1 0

,

 0 y3 y2

y3 0 y1

y2 y1 0

, 0, 0

∣∣∣∣ xk, yk ∈ (HCe4)ε1

 ,

with a norm

(P, P )ε2 =
1
8
{P, ε2P},

where (HCe4)ε1 = {x ∈ CC |x = p(e4 + ie5) + q(e6 − ie7), p, q ∈ C}. For
P ∈ (V C)12, xk = pk(e4 + ie5) + qk(e6 − ie7), yk = sk(e4 + ie5) + tk(e6 − ie7), k
= 1, 2, 3, the explicit form of (P, P )ε2 is given by

(P, P )ε2 = (p1t1 − q1s1) + (p2t2 − q2s2) + (p3t3 − q3s3).

Proposition 1.1.7. (E7
C)ε1,ε2 ∼= Spin(12, C).

Proof. The group (E7
C)ε1,ε2 acts on (V C)12 and any element α∈(E7

C)ε1,ε2

leaves invariant the norm (P, P )ε2 of (V C)12. Furthermore, the group (E7
C)ε1,ε2

is connected (Proposition1.1.5), so we can define a homomorphism π : (E7
C)ε1,ε2

→ SO((V C)12) = SO(12, C) by π(α) = α|(V C)12. We shall find Ker π. For this
end, we will show that the kernel of the differential mapping π∗ : (e7C)ε1,ε2 →
so((V C)12) of π is trivial, that is, Kerπ∗ = 0 (which is easily obtained). Hence
Ker π is a discrete group. Moreover, the group (E7

C)ε1,ε2 is connected, so we
have

Ker π ⊂ z((E7
C)ε1,ε2) = {1, γ,−1,−γ}

(Proposition 1.1.6). However −1, γ �∈ Ker π. Hence we get Kerπ = {1,−γ} =
Z2. Since dimC((e7C)ε1,ε2) = 66 (Lemma 1.1.2.(1)) = dimC(so(12, C)), π
is onto. Thus we have (E7

C)ε1,ε2/Z2
∼= SO(12, C). Therefore (E7

C)ε1,ε2 is
Spin(12, C) as a double covering group of SO(12, C).

By using the mapping ϕ2 : Sp(1, HC) × Sp(1, HC) → G2
C , we define a

mapping ϕ2,l : Sp(1, HC) → G2
C by

ϕ2,l(p) = ϕ2(p, 1).

Then ϕ2,l(p) ∈ G2
C ⊂ F4

C ⊂ E6
C ⊂ E7

C .
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Lemma 1.1.8. In the Lie algebra e7
C , the Lie algebra sp(1, HC) of the

Lie group Sp(1, HC) = ϕ2,l(Sp(1, HC)) is given by

sp(1, HC) =

{
Φ(D, 0, 0, 0) ∈ e7

C

∣∣∣∣
D =


0 0 0 0
0 d1J 0 0
0 0 d2J 0
0 0 0 d3J

 ∈ so(8, C), J =
(

0 1
−1 0

)}
.

Proposition 1.1.9. The subgroups Sp(1, HC) and Spin(12, C) of E7
C

are commutative elementwisely.

Proof. Any Φ1 ∈ sp(1, HC) = ϕ2,l∗(sp(1, HC)) (ϕ2,l∗ is the defferential
mapping of ϕ2,l) commutes with any Φ2 ∈ spin(12, C) = (e7C)ε1,ε2 : [Φ1, Φ2] =
0 (Lemma 1.1.8 and Lemma 1.1.2), furthermore the groups Sp(1, HC) and
Spin(12, C) = (E7

C)ε1,ε2 are connected. Hence, any ϕ2,l(p), p ∈ Sp(1, HC)
commutes with β ∈ Spin(12, C) : ϕ2,l(p)β = βϕ2,l(p).

Now, we will prove the main theorem of this section by using the prepa-
rations above.

Theorem 4.1.1. (E7
C)ev

∼= (SL(2, C)×Spin(12, C))/Z2, Z2 = {(E, 1),
(−E, γ)}.

Proof. We define a mapping ϕγ : Sp(1, HC) × Spin(12, C) → (E7
C)γ =

(E7
C)ev by

ϕγ(p, β) = ϕ2,l(p)β.

ϕ2,l(p) ∈ (E7
C)γ is clear and Spin(12, C) = (E7

C)ε1,ε2 (Proposition 1.1.7)
⊂ (E7

C)γ , so ϕγ is well-defined. Since ϕ2,l(p) commutes with β : ϕ2,l(p)β =
βϕ2,l(p) (Proposition 1.1.9), ϕγ is a homomorphism. Kerϕγ = {(1, 1), (−1,

γ)} = Z2. The group (E7
C)γ is connected and dimC(sp(1, HC)⊕ spin(12, C))

= 3 + 66 = 69 = 39 + 15× 2 = dimC((e7C)ev) (Theorem 4.1) = dimC((e7C)γ),
hence ϕγ is onto. Thus we have the required isomorphism (E7

C)ev
∼=(Sp(1, HC)

×Spin(12, C))/Z2 (Z2 = {(1, 1), (−1, γ)}) ∼= (SL(2, C) × Spin(12, C))/Z2,
Z2 = {(E, 1), (−E, γ)}.

4.1.2. Automorphism δ4 of order 4 and subgroup (SL(2, C) × C∗

×SL(6, C))/(Z2 × Z6) of E7
C

Let (E7
C)δ4 = {α ∈ E7

C | δ4α = αδ4} and we will show

(E7
C)δ4 ∼= (SL(2, C) × C∗ × SL(6, C))/(Z2 × Z6).
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(Theorem 4.1.2). As for SL(2, C), we may prefer Sp(1, HC) as in the case of
(E7

C)ev. Before we consider the remainder part C∗ × SL(6, C), we find a sub-
group of (E7

C)δ4 of type GL(6, C), that is, consider the subgroup (E7
C)ε1,ε2,δ4

= {α ∈ E7
C | ε1α = αε1, ε2α = αε2, δ4α = αδ4} of the group (E7

C)δ4 and we
will show

(E7
C)ε1,ε2,δ4/Z2

∼= GL(6, C)

(Proposition 1.2.4). And then we decompose GL(6, C) into C∗×SL(6, C). For
this end, we need to find subgroups C∗ and SL(6, C) in the group (E7

C)δ4 . We
will start on a study of the group (F4

C)ε1,ε2,δ4 .

Proposition 1.2.1. (F4
C)ε1,ε2,δ4 ∼= U(3, CC).

Proof. The mapping ϕ4 : Sp(1, HC)×Sp(3, HC) → (F4
C)γ is defined by

ϕ4(p, A)(M + n) = AMA∗ + pnA∗, M + n ∈ J(3, HC) ⊕ (HC)3 = JC .

Then ϕ4 induces the isomorphism (F4
C)γ ∼= (Sp(1, HC)× Sp(3, HC))/Z2, Z2

= {(1, E), (−1,−E)} (see [5] for details). Now, we define a mapping ϕ4,r :
U(3, CC) → (F4

C)ε1,ε2,δ4 by

ϕ4,r(A) = ϕ4(1, A),

as the restriction mapping of ϕ4 : Sp(1, HC) × Sp(3, HC) → (F4
C)γ . It

is easy to verify that ϕ4,r is well-defined and a homomorphism. We shall
show that ϕ4,r is onto. For α ∈ (F4

C)ε1,ε2,δ4 ⊂ (F4
C)γ , there exist p ∈

Sp(1, HC) and A ∈ Sp(3, HC) such that α = ϕ4(p, A). From the condi-
tions εkα = αεk, k = 1, 2 and δ4α = αδ4, we have α = ϕ4(1, A) = ϕ4,r(A)
or α = ϕ4(−1, A) = ϕ4,r(−A), A ∈ U(3, CC). Hence ϕ4,r is onto. It is eas-
ily obtained that Kerϕ4,r = {E}. Thus we have the required isomorphism
U(3, CC) ∼= (F4

C)ε1,ε2,δ4 .

Lemma 1.2.2. The Lie algebra (e7C)ε1,ε2,δ4 of the Lie group
(E7

C)ε1,ε2,δ4 is given by

(e7C)ε1,ε2,δ4 =

{
Φ(D + S̃ + T̃ , A, B, ν) ∈ e7

C

∣∣∣∣∣
D =


d1J 0 0 0
0 d2J 0 0
0 0 d3J 0
0 0 0 d3J

 ∈ so(8, C), J =
(

0 1
−1 0

)
,

S =

 0 s3 −s2

−s3 0 s1

s2 −s1 0

 , sk ∈ CC , T ∈ J(3, CC)0, A, B ∈ J(3, CC), ν ∈ C

}
.

In particular, dimC((e7C)ε1,ε2,δ4) = 3 + 6 + 8 + 9 × 2 + 1 = 36.
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Proposition 1.2.3. The center z((E7
C)ε1,ε2,δ4) of the group

(E7
C)ε1,ε2,δ4 is given by

z((E7
C)ε1,ε2,δ4) = {α, −α |α = ϕ4,r(cE), c ∈ U(1, CC)}.

Proof. Let α ∈ z((E7
C)ε1,ε2,δ4). Note that φ1(θ), λ ∈ (E7

C)ε1,ε2,δ4 . Then
by the same argument as in Proposition 1.1.6, we have

α1̇ = (0, 0, ξ, 0), ξ = 1 or ξ = −1.

(i) Case ξ = 1. Since α1̇ = 1̇ and α1. = 1. , we see α ∈ E6
C . Hence

α ∈ z((E6
C)ε1,ε2,δ4).

For β ∈ (F4
C)ε1,ε2,δ4 ⊂ (E6

C)ε1,ε2,δ4 , we see

βαE = αβE = αE.

Putting αE = Y = Y (η, y) ∈ JC , we have

βY = Y for all β ∈ (F4
C)ε1,ε2,δ4 .

For T =

1 0 0
0 −1 0
0 0 −1

 ,

−1 0 0
0 1 0
0 0 −1

 ,

0 0 1
1 0 0
0 1 0

, we define mappings

δ : JC → JC by δX = TXT−1, then δ ∈ (F4
C)ε1,ε2,δ4 . From the condition of

δY = Y , we have

y1 = y2 = y3 = 0, η1 = η2 = η3(= ω).

Hence αE = ωE, ω ∈ C. Moreover ω3 = det(ωE) = detαE = detE = 1. So
we see ω−1αE = E, hence ω−1α ∈ (F4

C)ε1,ε2,δ4 . Thus

ω−1α ∈ z((F4
C)ε1,ε2,δ4).

Since (F4
C)ε1,ε2,δ4 = U(3, CC) (Proposition 1.2.1) and z(U(3, CC)) = {cE | c ∈

U(1, CC)}, we see

z((F4
C)ε1,ε2,δ4) = z(ϕ4,r(U(3, CC))) = {ϕ4,r(cE) | c ∈ U(1, CC)}.

Hence there exists c ∈ U(1, CC) such that ω−1α = ϕ4,r(cE), that is,

α = ωϕ4,r(cE), ω ∈ C, ω3 = 1, c ∈ U(1, CC).

The condition α ∈ z((E7
C)ε1,ε2,δ4) implies that α commutes with all elements

Φ(φ, A, B, ν) ∈ (e7C)ε1,ε2,δ4 , that is,

ωϕ4,r(cE)Φ(φ, A, B, ν) = Φ(φ, A, B, ν)ωϕ4,r(cE).
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Hence, for all φ ∈ (e6C)ε1,ε2,δ4 , A, B ∈ J(3, CC) (Lemma 1.2.2), we have
ϕ4,r(cE)φϕ4,r(cE) = φ · · · · · · (1)

ωϕ4,r(cE)A = A · · · · · · (2)

ω−1ϕ4,r(cE)B = B · · · · · · (3).

Since ωϕ4,r(cE)A = ω(cE)A(cE)∗ = ω(cc)A = ωA, from the condition (2), we
have ω = 1, thereby we see the condition (3). The condition (1) is always valid.
Thus we see that α is of the form ϕ4,r(cE).

(ii) Case ξ = −1. By a similar argument as (i), there exists c ∈ U(1, CC)
such that −α = ϕ4,r(cE). Hence α is of the form −ϕ4,r(cE).
Thus this proposition is completely proved.

We define a C-vector subspace (V C)6 of the C-vector space (V C)12 by

(V C)6 = {P ∈ (V C)12 | δ4P = −iP}

=


 0 x3 x2

x3 0 x1

x2 x1 0

,

 0 y3 y2

y3 0 y1

y2 y1 0

, 0, 0

∣∣∣∣ xk, yk ∈ (HCe4)ε1,δ4

 ,

where (HCe4)ε1,δ4 = {x ∈ CC |x = p(e4 + ie5), p ∈ C}.

Proposition 1.2.4. (E7
C)ε1,ε2,δ4/Z2

∼= GL(6, C), Z2 = {1,−γ}.
Proof. Let GL(6, C) = IsoC((V C)6). Any element α ∈ (E7

C)ε1,ε2,δ4

leaves invariant the space (V C)6, so α induces an element of GL(6, C). Hence
we can define a mapping g : (E7

C)ε1,ε2,δ4 → GL(6, C) by

g(α) = α|(V C)6, α ∈ (E7
C)ε1,ε2,δ4 .

It is clear that g is a homomorphism. We shall calculate Ker g. For this end,
first, we show that the kernel of the differential mapping g∗ : (e7C)ε1,ε2,δ4 →
gl(6, C) of g is trivial : Ker g∗ = {0} (which is easily obtained). Hence Ker g is
a discrete group. Moreover since the group (E7

C)ε1,ε2,δ4 is connected (because
(E7

C)ε1,ε2 is simply connected (Proposition 1.1.7)), we have

Ker g ⊂ z((E7
C)ε1,ε2,δ4).

Let α ∈ Ker g. Then α is of the form α = ϕ4,r(cE) or α = −ϕ4,r(cE) for some
c ∈ U(1, CC) (Proposition 1.2.3). ϕ4,r(cE) is nothing but ϕ2,r(c) = ϕ2(1, c).
Since ϕ2,r(c)(e4 + ie5) = c(e4 + ie5), from the condition ϕ2,r(c)(e4 + ie5) =
e4 + ie5, we see c = 1, that is, α = 1. In the case of α = ϕ4,r(cE), by a
similar way above, we see α = −ϕ4,r(−E) = −γ. Hence Ker g = {1,−γ} =
Z2. Furthermore dimC((e7C)ε1,ε2,δ4) = 36 (Lemma 1.2.2) = dimC(gl(6, C))
and (E7

C)ε1,ε2,δ4 is connected, hence g is onto. Thus we have the required
isomorphism (E7

C)ε1,ε2,δ4/Z2
∼= GL(6, C).
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Proposition 1.2.5. (E7
C)ε1,ε2,δ4 ∼= (C∗ × SL(6, C))/Z6, Z6 = {(a,

a−1E) | a ∈ C, a6 = 1}.
Proof. The general linear group GL1(6, C) = {A ∈ M(6, C) | detA �= 0}

is decomposable as

GL1(6, C) = C1
∗SL1(6, C), C1

∗ ∩ SL1(6, C) = {aE | a ∈ C, a6 = 1},

where C1
∗ = {aE | a ∈ C∗} which is the connected component subgroup of the

center of GL1(6, C) and SL1(6, C) = {A ∈ GL1(6, C) | detA = 1}. On the other
hand, the connected component subgroup of (E7

C)ε1,ε2,δ4 is {ϕ4,r(cE) | c ∈
U(1, CC)} (Proposition 1.2.3). If we give the isomorphism h : C∗ → U(1, CC)
by

h(a) =
a + a−1

2
+

a − a−1

2
ie1 = ιa + ιa−1, ι =

1 + ie1

2
,

we have

ϕ4,r(h(a)E)Fk(x) = Fk(ax), x ∈ (HCe4)ε1,δ4 , k = 1, 2, 3.

Hereafter, for a ∈ C∗, we denote ϕ4,r(h(a)E) by ζ(a):

ζ(a) = ϕ4,r(h(a)E).

Then the restriction mapping of ζ(a) to (V C)6 is given by

ζ(a)(X, Y, 0, 0) = (aX, aY, 0, 0).

Hence we see g(ζ(a)) = aE for a ∈ C∗ (as for g, see Proposition 1.2.4), so g

induces an isomorphism g : C∗ → C1
∗. Next we will find a subgroup SL(6, C)

of (E7
C)ε1,ε2,δ4 which is isomorphic to the group SL1(6, C) under g. Consider

the subgroup S̃L = g−1(SL1(6, C)) of (E7
C)ε1,ε2,δ4 . Then S̃L/Z2

∼= SL1(6, C).

Since SL1(6, C) is simply connected, S̃L is never connected. Let SL(6, C) be

the connected component subgroup of S̃L, then SL(6, C) is the requiered one.
Then we have the following diagram

C∗ × SL(6, C)
µ−→ (E7

C)ε1,ε2,δ4

g ↓ g ↓ g

C1
∗ × SL1(6, C)

µ1−→ GL1(6, C),

where µ, µ1 are multiplication mappings in the groups, respectively. Obviously
µ is a surjective homomorphism. We shall find the kernel of µ. Let (ζ(a), β) ∈
Ker µ. From the diagram above, we have g(ζ(a))g(β) = g((ζ(a)β)) = g(1) = E.
Hence we obtain Ker µ = {(ζ(a), ζ(a−1) | a ∈ C, a6 = 1} = Z6. Since g : C∗ →
C1

∗ is isomorphic, Kerµ is denoted by {(a, a−1E) | a ∈ C, a6 = 1}. Thus we
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have the required isomorphism (E7
C)ε1,ε2,δ4 ∼= (C∗ × SL(6, C))/Z6.

Hereafter, we identify two groups SL(6, C), SL1(6, C) and C∗, C1
∗, respec-

tively.

Now, we will prove the main theorem of this section by using the prepa-
rations above.

Theorem 4.1.2. (E7
C)0 ∼= (SL(2, C)×C∗×SL(6, C))/(Z2×Z6), Z2

= {(E, 1, E), (−E, 1,−E)}, Z6 = {(E, a, a−1E)| a = 1, ω, ω2,−1,−ω,−ω2},
where ω = e2πi/3.

Proof. We define a mapping ϕδ4 : Sp(1, HC)×C∗×SL(6, C) → Sp(1, HC)
×(E7

C)ε1,ε2,δ4 → (E7
C)δ4 = (E7

C)0 by

ϕδ4(p, a, β) = ϕ2,l(p)ζ(a)β.

ϕδ4 is well-defined because ϕ2,l(p) ∈ (E7
C)δ4 and ζ(a), β ∈ (E7

C)ε1,ε2,δ4 (Propo-
sition 1.2.5) ⊂ (E7

C)δ4 . Since ϕ2,l(p) commutes with ζ(a)β : ϕ2,l(p)ζ(a)
β = ζ(a)βϕ2,l(p) (Proposition 1.1.9), ϕδ4 is a homomorphism. It is easily
obtained that Kerϕδ4 = {(1, 1, 1), (−1, 1, γ)} × {(1, ζ(a), ζ(a−1)) | a = 1, ω, ω2,

−1,−ω,−ω2} = Z2 ×Z6. Moreover dimC(sp(1, HC)⊕C ⊕ sl(6, C)) = 3+1+
35 = 39 = dimC((e7C)0) (Theorem 4.1) = dimC((e7C)δ4), hence ϕδ4 is onto.
Thus we have the isomorphism (E7

C)δ4 ∼= (Sp(1, HC)×C∗×SL(6, C))/(Z2×
Z6) (Z2 = {(1, 1, 1), (−1, 1, γ)}) ∼= (SL(2, C) × C∗ × SL(6, C))/(Z2 × Z6),
Z2 = {(E, 1, E), (−E, 1,−E)}.

4.1.3. Automorphism w3 of order 3 and subgroup (SL(3, C)×
SL(6, C))/Z3 of E7

C

Let (E7
C)w3 = {α ∈ E7

C |w3α = αw3} and we will show

(E7
C)w3 ∼= (SL(3, C) × SL(6, C))/Z3

(Theorem 4.1.3). For this end, we have to find subgroups which are isomor-
phic to SL(3, C) and SL(6, C) in the group (E7

C)w3 . As for SL(3, C), we
use the embedding ϕ3,l : SU(3, CC) → G2

C . As for SL(6, C), we prefer
(E7

C)w3,ε1,ε2,γ3 = {α ∈ E7
C |w3α = αw3, ε1α = αε1, ε2α = αε2, γ3α = αγ3}

(Proposition 1.3.7).

The mapping ϕ3,l : SU(3, CC) → G2
C is defined by

ϕ3,l(A)(a + m) = a + Am, a + m ∈ CC ⊕ (CC)3 = CC .

Then ϕ3,l induces the isomorphism SU(3, CC) ∼= (G2
C)w3 (see [2] for details).

By using this mapping ϕ3,l : SU(3, CC) → G2
C , we define a C-linear transfor-

mation γ3 of CC by

γ3 = ϕ3,l

0 0 1
1 0 0
0 1 0

 .
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Then γ3 ∈ G2
C ⊂ F4

C ⊂ E6
C ⊂ E7

C and γ3
3 = 1. Note that using the

mapping ϕ3,l, the C-linear transformations ε1 and w3 are expressed as follows:

ε1 = ϕ3,l

1 0 0
0 e1 0
0 0 −e1

 , w3 = ϕ3,l

w1 0 0
0 w1 0
0 0 w1

 .

We use the mappings h and ϕ3 of [2], so we will review of these mappings.
First, the mapping h : M(3, CC) × M(3, CC) → M(3, CC) is defined by

h(A, B) =
A + B

2
+

A − B

2
ie1 = ιA + ιB, ι =

1
2
(1 + ie1).

The mapping ϕ3 : SU(3, CC)×SU(3, CC)× SU(3, CC) → (E6
C)w3 is defined

by

ϕ3(P, A, B)(X + M) = h(A, B)Xh(A, B)∗ + PMτh(A, B)∗,

X + M ∈ J(3, CC) ⊕ M(3, CC) = JC .

Then ϕ3 induces the isomorphism (E6
C)w3 ∼= (SU(3, CC) × SU(3, CC) ×

SU(3, CC))/Z3, Z3 = { (E, E, E), (w1E, w1E, w1E), (w1
2E, w1

2E, w1
2E)}.

The mapping ϕ3 is an extension of the mapping ϕ3,l : SU(3, CC) → G2
C , that

is, the following holds.

ϕ3,l(A) = ϕ3(A, E, E), A ∈ SU(3, CC).

Now, we will begin on a study of the group (E6
C)w3,ε1,ε2,γ3 .

Proposition 1.3.1. (E6
C)w3,ε1,ε2,γ3 ∼= SU(3, CC) × SU(3, CC).

In particular, the group (E6
C)w3,ε1,ε2,γ3 is connected.

Proof. We define a mapping ϕ3,r : SU(3, CC) × SU(3, CC) →
(E6

C)w3,ε1,ε2,γ3 by

ϕ3,r(A, B) = ϕ3(E, A, B),

as the restriction mapping of ϕ3 : SU(3, CC) × SU(3, CC) × SU(3, CC) →
(E6

C)w3 . It is not difficult to verify that ϕ3,r is well-defined and a homomor-
phism. We shall show that ϕ3,r is onto. For α ∈ (E6

C)w3,ε1,ε2,γ3 ⊂ (E6
C)w3 ,

there exist P, A, B ∈ SU(3, CC) such that α = ϕ3(P, A, B). From the con-
ditions of εkα = αεk, k = 1, 2 and γ3α = αγ3, we have α = ϕ3(E, A, B) =
ϕ3,r(A, B). Hence ϕ6,r is onto. It is easily obtained that Kerϕ3,r = {(E, E)}.
Therefore we have the required isomorphism SU(3, CC) × SU(3, CC) ∼=
(E6

C)w3,ε1,ε2,γ3 .

Lemma 1.3.2. (1) The Lie algebra (e7C)w3,ε1,ε2,γ3 of the Lie group
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(E7
C)w3,ε1,ε2,γ3 is given by

(e7C)w3,ε1,ε2,γ3 =

{
Φ(D + S̃ + T̃ , A, B, ν) ∈ e7

C

∣∣∣∣∣
D =


d1J 0 0 0
0 d2J 0 0
0 0 d2J 0
0 0 0 d2J

 ∈ so(8, C), J =
(

0 1
−1 0

)
,

S =

 0 s3 −s2

−s3 0 s1

s2 −s1 0

 , sk ∈ CC , T ∈ J(3, CC)0, A, B ∈ J(3, CC), ν ∈ C

}
.

In particular, dimC((e7C)w3,ε1,ε2,γ3) = 2 + 6 + 8 + 9 × 2 + 1 = 35.

(2) The Lie algebra ((e7C)w3,ε1,ε2,γ3)1̇ of the Lie group ((E7
C)w3,ε1,ε2,γ3)1̇

is given by

((e7C)w3,ε1,ε2,γ3)1̇ = {Φ(D + S̃ + T̃ , A, B, ν) ∈ (e7C)w3,ε1,ε2,γ3 |B = 0, ν = 0}.
We define a submanifold (MC)w3,ε1,1̇ of the Freudenthal manifold MC by

(MC)w3,ε1,1̇ = {P ∈ PC |P × P = 0, w3P = P, ε1P = P, {1̇, P} = 1}

=

P = (X, Y, ξ, η) ∈ PC

∣∣∣∣∣
X ∨ Y = 0, X × X = ηY,

Y × Y = ξX, (X, Y ) = 3ξη,

X, Y ∈ J(3, CC), {1̇, P} = 1


= { (X, X × X, detX, 1) |X ∈ J(3, CC), X ∨ (X × X) = 0}.

Proposition 1.3.3. ((E7
C)w3,ε1,ε2,γ3)1̇/(E6

C)w3,ε1,ε2,γ3 � (MC)w3,ε1,1̇.
In particular, the group ((E7

C)w3,ε1,ε2,γ3)1̇ is connected.

Proof. We can prove this proposition in a way similar to Proposition 1.1.3
by replacing HC by CC .

We define a submanifold (MC)w3,ε1 of the Freudenthal manifold MC by

(MC)w3,ε1 = {P ∈ PC |P × P = 0, w3P = P, ε1P = P, P �= 0}

=

{
P = (X, Y, ξ, η) ∈ PC

∣∣∣∣∣ X ∨ Y = 0, X × X = ηY, Y × Y = ξX,

(X, Y ) = 3ξη, X, Y ∈ J(3, CC), P �= 0

}
.

Proposition 1.3.4. (E7
C)w3,ε1,ε2,γ3/((E7

C)w3,ε1,ε2,γ3)1̇ � (MC)w3,ε1 .
In particular, the group (E7

C)w3,ε1,ε2,γ3 is connected.

Proof. We can prove this proposition in a way similar to Proposition 1.1.5
by replacing HC by CC .
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Proposition 1.3.5. The center of z((E7
C)w3,ε1,ε2,γ3) of the group

(E7
C)w3,ε1,ε2,γ3 is the cyclic group of order 6:

z((E7
C)w3,ε1,ε2,γ3) = {1, w3, w3

2,−1,−w3,−w3
2} = Z6.

Proof. Let α ∈ z((E7
C)w3,ε1,ε2,γ3). Note that φ1(θ), λ ∈ (E7

C)w3,ε1,ε2,γ3 .
Then by the same argument as in Proposition 1.1.6, we have

α1̇ = (0, 0, ξ, 0), ξ = 1 or ξ = −1.

(i) Case ξ = 1. Since α1̇ = 1̇ and α1. = 1. , we see α ∈ E6
C . Hence

α ∈ z((E6
C)w3,ε1,ε2,γ3).

Since (E6
C)w3,ε1,ε2,γ3 = SU(3, CC) × SU(3, CC) (Proposition 1.3.1), we have

z((E6
C)w3,ε1,ε2,γ3) = z(ϕ3,r(SU(3, CC) × SU(3, CC)))

= {ϕ3,r(wE, w′E) |w, w′ ∈ C, w3 = w′3 = 1}.
We shall find the the condition ϕ3,r(wE, w′E) ∈ z((E7

C)w3,ε1,ε2,γ3 . For this
end, we shall find the condition that ϕ3,r(wE, w′E) commutes with all elements
Φ(φ, A, B, ν) ∈ (e7C)w3,ε1,ε2,γ3 , that is,

ϕ3,r(wE, w′E)Φ(φ, A, B, ν) = Φ(φ, A, B, ν)ϕ3,r(wE, w′E).

Hence, for all φ ∈ (e6C)w3,ε1,ε2,γ3 , A, B ∈ J(3, CC) (Lemma 1.3.2.(1)), we have
ϕ3,r(wE, w′E)φ ϕ3,r(wE, w′E)−1 = φ · · · · · · (1)
ϕ3,r(wE, w′E)A = A · · · · · · (2)
τϕ3,r(wE, w′E)τB = B · · · · · · (3).

From the condition (2),

ϕ3,r(wE, w′E)A = h(wE, w′E)Ah(wE, w′E)∗

= h(wE, w′E)Ah(w′E, wE) = (ι(ww′) + ι(w′w))A,

we have ι(ww′) + ι(w′w) = 1. This relation implies ww′ = 1, that is, w = w′ =
1, w1 or w1

2. We get the same result from the condition (2). Furthermore,
from ϕ3,r(wE, w′E) = ϕ3,r(w1E, w1E) = w3

2, the condition (1) is clear. Thus
we see that an element of z((E7

C)ε1,ε2,γ3,w3) is either one of the following

ϕ3,r(E, E) = 1, ϕ3,r(w1E, w1E) = w3
2, ϕ3,r(w1

2E, w1
2E) = w3.

(ii) Case ξ = −1. By a similar argument as (i), we see that an element of
z((E7

C)w3,ε1,ε2,γ3) is either one of the following

−ϕ3,r(E, E) = −1, −ϕ3,r(w1E, w1E) = −w3
2, −ϕ3,r(w1

2E, w1
2E) = −w3.

Thus we have z((E7
C)w3,ε1,ε2,γ3) ⊂ {1, w3, w3

2,−1,−w3,−w3
2}. The con-

verse inclusion is trivial. Therefore we have z((E7
C)w3,ε1,ε2,γ3) = {1, w3, w3

2,
−1,−w3,−w3

2} = Z6.
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Proposition 1.3.6. (e7C)w3,ε1,ε2,γ3 ∼= su(6, CC).

Proof. The mappings φC : su(3, CC) ⊕ su(3, CC) → e6
C and hC : M(3,

CC) → J(3, CC) are defined by

φC(A, B)X = h(A, B)X + Xh(A, B)∗, X ∈ J(3, CC),

hC(L) =
L∗ + L

2
+ ie1

L∗ − L

2
= ιL∗ + ιL, ι =

1 + ie1

2
,

respectively. Now, the mapping ϕ∗ : su(6, CC) → (e7C)w3,ε1,ε2,γ3

ϕ∗

((
B L

−L∗ C

)
+

ν

3

(
E 0
0 −E

))
= Φ(φC(B, C), hC(L),−τhC(L),−ie1ν),

where B, C ∈ su(3, CC), L ∈ M(3, CC), ν ∈ e1C, gives the isomorphism (see
[2] for details).

Proposition 1.3.7. (E7
C)w3,ε1,ε2,γ3 ∼= SU(6, CC).

Proof. The group (E7
C)w3,ε1,ε2,γ3 is connected (Proposition 1.3.4).

Hence, from Proposition 1.3.6, the group (E7
C)w3,ε1,ε2,γ3 is isomorphic to either

one of the following groups

SU(6, CC), SU(6, CC)/Z2, SU(6, CC)/Z3 or SU(6, CC)/Z6.

Since z((E7
C)w3,ε1,ε2,γ3) = Z6 (Proposition 1.3.5), it cannot but become that

(E7
C)w3,ε1,ε2,γ3 ∼= SU(6, CC).

Lemma 1.3.8. In the Lie algebra e7
C , the Lie algebra su(3, CC) of the

Lie group SU(3, CC) = ϕ3,l(SU(3, CC)) is given by

su(3, CC) =
{
Φ(D, 0, 0, 0) ∈ e7

C
∣∣

D =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 d23 d24 d25 d26 d27

0 0 −d23 0 −d25 d24 −d27 d26

0 0 −d24 d25 0 d45 d46 d47

0 0 −d25 −d24 −d45 0 −d47 d46

0 0 −d26 d27 −d46 d47 0 d67

0 0 −d27 −d26 −d47 −d46 −d67 0


∈ so(8, C),

dij ∈ C, d23 + d45 + d67 = 0
}

.

Now we will prove the main theorem of this section by using the prepara-
tions above.

Theorem 4.1.3. (E7
C)ed

∼= (SL(3, C) × SL(6, C))/Z3, Z3 = {(E, E),
(ωE, ωE), (ω2E, ω2E)}, where ω = e2πi/3.
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Proof. We define a mapping ϕw3 : SU(3, CC)×SU(6, CC) → (E7
C)w3 =

(E7
C)ed by

ϕw3(A, β) = ϕ3,l(A)β.

ϕw3 is well-defined because ϕ3,l(A) ∈ (E7
C)w3 and β ∈ SU(6, CC) ∼=

(E7
C)w3,ε1,ε2,γ3 (Proposition 1.3.7) ⊂ (E7

C)w3 . Any Φ1 ∈ su(3, CC) commutes
with any Φ2 ∈ su(6, CC) : [Φ1, Φ2] = 0 (Lemma 1.3.2.(1) and Lemma 1.3.8) and
groups SU(3, CC) and SU(6, CC) are connected, so ϕ3,l(A) commutes with β
: ϕ3,l(A)β = βϕ3,l(A). Hence ϕw3 is a homomorphism. It is obtained that
Ker ϕw3 = {(E, 1), (w1E, ϕ3,l(w1

2E)), (w1
2E, ϕ3,l(w1E))} (in SU(3, CC) ×

(E7
C)w3,ε1,ε2,γ3) ∼= {(E, E), (w1E, w1E), (w1

2E, w1
2E)} (in SU(3, CC)×SU(6,

CC)) = Z3. Moreover dimC(su(3, CC) ⊕ su(6, CC)) = 8 + 35 = 43 =
39 + 2 × 2 = dimC((e7C)ed) (Theorem 4.1) = dimC((e7C)w3), hence ϕw3 is
onto. Thus we have the required isomorphism

(E7
C)w3 ∼= (SU(3, CC) × SU(6, CC))/Z3,

Z3 = {(E, E), (w1E, w1E), (w1
2E, w1

2E)}.

Since the group SU(6, CC) is isomorphic to SL(6, C) under the mapping

f : SL(6, C) → SU(6, CC), f(A) = ιA + ι tA−1, ι =
1 + ie1

2
,

we have the isomorphism (E7
C)w3 ∼= (SL(3, C)×SL(6, C))/Z3, Z3 = {(E, E),

(ωE, ωE), (ω2E, ω2E)}. Note that ωE is transformed to w1E under the iso-
morphism f .

4.2. Subgroups of type A1(1) ⊕D6(6), A1(1) ⊕R⊕A5(5) and A2(2)⊕ A5(5)

of E7(7)

Since (e7(7))ev = (e7C)ev ∩ (e7C)τγ1 = (e7C)γ ∩ (e7C)τγ1 , (e7(7))0 = (e7C)0∩
(e7C)τγ1 = (e7C)δ4 ∩ (e7C)τγ1 , (e7(7))ed = (e7C)ed ∩ (e7C)τγ1 = (e7C)w3 ∩
(e7C)τγ1 , we shall determine the structures of groups

(E7(7))ev = (E7
C)ev ∩ (E7

C)τγ1 = (E7
C)γ ∩ (e7C)τγ1 ,

(E7(7))0 = (E7
C)0 ∩ (E7

C)τγ1 = (E7
C)δ4 ∩ (E7

C)τγ1 ,

(E7(7))ed = (E7
C)ed ∩ (E7

C)τγ1 = (E7
C)w3 ∩ (E7

C)τγ1 .

Theorem 4.2. (1) (E7(7))ev
∼= (SL(2, R)× spin(6, 6))/Z2×{1, γ}, Z2

= {(E, 1), (−E, γ)}.
(2) (E7(7))0 ∼= (SL(2, R) × R+ × SL(6, R))/Z2 × {1, γ, γ′, γγ′}, Z2 =

{(E, 1, E), (−E, 1,−E)}.
(3) (E7(7))ed

∼= SL(3, R) × SL(6, R).
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Proof. (1) For α ∈ (E7(7))ev ⊂ (E7
C)ev = (E7

C)γ , there exist p ∈
Sp(1, HC) and β ∈ Spin(12, C) such that α = ϕγ(p, β) = ϕ2,l(p)β (Theorem
4.1.1). From the condition τγ1αγ1τ = α, that is, τγ1ϕ2,l(p)βγ1τ = ϕ2,l(p)β,
we have ϕ2,l(τγ1p)τγ1βγ1τ = ϕ2,l(p)β. Hence{

τγ1p = p

τγ1βγ1τ = β
or

{
τγ1p = −p

τγ1βγ1τ = γβ.

In the former case, from τγ1p = p, we have p ∈ Sp(1, H ′). The group {β ∈
Spin(12, C) | τγ1βγ1τ = β} = Spin(12, C)τγ1 = (E7

C)ε1,ε2,τγ1 acts on the R-
vector space

V 6,6 = {P ∈ PC | ε1P = −iP, τγ1P = P}

=


 0 x3 x2

x3 0 x1

x2 x1 0

,

 0 y3 y2

y3 0 y1

y2 y1 0

, 0, 0

∣∣∣∣ xk, yk ∈ (HCe4)ε1,τγ1

 ,

with the norm

(P, P )ε2 =
1
8
{P, ε2P},

where (HCe4)ε1,τγ1 = {x ∈ CC |x = p(e4+ie5)+q(e6−ie7), p, q ∈ R}. Since
Spin(12, C) is simply connected, Spin(12, C)τγ1 is connected, so we can define
a homomorphism π : Spin(12, C)τγ1 → O(V 6,6)0 = O(6, 6)0 (which is the
connected component subgroup of O(6, 6)) by π(α) = α|V 6,6. It is easily ob-
tained that Kerπ = {1,−γ}. Moreover dim(spin(12, C)τγ1) = dim((e7(7))ev) −
dim(sp(1, H ′)) = 39+15×2−3 (Theorem 4.1) = 66 = dim(o(6, 6)), hence π is
onto. Therefore Spin(12, C)τγ1 is denoted by spin(6, 6) as a covering group of
O(6, 6)0. Therefore the group of the former case is (Sp(1, H ′) ×spin(6, 6))/Z2

(Z2 = {(1, 1), (−1, γ)}) ∼= (SL(2, R) × spin(6, 6))/Z2, Z2 = {(E, 1), (−E, γ)}.
In the latter case, p = e1, β = ε1 satisfy the conditions, and ϕγ(e1, ε1) =
ϕ2(e1e1, 1) = ϕ2(−1, 1) = γ. Thus we have the required isomorphim (E7(7))ev

∼=
(SL(2, R) × spin(6, 6))/Z2 × {1, γ}, Z2 = {(E, 1), (−E, γ)}.

(2) For α ∈ (E7(7))0 ⊂ (E7
C)0 = (E7

C)δ4 , there exist p ∈ Sp(1, HC), a ∈
C∗ and β ∈ SL(6, C) such that α = ϕδ4(p, a, β) = ϕ2,l(p)ζ(p)β (Theorem
4.1.2). Note that τγ1ϕ2,l(p)γ1τ = ϕ2,l(τγ1p) and τγ1ζ(a)γ1τ = τγ1ϕ4,r(h(a)E)
γ1τ = ϕ4,r(h(τγ1aγ1τ )E) = ϕ4,r(h(τa)E) = ζ(τa). Now, from the condition
τγ1αγ1τ = α, that is, τγ1ϕ2,l(p)ζ(a)βγ1τ = ϕ2,lζ(a)β, we have ϕ2,l(τγ1p)ζ(τa)
τγ1βγ1τ = ϕ2,l(p)ζ(a)β. Hence
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(i)


τγ1p = p

ζ(τa) = ζ(a)

τγ1βγ1τ = β,

(ii)


τγ1p = −p

ζ(τa) = ζ(a)

τγ1βγ1τ = γβ,

(iii)


τγ1p = p

ζ(τa) = γζ(a)

τγ1βγ1τ = γβ,

(iv)


τγ1p = −p

ζ(τa) = γζ(a)

τγ1βγ1τ = β,

(v)



τγ1p = p

ζ(τa) = ζ(±ωk)ζ(a)

τγ1βγ1τ = ζ(±ω−k)β

k = 1, 2,

(vi)



τγ1p = −p

ζ(τa) = ζ(±ωk)ζ(a)

τγ1βγ1τ = ζ(±ω−k)γβ

k = 1, 2.

Case (i) From τγ1p = p, we have p ∈ Sp(1, H ′), and from ζ(τa) = ζ(a),
that is, τa = a, hence we have a ∈ R∗. To determine the structure of the group
{β ∈ SL(6, C) | τγ1βγ1τ = β} = SL(6, C)τγ1 , consider an R-vector space

V 6 = {P ∈ (V C)6 | τγ1P = P}

and let GL(6, R) = IsoR(V 6). Then by the correspondence

α ∈ IsoC((V 6)C)τγ1 → α |V 6 ∈ IsoR(V 6),

we have the isomorphism IsoC((V 6)C)τγ1 ∼= IsoR(V 6), so that GL(6, C)τγ1

∼= GL(6, R) and so we have SL(6, C)τγ1 ∼= SL(6, R). Hence for α ∈ (E7(7))0,
there exist p ∈ Sp(1, H ′), a ∈ R∗ and β ∈ SL(6, R) such that α = ϕδ4(p, a, β).
Denote the group of (i) by G(i). The mapping ϕδ4 : Sp(1, H ′)×R∗×SL(6, R)

→ G(i) is a surjective homomorphism and Ker ϕδ4 = {(1, 1, 1), (−1,−1, 1)} ×
{(1, 1, 1), (−1, 1, γ)} = Z2 × Z2. Therefore we have the isomorphism G(i) ∼=
(Sp(1, H ′) × R∗ × SL(6, R))/(Z2 × Z2) ∼= (Sp(1, H′) × R+ × SL(6, R))/Z2

(Z2 = {(1, 1, 1), (−1, 1, γ)}) ∼= (SL(2, R) × R+ × SL(6, R))/Z2, Z2 = {(E, 1,
E), (−E, 1,−E)}.

Case (ii) ϕδ4(e1, 1, δ4) = ϕ2(e1, 1)ϕ2(1,−e1) = ϕ2(e1,−e1) = γγ′.
Case (iii) ϕδ4(1, i, δ4) = ϕ2(1,−e1)ϕ2(1,−e1) = ϕ2(1,−1) = γ.
Case (iv) ϕδ4(e1,−i, 1) = ϕ2(e1, 1)ϕ2(1, e1) = ϕ2(e1, e1) = γ′.
Cases (v) and (vi) are impossible. Because there exists no element a ∈ C∗

satisfying the condition τa = (±ωk)a for k = 1, 2.
Thus we have the required isomorphism (E7(7))0 ∼= (SL(2, R)×R+×SL(6, R))
/Z2 × {1, γ, γ′, γγ′}, Z2 = {(E, 1, 1), (−E, 1,−E)}.

(3) For α ∈ (E7(7))ed ⊂ (E7
C)ed = (E7

C)w3 , there exist A ∈ SU(3, CC)
and β ∈ SU(6, CC) such that α = ϕw3(A, β) = ϕ3,l(A)β (Theorem 4.1.3).
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From τγ1αγ1τ = α, that is, τγ1ϕ3,l(A)βγ1τ = ϕ3,l(A)β, we have ϕ3,l(τγ1A)τγ1

βγ1τ = ϕ3,l(A)β. Hence

(i)

{
τγ1A = A

τγ1βγ1τ = β,
(ii)

{
τγ1A = w1A

τγ1βγ1τ = w1β,

(iii)

{
τγ1A = w1

2A

τγ1βγ1τ = w1
2β.

Case (i) From τγ1A = A, we have A ∈ SU(3, C′). To determine the structure
of the group {β ∈ SU(6, CC) | τγ1βγ1τ = β} = SU(6, CC)τγ1 , we use the
following fact.

(e7C)w3,ε1,ε2,γ3,τγ1 ∼= su(6, C′).

In fact, since the C-Lie isomorphism ϕ∗ : su(6, CC) → (e7C)w3,ε1,ε2,γ3 of Propo-
sition 1.3.6 satisfies

τγ1ϕ∗

((
B L

−L∗ C

)
+

ν

3

(
E 0
0 −E

))
γ1τ

= ϕ∗

(
τγ1

((
B L

−L∗ C

)
+

ν

3

(
E 0
0 −E

)))
,

ϕ∗ induces a Lie isomorphism ϕ′∗ : su(6, C′) → (e7C)w3,ε1,ε2,γ3,τγ1 ,

ϕ′
∗

((
B L

−L∗ C

)
+

ν

3

(
E 0
0 −E

))
= Φ(φC(B, C), hC(L),−τhC(L),−ie1ν),

B, C ∈ su(3, C′), L ∈ M(3, C′), ν ∈ e1(iR). Therefore we have the required
isomorphism su(6, C′) ∼= (e7C)w3,ε1,ε2,γ3,τγ1 .

Now, the group (E7
C)w3,ε1,ε2,γ3,τγ1 is connected (because (E7

C)w3,ε1,ε2,γ3

∼= SU(6, CC) (Proposition 1.3.7) ∼= SL(6, C) is simply connected). Further-
more (e7C)w3,ε1,ε2,γ3,τγ1 = su(6, C′), hence the group (E7

C)w3,ε1,ε2,γ3,τγ1 is
isomorphic to either one of the groups

SU(6, C′) or SU(6, C′)/Z2.

Moreover, since it is easily obtained that z((E7
C)w3,ε1,ε2,γ3,τγ1) ⊃ {1,−1} ∼=

Z2, we have

(E7
C)w3,ε1,ε2,γ3,τγ1 ∼= SU(6, C′).

Therefore the group of case (i) is SU(3, C′) × SL(6, C′).

Case (ii) ϕw3(w1E, w1E) = 1.

Case (iii) ϕw3(w1
2E, w1

2E) = 1.

Thus we have the required isomorphism (E7(7))ed
∼= SU(3, C′) × SU(6, C′)

∼= SL(3, R) × SL(6, R).
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4.3. Subgroups of type A1(1)⊕D6(−6), A1(1)⊕R⊕A5(−7) and A2(2)⊕A5(−7)

of E7(−5)

Since γ and γ1 are conjugate in (G2
C)τ ⊂ (E7

C)τλ ⊂ E7
C , we have

E7(−5) = (E7
C)τλγ ∼= (E7

C)τλγ1 .

Theorem 4.3. The 3-graded decomposition of the Lie algebra e7(−5)

= (e7C)τλγ1 ( or e7
C),

e7(−5) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ, Z = Φ(i(−2G23 + G45 + G67), 0, 0, 0), is given by

g0 =


iG01, iG23, iG45, G46, iG47, iG67

Ãk(1), iÃk(ei), i(E1 − E2)∼, i(E2 − E3)∼, iF̃k(1), F̃k(e1)

Ěk − Êk, i(Ěk + Êk), F̌k(1) − F̂k(1), i(F̌k(1) + F̂k(1)),
F̌k(e1) + F̂k(e1), i(F̌k(e1) − F̂k(e1)), k = 1, 2, 3, i1

 39

g−1 =



G04 + iG05, G06 + iG07, iG14 − G15, iG16 − G17,

(G24 − G35) − i(G25 + G34), (G26 − G37) − i(G27 + G36),

Ãk(e4 + ie5), Ãk(e6 + ie7), iF̃k(e4 + ie5), iF̃k(e6 + ie7),

F̌k(e4 + ie5) − F̂k(e4 + ie5), i(F̌k(e4 + ie5) + F̂k(e4 + ie5)),

F̌k(e6 + ie7) − F̂k(e6 + ie7), i(F̌k(e6 + ie7) + F̂k(e6 + ie7)),
k = 1, 2, 3

 30

g−2 =


G02 − iG03, iG02 + G13, (G46 − G57) + i(G47 + G56),
Ãk(e2 − ie3), F̌k(e2 − ie3) − F̂k(e2 − ie3),

F̃k(e2 − ie3), i(F̌k(e2 − ie3) + F̂k(e2 − ie3)), k = 1, 2, 3

 15

g−3 =
{

(G24 + G35) + i(G25 − G34), (G26 + G37) + i(G27 − G36)
}

2
g1 = τ (g−1)τ, g2 = τ (g−2)τ, g3 = τ (g−3)τ

Proof. We can prove this theorem in a way similar to [6, Theorem 4.13],
using [6, Lemma 4.12].

Since (e7(−5))ev = (e7C)ev ∩ (e7C)τλγ1 = (e7C)γ ∩ (e7C)τλγ1 , (e7(−5))0 =
(e7C)0 ∩ (e7C)τλγ1 = (e7C)δ4 ∩ (e7C)τλγ1 , (e7(−5))ed = (e7C)ed ∩ (e7C)τλγ1 =
(e7C)w3 ∩ (e7C)τλγ1 , we shall determine the structures of groups

(E7(−5))ev = (E7
C)ev ∩ (E7

C)τλγ1 = (E7
C)γ ∩ (E7

C)τλγ1 ,

(E7(−5))0 = (E7
C)0 ∩ (E7

C)τλγ1 = (E7
C)δ4 ∩ (E7

C)τλγ1 ,

(E7(−5))ed = (E7
C)ed ∩ (E7

C)τλγ1 = (E7
C)w3 ∩ (E7

C)τλγ1 .

Theorem 4.3.1. (1) (E7(−5))ev
∼= (SL(2, R)×spin∗(12))/Z2×{1, γγ′},

Z2 = {(E, 1), (−E, γ)}.
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(2) (E7(−5))0 ∼= (SL(2, R) × R+ × SU∗(6))/Z2 × {1, γ, γ′, γγ′}, Z2 =
{(E, 1, E), (−E, 1,−E)}.

(3) (E7(−5))ed
∼= SL(3, R) × SU∗(6).

Proof. (1) For α ∈ (E7(−5))ev ⊂ (E7
C)ev = (E7

C)γ , there exist p ∈
Sp(1, HC) and β ∈ Spin(12, C) such that α = ϕγ(p, β) = ϕ2,l(p)β (Theorem
4.1.1). From the condition τλγ1αγ1λ

−1τ = α, that is, τλγ1ϕ2,l(p)βγ1λ
−1τ =

ϕ2,l(p)β, we have ϕ2,l(τγ1p)τλγ1βγ1λ
−1τ = ϕ2,l(p)β. Hence{

τγ1p = p

τλγ1βγ1λ
−1τ = β

or

{
τγ1p = −p

τλγ1βγ1λ
−1τ = γβ.

In the former case, from τγ1p = p, we have p ∈ Sp(1, H ′). In order to de-
termine the structure of the group {β ∈ Spin(12, C) | τλγ1βγ1λ

−1τ = β} =
Spin(12, C)τλγ1 = (E7

C)ε1,ε2,τλγ1 , we consider a C-vector space

(V C)12 = {P ∈ PC | ε1P = −iP}

=

P =

 0 x3 x2

x3 0 x1

x2 x1 0

,

 0 y3 y2

y3 0 y1

y2 y1 0

, 0, 0

∣∣∣ xk, yk ∈ (He4)ε1

 ,

with norms

(P, P )ε2 =
1
8
{P, ε2P}, (P, P )τλγ1,ε2 =

1
4
{τλγ1P, ε2P},

where (He4)ε1 = {x ∈ CC |x = p(e4+ie5)+q(e6−ie7), p, q ∈ C}. The explicit
forms of (P, P )ε2 and (P, P )τλγ1,ε2 for P ∈ (V C)12, xk = pk(e4 + ie5) + qk(e6 −
ie7), yk = sk(e4 + ie5) + tk(e6 − ie7), k = 1, 2, 3 are given by

(P, P )ε2 = (p1t1 − q1s1) + (p2t2 − q2s2) + (p3t3 − q3s3),

(P, P )τλγ1,ε2 =
1
2
(
(τp1)q1 − (τq1)p1 + (τp2)q2 − (τq2)p2 + (τp3)q3 − (τq3)p3

+ (τs1)t1 − (τt1)s1 + (τs2)t2 − (τt2)s2 + (τs3)t3 − (τt3)s3

)
,

respectively. By the following coordinate transformation (mk ∈ C){
p1 = m1 + im2, t1 = m1 − im2,

q1 = m3 + im4, s1 = −m3 + im4,{
p2 = m5 + im6, t2 = m5 − im6,

q2 = m7 + im8, s2 = −m7 + im8,{
p3 = m9 + im10, t3 = m9 − im10,

q3 = m11 + im12, s3 = −m11 + im12,
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we have

(P, P )ε2 = m1
2 + m2

2 + · · · + m11
2 + m12

2 = tmm,

(P, P )τλγ1,ε2 = (τm1)m3 − (τm3)m1 + (τm2)m4 − (τm4)m2 + · · ·
+ (τm9)m11 − (τm11)m9 + (τm10)m12 − (τm12)m10

= t(τm)J ′ m,

where m = t(m1, m2, . . . , m12), J ′ =

Q 0 0
0 Q 0
0 0 Q

 , Q =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

.

This shows that we have an isomorphism

{α ∈ IsoC((V C)12) | (αP, αP )ε2 = (P, P )ε2 , (αP, αP )τλγ1,ε2 = (P, P )τλγ1,ε2}
∼= {A ∈ M(12, C) | tAA = E, J ′A = (τA)J ′}.

Since

O∗(12) = O∗((V C)12) = {A ∈ M(12, C) | tAA = E, JA = (τA)J}
∼= {A ∈ M(12, C) | tAA = E, J ′A = (τA)J ′},

we have

O∗(12) ∼=
{α ∈ IsoC((V C)12) | (αP, αP )ε2 = (P, P )ε2 , (αP, αP )τλγ1,ε2 = (P, P )τλγ1,ε2}.

Now, since the group Spin(12, C)τλγ1 is connected, we can define a ho-
momorphism π : Spin(12, C)τλγ1 → O∗(12)0 (which is the connected com-
ponent subgroup of O∗(12)) by π(α) = α|(V C)12. dim(spin(12, C)τλγ1) =
dim((e7(−5))ev) − dim(sp(1, H ′)) = 39 + 15 × 2 − 3 (Theorem 4.3) = 66 =
dim(o∗(12)) and Ker π = {1,−γ}. Hence

Spin(12, C)τλγ1/Z2
∼= O∗(12)0.

Thus Spin(12, C)τλγ1 is denoted by spin∗(12) as a double covering group of
O∗(12)0, that is, Spin(12, C)τλγ1 ∼= spin∗(12). Hence the group of the former
case is (Sp(1, H′) × spin∗(12))/Z2 (Z2 = {(1, 1), (1,−γ)}) ∼= (SL(2, R) ×
spin∗(12))/Z2, Z2 = {(E, 1), (−E, γ)}. In the latter case, p = e1, β = δ4 satisfy
these conditions and ϕγ(e1, δ4) = γγ′. Therefore (E7(−5))ev

∼= (SL(2, R) ×
spin∗(12))/Z2 × {1, γγ′}, Z2 = {(E, 1), (−E, γ)}.

(2) For α ∈ (E7(−5))0 ⊂ (E7
C)0 = (E7

C)δ4 , there exist p ∈ Sp(1, HC), a ∈
C∗ and β ∈ SL(6, C) such that α = ϕδ4(p, a, β) = ϕ2,l(p)ζ(a)β (Theorem
4.1.2). From the condition τλγ1αγ1λ

−1τ = α, that is, τλγ1ϕ2,l(p)ζ(a)βγ1λ
−1τ
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= ϕ2,l(p)ζ(a)β, we have ϕ2,l(τγ1p)ζ(τa)τλγ1βγ1λ
−1τ = ϕ2,l(p)ζ(a)β. Hence

(i)


τγ1p = p

ζ(τa) = ζ(a)

τγ1λβγ1λ
−1τ = β,

(ii)


τγ1p = −p

ζ(τa) = ζ(a)

τγ1λβγ1λ
−1τ = γβ,

(iii)


τγ1p = p

ζ(τa) = γζ(a)

τγ1λβλ−1γ1τ = γβ,

(iv)


τγ1p = −p

ζ(τa) = γζ(a)

τγ1λβγ1λ
−1τ = β,

(v)



τγ1p = p

ζ(τa) = ζ(±ωk)ζ(a)

τγ1λβγ1λ
−1τ = ζ(±ω−k)β

k = 1, 2,

(vi)



τγ1p = −p

ζ(τa) = ζ(±ωk)ζ(a)

τγ1λβγ1λ
−1τ = ζ(±ω−k)γβ

k = 1, 2.

Case (i) From τγ1p = p, we have p ∈ Sp(1, H ′), and from ζ(τa) =
ζ(a), we have a ∈ R∗. We will determine the structure of the group {β ∈
SL(6, C) | τλγ1βγ1λ

−1τ = β} = SL(6, C)τλγ1 . For this end, consider the cor-
respondence

(V C)6 �
 0 p3(e4 + ie5) −p2(e4 + ie5)

−p3(e4 + ie5) 0 p1(e4 + ie5)
p2(e4 + ie5) −p1(e4 + ie5) 0

 ,

 0 s3(e4 + ie5) −s2(e4 + ie5)
−s3(e4 + ie5) 0 s1(e4 + ie5)
s2(e4 + ie5) −s1(e4 + ie5) 0

 , 0, 0

→


p1

s1

p2

s2

p3

s3

 ∈ C6.

Under this correspondence, the actions λ and τγ1 on (V C)6 correspond to the
actions J and τ on C6, respectively. Let B ∈ M(6, C) be the matrix corresponds
to β ∈ SL(6, C), then we see that the condition λτγ1βτγ1λ

−1 = β corresponds
to the condition J(τB)J−1 = B, that is, JB = (τB)J . Hence we have

β ∈ SL(6, C)τλγ1 ∼= SU∗(6) = {B ∈ M(6, C) | JB = (τB)J, detB = 1}.

Thus we see that for α ∈ (E7(−5))0, there exist p ∈ Sp(1, H ′), a ∈ R∗ and
β ∈ SU∗(6) such that α = ϕδ4(p, a, β). As similar to Theorem 4.2.(2), the
group of (i) is isomorphic to (Sp(1, H′)×R∗×SU∗(6))/(Z2×Z2) (Z2×Z2 =
{(1, 1, 1), (−1,−1, 1)}×{(1, 1, 1), (−1, 1, γ)}) ∼= (Sp(1, H′)×R+×SU∗(6))/Z2

(Z2 = {(1, 1, 1), (−1, 1, γ)}) ∼= (Sp(1, H ′)×R+ ×SU∗(6))/Z2 (Z2 = {(1, 1, 1),
(−1, 1, γ)}) ∼= (SL(2, R)×R+ ×SU∗(6))/Z2, Z2 = {(E, 1, E), (−E, 1,−E)}.

Case (ii) ϕδ4(e1, 1, δ4) = γγ′.

Case (iii) ϕδ4(1, i, δ4) = γ.

Case (iv) ϕδ4(e1,−i, 1) = γ′.
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Cases (v) and (vi) are impossible. Because there exists no a ∈ C∗ satisfying
the condition τa = (±ωk)a for k = 1, 2.
Thus we have the required isomorphism (E7(−5))0 ∼= ((SL(2, R)×R+×SU∗(6))
/Z2 × {1, γ, γ′, γγ′}, Z2 = {(E, 1, E), (−E, 1,−E)}.

(3) For α ∈ (E7(−5))ed ⊂ (E7
C)ed = (E7

C)w3 , there exist A ∈ SU(3, CC)
and β ∈ SU(6, CC) such that α=ϕw3(A, β) = ϕ3,l(A)β (Theorem 4.1.3). From
the condition τλγ1αγ1λ

−1τ = α, that is, τλγ1ϕ3,l(A)βγ1λ
−1τ = ϕ3,l(A)β, we

have ϕ3,l(τγ1A)τλγ1βγ1λ
−1τ = ϕ3,l(A)β. Hence

(i)

{
τγ1A = A

τλγ1βγ1λ
−1τ = β,

(ii)

{
τγ1A = w1A

τλγ1βγ1λ
−1τ = w1β,

(iii)

{
τγ1A = w1

2A

τλγ1βγ1λ
−1τ = w1

2β.

Case (i) From τγ1A = A, we have A ∈ SU(3, C′). From the proof of (2)
above, we see β ∈ SU∗(6). Therefore the group of (i) is SU(3, C′)× SU∗(6) ∼=
SL(3, R) × SU∗(6).

Case (ii) ϕw3(w1E, w1E) = 1.

Case (iii) ϕw3(w1
2E, w1

2E) = 1.

Thus we have the required isomorphism (E7(−5))ed
∼= SU(3, C′) × SU∗(6) ∼=

SL(3, R) × SU∗(6).
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