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Necessary and sufficient conditions such that
extended mean values are Schur-convex or

Schur-concave

By

Yuming CHU and Xiaoming ZHANG

In the article, established are necessary and sufficient conditions
such that the extended mean values are Schur-convex and Schur-concave.

1. Introduction

The histories of mean values and inequalities are long [3]. The mean values
are related to the Mean Values Theorems for derivative or for integral, which
are the bridge between the local and global properties of functions (cf. [4]). The
arithmetic-mean-geometric-mean inequality is probably the most important in-
equality, and certainly a keystone of the theory of inequalities [1]. Inequalities
of mean values are one of the main parts of theory of inequalities, they have
explicit geometric meanings [4]. The theory of mean values plays an important
role in the whole mathematics, since many norms in mathematics are always

means (cf. [4]).

In 1975, the extended mean values E(r,s;x,y) were defined in [13] by

K. B. Stolarsky as follows.
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Here z,y > 0 and r,s € R.

Tt is easy to see that the extended mean values F(r, s;x,y) are continuous
on the domain {(r,s;x,y) | r,s € R;z,y > 0}.

They are of symmetry between r and s and between x and .

Many basic properties have been researched by E. B. Leach and
M. C. Sholander in [6].

Study of E(r,s;x,y) is not only interesting but also important, because
most of the two-variables mean values are special cases of E(r, s;x,y) and it is
challenging to study a function whose formulation is so indeterminate [8].

Let 2 C R™ be a symmetric convex set with nonempty interior. A real-
valued function f on € is called a Schur-convex function if f(z) < f(y) for each
two n-tuples = = (£1,%2,...,Zn), ¥ = (Y1, Y2, - - -, Yn) €  such that <y, i.e.

k n

k n
Do <>y, D@ =y,
=1 i=1

i=1 i=1

where 1 <k <n —1 and z[; denotes the ith largest component in z.

A real-valued function f is called Schur-concave if — f is Schur-convex.

The theory of Schur-convex functions is one of the most important the-
ory in the fields of inequalities. It can be used in combinatorial optimization
[5], isoperimetric problem for ploytopes [14], linear regression [12], graphs and
matrices [2] and other related fields.

The Schur-convexity of the extended mean values E(r, s; x,y) with respect
to (r,s) and (z,y) are investigated in [9], [10], and [11]. F. Qi first obtained
the following result in [9)].

Theorem A.  For fized (x,y) € (0,00) x (0, 00) with x # y, the extended
mean values E(r, s;x,y) are Schur-concave on [0,+00) x [0,4+00) and Schur-
convex on (—o0,0] x (—o0, 0] with respect to (r,s).

In [10], F. Qi, J. Sédndor, S. S. Dragomir and A. Sofo tried to obtain the
Schur-convexity of the extended mean values E(r, s;x,y) with respect to (x,y)
for fixed (r, s) and declared an incorrect conclusion as follows: For given (r, s)
with r,s & (0,3) (or r,s € (0,1], resp.), the extended mean values E(r, s; z,y)
are Schur-concave (or schur-convex, resp.) with respect to (z,y) on (0,00) X
(0,00). H.-N. Shi, Sh.-H. Wu and F. Qi observed that the above conclusion is
wrong and obtained the following Theorem B in [11].

Theorem B.  For fized (r,s) € R?,

(1) if2 < 2r < s or2<2s<r, then the extended mean values E(r, s;x,y)
are Schur-convexr with respect to (z,y) € (0,00) x (0, 00);

(2) if (rys) e{r<s<2r,0<r<1}U{s<r<250<s<1}U{0<s<
r<1}U{0 <r <s<1}U{s <2r < 0}U{r < 2s < 0}, then the extended mean
values E(r, s;x,y) are Schur-concave with respect to (z,y) € (0,00) x (0,00).

The main purpose of this article is to establish the necessary and sufficient
conditions such that the extended mean values E(r,s;x,y) are Schur-convex
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or Schur-concave with respect to (x,y) for fixed (r,s). Our main result is the
following.

Theorem 1.1.  For fized (r,s) € R?,

(1) the extended mean values E(r,s;x,y) are Schur-convex with respect to
(z,y) € (0,00) x (0,00) if and only if (r,s) € {s>1,r>1,s+r > 3};

(2) the extended mean values E(r,s;x,y) are Schur-concave with respect
to (z,y) € (0,00) x (0,00) if and only if (r,s) € {r < 1,s+7r < 3} U{s <
1,s+r <3}

2. Lemmas

In this section we introduce and establish several lemmas, which are used
in the proof of Theorem 1.1.

Lemma 2.1 ([7]). Let A C R" be a symmelric conver set with non-
empty interior intA, ¢ : A — R is a continuous symmetric function on A. If
@ is differentiable on intA, then ¢ is Schur-convexr on A if and only if

dp Oy
L _ ) >
(xl xj) (8%‘1 83@) =0

for all (x1,22,...,2,) €IntA and 1,5 =1,2,...,n with i # j.

Lemma 2.2. Let s,r € R,s # 0 and f(t) = Z[(s —r)(t5""1 - 1) —
st —t") +r(t"1 — t%)]. Then the following statements hold.

(a) Ifs>r>1and s+r—3>0, then f(t) >0 fort € [1,00);

(b) if s >r > 1 and s+r—3 < 0, then there exist t1,t2 € (1,00) such that
f(t1) >0 and f(t2) <0;

(¢)ifr <1,r 20 and s+ r — 3 > 0, then there exist t3,t4 € (1,00) such
that f(ts) > 0 and f(t4) < 0;

(d)ifs>0,s>r,r<1lands+r—3<0, then f(t) <0 fort e (1,00);

(e) if r < s <0, then f(t) <0 fort € [1,00).

Proof. (a) Let g(t) = t>~"f'(t) and h(t) = t>t7=%¢"(¢), then simple com-
putation yields
(2.1) f(1) =0,
(2.2) F(t) = g(s —r)(s 1 — )2 (s — 1)e5 2

2
o2l T_(r e
S

(2.3) 9(1) = f'(1) =0,
2.4 gty =r(s—7r)(s+r—1)t""!

—r(s=1)(s—mt" 4 =P (s —r+ 1)t
(2.5) g'(1) =0,
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(2.6)
J't)=r(s—r)(s+r—1)(s =)t 2 —r(s—1)(s —r)(s —r — 1)t5"2
—r¥(s—r+1)(s—r)ts!
and

(2.7) R(t)=r*(s—r)(s+r—1)(s—Dt"t —r2(s —r+1)(s — ).

Ifs>r>1,s+r—32>0, then from (2.6) and (2.7) we see that

(2.8) r(1)=g"(1)=r*(s—7r)(s+7r—3)>0
and
(2.9) R'(t) > h'(1) =r%s(s —r)(s+r—3) >0

for t > 1. Then Lemma 2.2(a) follows from (2.1)—(2.9).

(b) If s >r > 1and s+r—3 <0, then /(1) = r2s(s—r)(s+r—3) < 0 by
(2.7), this and the continuity of h'(¢) imply that there exists §; > 0 such that
R'(t) < 0 for t € [1,1+61). Hence h(t) < h(1) = r2(s —7r)(s +7 —3) < 0 for
t€[1,146;1), from (2.1)-(2.5) we clearly see that f(t) <0 for ¢t € (1,1+ d1).

On the other hand, it is easy to see that tEHlOO f(t) = 4+o00. Hence Lemma

2.2(b) is true.

(c)fr<1l,r#0and s+r—3 >0, then s > r,s > 0 and h'(1) =
r2s(s —r)(s +7 —3) > 0 by (2.7). The continuity of A’(#) implies that there
exists d; > 0 such that h'(t) > 0 for ¢ € [1,1 4 d2), this leads to h(t) > h(1) =
g'"(1)=r3(s—r)(s+r—3)>0fort € (1,1+d,), from (2.1)-(2.5) we see that
f(t)>0forte (1,14 d9).

On the other hand, it is easy to see that tiigloo f(t) = —oco. Hence Lemma

2.2(c) is true.

(d)Ifs>0,s>rr<l,s+r—3<0andt?€[l,o0). Then we claim that
R/ (t) <0, and from this we can get Lemma 2.2(d) by a similar argument as in
Lemma 2.2(a). In fact, if (s+r —1)(s — 1) > 0, then clearly (2.7) gives that

R'(t) <KW (1) =r?s(s —r)(s+7r—3) <0;
if (s+7—1)(s—1) <0, then again (2.7) yields that
R'(t) < —r?(s —r4+1)(s —7) <0.

(e) If r < s < 0,t > 1. Let fi(t) = t=57"F1f(t), fo(t) = t' 5 f{(t) and
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f3(t) = t=str+2£(t), then simple computation yields

(2.10) fi(1) =f(1) =0,
(2.11) FI(t) = —g(s ) (s =+ )T 2]
+r(—s+ 1)t =2t - g(—r + 1),
(2.12) (1) = (1) =0,
(2.13) 5(t) = —g(s ) (—s—r 4+ D)1= )t 4 (s — )t
+r(—s+1)— ;(77“ + D1 +s—r)t° ",
(2.14) f2(1) =0,
(2.15)
J) = —(s—r)(=s —r+ DA =)t 41 (s =) (s —r = T
— %(—r + 1)1 +s—7r)(s—r)ts7L
(2.16) f3(1) = ff (1) =r*(s—r)(s+r—3) <0,
and
(2.17)
) = =(s=m)(=s —r+ DL =r)(L =)t~ = —(=r+ (1 +s—r)(s 1)
< (=) (=s—r+ A=) -s) = —(—r+ D1 +s—r)s—7)

=r?(s—r)(1—r)(s+r—3)<0.
Now, Lemma 2.2(e) follows from (2.10)—(2.17). O
Lemma 2.3. Forr € Randt > 1, let h(t) = —r(t"" ! +t")logt +

(= 4+ 1)(t" —1). If1 <1 < 3, then there exists t1,ty € (1,00) such that
h(tl) <0 and h(tg) > 0.

Proof. For t > 1, let hy(t) = t>"W'(t). If 1 < r < 3

5, then simple
computation yields

R(t) = —r[(r — D)t" 2 +rt"logt + (2r — D> 2 — (2r — 1)t" 2,

B @) =y =o,

-1
Ri(t) = —r?logt —r (TT + r) +r(2r — 1)t
(2.19) Ri (1) =0,

2 r(r—1)
RY(t) = -t

+r2r—1)(r— 1)15’“*2
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and
(2.20) rY (1) =r*(2r — 3) < 0.

By (2.20) and the continuity of h{(¢t) we know that there exists ds > 0
such that hf(t) < 0 for t € [1,1 + d3), this together with (2.19) imply that
hi(t) < hi(1)=0fort € (1,1+63). Then (2.18) and h(1) = 0 lead to h(t) <0
for t € (1, 1+ 53)

On the other hand, it is easy to see that . ligrn f(t) = 4o00. This completes

the proof of Lemma 2.3. O

Lemma 2.4. Fort>1, let f(t) =r(1+¢""")logt —t" —t"" 1+ 14 1.
If r > 3, then there exist t1,ts € (1,00) such that f(t1) > 0 and f(t2) < 0.

Proof. Let g(t) = tf(t) and h(t) = tg”(t). If r > 3, then simple compu-
tation yields

(2.21) 9(1) = f(1) =0,
(2.22) gt)=r(1+rt" Hlogt — (r+1)(t" — 1),
(223) J(1)=0,

_ 1 _ _
(2.24) g"'(t) =r*(r — D)t" Zlogt +r (? +rt" 2) —r(r4 1)t
(2.25) W) = ¢"(1) = 0,

B (t) =72 (r — )2t  2logt + 2r%(r — 1)t" 2 — r2(r + 1)t" 1,
and
(2.26) R'(1) = r%(r —3) > 0.

From (2.26) and the continuity of 2'(t) we see that there exists § > 0 such
that h'(t) > 0 for t € [1,1 + §), this together with (2.21)—(2.25) imply that
f(t) >0fort e (1,1459).

On the other hand, it is easy to see that tligrnoo f(t) = —oo. This completes

the proof of Lemma 2.4. O

3. Proof of Theorem 1.1

Proof. For fixed r, s € R, it is easy to see that E(r, s; x,y) is differentiable
with respect to (z,y) € (0,00) x (0, 00) by the elementary theory of differential
and integral calculus. We use Lemma 2.1 to discuss the nonpositivity and

nonnegativity of (y — z)(g—f - g—f) for all (z,y) € (0,00) x (0,00) and for fixed
(r,s) € R%. Since (y — x)(%—lj - ‘g—f) =0 for z =y and (y — x)(%—]; - %—f) is

symmetric with respect to x and y, without loss of generality we assume y > x
in the following discussion.
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Let

E,={(r,s):r>1,s>1,r+ s> 3},
Es={(r,s):r>1,s>1,r+s<3tU{(r,s):r<1l,s+r >3}
u{(r,s) :s <1,s+7r>3}
and
Ey={(r,s):r <l,s+7r<3}U{(rs):s<1,s+r <3}

Then F1 U Ey U E3 = RQ,El NEy=0,E3NEy =@ and intE1 NintE3 = O,
where intE; and intFE3 are the interior of 4 and Ej3, respectively.

It is obvious that Theorem 1.1 is true if once we prove that E(r, s;x,y) is
Schur-convex, Schur-concave, and neither Schur-convex nor Schur-concave with
respect to (z,y) € (0,00) x (0,00) for (r,s) € Ey, E3 and Ey, respectively. We
divide our proof into three cases.

Case 1. (r,s) € E1. Let E1; = {(r,s) : s+r >3,s >r > 1}, Ejg =
{(r,s):s+7r>3,r>s>1}and F(r,s;z,y) = L= then

s yr—xr?
Ey=FE;; UE;,
and
(3.1)
( ) OF OF
yoe dy Oz
1 y—x

_ +r—1 ot -1
ot T

s+r—1 s—1 T r—1 s
e () (@) ()
s x x x x x
for (r,s) € Ey;. From Lemma 2.1, Lemma 2.2 (a), (3.1) and the assumption
y > x we see that E(r, s;x,y) is Schur-convex with respect to (z,y) € (0,00) x
(0,00) for (r,s) € FEy;. Then the continuity and symmetry of E(r,s;x,y)

with respect to (r,s) imply that E(r,s;x,y) is Schur-convex with respect to
(z,y) € (0,00) x (0,00) for (r,s) € Ej.

Case 2. (r,s) € E,. We divide the discussion of this case into seven
subcases. Let
Ey={(r,s):s>r>1,s+r <3},
By ={(r,s):r>s>1s+r <3},
3

E23:{(r,s):1<s=r<2},
Eoy ={(r,s) : 1 >r#0,s+1r> 3},
Eos ={(r,s) : 1 >s#0,s+7r >3},
Es ={(r,s) : s=0,r > 3}
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and
Esr ={(r,s) : r=0,,s > 3}.
Then
(32) FEy = FE91 U Ego U Eoz U Eoy U Eos U Eog U Eor.

Subcase 2.1. If (r,s) € E»;. Then Lemma 2.1, Lemma 2.2 (b), (3.1)
and the assumption y > z imply that E(r, s;z,y) is neither Schur-convex nor
Schur-concave with respect to (z,y) € (0,00) x (0, 00).

Subcase 2.2. If (r,s) € Eg2. Then the symmetry of E(r,s;z,y) with
respect to (r, s) and subcase 2.1 show that E(r, s;z,y) is neither Schur-convex
nor Schur-concave with respect to (z,y) € (0,00) x (0, 0).

Subcase 2.3. If (r,s) € E23. Then
OE(r,r;x,y OE(r,r;x,y
- (2Llepsn) 28 rin)

y or
y—x r—
(3.3) = mE(r,r;x,y)zz '

r—1 r r—1 T
[ (D)7 () oL [(2) ] (9 1]}
x x x x x
Now, Lemma 2.1, Lemma 2.3, (3.3) together with the assumption y > =

imply that E(r,s;z,y) is neither Schur-convex nor Schur-concave with respect
to (x,y) € (0,00) x (0, 00).

Subcase 2.4. If (r,s) € Fa4. Then Lemma 2.1, Lemma 2.2 (c), (3.1)
and the assumption y > x imply that E(r,s;z,y) is neither Schur-convex nor
Schur-concave with respect to (z,y) € (0,00) x (0, 00).

Subcase 2.5. If (r,s) € E25. Then the symmetry of E(r,s;z,y) with
respect to (r, s) and subcase 2.4 imply that E(r, s; z,y) is neither Schur-convex
nor Schur-concave with respect to (z,y) € (0,00) x (0, 0).

Subcase 2.6. If (r,s) € Egs. Then
JE(r,0;x, OE(r,0;x,
(y— 2) ( ( y) ( y))

y or
(1 y" —a” )%—1
(34) _ T logy—logz (y o x)xr—l

r2(logy — log z)?
r—1 T r—1 1
‘ { [H(%) }logﬁ_ (L) - (¥) HW}.
x x x x g
So, Lemma 2.1, Lemma 2.4, (3.4) together with the assumption y > x show

that E(r,s;x,y) is neither Schur-convex nor Schur-concave with respect to
(z,y) € (0,00) x (0,00).
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Subcase 2.7. If (r,s) € Ea7. Then the symmetry of E(r,s;z,y) with
respect to (r, s) and subcase 2.6 imply that E(r, s;z,y) is neither Schur-convex
nor Schur-concave with respect to (z,y) € (0,00) x (0, 00).

Now, (3.2) and subcases 2.1-2.7 show that E(r,s;z,y) is neither Schur-
convex nor Schur-concave with respect to (x,y) € (0,00) x (0, 00) for (r, s) € Es.

Case 3. (r,s) € E3. We divide the discussion of this case into four
subcases. Let

Es1 ={(r,s):s>0,s>rr<l,r#0,s+r <3},
Esa={(r,s):r>0,r>s55<1,8#0,s+7r <3},
Es3 ={(r,s):0>s>r}

and

Esy ={(r,s) : 0 >r > s}.
Then
(3.5) E31 U E33 U E33 U B3y = Fs.

Subcase 3.1. If (r,s) € F3;. Then Lemma 2.1, Lemma 2.2 (d), (3.1)
together with the assumption y > x imply that E(r,s;x,y) is Schur-concave
with respect to (x,y) € (0,00) x (0,00).

Subcase 3.2. If (r,s) € E32. Then the symmetry of E(r,s;z,y) with
respect to (r, s) and subcase 3.1 lead to that E(r, s;x,y) is Schur-concave with
respect to (z,y) € (0,00) x (0, 00).

Subcase 3.3. If (r,s) € E33. Then Lemma 2.1, Lemma 2.2 (e), (3.1)
and the assumption y > x imply that E(r, s; z,y) is Schur-concave with respect
to (z,y) € (0,00) x (0, 00).

Subcase 3.4. If (r,s) € E34. Then the symmetry of E(r,s;z,y) with
respect to (r, s) and subcase 3.3 lead to that E(r, s;x,y) is Schur-concave with
respect to (z,y) € (0,00) x (0, 00).

Now, the continuity of E(r,s;z,y), (3.5) together with subcases 3.1-3.4
imply that E(r, s;x,y) is Schur-concave with respect to (x,y) € (0, 00) x (0, c0)
for (r,s) € E3

O
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