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On category O for the rational Cherednik
algebra of G(m, 1, n): the almost semisimple case

By

Richard Vale

Abstract

We determine the structure of category O for the rational Cherednik
algebra of the wreath product complex reflection group G(m, 1, n) in the
case where the KZ functor satisfies a condition called separating simples.
As a consequence, we show that the property of having exactly N − 1
simple modules, where N is the number of simple modules of G(m, 1, n),
determines the Ariki-Koike algebra up to isomorphism.
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1. The rational Cherednik algebra

In this section, we recall the basic facts about the rational Cherednik
algebra, before stating our main theorem. Throughout this paper, we fix a
complex square root of −1, which we denote

√−1. The group W = Z/mZ �Sn

may be realised as a complex reflection group as follows. Let h be an n–
dimensional complex vector space. Let {y1, . . . , yn} be the standard basis of h.
With respect to this basis, W may be regarded as the group G(m, 1, n) of n×n
matrices with exactly one nonzero entry in each row and column, the nonzero
entries being powers of ε := e

2π
√−1
m . We also let {x1, . . . , xn} denote the basis

of h∗ which is dual to {y1, . . . , yn}.
The complex reflections in W are then the elements st

i, 1 ≤ i ≤ n, 1 ≤ t ≤
m− 1 and σ(k)

ij , 1 ≤ i < j ≤ n, 0 ≤ k ≤ m− 1 defined as follows: for 1 ≤ i ≤ n
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28 Richard Vale

and 1 ≤ t ≤ m− 1, we define

st
i : h→ h

yi �→ εtyi

yj �→ yj , j �= i

and for 1 ≤ i < j ≤ n and 0 ≤ k ≤ m− 1, define

σ
(k)
ij : h→ h

yi �→ ε−kyj

yj �→ εkyi

yr �→ yr, r �= i, j.

Each of these elements has a reflecting hyperplaneH. The reflecting hyperplane
of st

i is {v : xi(v) = 0} while the reflecting hyperplane of σ(k)
ij is {v : xi(v) =

ε−kxj(v)}. Let A be the set of these reflecting hyperplanes. For each H ∈ A,
let αH be a linear functional on h with kernel H.

Let κ = (κ00, κ0, κ1, . . . , κm−1) ∈ Cm be a vector of complex numbers. Let
T (h ⊕ h∗) denote the tensor algebra on h ⊕ h∗. Then the rational Cherednik
algebra Hκ = Hκ(W ) of W is the quotient of the C–algebra T (h⊕ h∗) ∗W by
the relations [x1, x2] = 0 for x1, x2 ∈ h∗, [y1, y2] = 0 for y1, y2 ∈ h, together
with the commutation relations

[y, x] = y(x) +
n∑

i=1

y(xi)x(yi)
m−1∑
j=0

(κj+1 − κj)
m−1∑
r=0

εrjsr
i

+ κ00

∑
1≤i<j≤n

m−1∑
k=0

y(xi − εkxj)x(yi − ε−kyj)σ
(k)
ij

for all x ∈ h∗ and all y ∈ h. In this paper, we assume κ0 = 0 throughout.

1.1. The Dunkl representation
For a C–algebra A equipped with a W–action, we denote by A ∗W the

skew group algebra of W with coefficients in A. Let hreg = h \ (∪H∈AH) and
let D(hreg) denote the ring of differential operators on hreg. It is well–known
(see for instance, [DO03], [EG02, Proposition 4.5]) that there is an injective
homomorphism

Hκ ↪→ D(hreg) ∗W
called the Dunkl representation. If δ =

∏
H∈A αH ∈ C[h], then C[hreg] is the

localization C[h]δ and the induced map

Hκ|hreg := Hκ ⊗C[h] C[hreg]→ D(hreg) ∗W
is an isomorphism ([GGOR03, Theorem 5.6]).
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1.2. Category O
Following [BEG03a], let O be the abelian category of finitely-generated

Hκ–modules M such that for P ∈ C[h∗]W , the action of P − P (0) is locally
nilpotent. Category O is by definition a full subcategory of the category of
all Hκ–modules, so for objects X,Y ∈ O we usually write Hom(X,Y ) for
HomO(X,Y ) = HomHκ

(X,Y ). Let Irrep(W ) denote the set of isoclasses of
simple W–modules. Given τ ∈ Irrep(W ), define the standard module M(τ ) by:

M(τ ) = Hκ ⊗(C[h∗]∗W ) τ

where τ is made into a C[h∗] ∗W–module by setting for p ∈ C[h∗], w ∈W and
v ∈ τ , pw · v := p(0)wv.

In [DO03, Corollary 2.28], it is proved that M(τ ) has a unique simple
quotient L(τ ), and [GGOR03, Proposition 2.11, Corollary 2.16] prove that
{L(τ )|τ ∈ Irrep(W )} is a complete set of nonisomorphic simple objects of O,
and that every object of O has finite length. Furthermore, it is proved in
[GGOR03, Theorem 2.19] that category O is a highest weight category in the
sense of [CPS88]. In particular, every simple object L(τ ) of O has a projective
cover P (τ ) and an injective envelope I(τ ), and BGG reciprocity holds, that is,
[P (τ ) : L(σ)] = [M(σ) : L(τ )] for all σ, τ .

1.3. The KZ functor
The group BW := π1(hreg/W ) is called the braid group of W . In

[GGOR03, Section 5.2.5], a functor

KZ : O → CBW −mod

is constructed as follows. If M ∈ O then M |hreg := C[hreg]⊗C[h]M is a finitely-
generated module over C[hreg] ⊗C[h] Hκ

∼= D(hreg) ∗W . In particular, M is a
W–equivariant D–module on hreg and hence corresponds to a W–equivariant
vector bundle on hreg with a flat connection ∇. Passing to the monodromy of
this vector bundle with flat connection gives a representation of the fundamental
group π1(hreg/W, ∗) where ∗ is any choice of basepoint. By definition, KZ(M)
is the monodromy representation of π1(hreg/W ) associated to M . For more
details, see [GGOR03].

1.4. The Ariki-Koike algebra
By [GGOR03, Section 5.25], the monodromy representation factors

through the Hecke algebra H of W . This is the quotient of CBW by rela-
tions given in [GGOR03, Section 5.2,5]. From the braid diagram in [BMR98,
Table 1], we see that H is generated by Ts, Tt2 , . . . , Ttm

subject to the relations:

TsTt2TsTt2 − Tt2TsTt2Ts = 0
[Ts, Tti

] = 0 i ≥ 3
Tti
Tti+1Tti

− Tti+1Tti
Tti+1 = 0 2 ≤ i ≤ r

[Tti
, Ttj

] = 0 |i− j| > 1
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(Tti
− 1)(Tti

+ e2π
√−1κ00) = 0 2 ≤ i ≤ r

(Ts − 1)
m−1∏
j=1

(Ts − ε−je−2π
√−1κj ) = 0

We see that H is the Ariki-Koike algebra of [AK94], specialised at the param-
eters q = e2π

√−1κ00 , and ui = ε−ie−2π
√−1κi for 1 ≤ i ≤ m, where as before,

ε = e2π
√−1/m. Note in particular that ui �= 0 for all i. When we refer to the

Ariki-Koike algebra in this paper, we always mean the specialised Ariki-Koike
algebra in this sense.

Therefore, KZ gives a functor KZ : O → H −mod. By [GGOR03, Section
5.3], KZ is exact, and if Otor is the full subcategory of those M in O such that
M |hreg = 0 then KZ gives an equivalence O/Otor→̃H−mod [GGOR03, Theorem
5.14].

1.5. A useful lemma
We will frequently make use of the following result of Ginzburg, Guay,

Opdam and Rouquier.

Lemma 1.1 ([GGOR03, Proposition 5.21]). Suppose L(τ )|hreg �= 0
(equivalently, KZ(L(τ )) �= 0). Then L(τ ) is a submodule of M(µ) for some
µ.

2. A condition on KZ

Our aim is to study category O in the situation where it is, in some sense,
as close as possible to being semisimple. We make the following definition:

Definition 2.1. Say KZ : O → H−mod separates simples if whenever
S � T are simple objects of O, then KZ(S) � KZ(T ).

Now we state the main theorem.

Theorem 2.1. Suppose m > 1 and n > 1 and KZ separates simples.
Then either O is semisimple, or the following hold:

1. There exists a linear character χ of W (ie. a homomorphism W → C∗)
such that L(χ) is finite-dimensional and all the other simple objects in O are
infinite-dimensional.

2. There exists a positive integer r not divisible by m, such that dimL(χ)
= rn.

3. Let v ∈ N be the residue of r modulo m, 1 ≤ v ≤ m− 1. Then there is
a representation hv of W with dim hv = dim h such that if τ /∈ {∧ihv ⊗ χ : 0 ≤
i ≤ n}, then M(τ ) = L(τ ).

4. O = O∧ ⊕ Oss where O∧ is generated by {L(∧ihv ⊗ χ) : 0 ≤ i ≤ n}
and Oss is a semisimple category generated by the other simple objects.



�

�

�

�

�

�

�

�

On category O 31

5. The composition multiplicities in O∧ are

[M(∧ihv ⊗ χ) : L(∧jhv ⊗ χ)] =

{
1 if j = i, i+ 1
0 otherwise

Before proving Theorem 2.1, we make some remarks. Theorem 2.1 may
be viewed as an analogue in the G(m, 1, n) case of [BEG03b, Theorem 1.2,
Theorem 1.3]. In fact, in the case m = 1, we show in the proof of Corollary 6.1
below that when the KZ functor separates simples, there is a finite-dimensional
simple module in category O and so [BEG03b, Theorem 1.2, Theorem 1.3]
apply. In this case, Theorem 2.1 is true with n replaced by dimh = n−1. Also,
it can be shown by direct calculations that Theorem 2.1 is true in the n = 1
case (that is, when W is a cyclic group). Thus, Theorem 2.1 is true for all
values of n. In the proof of Theorem 2.1, it is convenient for us to assume that
m,n > 1.

Although the methods we use for proving Theorem 2.1 are based on those
of [BEG03b], we have to use different arguments to get round the problem that
in the G(m, 1, n) case, the functor KZ is not known to take standard modules
M(λ) in O to the corresponding Specht modules Sλ for H, even on the level of
Grothendieck groups. We also have to do some work to calculate the blocks of
the Hecke algebra at the parameters that we are interested in.

One reason why Theorem 2.1 is of interest is that it gives a source of
examples of choices of κ such that there is a finite-dimensional object in category
O, and yet category O is completely understood.

The proof of Theorem 2.1 proceeds as follows. In Section 3, we recall some
facts about the representations of the Ariki-Koike algebra. We use these facts
in Section 4.1 to Section 4.4 to prove parts (1) and (2) of Theorem 2.1. Next,
between Section 4.5 and Section 4.8, we compute the blocks of the Ariki-Koike
algebra in our situation by a combinatorial argument. This enables us to prove
parts (3) and (4) of Theorem 2.1. Finally, in Sections 4.9 and 4.10, we prove
part (5) of Theorem 2.1.

3. The Ariki-Koike algebra

Let us recall some facts about the Ariki-Koike algebra. This is the algebra
H introduced in Section 1.4, also called the Hecke algebra of W . It depends
on parameters q, u1, . . . , um ∈ C and we are only interested in the case where
these parameters are all nonzero.

We use the following conventions. For us, a partition of a positive integer
n is a sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λk with

∑
λk = n. A

partition λ will be identified with its Young diagram, and we use the non-
Francophone convention for Young diagrams. That is, the Young diagram of λ
has λi boxes in row i, row 1 being the top row. A multipartition of n is an m–
tuple (λ(1), . . . , λ(m)) where the λ(i) are partitions with

∑ |λ(i)| = n. Following
the paper [AM00], we may regard a multipartition as a subset of N×N×N by
thinking of it as an m–tuple of Young diagrams. A node is any box of λ. More
generally, a node will be any element of N× N× N.
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It has been shown (see [Mat99]) that for each multipartition λ =
(λ(1), . . . , λ(m)) of n, there is a Specht module Sλ for H. Each Sλ has a quotient
Dλ which is either 0 or simple. Let Πm

n be the set of multipartitions of n with
m parts. The set {Dλ|Dλ �= 0, λ ∈ Πm

n } is a complete set of nonisomorphic
simple H–modules. We will need a parametrisation of this set. There are two
different parametrisations, depending on whether q = 1 or q �= 1.

3.1. Parametrisation of the simple modules
If q = 1 then [Mat98, Theorem 3.7] states that Dλ �= 0 if and only if

λ(s) = ∅ whenever s < t and us = ut. If q �= 1 then the description, due to
Ariki and stated in [Mat04, Theorem 3.24] is more complicated. The nonzero
Dλ are in bijection with the set of Kleshchev multipartitions, which we now
describe.

Given a multipartition λ, the residue of a node x in row i and column j of
λ(k) is defined to be ukq

j−i. A node x in λ with residue a is called a removable
a–node if λ \ {x} is a multipartition. A node x not in λ with residue a is called
an addable a–node if λ ∪ {x} is a multipartition.

Say a node y ∈ λ(�) is below a node x ∈ λ(k) if either � > k, or � = k and
y is in a lower row than x.

A removable a–node x is called normal if whenever x′ is an addable a–
node below x then there are more removable a–nodes between x and x′ than
there are addable a–nodes. The highest normal a–node in λ is called the good
a–node.

The set of Kleshchev multipartitions is defined inductively as follows: ∅

is Kleshchev, and otherwise λ is Kleshchev if and only if there is some a ∈ C

and a good a–node x ∈ λ such that λ \ {x} is Kleshchev. More details plus
examples may be found in the introduction to the paper [AM00].

3.2. Blocks of H
Finally we need a description of the blocks of H. This is given in [LM06,

Corollary 2.16]. Recall that the Specht modules are partitioned into blocks as
follows: two Specht modules Sλ and Sµ are in the same block if and only if
there is a sequence Sλ1 , Sλ2 , . . . , Sλt with Sλ1 = Sλ, Sλt = Sµ and such that
Sλi and Sλi+1 have a common composition factor for all i. Define the content
cont(λ) of a multipartition λ to be the multiset of residues of λ, ie. the set of
residues counted according to multiplicity. Then for q �= 1, two Specht modules
Sλ and Sµ are in the same block if and only if cont(λ) = cont(µ).

4. Proof of Theorem 2.1

4.1.
To begin the proof, suppose KZ separates simples. If O is not semisimple

then we claim there exists S ∈ O with KZ(S) = 0. Indeed, if KZ(S) �= 0 for
all simple objects S ∈ O then H has |Irrep(W )| simple modules, but it is well-
known that this implies that H is semisimple. We give here a proof using the
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Cherednik algebra.

Lemma 4.1. Suppose H has |Irrep(W )| simple modules. Then H is
semisimple.

Proof. By [GGOR03, Theorem 5.14], every object of H − mod is the
image of an object of O under KZ. If S is a simple H–module and KZ(N) = S,
then using induction on a composition series of N and exactness of KZ, we
may assume that N is simple. Thus, each simple H–module is the image
of a simple object of O under KZ. Therefore, the category Otor ⊂ O is 0.
Therefore, KZ induces an equivalence O → H − mod. We show that O is a
semisimple category. By [DO03, (32)], there is an ordering � on Irrep(W ) such
that [M(τ ) : L(σ)] �= 0 implies τ � σ. By Lemma 1.5, if L(σ)|hreg �= 0 then
L(σ) ⊂M(τ ) for some τ . Combining this fact with induction on the ordering �
yields M(τ ) = L(τ ) for all τ . But it is observed in [BEG03a, Remark following
Lemma 2.12] that M(τ ) = L(τ ) for all τ if and only if O is semisimple. Since
there is an equivalence of categories O ∼= H −mod, H −mod is a semisimple
category and so H is a semisimple algebra.

Remark 1. Note that the above proof works for any complex reflection
group W , where H is the Hecke algebra of W as defined in [GGOR03, Section
5.2.5].

It follows that if KZ(S) �= 0 for all simples S, then H−mod is a semisimple
category. But also S|hreg �= 0 for all simples S ∈ O, and therefore Otor = 0.
Therefore, KZ induces an equivalence O → H − mod and it follows that O is
semisimple.

Therefore we have shown that if O is not semisimple then there is some
simple S ∈ O with KZ(S) = 0, and KZ(T ) �= 0 for all simples T � S by our
assumption on KZ. Since KZ separates simples, we also have that #{KZ(T ) :
T simple, T � S} = |Irrep(W )|−1. Furthermore, if T is simple then so is KZ(T ),
because KZ induces an equivalence O/Otor → H−mod, and the localisation to
hreg preserves simple objects. Therefore, H has exactly |Irrep(W )| − 1 simple
modules.

Next, we show that q �= 1. Suppose q = 1. Then by Section 3.1, since H is
not semisimple, there must be some s < t with us = ut. Under the assumption
that n > 1, there are at least three multipartitions λ with λ(s) �= ∅. Hence,
there are at least three Dλ which are zero and so H cannot have |Irrep(W )| − 1
simple modules and therefore q �= 1. Therefore, the simple H–modules are in
bijection with Kleshchev multipartitions.

4.2.
Ariki’s semisimplicity criterion [Ari94, Main Theorem] states that

[n]q!
∏
i<j

−n<c<n

(ui − qcuj) = 0.
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Therefore, either there are i, j, c with ui = qcuj , or else [n]q! = 0. We show
[n]q! �= 0. Suppose that [n]q! = 0. Then there is a k, 1 ≤ k ≤ n with qk = 1
and q� �= 1, 0 < � < k. Since q �= 1, the simple H–modules are in bijection with
Kleshchev multipartitions. Let ρk be the partition of k with one part, ie. the
Young diagram of ρk is a row of k boxes. Then ρk is not Kleshchev, because the
only removable node of ρk, call it µ, cannot be good, because it is not normal.
Indeed, the node labelled λ in the diagram below is an addable node below µ
with the same residue as µ, and there are no removable nodes between them.

k boxes in row︷ ︸︸ ︷
µ

λ .

Hence, ρk is not Kleshchev and therefore ρn, a row of n boxes, is not Kleshchev.
We may therefore define multipartitions λ1 = (ρn,∅, . . . ,∅) and λ2 =
(∅, ρn,∅, . . . ,∅), neither of which is Kleshchev (here we use the hypothesis
that m > 1). This contradicts the fact that there is only one non-Kleshchev
multipartition, and so [n]q! �= 0.

Therefore, there exist integers 1 ≤ i, j ≤ n and −n < c < n such that
ui = qcuj . Writing what this means in terms of the κi, we get

(4.1) m(κj − κi)−mcκ00 − (i− j) ∈ mZ.

The next step is to show that |c| = n− 1.
Redefining c if necessary, we have that there are i < j with qcui = uj .

Either c ≥ 0 or c ≤ 0. Consider the case c ≥ 0. In this case, let ρc+1 be
a row of c + 1 boxes, and take a multipartition τ with ρc+1 as its ith part
and ∅ everywhere else. If c < n− 1 then consider two multipartitions defined
as follows: λ is the multipartition of n whose ith part is ρn and µ is the
multipartition of n whose ith part is

n − 1 boxes in row︷ ︸︸ ︷
.

Then τ is not Kleshchev, and so λ is clearly not Kleshchev. Also, µ is not
Kleshchev, essentially because µ ⊃ τ (note that, even after some nodes have
been removed from µ, the node at the right hand end of τ can never be a
good node, since we have established that qc+1 �= 1). Hence there are two
non-Kleshchev multipartitions, which contradicts our hypothesis that H has
|Irrep(W )| − 1 simple modules. Therefore c = n− 1.

In the c ≤ 0 case, we take γc+1 to be a column of −c+ 1 boxes, and do a
similar argument to show that c = −(n− 1).

4.3.
The above argument shows that the multiplicative order of q must be at

least 2n− 1. Indeed, suppose qn+a = 1 where a is a nonnegative integer. Then
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if qn−1ui = uj for some i, j, we get q−a−1ui = uj . But the above argument in
the c ≤ 0 case shows that −a − 1 ≤ −n or else we would have more than one
non-Kleshchev multipartition.

4.4.
Now we may rewrite the condition (4.1) on the parameters as

m(κj − κi) + (−1)am(n− 1)κ00 = (i− j) +mt

for some a ∈ {0, 1} and some t ∈ Z. Note that (i−j)+mt cannot be zero because
1 ≤ i, j ≤ m. If it is positive, multiply through by −1 (possibly interchanging
the roles of i and j, and changing a), in order to assume that (i− j) +mt < 0.
Now we do a so-called twist. Consider the multiplicative character of W which
sends σ(�)

rs to (−1)a for all r, s, �, and which sends sk to ε−i. Explicitly checking
with a set of generators and relations of W shows that this is a well-defined
character of W . Now by [GGOR03, Section 5.4.1], we have an isomorphism of
Cherednik algebras ψ : Hκ → Hκ′ where κ′00 = (−1)aκ00 and κ′u = κu+i − κi

for each u. (These equations for κ′u follow from writing down the generators
and relations for Hκ′ .) The twist ψ induces an auotequivalence of category O
which preserves the dimension of the objects [GGOR03, Section 5.4.1]. Our
new parameters satisfy

mκ′j−i +m(n− 1)κ′00 = (i− j) +mt < 0.

Now we are in a position where we can use [CE03, Section 4.1]. Translating
our parameters into the language of [CE03], we get

m(n− 1)k + 2
m−1∑
a=1

ca
1− ε−av

1− ε−a
= r

where r = (j − i)−mt is a positive integer of the form (p− 1)m+ v for some
nonnegative integer p and some 1 ≤ v ≤ m − 1. Then from [CE03] we have
the module Ỹc which is a quotient of M(triv). Furthermore, since [n]q! �= 0,
we may apply [CE03, Theorem 4.3] to conclude that Ỹc is finite-dimensional.
Therefore, L(triv) is finite-dimensional. By [GGOR03, Section 5.4.1], twisting
by ψ sends L(χ) to L(triv) for some linear character χ of W . Furthermore,
dimL(χ) = dimL(triv) = rn by [CE03, Theorem 2.3 (iii)]. Since L(χ) is finite-
dimensional, KZ(L(χ)) = 0, and therefore KZ(L(τ )) �= 0 for τ �= χ, by our
assumption that KZ separates simples. Therefore L(τ ) is infinite-dimensional if
τ �= χ. We have proved parts (1) and (2) of Theorem 2.1.

4.5. Blocks
To proceed further, it is necessary to calculate the blocks of the Hecke

algebra.



�

�

�

�

�

�

�

�

36 Richard Vale

4.6. Standing assumption
We have parameters q and u1, . . . , um for the Hecke algebra. We are assum-

ing that there is exactly 1 non-Kleshchev multipartition, and we have already
shown that qn−1ui = uj for some i �= j.

First, we prove the following lemma.

Lemma 4.2. If k �= i, j then for each � �= k, we have uk/u� �= qc for
any −n < c < n.

Proof. Suppose uk = qcu�. If � �= i, j then it would follow from the
earlier calculations that there is another non-Kleshchev multipartition, so we
need only consider the case where � = i or � = j. Suppose i < j. If � = i then
suppose there is −n < c < n with uk = qcui, and uj = qn−1ui. If c < 0 then
considering a multipartition whose only nontrivial part is a column γn in the
ith position, and a multipartition whose only nontrivial part is a row ρn in the
ith position, we have that there is more than one non-Kleshchev multipartition.
On the other hand, if c ≥ 0 then uk = qcui = qc−(n−1)uj and hence there exists
a non-Kleshchev multipartition which is ∅ except in the jth position, and one
which is ∅ except in the ith position. Similarly, if � = j, we reach the same
conclusion, and so such a c cannot exist. Similar arguments deal with the i > j
case.

Recall from Section 3.2 that if α and β are multipartitions then the Specht
modules Sα and Sβ belong to the same block if and only if cont(α) = cont(β).
The next lemma is needed to study the content of a multipartition.

Lemma 4.3. Under the assumptions of Section 4.6, let α =
(α(1), α(2), . . . , α(m)) be a multipartition of n. Then cont(α(r))∩cont(α(s)) = ∅

for all r �= s.

Proof. By Lemma 4.2 and our assumption that qn−1ui = uj , we get that
for all r, s, ur/us �= qc for any −(n − 1) < c < n − 1. Now, if the residue of
some node x in α(r) is equal to the residue of some other node y in α(s), then

urq
col(x)−row(x) = usq

col(y)−row(y).

But if t := col(x)+ row(y)− row(x)− col(y) then us/ur = qt but t � n− 2 and
t ≥ −(n− 2), a contradiction.

The next lemma is useful in determining a multipartition from its content.

Lemma 4.4. Under the assumptions of Section 4.6, if α and β are
multipartitions of n and 1 ≤ k ≤ m, then cont(α(k)) = cont(β(k)) implies
α(k) = β(k).

Proof. We show that if two nodes of α(k) have the same residue, then
they lie on the same diagonal. It will follow that the multiplicity of a residue
in cont(α) is equal to the length of the corresponding diagonal of α. The same
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is true of β. Thus under the hypothesis, the Young diagrams α and β have
diagonals of the same lengths, thus they are equal.

Suppose then that nodes (i, j) and (i
′
, j

′
) in α(k) have the same residue.

Then ukq
j−i = ukq

j
′−i

′
. Thus qj−i−j

′
+i

′
= 1 and therefore if j − i �= j

′ − i′
then either z := j − i − j′ + i

′ ≥ n or z ≤ −n. But j + i
′
, j

′
+ i ≤ n + 1 and

so z cannot be either greater than n or less than −n. Therefore, z = 0 and
j − i = j

′ − i′ . In other words, (i, j) and (i
′
, j

′
) lie on the same diagonal.

4.7.
We are finally in a position to calculate the blocks of the Hecke algebra.

In order to determine the blocks of H, we first note that if ρa denotes a row of
length a and γb a column of length b, then we may define a multipartition λa

to have ρa in the ith place and γn−a in the jth place. For example, if m = 3,
n = 3, i = 3, j = 2 then

λ0 =




∅ ∅


 , λ1 =

(
∅

)
,

λ2 =
(

∅

)
, λ3 =

(
∅ ∅

)
.

Then if qn−1ui = uj , then cont(λa) = {uiq
x|0 ≤ x ≤ n − 1} and hence all the

λa belong to the same block. It remains to show that if α, β are multipartitions
and one of them is not of the form λa, then they belong to distinct blocks.

Now we suppose that we have two multipartitions α = (α(1), . . . , α(m))
and β = (β(1), . . . , β(m)) and cont(α) = cont(β). We will show that if k �= i, j
then α(k) = β(k).

Lemma 4.5. Let k �= i, j. If x ∈ cont(α(k)) then x /∈ ∪� �=kcont(β(�)).

Proof. There is an integer b with −n+ 1 ≤ b ≤ n− 1 such that x = ukq
b.

We consider the cases b ≥ 0 and b ≤ 0 separately. In the case b ≥ 0, we now
prove by induction that x /∈ cont(β(�)) for any � �= k. The proof for b ≤ 0 is
very similar, so we omit it.

For the base step, suppose b = 0. Then uk ∈ cont(α(k)). Hence uk is a
residue of β. If uk ∈ cont(β(�)) where � �= k then uk = u�q

c−r for some column
c and row r of β(�). But clearly −n < c− r < n which contradicts Lemma 4.2.
Therefore uk /∈ ∪� �=kβ

(�) and so uk ∈ cont(β(k)).
Now we do the inductive step. Suppose b > 0. Suppose ukq

b is a residue of
β(�) with � �= k. Then ukq

b = u�q
c−r for some c, r. So uk/u� = qc−r−b. Since

c − r < n and b > 0, we have c − r − b < n. By Lemma 4.2, c − r − b ≤ −n.
Therefore, r ≥ n + c − b ≥ n + 1 − b. But β(�) contains at least r boxes, by
definition of r. Therefore, |β(�)| ≥ n+ 1− b.

Next, we note that since ukq
b is the residue of a node in α(k), this node

must lie on the diagonal containing (b+1, 1). Therefore, there are at least b+1
boxes in the first row of α(k) and hence there is a node in the first row of α(k)

with residue ukq
b−1. By induction on b, this is also a residue of β(k). It follows
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that there is a box in column b and row 1 of β(k). Therefore, |β(k)| ≥ b. So
|β| ≥ |β(k)|+ |β(�)| ≥ n+ 1, a contradiction.

It follows from Lemma 4.5 that if cont(α) = cont(β) then cont(α(k)) =
cont(β(k)) for all k �= i, j. Then applying Lemma 4.4, we get α(k) = β(k). It
remains to deal with α(i) and α(j). The proof of this case will be very similar
to Lemma 4.5, but slightly more complicated.

Given multipartitions α = (α(1), . . . , α(m)) and β = (β(1), . . . , β(m)), with
cont(α) = cont(β), let a1 be the length of the first row of α(i) and a2 be the
length of the first column of α(j) and define b1, b2 similarly for β. First we
prove a technical lemma.

Lemma 4.6. Under our assumptions of Section 4.6, suppose a1 + a2 <
n. Then uiq

a1 /∈ cont(α).

Proof. First, we show that uiq
a1 /∈ cont(α(k)) when k �= i, j. So let

k �= i, j and suppose there is a node of α(k) with residue uiq
a1 . Say this node

lies in column c and row r of α(k). Then uiq
a1 = ukq

c−r. So ui/uk = qa1−(c−r).
We show that a1 − (c − r) lies between −n and n. If a1 − (c − r) ≥ n then
c + n ≤ r + a1 ≤ n, a contradiction. While if a1 − (c − r) ≤ −n then c ≥
n + a1 + r ≥ n + 1, a contradiction. Therefore, −n < a1 − (c − r) < n, which
violates Lemma 4.2. Hence, uiq

a1 is not a residue of α(k).
Next, we show that uiq

a1 is not a residue of α(i). If it is, then there
is a node in column c and row r of α(i) whose residue is uiq

a1 = uiq
c−r.

Therefore qa1−(c−r) = 1. Then by Section 4.3, if a1 − (c − r) �= 0 then either
a1 − (c− r) ≥ 2n− 1 or a1 − (c− r) ≤ −(2n− 1). If a1 − (c− r) ≤ −(2n− 1)
then 2n ≤ a1 + r−1+2n ≤ c, which is impossible. If a1− (c− r) ≥ 2n−1 then
c+2n ≤ a1 + r+1 ≤ n+2, which is impossible if n > 1. Therefore, a1 = c− r.
But c ≤ a1 and r ≥ 1, so this is also impossible. Therefore, uiq

a1 cannot be a
residue of α(i).

The argument that uiq
a1 is not a residue of α(j) is very similar. We use

the fact that a1 < n− a2.

The claim of Section 4.7 follows from the next lemma. We use the same
notation as Section 4.6.

Lemma 4.7. Under the assumptions of Section 4.6, if a1 +a2 < n then
if x ∈ cont(α(i)) then x /∈ cont(β(j)).

Proof. By Lemma 4.5, cont(α(k)) = cont(β(k)) for k �= i, j. Therefore, by
Lemma 4.3, we get cont(α(i)) ∪ cont(α(j)) = cont(β(i)) ∪ cont(β(j)). This is a
disjoint union.

If x ∈ cont(α(i)) then x = uiq
b for some b with −n+ 1 ≤ b ≤ n− 1. As in

the proof of Lemma 4.5, we consider the cases b ≥ 0 and b ≤ 0 separately. We
give the proof only for the b ≥ 0 case. The proof is by induction on b.

For the base step, if b = 0 then ui is a residue of α(i). If this is a residue of
β(j), then it has the form ui = uiq

n−1qc−r for some c, r, and so qn−1+c−r = 1.
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Now, n − 1 + c − r ≥ 0. If n − 1 + c − r ≥ 2n − 1 then c − r ≥ n which is
impossible. Therefore n−1+c−r = 0. Hence, c = 1, r = n, and β(j) must be a
column of n boxes. But then cont(β(j)) = {uiq

n−1, uiq
n−1, . . . , uiq, ui}. Since

0 ≤ a1 < n, we have uiq
a1 ∈ cont(β(j)) = cont(β) = cont(α), which contradicts

Lemma 4.6. Therefore ui must be a residue of β(i), which proves the base step.
For the inductive step, suppose b > 0 and uiq

b is a residue of α(i). If uiq
b

is a residue of a node in column c and row r of β(j), then uiq
b = uiq

n−1qc−r,
and so qc−r+n−1−b = 1. Since c − r < n and b > 0, we have c − r − b < n.
Therefore c− r− b+ n− 1 < 2n− 1. Therefore, either c− r− b+ n− 1 = 0 or
c−r−b+n−1 ≤ −(2n−1). If the latter holds then c+3n ≤ r+b+2 ≤ 2n+1
since we may take b ≤ n − 1. Hence 1 + n ≤ c + n ≤ 1, a contradiction. We
therefore get c − r − b + n − 1 = 0, and so r ≥ n − b. But β(j) has at least
r nodes. Therefore, |β(j)| ≥ n − b and has at least n − b rows. But since
uiq

b ∈ cont(α(i)), we get uiq
b−1 ∈ cont(α(i)), as in the proof of Lemma 4.5. By

induction on b, uiq
b−1 ∈ cont(β(i)). So, as in the proof of Lemma 4.5, there

is a box in row 1 and column b of β(i). Therefore, |β(i)| ≥ b and β(i) has at
least b columns. Therefore β = λb in the notation of Section 4.7. Therefore
cont(β) = {ui, qui, . . . , q

n−1ui}, and hence uiq
a1 ∈ cont(β) = cont(α). This

contradicts Lemma 4.6. Therefore, uiq
b must be a residue of β(i) and this

proves the inductive step.

Now suppose we have a multipartition α not of the form λa. Suppose
β �= α. We show that cont(α) �= cont(β). Indeed, if β �= λb for any b, then by
Lemmas 4.5 and 4.7, cont(α(k)) = cont(β(k)) for all k. Therefore, by Lemma
4.4, α(k) = β(k) for all k, so α = β, a contradiction. On the other hand, if
β = λb for some b, then uiq

a1 ∈ cont(β) \ cont(α) by Lemma 4.6, and hence
cont(α) �= cont(β).

Therefore, Sα is the unique Specht module in its block. Furthermore,
{Sλa |0 ≤ a ≤ n} form a block, by the same reasoning.

4.8.
We get that there is one block of the Hecke algebra containing n + 1 of

the Specht modules, and all the other blocks are singletons. Hence, there are
|Irrep(W )| − n blocks. By [GGOR03, Corollary 5.18], the blocks of O are in
bijection with blocks of H and hence O also has |Irrep(W )|−n blocks. We work
in the category O(Hκ′). Now by [CE03, Theorem 2.3], there is a representation
hv of W with dim hv = dim h such that there is a BGG-resolution of Ỹc, ie. an
exact sequence

(4.2) 0← Ỹc ←M(triv)←M(hv)← · · · ←M(∧nhv)← 0.

As the classes [M(τ )] form a basis of the Grothendieck group K0(O), none of
the maps in this sequence can be zero, and hence all the L(∧ihv) belong to the
same block. There are n+1 simples in this block and hence by counting we see
that all the other blocks must be singletons. Using the fact that simple objects
in O have no self-extensions ([BEG03b, Proposition 1.12]), we get that these
blocks are semisimple. Translating back to category O(Hκ), we get parts (3)
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and (4) of Theorem 2.1.
In order to prove part (5) of Theorem 2.1, we require the following lemma.

Lemma 4.8. The module Ỹc is isomorphic to L(triv).

Proof. Since Ỹc is finite-dimensional, its only composition factor can be
L(triv), by part (1) of Theorem 2.1. But M(triv) � Ỹc and [M(triv) : L(triv)] =
1.

4.9.
It remains to compute the composition multiplicities in the one nontrivial

block O∧. Again we work in the category O(Hκ′). Lemma 1.5 tells us that
each L(∧ihv), i > 0 is a submodule of a standard module. Write Li = L(∧ihv)
and Mi = M(∧ihv). Let Ri be the radical of Mi. We cannot have a nonzero
map Li → Mj if j > i by [DO03, Section 2.5 (32)]*1 and therefore L1 is a
submodule either of M0 or M1. It cannot be a submodule of M1 because
[M1 : L1] = 1, and we therefore have L1 ↪→ M0. Therefore, L1 ↪→ R0. But
by Lemma 4.8, we have Ỹc

∼= L(triv). Hence Ỹc is simple and it follows that
R0 = ker(M0 → Ỹc) = Im(M1 →M0) is a quotient of M1. Hence [R0 : L1] = 1.
But R0 is a quotient ofM1, so R0 has L1 both as a submodule and as a quotient.
Therefore, R0 = L1.

4.10.
We have shown that the composition factors of M0 are L0 and L1. To

conclude the argument, we show by induction that the composition factors of
Mi are Li and Li+1. Consider first Li+1. Then Li+1 is a submodule of some
Mj . We cannot have j ≥ i+1, and by induction, we cannot have j < i. Hence,
Li+1 is a submodule of Mi and so Li+1 ↪→ Ri. Now Ri = ker(Mi →Mi−1) by
induction and so Ri is a quotient of Mi+1. Therefore, [Ri : Li+1] = 1. If there
was a j > i+ 1 with [Ri : Lj ] �= 0 then we would have that for some j > i+ 1,
Lj would be a quotient of Ri and hence a quotient of Mi+1, contradicting the
fact that Mi+1 has a unique simple quotient. Therefore, Ri = Li+1 and we are
done. This proves part (5) of Theorem 2.1.

5. Characterisations of separating simples

Now that we have completed the proof of Theorem 2.1, let us turn our
attention to the question of when KZ separates simples.

Theorem 5.1. The following are equivalent
1. KZ separates simples.
2. If q, u1, . . . , um are the parameters of the Ariki-Koike algebra H, then

(q + 1)
∏
i<j

(ui − uj) �= 0,

*1This is because a calculation very similar to [Gor03, Lemma 4.2] shows that the number
denoted c∧thv

(k) in [DO03] equals −tN for some N ∈ N which is independent of t. Thus if
[Mj : Li] �= 0 then −jN + iN ∈ N and so i > j.
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and furthermore,

#{τ ∈ Irrep(W ) : L(τ )|hreg �= 0} ≥ n− 1.

3. The algebra H has at least |Irrep(W )| − 1 nonisomorphic simple mod-
ules.

Proof. First, we show that (2) implies (1). We must show that if L(σ)|hreg

∼= L(τ )|hreg �= 0 then σ = τ . Suppose then that L(σ)|hreg ∼= L(τ )|hreg �= 0.
By Lemma 1.5, there exists a standard module M(λ) such that L(σ) ↪→M(λ).
Let t = dim(HomO(L(σ),M(λ))). Then M(λ) must have t submodules isomor-
phic to L(σ), because the only automorphisms of L(σ) are the scalars. There-
fore, L(σ)⊕t ⊂ M(λ) and M(λ) has no submodule isomorphic to L(σ)⊕(t+1).
Now since L(σ)|hreg ∼= L(τ )|hreg , we have Hom(L(τ )|hreg ,M(λ)|hreg) =
Hom(L(σ)|hreg ,M(λ)|hreg) �= 0 and hence by [GGOR03, Proposition 5.9],
Hom(L(τ ),M(λ)) �= 0 (using the condition on the parameters). Therefore,
M(λ) has a submodule isomorphic to L(τ ) and hence a submodule isomorphic
to L(τ ) + L(σ)⊕t. This sum must be direct if L(σ) � L(τ ), hence M(λ) has a
submodule L(τ )⊕L(σ)⊕t andM(λ)|hreg has a submodule L(τ )|hreg⊕L(σ)|⊕t

hreg =

L(σ)|⊕(t+1)
hreg . Therefore,

dim(Hom(L(σ)|hreg ,M(λ)|hreg)) ≥ t+ 1

and therefore by [GGOR03, Proposition 5.9], dim(Hom(L(σ),M(λ))) ≥ t + 1,
a contradiction. It follows that L(σ) ∼= L(τ ) and hence σ = τ .

Next, (1) implies (3) by Section 4.1.
Finally, to show (3) implies (2), note that under the hypothesis that H has

|Irrep(W )| − 1 simple modules, it has already been shown in Section 4.2 that
[n]q! �= 0, hence q �= −1 since we assume n ≥ 2, and that ui �= uj for all i �= j,
so the condition on the parameters holds. Furthermore, since every object of
H−mod is the image of some object of O under KZ, and KZ is exact, if H has
|Irrep(W )| − 1 simple modules then there are at least |Irrep(W )| − 1 of the L(τ )
with KZ(L(τ )) �= 0 and hence with L(τ )|hreg �= 0.

6. The Ariki-Koike algebra in the almost-semisimple case

In this section we use the facts proved about category O in Theorem 2.1 to
prove a theorem about the Hecke algebra which does not mention the Cherednik
algebra in its hypothesis or conclusion. This theorem is an example of a general
philosophy suggested by Rouquier in [Rou05] of using the Cherednik algebra
and the KZ functor as a tool to prove theorems about Hecke algebras.

It is well-known that Hκ is semisimple if and only if the number of irre-
ducible modules |Irrep(Hκ)| of Hκ equals the number of irreducible modules of
CW , and that in this case Hκ

∼= CW . So the property of having |Irrep(W )|
simple modules determines the algebra Hκ up to isomorphism. We show that
the property of having |Irrep(W )|− 1 simple modules also determines Hκ up to
isomorphism.
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Theorem 6.1. Suppose Hκ and Hµ are Ariki-Koike algebras corre-
sponding to some parameters κ, µ ∈ Cm and that |Irrep(Hκ)| = |Irrep(Hµ)| =
|Irrep(W )| − 1. Then there is an isomorphism of algebras Hκ

∼= Hµ.

Proof. We work in the category O = Oκ and write KZ = KZκ, M(τ ) =
Mκ(τ ), and so forth. By [GGOR03, Theorem 5.15], there is an algebra isomor-
phism Hκ

∼= EndO(PKZ)opp where

PKZ =
⊕

τ∈Irrep(W )

dim KZ(L(τ ))P (τ ).

Here, P (τ ) is the projective cover of L(τ ). The strategy of the proof is to cal-
culate PKZ in the case where KZκ separates simples, and show that its endomor-
phism ring can be written in a way that does not depend on κ. By Theorem
2.1, there is a one-dimensional representation χ of W with O = O∧ ⊕ Oss,
where O∧ is the subcategory of O generated by {L(∧ihv⊗χ) : 0 ≤ i ≤ n}. Let
λi = ∧ihv ⊗ χ and let S = {λi : 0 ≤ i ≤ n}. Write Mi = M(λi), Li = L(λi)
and Pi = P (λi).

For σ, τ ∈ Irrep(W ), since O is a highest weight category, we have

dim Hom(P (σ), P (τ )) = [P (τ ) : L(σ)]

=
∑

γ

[P (τ ) : M(γ)][M(γ) : L(σ)]

=
∑

γ

[M(γ) : L(τ )][M(γ) : L(σ)]

=
∑
γ∈S

[M(γ) : L(τ )][M(γ) : L(σ)]

+
∑
γ /∈S

[M(γ) : L(τ )][M(γ) : L(σ)]

If γ /∈ S then M(γ) = L(γ), and we obtain

dim Hom(P (σ), P (τ )) =
n∑

i=0

[Mi : L(τ )][Mi : L(σ)] +
∑
γ /∈S

δγτδγσ.

Now, if σ /∈ S or τ /∈ S, this sum must be δστ . Otherwise, σ, τ ∈ S and hence
σ = λa, τ = λb for some a, b. We get

dim Hom(P (λa), P (λb)) =
n∑

i=0

[Mi : La][Mi : Lb]

which equals 2 if a = b and 1 if |a− b| = 1 and 0 otherwise. Therefore, we have

dim Hom(P (σ), P (τ )) =




2 if σ = τ ∈ S
1 if σ = τ /∈ S
1 if {σ, τ} = {λa, λa+1}, 0 ≤ a ≤ n− 1
0 otherwise
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The ring EndO(PKZ) is a matrix algebra with entries in the spaces
Hom(P (σ), P (τ )). We calculate the multiplication relations between basis
elements of the Hom(P (σ), P (τ )) and show that these relations do not de-
pend on κ. It will follow that the structure constants of EndO(PKZ) do not
depend on κ, which will prove the theorem provided that the multiplicity
of each P (τ ) in PKZ is also independent of κ. But in our situation PKZ =
⊕τ /∈S(dim τ ) · P (τ ) ⊕

(
⊕1≤i≤n

(
n−1
i−1

)
Pi

)
since dim KZ(Li) =

(
n−1
i−1

)
, as can be

readily shown using induction on the BGG-resolution (4.2) of L0 and the fact
that dim KZ(M(τ )) = dim(τ ) for all τ .

By BGG reciprocity, we have [Pi : Mi] = [Mi : Li] = 1 = [Mi−1 : Li] =
[Pi : Mi−1], and [Pi : M(σ)] = [M(σ) : Li] = 0 if σ �= λi, λi−1. Therefore, the
factors in any filtration of Pi by standard modules are Mi and Mi−1. But by
[GGOR03, Corollary 2.10], Pi has a filtration by standard modules with Mi as
the top factor, so Pi may be described as Pi = Mi

Mi−1
, meaning that there is a

series 0 = P 0
i ⊂ P 1

i ⊂ P 2
i = Pi with P 1

i
∼= Mi−1 and P 2

i /P
1
i
∼= Mi. We may

write the resulting composition series of Pi as

Pi =

Li

Li+1

Li−1

Li

This description of Pi makes it easy to write down the nontrivial maps Pi → Pi.
First, there are two obvious maps Pi → Pi, namely the identity map idi

and the map ξi which is projection onto the top composition factor Li followed
by inclusion. Note that ξ2i = 0 and therefore EndO(Pi) = C[ξi]/(ξ2i ), since we
have already shown that dim Hom(Pi, Pi) = 2.

Next, we describe the map Pi → Pi+1. This is a map Mi

Mi−1
→ Mi+1

Mi
. We

may construct a map fi,i+1 : Pi → Pi+1 by factoring out the copy of Mi−1 and
then embedding Mi in Pi+1. This map is nonzero, so Hom(Pi, Pi+1) = Cfi,i+1,
1 ≤ i ≤ n− 1.

Now we describe the map Pi → Pi−1, n ≥ i ≥ 2. There are two different
descriptions of this map. One way of defining a map Pi → Pi−1 is to take
the quotient Pi → Li and then embed Li ↪→ Mi−1. Since Mi−1 is a quotient
of Pi−1, this induces a nonzero map fi,i−1 : Pi → Pi−1. The second way
of getting a map Pi → Pi−1 is to observe that, by [GGOR03, Proposition
5.2.1 (ii)], Pi ⊃ Li is injective and therefore Pi contains the injective envelope
Ii = I(λi) of Li. Therefore, since Pi is indecomposable, Pi = Ii. Now, category
O contains a costandard module ∇(τ ) ⊃ L(τ ) for every τ ∈ Irrep(W ), with
[∇(τ )] = [M(τ )] in K0(O). Write ∇i = ∇(λi). Then Li ⊂ ∇i, so ∇i has a
composition series of the form ∇i = Li+1

Li
. Furthermore, ∇i ⊂ Ii and so Ii has

a filtration by costandard modules of the form Ii = ∇i−1
∇i

(the existence of such
a filtration follows from [CPS88, Definition 3.1, Axiom (c)]). Since Ii = Pi,
to get a map ∇i−1

∇i
= Pi → Pi−1 = ∇i−2

∇i−1
, we may factor out the copy of ∇i

and then embed ∇i−1 in Pi−1. This gives a nonzero map fi,i−1, and therefore
Hom(Pi, Pi−1) = Cfi,i−1. In particular, this shows that the image of fi,i−1 has
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length 2.
Now we calculate multiplication relations between the various fi,i+1, fi,i−1

and ξi. First, it is immediate from the definitions that ξi+1fi,i+1 = fi,i+1ξi = 0.
We need to do a little more work to show that the same holds for fi,i−1. Take
the description of Ii as Ii = ∇i−1

∇i
. Then Ii has a composition series

Ii =

Li

Li−1

Li+1

Li

and therefore there is a map ζi : Ii → Ii defined by projection onto the top
composition factor Li followed by the embedding Li ↪→ Ii. Clearly, ζifi−1,i =
fi−1,iζi−1 = 0. But since Pi = Ii, we may regard ζi as a map Pi → Pi.
Therefore, there are a, b ∈ C with ζi = aidi + bξi. Since ζ2

i = 0, we get a2 = 0
and hence ζi is a nonzero multiple of ξi. This shows that ξifi−1,i = fi−1,iξi−1 =
0.

Finally, we need to calculate fi+1,ifi,i+1 and fi−1,ifi,i−1. Consider first
fi−1,ifi,i−1. By the definition of fi,i−1 above, we have [im(fi,i−1) : Li] �= 0.
Hence, im(fi,i−1) cannot be contained in the submodule of Pi−1 isomorphic
to Mi−2, and therefore fi−1,ifi,i−1 must be nonzero. Since fi−1,ifi,i−1ξi = 0,
fi−1,ifi,i−1 must be a nonzero multiple of ξi. Let us replace ξi by fi−1,ifi,i−1.
So we may assume that fi−1,ifi,i−1 = ξi, and this does not change any of
the relations which have already been calculated. Now consider fi+1,ifi,i+1.
We show that this composition is nonzero. Indeed, the image im(fi,i+1) has
composition factors Li and Li+1. If fi+1,ifi,i+1 were zero, then we would get
that im(fi+1,i) could only have composition factors Li+1 and Li+2. But we
have shown that im(fi+1,i) has length 2, and [Pi : Li+2] = 0, a contradiction.
Therefore, fi+1,ifi,i+1 �= 0 and so there is a nonzero bi,i+1 ∈ C, n− 1 ≥ i ≥ 1,
such that

fi+1,ifi,i+1 = bi,i+1ξi = bi,i+1fi−1,ifi,i−1.

It remains to do some rescaling. Let

ξ′i =
1

b12b23 · · · bi−1,i
ξi, 1 ≤ i ≤ n

f ′i,i−1 = fi,i−1 2 ≤ i ≤ n
f ′i,i+1 =

1
b12b23 · · · bi,i+1

fi,i+1 1 ≤ i ≤ n− 1.

Then we have the following relations:

ξ′if
′
i−1,i = f ′i−1,iξ

′
i−1 = 0

ξ′i+1f
′
i,i+1 = f ′i,i+1ξ

′
i = 0

f ′i−1,if
′
i,i−1 = f ′i+1,if

′
i,i+1 = ξ′i.(6.1)
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These are the only nontrivial relations between the various Hom(P (σ), P (τ )).
This shows that we may choose a basis of Hom(P (σ), P (τ )) for each σ, τ such
that the composition relations between the basis elements are independent of κ.
Hence, we may choose a basis of the algebra EndO(PKZ) such that the structure
constants are independent of κ. This proves the theorem.

Remark 2. By variations on the arguments given in the above proof,
it is possible to show that

dimC Ext1O(Li, Lj) =

{
1 j = i+ 1, i− 1
0 otherwise

and so the composition series of Pi may be written more symmetrically as

Pi = Ii =
Li

Li−1⊕Li+1
Li

.

Note that since we have shown earlier that the Ariki-Koike algebra has
|Irrep(W )| − n blocks, by counting we get that the algebra Bn :=
EndO(⊕n

i=1

(
n−1
i−1

)
Pi) is a block of the Ariki-Koike algebra. From the relations

(6.1), it is clear that Bn is independent both of κ and m. To extend this
description of the unique non-semisimple block to m = 1, we consider the
Cherednik algebra of the group Sn+1 acting on its reflection representation
h = Cn. In this case, the Cherednik algebra only depends on one parameter
κ00 (denoted c in [BEG03b]). We write the Hecke algebra as Hc(Sn+1), with
parameter q = e2π

√−1c. The simple modules of Hc(Sn+1) are in bijection with
e–restricted partitions λ of n + 1, where e is the multiplicative order of q in
C∗, and a partition λ is said to be e–restricted if λi − λi+1 < e for all i ≥ 1.
It is clear from this description that Hc has |Irrep(Sn+1)| − 1 simple modules if
and only if e = n + 1 if and only if c = r

n+1 with (r, n + 1) = 1. In this case,
Theorem 2.1 holds without change by various results of [BEG03b, Section 3],
and the proof of Theorem 6.1 also goes through without change in this case.
We therefore have the following corollary.

Corollary 6.1. Let �1, �2 > 1 and for i = 1, 2 let κi ∈ C�i and suppose
Hκi

(G(�i, 1, n)) has |Irrep(G(�i, 1, n))| − 1 simple modules. Then the unique
nonsemisimple blocks of Hκ1(G(�1, 1, n)) and Hκ2(G(�2, 1, n)) are isomorphic
algebras. Furthermore, they are isomorphic to the principal block Bn of
H 1

n+1
(Sn+1).

Remark 3. The representation theory of the algebra Bn is described
in [BEG03b, 5.3] and [EN02, 3.2].

Cornell University
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