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Generalized Albanese and its dual
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Henrik Russell∗

Abstract

Let X be a projective variety over an algebraically closed field k of
characteristic 0. We consider categories of rational maps from X to com-
mutative algebraic groups, and ask for objects satisfying the universal
mapping property. A necessary and sufficient condition for the existence
of such universal objects is given, as well as their explicit construction,
using duality theory of generalized 1-motives.

An important application is the Albanese of a singular projective
variety, which was constructed by Esnault, Srinivas and Viehweg as a
universal regular quotient of a relative Chow group of 0-cycles of degree
0 modulo rational equivalence. We obtain functorial descriptions of the
universal regular quotient and its dual 1-motive.
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0. Introduction

For a projective variety X over an algebraically closed field k a generalized
Albanese variety Alb (X) is constructed by Esnault, Srinivas and Viehweg in
[ESV] as a universal regular quotient of the relative Chow-group CH0 (X)0

of Levine-Weibel [LW] of 0-cycles of degree 0 modulo rational equivalence.
This is a smooth connected commutative algebraic group, universal for rational
maps from X to smooth commutative algebraic groups G factoring through a
homomorphism of groups CH0 (X)0 −→ G(k). It is not in general an abelian
variety if X is singular. Therefore it cannot be dualized in the same way as an
abelian variety.

Laumon built up in [L] a duality theory of generalized 1-motives in charac-
teristic 0, which are homomorphisms [F → G] from a commutative torsion-free
formal group F to a connected commutative algebraic group G. The universal
regular quotient Alb (X) can be interpreted as a generalized 1-motive by set-
ting F = 0 and G = Alb (X). The motivation for this work was to find the
functor which is represented by the dual 1-motive, in the situation where the
base field k is algebraically closed and of characteristic 0. The duality gives
an independent proof (alternative to the ones in [ESV]) as well as an explicit
construction of the universal regular quotient in this situation (cf. Subsection
3.6). This forms one of the two main results of the present article:

Theorem 0.1. Let X be a projective variety over an algebraically closed
field k of characteristic 0, and X̃ −→ X a projective resolution of singularities.
Then the universal regular quotient Alb (X) exists and there is a subfunctor
Div0

eX/X
of the relative Cartier divisors on X̃ (cf. Subsection 3.4, Definition

3.24) such that the dual of Alb (X) (in the sense of 1-motives) represents the
functor

Div0
eX/X
−→ Pic0

eX

i.e. the natural transformation of functors which assigns to a relative Cartier
divisor the class of its associated line bundle. Pic0

eX
is represented by an abelian

variety and Div0
eX/X

by a formal group.

The other main result (Theorem 0.3) is a more general statement about the
existence and construction of universal objects of categories of rational maps
(the notion of category of rational maps is introduced in Definition 2.23, but the
name is suggestive). This concept does not only contain the universal regular
quotient, but also the generalized Jacobian of Rosenlicht-Serre [S3, Chapter V]
as well as the generalized Albanese of Faltings-Wüstholz [FW] as special cases
of such universal objects.

One might ask why we only deal here with a base field of characteristic
0, although the universal regular quotient exists in any characteristic. A first
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reason for this is that Laumon’s 1-motives are only defined in characteristic 0.
In order to match the case of arbitrary characteristic, one first needs to define
a new category of 1-motives (in any characteristic) which contains smooth
connected commutative algebraic groups as a subcategory. A commutative
torsion-free formal group in characteristic 0 is completely determined by its
k-valued points and its Lie-algebra (cf. Corollary 1.7), the first form a free
abelian group of finite rank, the latter is a finite dimensional k-vector space.
This allows to give an explicit and transparent description, which might not be
possible in positive characteristic.

Acknowledgement. This article constitutes the heart of my PhD thesis.
I am very grateful to my advisors Hélène Esnault and Eckart Viehweg for
their support and guidance, and for the interesting subject of my thesis, which
fascinated me from the first moment. I owe thanks to Kay Rülling for an
important hint. Moreover, I would like to thank Kazuya Kato for his interest
in my studies and many helpful discussions.

0.1. Leitfaden
In the following we give a short summary of each section.

Section 1 provides some basic facts about generalized 1-motives, which
are used in the rest of the paper. A connected commutative algebraic group
G is an extension of an abelian variety A by a linear group L. Then the dual
1-motive of [0→ G] is given by [L∨ → A∨], where L∨ = Hom (L,Gm) is the
Cartier-dual of L and A∨ = Pic0

A = Ext (A,Gm) is the dual abelian variety, and
the homomorphism between them is the connecting homomorphism in the long
exact cohomology sequence obtained from 0 → L → G → A → 0 by applying
the functor Hom ( ,Gm).

Section 2 states the universal factorization problem with respect to a
category Mr of rational maps from a regular projective variety Y to connected
commutative algebraic groups (cf. Definition 2.37):

Definition 0.2. A rational map (u : Y ��� U) ∈Mr is called universal
for Mr if for all objects (ϕ : Y ��� G) ∈Mr there is a unique homomorphism
of algebraic groups h : U −→ G such that ϕ = h ◦ u up to translation.

An essential ingredient for the construction of such universal objects is the
functor of relative Cartier divisors DivY on Y , which assigns to an affine scheme
T a family of Cartier divisors on Y , parametrized by T . This functor admits a
natural transformation cl : DivY −→ PicY to the Picard functor PicY , which
maps a relative divisor to its class. Then Div0

Y := cl−1 Pic0
Y is the functor

of families of Cartier divisors whose associated line bundles are algebraically
equivalent to the trivial bundle.

We give a necessary and sufficient condition for the existence of a universal
object for a category of rational maps Mr which contains the category Mav
of morphisms from Y to abelian varieties and satisfies a certain stability con-
dition (♦), see Subsection 2.3. Localization of Mr at the system of injective
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homomorphisms does not change the universal object; denote this localization
by H−1

I Mr. We observe that a rational map ϕ : Y ��� G, where G is an
extension of an abelian variety by a linear group L, induces a natural trans-
formation L∨ −→ Div0

Y . If F is a formal group that is a subfunctor of Div0
Y ,

then MrF denotes the category of rational maps for which the image of this
induced transformation lies in F . We show (cf. Theorem 2.39):

Theorem 0.3. For a category Mr containing Mav and satisfying (♦)
there exists a universal object AlbMr (Y ) if and only if there is a formal group
F ⊂ Div0

Y such that H−1
I Mr is equivalent to H−1

I MrF .

The universal object AlbF (Y ) of MrF is an extension of the classical
Albanese Alb (Y ), which is the universal object of Mav, by the linear group
F∨, the Cartier-dual of F . The dual 1-motive of [0 −→ AlbF (Y )] is hence
given by

[F −→ Pic0
Y

]
, which is the homomorphism induced by the natural

transformation cl : Div0
Y −→ Pic0

Y .
The universal regular quotient Alb (X) of a (singular) projective variety

X is by definition the universal object for the category MrCH0(X)0 of rational
maps factoring through rational equivalence. More precisely, the objects of
MrCH0(X)0 are rational maps ϕ : X ��� G whose associated map on zero-
cycles of degree zero Z0 (U)0 −→ G(k),

∑
ni pi �−→

∑
ni ϕ(pi) (here U is the

open set on which ϕ is defined) factors through a homomorphism of groups
CH0 (X)0 −→ G(k), where CH0 (X) denotes the relative Chow group of 0-
cycles CH0(X,Xsing) in the sense of [LW]. Such a rational map is regular on
the regular locus of X and may also be considered as a rational map from X̃ to
G, where π : X̃ −→ X is a projective resolution of singularities. In particular,
if X is nonsingular, the universal regular quotient coincides with the classical
Albanese. The category MrCH0(X)0 contains Mav and satisfies (♦). Therefore
our problem reduces to finding the subfunctor of Div0

eX
which is represented by

a formal group F such that MrF equivalent to MrCH0(X)0 .

Section 3 answers the question for the formal group F which characterizes
the category MrCH0(X)0 . This is a subfunctor of Div0

eX
which measures the

difference between X̃ and X.
If π : Y −→ X is a proper birational morphism of varieties, the push-

forward of cycles gives a homomorphism π∗ : WDiv(Y ) −→ WDiv(X) from
the group of Weil divisors on Y to the group of those on X. For a curve C
we introduce the k-vector space LDiv(C) of formal infinitesimal divisors, which
generalizes infinitesimal deformations of the zero divisor. There exist non-
trivial infinitesimal deformations of Cartier divisors, but not of Weil divisors,
since prime Weil divisors are always reduced. Formal infinitesimal divisors also
admit a push-forward π∗ : LDiv(Z) −→ LDiv(C) for finite morphisms π : Z −→
C of curves, e.g. for the normalization, which is a resolution of singularities.
There exist natural homomorphisms weil : DivY (k) −→ WDiv(Y ) and fml :
Lie(DivZ) −→ LDiv(Z).



Generalized Albanese and its dual 911

For a curve C, a natural candidate for the formal group we are looking for
is determined by the following conditions:

Div0
eC/C

(k) = ker
(
Div0

eC
(k) weil−→WDiv

(
C̃
) π∗−→WDiv(C)

)
Lie
(
Div0

eC/C

)
= ker
(
Lie
(
Div0

eC

) fml−→ LDiv
(
C̃
) π∗−→ LDiv(C)

)
.

For a higher dimensional variety X, the definition is derived from the one for
curves as follows. A morphism of varieties V −→ Y induces a natural transfor-
mation: the pull-back of relative Cartier divisors ·V : DecY,V −→ DivV , where
DecY,V is the subfunctor of DivY consisting of those relative Cartier divisors on
Y which do not contain any component of im(V −→ Y ). Then we let Div0

eX/X

be the formal subgroup of Div0
eX

characterized by the conditions

Div0
eX/X

(k) =
⋂
C

(
· C̃
)−1

Div0
eC/C

(k)

Lie
(
Div0

eX/X

)
=
⋂
C

(
· C̃
)−1

Lie
(
Div0

eC/C

)
where the intersection ranges over all Cartier curves inX relative to the singular
locus of X in the sense of [LW]. Actually, it is not necessary to consider all
Cartier curves, the functor Div0

eX/X
can be computed from one single general

curve. The verification of the equivalence between MrCH0(X)0 and MrDiv0
fX/X

is done using local symbols, for which [S3] is a good reference.
This gives an independent proof of the existence (alternative to the ones

in [ESV]) as well as an explicit construction of the universal regular quotient
over an algebraically closed base field of characteristic 0 (cf. Subsection 3.6).

The universal regular quotient for semi-abelian varieties, i.e. the universal
object for rational maps to semi-abelian varieties factoring through rational
equivalence (which is a quotient of our universal regular quotient), is a classical
1-motive in the sense of Deligne [Dl, Définition (10.1.2)]. The question for
the dual 1-motive of this object was already answered by Barbieri-Viale and
Srinivas in [BS].

0.2. Notations and conventions
k is a fixed algebraically closed field of characteristic 0. A variety is a

reduced separated scheme of finite type over k. A curve is a variety of dimension
one. Algebraic groups and formal groups are always commutative and over k.
We write Ga for Ga,k = Spec k[t] and Gm for Gm,k = Spec k[t, t−1]. The letter
G stands for a linear algebraic group which is either Ga or Gm.

If Y is a scheme, then y ∈ Y means that y is a point in the Zariski
topological space of Y . The set of irreducible components of Y is denoted by
Cp(Y ).

If M is a module, then SymM is the symmetric algebra of M . If A is a
ring, then KA denotes the total quotient ring of A. If Y is a scheme, then KY
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denotes the sheaf of total quotient rings of OY . The group of units of a ring R
is denoted by R∗.

If σ : Y −→ X is a morphism of schemes, then σ# : OX −→ σ∗OY
denotes the associated homomorphism of structure sheaves. If h : A −→ B is
a homomorphism of rings, then h† : SpecB −→ SpecA denotes the associated
morphism of affine schemes.

We think of Ext1 (A,B) as the space of extensions of A by B and therefore
denote it by Ext (A,B).

The dual of an object O in its respective category is denoted by O∨,
whereas Ô is the completion of O. For example, if V is a k-vector space,
then V ∨ = Homk (V, k) is the dual k-vector space; if G is a linear algebraic
group or a formal group, then G∨ = HomAb/k (G,Gm) is the Cartier-dual; if A
is an abelian variety, then A∨ = Pic0A is the dual abelian variety.

1. 1-motives

The aim of this section is to summarize some foundational material about
generalized 1-motives (following [L, Sections 4 and 5]), as far as necessary for
the purpose of these notes.
Throughout the whole work the base field k is algebraically closed and of char-
acteristic 0.

1.1. Algebraic groups and formal groups
Here we recall some basic facts about algebraic groups and the notion of a

formal group. References are [SGA3, VIIB], [Dm, Chapter II] and [Fo, Chapitre
I].

Algebraic groups
An algebraic group is a commutative group-object in the category of sep-

arated schemes of finite type over k. As char (k) = 0, an algebraic group is
always smooth (see [M2, Chapter III, No. 11, p. 101]).

Theorem 1.1 (Chevalley). A smooth connected algebraic group G ad-
mits a canonical decomposition

0 −→ L −→ G −→ A −→ 0

where L is a connected linear algebraic group and A is an abelian variety.

(See [Ro, Section 5, Theorem 16, p. 439] or [B, Theorem 3.2, p. 97] or [C].)

Theorem 1.2. A connected linear algebraic group L splits canonically
into a direct product of a torus T and a unipotent group U:

L = T ×k U .

A torus over an algebraically closed field is the direct product of several copies
of the multiplicative group Gm. For char (k) = 0 a unipotent group is always
vectorial, i.e. is the direct product of several copies of the additive group Ga.
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(See [SGA3, Exposé XVII, 7.2.1] and [L, (4.1)].)

Formal groups
A formal scheme over k is a functor from the category of k-algebras Alg/k

to the category of sets Set which is the inductive limit of a directed induc-
tive set of finite k-schemes: F is a formal scheme if there exists a directed
projective system (Ai) of finite dimensional k-algebras and an isomorphism
of functors F ∼= lim−→ Spf Ai, where Spf Ai : Alg/k −→ Set is the functor
R �−→ Homk-Alg(Ai, R). Equivalently, there is a profinite k-algebra A, i.e. A
is the projective limit (as a topological ring) of discrete quotients which are fi-
nite dimensional k-algebras, and an isomorphism of functors F ∼= Spf A, where
Spf A is the functor which assigns to a k-algebra R the set of continuous ho-
momorphisms of k-algebras from A to the discrete ring R. (Cf. [Dm, Chapter
I, No. 6].)

A formal group G is a commutative group-object in the category of formal
schemes over k, such that G(k) is an abelian group of finite type and mG,0/m2

G,0
is a finite dimensional k-vector space, where mG,0 is the maximal ideal of the
local ring OG,0. If char (k) = 0, a formal group G is always equi-dimensional
and formally smooth, i.e. there is a natural number d ≥ 0 such that OG,0 ∼=
k [[x1, . . . , xd]] (cf. [L, (4.2)]).

Theorem 1.3. A formal group G admits a canonical decomposition

G ∼= Gét × Ginf

where Gét is étale over k and Ginf is the component of the identity (called
infinitesimal formal group).

(See [Fo, Chapitre I, 7.2] or [L, (4.2.1)].)

Theorem 1.4. An étale formal group Gét admits a canonical decompo-
sition

0 −→ Gtor
ét −→ Gét −→ Glib

ét −→ 0

where Gtor
ét is the largest sub-group scheme whose underlying k-scheme is finite

and étale, and Glib
ét (k) is a free abelian group of finite rank.

(See [L, (4.2.1)].)

Theorem 1.5. As char (k) = 0, the Lie-functor gives an equivalence
between the following categories :

{infinitesimal formal groups/k} ←→ {finite dim. vector spaces/k}

(Cf. [SGA3, VIIB, 3.3.2.].)

Remark 1.6. Theorem 1.5 says that for an infinitesimal formal group
Ginf , there is a finite dimensional k-vector space V , namely V = Lie (Ginf),
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such that Ginf
∼= Spf
(

̂SymV ∨
)
, where ̂SymV ∨ is the completion of the sym-

metric algebra SymV ∨ w.r.t. the ideal generated by V ∨. Therefore the R-

valued points of Ginf are given by Ginf(R) = Homcont
k-Alg

(
̂Sym
(
Lie (Ginf)

∨), R) =

Lie (Ginf)⊗k Nil(R).

From these structure theorems we obtain

Corollary 1.7. A formal group G in characteristic 0 is uniquely deter-
mined by its k-valued points G(k) and its Lie-algebra Lie (G).

Sheaves of abelian groups
The category of algebraic groups and the category of formal groups can be

viewed as full subcategories of the category of sheaves of abelian groups:

Definition 1.8. Let
Ab category of abelian groups,
Alg/k category of k-algebras,
Aff/k category of affine k-schemes,
Sch/k category of k-schemes,
FSch/k category of formal k-schemes.

Aff/k is anti-equivalent to Alg/k. Let Aff/k (resp. Alg/k) be equipped
with the topology fppf. Let

Set/k category of sheaves of sets over Aff/k,
Ab/k category of sheaves of abelian groups over Aff/k,
Ga/k category of algebraic groups over k,
Gf /k category of formal groups over k.

Interpreting a k-scheme X as a sheaf over Aff/k given by

S �−→ X (S) = Mork (S,X)

or equivalently over Alg/k

R �−→ X (R) = Mork (SpecR,X)

makes Sch/k a full subcategory of Set/k and Ga/k a full subcategory of Ab/k.
In the same manner FSch/k becomes a full subcategory of Set/k and

Gf /k a full subcategory of Ab/k: A formal k-scheme Y = Spf A, where A is a
profinite k-algebra, is viewed as the sheaf over Aff/k given by

R �−→ Y (R) = Spf A (R) = Homcont
k-Alg (A, R)

which assigns to a k-algebra R with discrete topology the set of continuous
homomorphisms of k-algebras from A to R.

The categories Ga/k and Gf /k are abelian (see [L, (4.1.1) and (4.2.1)]).
Kernel and cokernel of a homomorphism in Ga/k (resp. Gf /k) coincide with
the ones in Ab/k, and an exact sequence 0 → K → G → C → 0 in Ab/k,
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where K and C are objects of Ga/k (resp. Gf /k), implies that G is also an
object of Ga/k (resp. Gf /k).

1.2. Definition of 1-motive
In the following by a 1-motive always a generalized 1-motive in the sense

of Laumon [L, Définition (5.1.1)] is meant:

Definition 1.9. A 1-motive is a complex concentrated in degrees −1
and 0 in the category of sheaves of abelian groups of the form M = [F → G],
where F is a torsion-free formal group over k and G a connected algebraic
group over k.

1.3. Cartier-duality
Let G be an algebraic or a formal group and let HomAb/k (G,Gm) be the

sheaf of abelian groups over Alg/k associated to the functor

R �−→ HomAb/R (GR,Gm,R)

which assigns to a k-algebra R the set of homomorphisms of sheaves of abelian
groups over R from GR to Gm,R. If G is a linear algebraic group (resp. formal
group), this functor is represented by a formal group (resp. linear algebraic
group) G∨, called the Cartier-dual of G.

The Cartier-duality is an anti-equivalence between the category of linear
algebraic groups and the category of formal groups. The functors L �−→ L∨

and F �−→ F∨ are quasi-inverse to each other. (See [SGA3, VIIB, 2.2.2.])
The Cartier-dual of a torus T ∼= (Gm)t is a lattice of the same rank:

T∨ ∼= Zt, i.e. a torsion-free étale formal group (cf. [L, (5.2)]).
Let V be a finite dimensional k-vector space. The Cartier-dual of the

vectorial group U = Spec (SymV ∨) associated to V is the infinitesimal formal
group U∨ = Spf

(
ŜymV

)
, i.e. the completion w.r.t. 0 of the vectorial group

associated to the dual k-vector space V ∨ (cf. [L, (5.2)]).

1.4. Duality of 1-motives
The dual of an abelian variety A is given by A∨ = Pic0A. Unfortunately,

there is no analogue duality theory for algebraic groups in general. Instead,
we embed the category of connected algebraic groups into the category of 1-
motives by sending a connected algebraic group G to the 1-motive [0→ G].
The category of 1-motives admits a duality theory.

Theorem 1.10. Let L be a connected linear algebraic group, A an
abelian variety and A∨ the dual abelian variety. There is a bijection

ExtAb/k (A,L) � HomAb/k (L∨, A∨).

Proof. See [L, Lemme (5.2.1)] for a complete proof.
The bijection Φ : Ext (A,L) −→ Hom(L∨, A∨) is constructed as follows: Given
an extension G of A by L. By Corollary 1.7 it suffices to determine the homo-
morphism Φ(G) : L∨ −→ A∨ on the k-valued points and on the Lie-algebra of



916 Henrik Russell

L∨. Let L = T × U be the canonical splitting of L into a direct product of a
torus T and a vectorial group U (Theorem 1.2). Now

L∨(k) = T∨(k) = HomAb/k(T,Gm)
Lie (L∨) = Lie (U∨) = Homk(Lie(U), k) = HomAb/k(U,Ga)

i.e. χ ∈ L∨(k) gives rise to a homomorphism L −→ T −→ Gm and
χ ∈ Lie (L∨) to a homomorphism L −→ U −→ Ga. Then the image of χ under

Φ(G) is the push-out χ∗G ∈
{

Ext (A,Gm) = Pic0
A(k) = A∨(k)

Ext (A,Ga) = Lie
(
Pic0

A

)
= Lie (A∨)

0 �� L

χ

��

�� G

��

�� A �� 0

0 �� G �� χ∗G �� A �� 0

where G = Gm or G = Ga.

A consequence of Theorem 1.10 is the duality of 1-motives:
Let M =

[
F μ−→ G

]
be a 1-motive, and 0 → L → G → A → 0 the canonical

decomposition ofG (Theorem 1.1). By Theorem 1.10 the composition μ̄ : F −→
G −→ A defines an extension 0 → F∨ → Gμ̄ → A∨ → 0 and the extension G
defines a homomorphism of sheaves of abelian groups μ̄G : L∨ −→ A∨. Then
μ determines uniquely a factorization μG : L∨ −→ Gμ̄ of μ̄G, according to [L,
Proposition (5.2.2)], hence gives rise to

Definition 1.11. The dual 1-motive of M =
[
F μ−→ G

]
with G ∈

Ext (A,L) is the 1-motive M∨ =
[
L∨ μG

−→ Gμ̄
]
.

The double dual M∨∨ of a 1-motive M is canonically isomorphic to M
(see [L, (5.2.4)]).

2. Universal factorization problem

Let X be a projective variety over k (an algebraically closed field of char-
acteristic 0). The universal factorization problem may be outlined as follows:
one is looking for a “universal object” U and a rational map u : X ��� U such
that for every rational map ϕ : X ��� G to an algebraic group G there is a
unique homomorphism h : U −→ G such that ϕ = h ◦ u up to translation.

The universal object U , if it exists, is not in general an algebraic group. For
this aim a certain finiteness condition on the rational maps is needed. In this
section we work out a criterion, for which categories Mr of rational maps from
X to algebraic groups one can find an algebraic group AlbMr (X) satisfying
the universal mapping property, and in this case we give a construction of
AlbMr (X). The way of procedure was inspired by Serre’s exposé [S2], where
the case of semi-abelian varieties (see Examples 2.33 and 2.45) is treated.
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2.1. Relative cartier divisors
For the construction of universal objects as above we are concerned with

the functor of families of Cartier divisors. This functor admits a natural trans-
formation to the Picard functor, which describes families of line bundles, i.e.
families of classes of Cartier divisors. References for effective relative Cartier
divisors are [M1, Lecture 10] and [BLR, Section 8.2]. Since the relative Cartier
divisors we are concerned with are not necessarily effective, we give a short
overview on this subject.

Definition 2.1. Let F : Alg/k −→ Ab be a covariant functor, R a
k-algebra. Let Rnil := k+ Nil(R) be the induced subring of R and ρ : Rnil −→
k, Nil (R) 
 n �−→ 0 the augmentation. Define

Inf (F ) (R) = ker
(
F (ρ) : F (Rnil) −→ F (k)

)
Lie (F ) = Inf (F ) (k[ε]) .

Notation 2.2. If F : Alg/k −→ Ab is a covariant functor, then we will
use the expression α∈F in order to state that either α ∈ F (k) or α ∈ Lie (F ).

Functor of relative cartier divisors
Let X and Y be noetherian schemes of finite type over k. A Cartier divisor

on X is by definition a global section of the sheaf K∗
X/O∗

X , where KX is the
sheaf of total quotient rings on X, and the star ∗ denotes the unit groups.

Div (X) = Γ (X, K∗
X/O∗

X)

is the group of Cartier divisors.

Notation 2.3. If R is a k-algebra, the scheme Y ×k SpecR is often
denoted by Y ⊗R.

Definition 2.4. Let A be an R-algebra. The set

SA/R =
{
f ∈ A

∣∣∣∣ f not a zero divisor,
A/fA is flat over R

}
is a multiplicative system in A. Then the localization of A at SA/R

KA/R = S−1
A/RA

is called the total quotient ring of A relative to R.
Let X τ−→ T be a scheme over T . The sheaf KX/T associated to the presheaf

U �−→ KOX(U)/(τ−1OT )(U) = S−1
OX (U)/(τ−1OT )(U)OX (U)

for open U ⊂ X, is called the sheaf of total quotient rings of X relative to T .
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Remark 2.5. Let A be a finitely generated flat R-algebra, where R is
a noetherian ring, f ∈ A a non zero divisor. Notice that A/fA is flat over R if
and only if for all homomorphisms R −→ S the image of f in A⊗R S is a non
zero divisor. Equivalently, f is not contained in any associated prime ideal of
A⊗R k(p) for all p ∈ SpecR (cf. [M1, Lecture 10]).

Proposition 2.6. For a k-algebra R let

DivY (R) = Γ
(
Y ⊗R, K∗

Y⊗R/R
/
O∗
Y⊗R
)
.

Then the assignment R �−→ DivY (R) defines a covariant functor

DivY : Alg/k −→ Ab

from the category of k-algebras to the category of abelian groups.

Remark 2.7. For each k-algebra R we have

DivY (R) =

⎧⎨⎩ Cartier divisors D on Y ×k SpecR
which define Cartier divisors Dp on Y × {p}

∀p ∈ SpecR

⎫⎬⎭
and for a homomorphism h : R −→ S in Alg/k the induced homomorphism
DivY (h) : DivY (R) −→ DivY (S) in Ab is the pull-back of Cartier divisors on
Y ×k SpecR to those on Y ×k SpecS.

Proposition 2.8. Let R be a k-algebra, Rnil = k + Nil (R) the induced
ring. There is a canonical isomorphism of abelian groups

Inf (DivY ) (R) = Lie (DivY )⊗k Nil (R)

where Lie (DivY ) = Γ (Y, KY /OY ).

Proof. Rnil = k [Nil (R)] is a local ring with only prime ideal Nil (R) ∈
SpecRnil, and it consists of zero divisors only. Therefore it holds K∗

Y⊗Rnil/Rnil
=

K∗
Y⊗Rnil

= KY [Nil (R)]∗ = K∗
Y + KY ⊗k Nil (R). Hence we obtain an exact

sequence

1 −→ O
∗
Y +KY ⊗k Nil (R)
O∗
Y +OY ⊗k Nil (R)

−→ K
∗
Y⊗Rnil

O∗
Y⊗Rnil

−→ K
∗
Y

O∗
Y

−→ 1 .

Now we have canonical isomorphisms

O∗
Y +KY ⊗k Nil (R)
O∗
Y +OY ⊗k Nil (R)

∼= 1 +KY ⊗k Nil (R)
1 +OY ⊗k Nil (R)

∼= KY ⊗k Nil (R)
OY ⊗k Nil (R)

∼= KYOY ⊗k Nil (R)

where the second isomorphism is given by exp−1. Applying the global section
functor Γ (Y, ) yields

0 −→ Γ
(KY
OY ⊗k Nil (R)

)
−→ Γ

(
K∗
Y⊗Rnil

O∗
Y⊗Rnil

)
−→ Γ
(K∗

Y

O∗
Y

)
.
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Here Γ
(K∗

Y⊗Rnil

/O∗
Y⊗Rnil

)
= DivY (Rnil) and Γ (K∗

Y /O∗
Y ) = DivY (k), there-

fore

Inf (DivY ) (R) = Γ (KY /OY )⊗k Nil (R) .

In particular for R = k[ε], as Nil (k[ε]) = εk ∼= k, we have

Lie (DivY ) = Inf (DivY ) (k[ε]) ∼= Γ (KY /OY )

and hence Inf (DivY ) (R) ∼= Lie (DivY )⊗k Nil (R).

Definition 2.9. If D ∈ DivY (k), then Supp (D) denotes the locus of
zeros and poles of local sections (fα)α of K∗

Y representing D ∈ Γ (K∗
Y /O∗

Y ).
If δ ∈ Lie (DivY ), then Supp (δ) denotes the locus of poles of local sections
(gα)α of KY representing δ ∈ Γ (KY /OY ).

Definition 2.10. Let F be a subfunctor of Div0
Y which is a formal

group. Then Supp(F) is defined to be the union of Supp(D) for D ∈ F(k) and
D ∈ Lie(F).

Supp (F) is a closed subscheme of codimension 1 in Y , since F (k) and
Lie (F) are both finitely generated.

Definition 2.11. For a morphism σ : V −→ Y of varieties define
DecY,V to be the subfunctor of DivY consisting of families of those Cartier
divisors that do not contain any component of the image σ(V ).

Proposition 2.12. Let σ : V −→ Y be a morphism of varieties. Then
the pull-back of Cartier divisors σ∗ induces a natural transformation of functors

· V : DecY,V −→ DivV .

Proposition 2.13. Let F be a formal group. Then each pair (a, l) of
a homomorphism of abelian groups a : F(k) −→ DivY (k) and a k-linear map
l : Lie (F) −→ Lie (DivY ) determines uniquely a natural transformation τ :
F −→ DivY with τ (k) = a and Lie(τ ) = l. Moreover, the image of F in DivY
is also a formal group.

Proof. We construct a natural transformation with the required property
by giving homomorphisms τ (R) : F(R) −→ DivY (R), R ∈ Alg/k. As F and
DivY both commute with direct products, we may reduce to k-algebras R with
SpecR connected. In this case F(R) = F(k)×(Lie (F)⊗kNil(R)

)
, cf. Theorem

1.3 and Remark 1.6. Then (a, l) yields a homomorphism

h : F(k)× (Lie (F)⊗k Nil(R)
) −→ DivY (k)× (Lie (DivY )⊗k Nil(R)

)
.

We have functoriality maps DivY (k)→ DivY (R) and DivY (Rnil)→ DivY (R),
and Lie (DivY ) ⊗k Nil(R) ∼= Inf (DivY ) (R) ⊂ DivY (Rnil). Then composition
with h gives τ (R). It is straightforward that the homomorphisms τ (R) yield
a natural transformation. The definition of Inf ( ) implies that DivY (k) ×
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Inf (DivY ) (R) −→ DivY (R) is injective. Then the second assertion follows
from the structure of formal groups, cf. Corollary 1.7.

Picard Functor
Although the Picard functor is an established object in algebraic geometry,

we give a summary of facts that we need in the following. References for the
Picard functor are e.g. [BLR, Chapter 8], [M1, Lectures 19-21] or [K].

Let Y be a projective scheme over k. The isomorphism classes of line
bundles on a k-scheme X form a group Pic (X), the (absolute) Picard group of
X, which is given by Pic (X) = H1 (X,O∗

X). The (relative) Picard functor PicY
from the category of k-algebras to the category of abelian groups is defined by

PicY (R) = Pic (Y ×k SpecR)/ Pic (SpecR)

for each k-algebra R. In other words, PicY (R) is the abelian group of line
bundles on Y ⊗R modulo line bundles that arise as a pull-back of a line bundle
on SpecR.

Similarly to the proof of Proposition 2.8 one shows

Proposition 2.14. Let R be a k-algebra, Rnil = k+Nil (R) the induced
ring. There is a canonical isomorphism of abelian groups

Inf (PicY ) (R) = Lie (PicY )⊗k Nil (R)

where Lie (PicY ) = H1 (Y,OY ).

Since a scheme over an algebraically closed field k admits a section, the
fppf-sheaf associated to the Picard functor on Y coincides with the relative
Picard functor PicY , see [BLR, Section 8.1 Proposition 4].

Theorem 2.15. Let Y be an integral projective k-scheme of finite type.
Then the Picard functor PicY is represented by a k-group scheme PicY , which
is called the Picard scheme of Y .

Proof. [FGA, No. 232, Theorem 2] or [BLR, Section 8.2, Theorem 1] or
[K, Theorem 4.8, Theorem 4.18.1].

Definition 2.16. Let M,N be line bundles on Y . Then M is said to
be algebraically equivalent to N , if there exists a connected k-scheme C, a line
bundle L on Y ×k C and closed points p, q ∈ C such that L|Y×{p} = M and
L|Y×{q} = N .

If PicY is represented by a scheme PicY , then a line bundle L on Y is
algebraically equivalent to OY if and only if L lies in the connected component
Pic0

Y of the identity of PicY . Then Pic0
Y represents the functor Pic0

Y which
assigns to R ∈ Alg/k the abelian group of line bundles L on Y ⊗R with L|Y×{t}
algebraically equivalent to OY for each t ∈ SpecR, modulo line bundles that
come from SpecR.
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Theorem 2.17. Let Y be an integral projective k-scheme of finite type.
Then Pic0

Y is represented by a quasi-projective k-group scheme Pic0
Y . If Y is

also normal, then Pic0
Y is projective.

Proof. Follows from Theorem 2.15 and [K, Theorem 5.4].

A normal projective variety Y over k is the disjoint union of its irreducible
components (see [Mm, Chapter 3, §9, Remark p. 64]). Applying Theorem 2.17
to each irreducible component Z of Y yields that Pic0

Y is represented by the
product of the connected projective k-group schemes Pic0

Z . In characteristic 0
a connected projective k-group scheme is an abelian variety. We obtain

Corollary 2.18. Let Y be a normal projective variety over k. Then
Pic0

Y is represented by an abelian variety Pic0
Y .

Transformation DivY −→ PicY
Let Y be a k-scheme and R be a k-algebra. Consider the exact sequence

Seq (R):

1 −→ O∗
Y⊗R −→ K∗

Y⊗R −→ K∗
Y⊗R
/O∗

Y⊗R −→ 1 .

In the corresponding long exact sequence H• Seq (R):

−→ H0
(K∗

Y⊗R
) −→ H0

(K∗
Y⊗R
/O∗

Y⊗R
) −→ H1

(O∗
Y⊗R
) −→ H1

(K∗
Y⊗R
) −→

the connecting homomorphism δ0 (R) : H0
(K∗

Y⊗R
/O∗

Y⊗R
) −→ H1

(O∗
Y⊗R
)

gives a natural transformation Div (Y ⊗R) −→ Pic (Y ⊗R). Composing this
transformation with the injection DivY (R) ↪→ Div (Y ⊗R) and the projection
Pic (Y ⊗R) � PicY (R) yields a natural transformation

cl : DivY −→ PicY .

Definition 2.19. Let Div0
Y be the subfunctor of DivY defined by

Div0
Y (R) = cl−1

(
Pic0

Y (R)
)

for each k-algebra R.

2.2. Categories of rational maps to algebraic groups
Let Y be a regular projective variety over k (an algebraically closed field of

characteristic 0). Algebraic groups are always assumed to be connected, unless
stated otherwise.

Notation 2.20. G stands for one of the groups Gm or Ga.

Lemma 2.21. Let P be a principal G-bundle over Y . Then a local
section σ : U ⊂ Y −→ P determines uniquely a divisor divGm (σ) ∈ DivY (k)
on Y , if G = Gm, or an infinitesimal deformation divGa (σ) ∈ Lie (DivY ) of
the zero divisor on Y , if G = Ga.
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Proof. For V =
{

k if G = Gm

k[ε] if G = Ga
let λ : G(k) −→ GL (V ) be the

representation of G given by l �−→
{

l if G = Gm

1 + εl if G = Ga
. Let V = P ×[G,λ] V

be the vector-bundle associated to P of fibre-type V . Denote by s ∈ Γ (U,V)
the image of σ under the map P −→ V induced by λ on the fibres. There is an
effective divisor H, supported on Y \U , such that the local section s ∈ Γ (U,V)
extends to a global section of V (H) = V ⊗O OY (H). Local trivializations
V|Uα

∼−→ OUα
⊗kV induce local isomorphisms Φα : V(H)|Uα

∼−→ O(H)|Uα
⊗kV

of the twisted bundles. Then the local sections Φα (s) ∈ Γ (Uα,OY (H)⊗k V )
yield a divisor divGm (σ) on Y if V = k, and a divisor divGa (σ) on Y [ε] =
Y ×kSpec k[ε] if V = k[ε]. The description of DivY from Remark 2.7 shows that
divG (σ) ∈ DivY (V ). In the second case, the image of λ : Ga(k) −→ GL(k[ε])
lies in 1 + εk. This implies that the restriction of divGa (σ) to Y is the zero
divisor, thus divGa (σ) ∈ Lie (DivY ).

Let ϕ : Y ��� G be a rational map to an algebraic group G with canonical
decomposition 0 → L → G

ρ→ A → 0. Since a rational map to an abelian
variety is defined at every regular point (see [La, Chapter II, §1, Theorem 2]),
the composition Y

ϕ��� G
ρ−→ A extends to a morphism ϕ : Y −→ A. Let

GY = G ×A Y be the fibre-product of G and Y over A. The graph-morphism
ϕY : U ⊂ Y −→ G ×A Y, y �−→ (ϕ (y) , y) of ϕ is a section of the L-bundle
GY over Y . Each λ∈L∨ (see Notation 2.2, where we consider L∨ as a functor
on Alg/k) gives rise to a homomorphism λ : L −→ G (cf. proof of Theorem
1.10). Then the composition of ϕY with the push-out of GY via λ gives a local
section ϕY,λ : U ⊂ Y −→ λ∗GY of the G-bundle λ∗GY over Y :

G

��

L
λ��

��

L

��
λ∗GY

��

GY��

��

�� G

ρ

��
Y

ϕY,λ

���
�
�
�
�
�

Y

ϕY

���
�
�
�
�
�

ϕ

���
�

�
�

�
�

�
�

�� A

Lemma 2.21 says that the local section ϕY,λ determines a unique divisor or

deformation divG (ϕY,λ) ∈
{

Γ (K∗
Y /O∗

Y ) if G = Gm

Γ
(
K∗
Y [ε]

/
O∗
Y [ε]

)
if G = Ga

. Now the bundle

λ∗GY comes from an extension of algebraic groups, and ExtAb/k(A,Gm) ∼=
Pic0

A, hence it is an element of Pic0
Y (k) if G = Gm, or of Lie

(
Pic0

Y

)
if G = Ga.
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Therefore divG (ϕY,λ) is a divisor in Div0
Y (k) if λ ∈ L (k), or an element of

Lie
(
Div0

Y

)
if λ ∈ Lie (L).

Proposition 2.22. Let G ∈ Ext (A,L) be an algebraic group and ϕ :
Y ��� G a rational map. Then ϕ induces a natural transformation of functors
τϕ : L∨ −→ Div0

Y .

Proof. The construction above yields a homomorphism of abelian groups
L∨ (k)→ Div0

Y (k), λ �→ divGm (ϕY,λ) and a k-linear map Lie (L)→ Lie
(
Div0

Y

)
,

λ �→ divGa (ϕY,λ). Then by Proposition 2.13 this extends to a natural transfor-
mation L∨ −→ Div0

Y .

Definition 2.23. A category Mr is called a category of rational maps
from Y to algebraic groups, if objects and morphisms of Mr satisfy the following
conditions: The objects of Mr are rational maps ϕ : Y ��� G, where G is an
algebraic group, such that ϕ(U) generates a connected algebraic subgroup of
G for any open set U ⊂ Y on which ϕ is defined. The morphisms of Mr
between two objects ϕ : Y ��� G and ψ : Y ��� H are given by the set of all
homomorphisms of algebraic groups h : G −→ H such that h ◦ ϕ = ψ, i.e. the
following diagram commutes:

Y
ϕ

���
�

�
�

ψ

���
�

�
�

G
h �� H

Remark 2.24. Let ϕ : Y ��� G and ψ : Y ��� H be two rational maps
from Y to algebraic groups. Then Definition 2.23 implies that for any category
Mr of rational maps from Y to algebraic groups containing ϕ and ψ as objects
the set of morphisms HomMr(ϕ, ψ) is the same. Therefore two categories Mr
and Mr′ of rational maps from Y to algebraic groups are equivalent if every
object of Mr is isomorphic to an object of Mr′.

Definition 2.25. We denote by H−1
I Mr the localization of a category

Mr of rational maps from Y to algebraic groups at the system of injective
homomorphisms among the morphisms of Mr.

Remark 2.26. In H−1
I Mr we may assume for an object ϕ : Y ��� G

that G is generated by ϕ: The inclusion 〈imϕ〉 ↪→ G of the subgroup 〈imϕ〉
generated by ϕ is an injective homomorphism, hence ϕ : Y ��� G is isomorphic
to ϕ : Y ��� 〈imϕ〉, if (ϕ : Y ��� 〈imϕ〉) ∈Mr.

Definition 2.27. The category of rational maps from Y to abelian va-
rieties is denoted by Mav.

Remark 2.28. The objects of Mav are in fact morphisms from Y ,
since a rational map from a regular variety Y to an abelian variety A extends
to a morphism from Y to A.
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Definition 2.29. Let F be a subfunctor of Div0
Y which is a formal

group. Then MrF denotes the category of those rational maps ϕ : Y ��� G
from Y to algebraic groups for which the images of the natural transformations
τϕ : L∨ −→ Div0

Y (Proposition 2.22) lie in F , i.e. which induce homomorphisms
of formal groups L∨ −→ F , where 0 → L → G → A → 0 is the canonical
decomposition of G.

MrF = {ϕ : Y ��� G | im τϕ ⊂ F}
Example 2.30. For the category Mr0 associated to the trivial formal

group {0} the localization H−1
I Mr0 (Definition 2.25) is equivalent to the local-

ization H−1
I Mav of the category of morphisms from Y to abelian varieties:

Let ϕ : Y ��� G be a rational map to an algebraic group G ∈ Ext(A,L),
and assume ϕ generates a connected subgroup of G. Then the following condi-
tions are equivalent:

(i) The transformation τϕ : L∨ −→ Div0
Y induced by ϕ has image {0}.

(ii) The section ϕY to the L-bundle GY over Y extends to a global section.
In this case ϕ is defined on the whole of Y , i.e. is a morphism from Y to G.
Since Y is complete, imϕ is a complete subvariety of G. Then the subgroup
〈imϕ〉 of G is also complete (cf. [ESV, Lemma 1.10 (ii)]) and connected, hence
an abelian variety.

Definition 2.31. Let X be a (singular) projective variety. A morphism
of varieties π : X̃ −→ X is called a resolution of singularities for X, if X̃ is
nonsingular and π is a proper birational morphism which is an isomorphism
over the nonsingular points of X.

Example 2.32. Let X be a singular projective variety and Y = X̃,
where π : X̃ −→ X is a projective resolution of singularities. Denote by MrX0
the category of rational maps ϕ : X ��� G whose associated map on 0-cycles
of degree 0 Z0 (U)0 −→ G(k) (where U is the open set on which ϕ is defined)
factors through the homological Chow group of 0-cycles of degree 0 modulo
rational equivalence A0(X)0. The definition of A0(X) (see [Fu, Section 1.3,
p.10]) implies that such a rational map is necessarily defined on the whole of
X, i.e. is a morphism ϕ : X −→ G. Then the composition ϕ ◦ π : Y −→ G
is an object of Mr0. Thus MrX0 is a subcategory of the category Mr0 from
Example 2.30.

Example 2.33. Let D be a reduced effective divisor on Y . Let MrD be
the category of rational maps from Y to semi-abelian varieties (i.e. extensions
of an abelian variety by a torus) which are regular away from D.

Let FD be the formal group whose étale part is given by divisors in Div0
Y (k)

with support in Supp (D) and whose infinitesimal part is trivial.
Then MrD is equivalent to MrFD

: For a rational map ϕ : Y ��� G the
induced sections ϕY,λ determine divisors in Div0

Y (k) supported on Supp (D)
for all λ∈L∨ (where L is the largest linear subgroup of G) if and only if L
is a torus, i.e. it consists of several copies of Gm only, and ϕ is regular on
Y \ Supp (D).
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Example 2.34. Let Y = C be a smooth projective curve, d =
∑

i ni pi
with pi ∈ C, ni integers ≥ 1, an effective divisor on C and let vp be the
valuation attached to the point p ∈ C.

Let Mrd be the category of those rational maps ϕ : Y ��� G such that for
all f ∈ KC it holds:

vpi
(1− f) ≥ ni ∀i =⇒ ϕ (div (f)) = 0.

Let Fd be the formal group defined by

Fd (k) =

{∑
i

li pi

∣∣∣∣∣ li ∈ Z,
∑
i

li = 0

}

Lie (Fd) = Γ

(
OC
(∑

i

(ni − 1) pi

)/
OC
)
.

Then Mrd is equivalent to MrFd
. By constructing a singular curve associated

to the modulus d (see [S3, Chapter IV, No. 4]), this turns out to be a special
case of Example 2.36 (cf. Lemma 3.21 for the computation of Lie (Fd)).

Example 2.35. Let Y be a smooth projective variety over C, D a
divisor on Y with normal crossings, and let U = Y \ Supp(D). Let W ⊂
Γ
(
U,Ω1

U

)d=0 be a finite dimensional k-vector space containing Γ
(
Y,Ω1

Y [logD]
)
.

Let MrW be the category of those morphisms ϕ : U −→ G from U to alge-
braic groups for which ϕ∗ (Lie (G)∨

) ⊂ W , where Lie (G)∨ = Γ
(
G,Ω1

G

)const

is the k-vector space of translation invariant regular 1-forms on G. A 1-form
ω ∈ W determines a deformation of the zero divisor δ(ω) ∈ Γ (KY /OY ) as
follows: There are a covering {Vi}i of Y and regular functions fi ∈ OY (U ∩Vi)
such that ω − dfi is regular on Vi (see [FW, VI.4 proof of Lemma 7]). Define
δ(ω) = [(fi)i] ∈ Γ (KY /OY ).

Let FW be the formal group determined by

FW (k) =
{
D′ ∈ Div0

Y (k)
∣∣ Supp(D′) ⊂ Supp(D)

}
Lie (FW ) = im

(
δ : W −→ Γ (KY /OY )

)
.

Then MrW is equivalent to MrFW
. This follows from the construction of the

generalized Albanese variety of Faltings and Wüstholz (see [FW, VI.2. Satz
6]).

Example 2.36. Let X be a singular projective variety and Y = X̃,
where π : X̃ −→ X is a projective resolution of singularities. A rational map
ϕ : X ��� G which is regular on the regular locus Xreg of X can also be
considered as a rational map from Y to G. Let MrCH0(X)0 be the category of
morphisms ϕ : Xreg −→ G which factor through a homomorphism of groups
CH0 (X)0 −→ G(k), see Definition 3.27 (cf. [ESV, Definition 1.14] for the
notion of regular homomorphism). Let Div0

eX/X
be the formal group given by
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the kernel of a suitably defined push-forward π∗ (see Propositions 3.23 and
3.24). Then MrCH0(X)0 is equivalent to MrDiv0

fX/X
. This is the subject of

Section 3.

2.3. Universal objects
Let Y be a regular projective variety over k (an algebraically closed field

of characteristic 0).

Existence and construction
Definition 2.37. Let Mr be a category of rational maps from Y to

algebraic groups. Then (u : Y ��� U) ∈Mr is called a universal object for Mr
if it has the universal mapping property in Mr:

for all (ϕ : Y ��� G) ∈ Mr there exists a unique homomorphism of alge-
braic groups h : U −→ G such that ϕ = h ◦ u up to translation, i.e. there is a
constant g ∈ G(k) such that the following diagram is commutative

Y

u
		�

�
�

�
tg◦ϕ ��������� G

U
h



�������

where tg : x �−→ x+ g is the translation by g.

Remark 2.38. Localization of a category Mr of rational maps from Y
to algebraic groups at the system of injective homomorphisms does not change
(the equivalence class of) the universal object. Therefore it is often convenient
to pass to the localization H−1

I Mr (Definition 2.25).

For the category Mav of morphisms from Y to abelian varieties (Definition
2.27) there exists a universal object: the Albanese mapping to the Albanese
variety, which is denoted by alb : Y −→ Alb (Y ). This is a classical result (see
e.g. [La], [Ms], [S1]).

In the following we consider categories Mr of rational maps from Y to
algebraic groups satisfying the following conditions:

(♦ 1) Mr contains the category Mav.
(♦ 2) (ϕ : Y ��� G) ∈Mr if and only if

∀λ∈L∨ the induced rational map (ϕλ : Y ��� λ∗G) ∈Mr.
(♦ 3) If ϕ : Y ��� G is a rational map s.t. ρ ◦ ϕ factors through

a homomorphism α : B −→ A of abelian varieties, then
(ϕ : Y ��� G) ∈Mr if and only if (ϕα : Y ��� α∗G) ∈Mr.

Here 0 → L → G
ρ→ A → 0 is the canonical decomposition of the algebraic

group G.

Theorem 2.39. Let Mr be a category of rational maps from Y to al-
gebraic groups which satisfies (♦ 1− 3). Then for Mr there exists a universal
object (u : Y ��� U) ∈Mr if and only if there is a formal group F which is a



Generalized Albanese and its dual 927

subfunctor of Div0
Y such that H−1

I Mr is equivalent to H−1
I MrF , where MrF is

the category of rational maps which induce a homomorphism of formal groups
to F (Definition 2.29).

Proof. (⇐=) Assume that H−1
I Mr is equivalent to H−1

I MrF , where F
is a formal group in Div0

Y . The first step is the construction of an algebraic
group U and a rational map u : Y ��� U . In a second step the universality of
u : Y ��� U for MrF has to be shown.

Step 1: Construction of u : Y ��� U
Y is a regular projective variety over k, thus the functor Pic0

Y is represented by
an abelian variety Pic0

Y (Corollary 2.18). Since F ⊂ Div0
Y , the formal group F

is torsion-free. The natural transformation Div0
Y −→ Pic0

Y induces a 1-motive
M =
[F −→ Pic0

Y

]
. Let M∨ be the dual 1-motive of M . The formal group

in degree −1 of M∨ is the Cartier-dual of the largest linear subgroup of Pic0
Y ,

and this is zero, since an abelian variety does not contain any non-trivial linear
subgroup. Then define U to be the algebraic group in degree 0 of M∨, i.e.
[0 −→ U ] is the dual 1-motive of

[F −→ Pic0
Y

]
. The canonical decomposition

0 → L → U → A → 0 is the extension of
(
Pic0

Y

)∨
by F∨ induced by the

homomorphism F −→ Pic0
Y (Theorem 1.10), where L = F∨ is the Cartier-dual

of F and A =
(
Pic0

Y

)∨
is the dual abelian variety of Pic0

Y , which is Alb (Y ).
As L is a linear algebraic group, there is a canonical splitting L ∼= T × U

of L into the direct product of a torus T of rank t and a vectorial group U

of dimension v (Theorem 1.2). The homomorphism F −→ Pic0
Y is uniquely

determined by the values on a basis Ω of the finite free Z-module

F (k) = L∨ (k) = T∨(k) = HomAb/k (T,Gm)

and on a basis Θ of the finite dimensional k-vector space

Lie (F) = Lie (L∨) = Lie (U∨) = Homk (Lie(U), k) = HomAb/k (U,Ga) .

By duality, such a choice of bases corresponds to a decomposition

L ∼−→ (Gm)t × (Ga)
v
,

and induces a decomposition

Ext (A,L) ∼−→ Ext (A,Gm)t × Ext (A,Ga)
v

U �−→
∏
ω∈Ω

ω∗U ×
∏
ϑ∈Θ

ϑ∗U .

Therefore the rational map u : Y ��� U is uniquely determined by the following
rational maps to push-outs of U

uω : Y ��� ω∗U ω ∈ Ω
uϑ : Y ��� ϑ∗U ϑ ∈ Θ
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whenever Ω is a basis of F (k) and Θ a basis of Lie (F). We have isomorphisms

Ext (A,Gm) � Pic0
A (k) ∼−→ Pic0

Y (k)
P �−→ PY = P ×A Y

and

Ext (A,Ga) � Lie
(
Pic0

A
) ∼−→ Lie

(
Pic0

Y

)
T �−→ TY = T ×A Y.

From the proof of Theorem 1.10 it follows that (ω∗U)Y is just the image of
ω ∈ F (k) ⊂ Div0

Y (k) under the homomorphism F −→ Pic0
Y , which is the

divisor-class [ω] ∈ Pic0
Y (k). Likewise from the proof of Theorem 1.10 follows

that (ϑ∗U)Y is the image of ϑ ∈ Lie (F) ⊂ Lie
(
Div0

Y

)
under the homomorphism

F −→ Pic0
Y , which is the class of deformation [ϑ] ∈ Lie

(
Pic0

Y

)
. Then define

the rational map u : Y ��� U by the condition that for all ω ∈ Ω the section

uY,ω : Y ��� ω∗UY = [ω]

corresponds to the divisor ω ∈ Div0
Y (k), and for all ϑ ∈ Θ the section

uY,ϑ : Y ��� ϑ∗UY = [ϑ]

corresponds to the deformation ϑ ∈ Lie
(
Div0

Y

)
, in the sense of Lemma 2.21,

i.e.

divGm (uY,ω) = ω ∀ω ∈ Ω
divGa (uY,ϑ) = ϑ ∀ϑ ∈ Θ .

This determines u up to translation by a constant. The conditions (♦ 1 − 3)
guarantee that (u : Y ��� U) ∈Mr.

Step 2: Universality of u : Y ��� U
Let G be an algebraic group with canonical decomposition 0→ L→ G

ρ→ A→
0 and ϕ : Y ��� G a rational map inducing a homomorphism of formal groups
l∨ : L∨ −→ F , λ �−→ divG (ϕY,λ) for λ∈L∨ (Proposition 2.22). Let l : L −→ L

be the dual homomorphism of linear groups. The composition Y
ϕ��� G ρ−→ A

extends to a morphism from Y to an abelian variety. Translating ϕ by a
constant g ∈ G(k), if necessary, we may hence assume that ρ◦ϕ factors through
A = Alb (Y ):

Y

alb ���
��

��
��

��
ρ◦ϕ �� A

Alb(Y )

�����������
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We are going to show that the following diagram commutes:

L

��

l �� L

��

L

��
U

��

h �� GA

��

�� G

ρ

��
Y ��

ϕ



																					

ϕA

��















u



�
�

�
�

�
�

�
�

A A �� A

i.e. the task is to show that

(a) GA = l∗U
(b) ϕA = h ◦ u mod translation

where GA = G×AA is the fibre-product of G and A over A and ϕA : Y ��� GA
is the unique map obtained from (ϕ, alb) : Y ��� G × A by the universal
property of the fibre-product GA, and where h is the homomorphism obtained
by the amalgamated sum

L

��

�� L

��
U h �� U �L L

as by definition of the push-out we have l∗U = U �L L.
For this purpose, by additivity of extensions, it is enough to show that for all
λ∈L∨ it holds

(a’) λ∗GA = l∨(λ)∗U
(b’) ϕA,λ = ul∨(λ) mod translation

where l∨(λ) = λ ◦ l and l∨(λ)∗ = (λ ◦ l)∗ = λ∗l∗. Using the isomorphism
Pic0

A
∼−→ Pic0

Y , this is equivalent to showing that for all λ∈L∨ it holds

(a”) λ∗GY = l∨(λ)∗UY
(b”) ϕY,λ = uY,l∨(λ) mod translation .

By construction of u : Y ��� U , we have for all λ∈L∨:

divG

(
uY,l∨(λ)

)
= l∨(λ) = divG (ϕY,λ)

and hence

l∨(λ)∗UY = [l∨(λ)]
= [divG (ϕY,λ)] = λ∗GY .
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As u : Y −→ U generates U , each h′ : U −→ GA fulfilling h′ ◦ u = ϕA
coincides with h. Hence h is unique.

(=⇒) Assume that u : Y ��� U is universal for Mr. Let 0 → L →
U → A → 0 be the canonical decomposition of U , and let F be the image
of the induced transformation L∨ −→ Div0

Y . For λ∈L∨ the uniqueness of
the homomorphism hλ : U −→ λ∗U fulfilling uλ = hλ ◦ u implies that the
rational maps uλ : Y ��� λ∗U are non-isomorphic to each other for distinct
λ∈L∨. Hence divG (uY,λ) �= divG (uY,λ′) for λ �= λ′ ∈L∨. Therefore L∨ −→ F
is injective, hence an isomorphism.

Let ϕ : Y ��� G be an object of Mr and 0 → L → G → A → 0 be
the canonical decomposition of G. Translating ϕ by a constant g ∈ G(k),
if necessary, we may assume that ϕ : Y ��� G factorizes through a unique
homomorphism h : U −→ G. The restriction of h to L gives a homomorphism
of linear groups l : L −→ L. Then the dual homomorphism l∨ : L∨ −→ F
yields a factorization of L∨ −→ Div0

Y through F . Thus Mr is a subcategory
of MrF . Now the properties (♦ 1− 3) guarantee that H−1

I Mr contains the
equivalence classes of all rational maps which induce a transformation to F ,
hence H−1

I Mr is equivalent to H−1
I MrF .

Notation 2.40. The universal object for a category Mr of rational
maps from Y to algebraic groups, if it exists, is denoted by albMr : Y ���
AlbMr (Y ).
If F is a formal group in Div0

Y , then the universal object for MrF is also
denoted by albF : Y ��� AlbF (Y ).

Remark 2.41. In the proof of Theorem 2.39 we have seen that AlbF (Y )
is an extension of the abelian variety Alb (Y ) by the linear group F∨, and the
rational map (albF : Y ��� AlbF (Y )) ∈MrF is characterized by the fact that
the transformation τalbF : L∨ −→ Div0

Y is the identity id : F −→ F .
More precisely, [0 −→ AlbF (Y )] is the dual 1-motive of

[F −→ Pic0
Y

]
.

Example 2.42. The universal object alb : Y −→ Alb (Y ) for Mav
from Definition 2.27 is the classical Albanese mapping and Alb (Y ) the classical
Albanese variety of a regular projective variety Y .

Example 2.43. The universal object alb0 : Y ��� Alb0 (Y ) for Mr0

from Example 2.30 coincides with the classical Albanese mapping to the classi-
cal Albanese variety by Theorem 2.39, since H−1

I Mr0 is equivalent to H−1
I Mav.

Example 2.44. The universal object for the category MrX0 from Ex-
ample 2.32 is a quotient of the classical Albanese Alb

(
X̃
)

of a projective reso-
lution of singularities X̃ for X, as MrX0 is a subcategory of Mr0 for Y = X̃. It
is the universal object for the category of morphisms from X to abelian vari-
eties and coincides with the universal morphism for the variety X and for the
category of abelian varieties in the sense of [S1].

Example 2.45. The universal object albFD
: Y ��� AlbFD

(Y ) for
MrFD

from Example 2.33 is the generalized Albanese of Serre (see [S2]).
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Example 2.46. The universal object albFd
: C ��� AlbFd

(Y ) for MrFd

from Example 2.34 is Rosenlicht’s generalized Jacobian Jd to the modulus d (see
[S3]).

Example 2.47. The universal object albFW
: Y ��� AlbFW

(Y ) for
MrFW

from Example 2.35 is the generalized Albanese of Faltings/Wüstholz
(see [FW, VI.2.])

Example 2.48. The universal object albDiv0
fX/X

:Xreg ��� AlbDiv0
fX/X

(X̃)

from Example 2.36 is the universal regular quotient of the Chow group of points
CH0 (X)0 (see [ESV]). In the following we will simply denote it by Alb (X).
This is consistent, since in the case that X is regular it coincides with the
classical Albanese variety.

Remark 2.49. Also the generalized Albanese of Serre (Example 2.45)
and the generalized Jacobian (Example 2.46) can be interpreted as special cases
of the universal regular quotient (Example 2.48) by constructing an appropriate
singular variety X.

Functoriality
The Question is whether a morphism of regular projective varieties induces

a homomorphism of algebraic groups between universal objects.

Proposition 2.50. Let σ : V −→ Y be a morphism of regular projective
varieties. Let Vr and Yr be categories of rational maps from V and Y respec-
tively to algebraic groups, and suppose there exist universal objects AlbVr(V )
and AlbYr(Y ) for Vr and Yr respectively. The universal property of AlbVr(V )
yields:
If the composition albYr ◦σ : V ��� AlbYr(Y ) is an object of Vr, then σ induces
a homomorphism of algebraic groups

AlbYr
Vr(σ) : AlbVr(V ) −→ AlbYr(Y ).

Theorem 2.39 allows to give a more explicit description:

Proposition 2.51. Let σ : V −→ Y be a morphism of regular projective
varieties. Let F ⊂ Div0

Y be a formal group s.t. Supp(F) does not contain any
component of σ(V ). Let ·V : DecY,V −→ DivV denote the pull-back of Cartier
divisors from Y to V (Definition 2.11, Proposition 2.12).
For each formal group G ⊂ Div0

V satisfying G ⊃ F · V , the pull-back of relative
Cartier divisors and of line bundles induces a transformation of 1-motives⎡⎣ G

↓
Pic0

V

⎤⎦←−
⎡⎣ F
↓

Pic0
Y

⎤⎦
Remembering the construction of the universal objects (Remark 2.41),

dualization of 1-motives translates Proposition 2.51 into the following reformu-
lation of Proposition 2.50:
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Proposition 2.52. Let σ : V −→ Y be a morphism of regular projective
varieties. Let F ⊂ Div0

Y be a formal group s.t. Supp(F) does not contain any
component of σ(V ). Then σ induces a homomorphism of algebraic groups

AlbF
G (σ) : AlbG(V ) −→ AlbF (Y )

for each formal group G ⊂ Div0
V satisfying G ⊃ F · V .

3. Rational maps factoring through CH0 (X)0

Throughout this section let X be a projective variety over k (an alge-
braically closed field of characteristic 0) and π : Y −→ X a projective resolu-
tion of singularities. Let U ⊂ Y be an open dense subset of Y where π is an
isomorphism. U is identified with its image in X, and we suppose U ⊂ Xreg.
We consider the category MrCH0(X)0 of morphisms ϕ : U −→ G from U to
algebraic groups G factoring through CH0 (X)0 (Definition 3.27), where we
assume algebraic groups G always to be connected, unless stated otherwise.

The goal of this section is to show that the category MrCH0(X)0 is equiva-
lent to the category MrDiv0

Y/X
of rational maps which induce a transformation

of formal groups to Div0
Y/X , which is defined as the kernel in Div0

Y of a kind of
push-forward π∗ of relative Cartier divisors (see Propositions 3.23 and 3.24).

3.1. Chow group of points
In this subsection the Chow group CH0 (X)0 of 0-cycles of degree 0 modulo

rational equivalence is presented, quite similar as in [LW], see also [ESV], [BiS].

Definition 3.1. A Cartier curve in X, relative to X \ U , is a curve
C ⊂ X satisfying

(a) C is pure of dimension 1.
(b) No component of C is contained in X \ U .
(c) If p ∈ C \U , the ideal of C in OX,p is generated by a regular sequence.

Definition 3.2. Let C be a Cartier curve in X relative to X\U , Cp (C)
the set of irreducible components of C and γZ the generic points of Z ∈ Cp (C).
Let OC,Θ be the semilocal ring on C at Θ = (C \ U)∪{γZ |Z ∈ Cp (C)}. Define

K (C,U)∗ = O∗
C,Θ .

Definition 3.3. Let C be a Cartier curve in X relative to X \ U and
ν : C̃ −→ C its normalization. For f ∈ K (C,U)∗ and p ∈ C let

ordp (f) =
∑
ep→p

v
ep

(
f̃
)

where f̃ := ν#f ∈ K
eC and v

ep is the discrete valuation attached to the point
p̃ ∈ C̃ above p ∈ C (cf. [Fu, Example A.3.1]).
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Define the divisor of f to be

div (f)C =
∑
p∈C

ordp (f) [p].

Definition 3.4. Let Z0 (U) be the group of 0-cycles on U , set

R0 (X,U) =
{

(C, f)
∣∣∣∣ C is a Cartier curve in X relative to X \ U

and f ∈ K (C,U)∗
}

and let R0 (X,U) be the subgroup of Z0 (U) generated by the elements div (f)C
with (C, f) ∈ R0 (X,U). Then define

CH0 (X) = Z0(U)/R0(X,U).

Let CH0 (X)0 be the subgroup of CH0 (X) of cycles ζ with deg ζ|W = 0 for all
irreducible components W ∈ Cp (U) of U .

Remark 3.5. The definition of CH0 (X) and CH0 (X)0 is independent
of the choice of the dense open subscheme U ⊂ Xreg (see [ESV, Corollary 1.4]).

Remark 3.6. Note that by our terminology a curve is always reduced,
in particular a Cartier curve. In the literature, e.g. [ESV], [LW], a slightly
different definition of Cartier curve seems to be common, which allows non-
reduced Cartier curves. Actually this does not change the groups CH0 (X) and
CH0 (X)0, see [ESV, Lemma 1.3] for more explanation.

3.2. Local symbols
The description of rational maps factoring through CH0 (X)0 requires the

notion of a local symbol as in [S3, Chapter III, §1].
Let C be a smooth projective curve over k. The composition law of an

unspecified algebraic group G is written additively in this subsection.

Definition 3.7. For an effective divisor d =
∑
np p on C, a subset

S ⊂ C and rational functions f, g ∈ KC define

f ≡ g mod d at S :⇐⇒ vp (f − g) ≥ np ∀p ∈ S ∩ Supp(d),
f ≡ g mod d :⇐⇒ f ≡ g mod d at C.

where vp is the valuation attached to the point p ∈ C.

Let ψ : C ��� G be a rational map from C to an algebraic group G which
is regular away from a finite subset S. The morphism ψ : C \ S −→ G extends
to a homomorphism from the group of 0-cycles Z0 (C \ S) to G by setting
ψ (
∑
li ci) :=

∑
li ψ (ci) for ci ∈ C \ S, li ∈ Z.

Definition 3.8. An effective divisor d on C is said to be a modulus for
ψ if ψ (div (f)) = 0 for all f ∈ KC with f ≡ 1 mod d.
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Theorem 3.9. Let ψ : C ��� G be a rational map from C to an alge-
braic group G and S the finite subset of C where ψ is not regular. Then ψ has
a modulus supported on S.

This theorem is proven in [S3, Chapter III, §2], using the following concept:

Definition 3.10. Let d be an effective divisor supported on S ⊂ C and
ψ : C ��� G a rational function from C to an algebraic group G, regular away
from S. A local symbol associated to ψ and d is a function

(ψ, ) : K∗
C × C −→ G

which assigns to f ∈ K∗
C and p ∈ C an element (ψ, f)p ∈ G, satisfying the

following conditions:
(a) (ψ, fg)p = (ψ, f)p + (ψ, g)p,
(b) (ψ, f)c = vc(f) ψ(c) if c ∈ C \ S,
(c) (ψ, f)s = 0 if s ∈ S and f ≡ 1 mod d at s,
(d)
∑
p∈C (ψ, f)p = 0.

Proposition 3.11. The rational map ψ has a modulus d if and only if
there exists a local symbol associated to ψ and d, and this symbol is then unique.

Proof. [S3, Chapter III, No. 1, Proposition 1].

Theorem 3.9 in combination with Proposition 3.11 states for each rational
map ψ : C ��� G the existence of a modulus d for ψ and of a unique local
symbol (ψ, ) associated to ψ and d.

From the definitions it is clear that if d is a modulus for ψ then e is also for
all e ≥ d. Likewise a local symbol (ψ, ) associated to ψ and d is also associated
to ψ and e for all e ≥ d.

Suppose we are given two moduli d and d′ for ψ, and hence two local
symbols (ψ, ) and (ψ, )′ associated to d and d′ respectively. Then both local
symbols are also associated to e := d + d′. The uniqueness of the local symbol
associated to ψ and e implies that (ψ, ) and (ψ, )′ coincide. It is therefore
morally justified to speak about the local symbol associated to ψ (without men-
tioning a modulus), cf. [S3, Chapter III, No. 1, Remark of Proposition 1].

Corollary 3.12. For each rational map ψ : C ��� G from C to an
algebraic group G there exists a unique associated local symbol (ψ, ) : K∗

C ×
C −→ G. If d is a modulus for ψ supported on S, then this local symbol is
given by

(ψ, f)c = vc(f) ψ(c) ∀c ∈ C \ S
(ψ, f)s = −

∑
c/∈S

vc(fs) ψ(c) ∀s ∈ S

where fs ∈ K∗
C is a rational function with fs ≡ 1 mod d at z for all z ∈ S \ s

and f/fs ≡ 1 mod d at s.
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The above formula is shown in [S3, Chapter III, No. 1], in the proof of
Proposition 1.

Example 3.13. In the case that G is the multiplicative group Gm, a
rational map ψ : C ��� Gm can be identified with a rational function in KC ,
and S is the set of zeros and poles of ψ, i.e. S = Supp (div (ψ)). Then the local
symbol associated to ψ is given by

(ψ, f)p = (−1)mn
ψm

fn
(p) with m = vp(f), n = vp(ψ).

(See [S3, Chapter III, No. 4, Proposition 6].)

Example 3.14. In the case that G is the additive group Ga, a rational
map ψ : C ��� Ga can be identified with a rational function in KC , and S is
the set of poles of ψ. Then the local symbol associated to ψ is given by

(ψ, f)p = Resp(ψ df/f).

(See [S3, Chapter III, No. 3, Proposition 5].)

Proposition 3.15. Let ϕ, ψ : C ��� G be two rational maps from C
to an algebraic group G, with associated local symbols (ϕ, ) and (ψ, ) . Then
the local symbol (ϕ+ ψ, ) associated to the rational map ϕ + ψ : C ��� G,
c �−→ ϕ (c) + ψ (c) is given by

(ϕ+ ψ, f)p = (ϕ, f)p + (ψ, f)p .

Proof. Let dϕ be a modulus for ϕ and dψ one for ψ. Then both maps ϕ, ψ
and the map ϕ+ψ have dϕ+ψ := dϕ+dψ as a modulus and both local symbols
(ϕ, ) and (ψ, ) are associated to dϕ+ψ. Now the formula in Corollary 3.12
and the distributive law imply the assertion.

Lemma 3.16. Let ψ : C ��� G be a rational map from C to an algebraic
group G which is an L-bundle over an abelian variety A, i.e. G ∈ Ext (A,L),
where L is a linear group. Let p ∈ C be a point, U 
 p a neighbourhood and
Φ : U × L

∼−→ GU , (u, l) �−→ φ (u) + l a local trivialization of the induced
L-bundle GC = G ×A C over C, i.e. φ : U −→ GC a local section. Moreover
let [ψ]Φ : C ��� L, c �−→ ψ (c) − φ (c) be the rational map ψ considered in the
local trivialization Φ. Then for each rational function f ∈ O∗

C,p it holds

(ψ, f)p = ([ψ]Φ , f)p .

Proof. Proposition 3.15 yields

([ψ]Φ , f)p = (ψ − φ, f)p = (ψ, f)p − (φ, f)p .

φ is regular at p, therefore we have (φ, f)p = vp (f) · φ (s). Since f is a unit at
p, it holds vp (f) = 0. Thus (φ, f)p = 0 and hence ([ψ]Φ , f)p = (ψ, f)p.
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3.3. Formal infinitesimal divisors
For a k-scheme Y the functor of relative Cartier divisors DivY admits a

pull-back, but not a push-forward. Supposed Y is a normal scheme, the group
of Cartier divisors Div(Y ) on Y can be identified with the group of locally
principal Weil divisors, and there is a push-forward of Weil divisors.

We are looking for a concept of infinitesimal divisors LDiv(Y ) which ad-
mits a push-forward and a transformation Lie (DivY ) −→ LDiv(Y ). In this
subsection we consider the case that Y is a curve Z.

Functor of formal infinitesimal divisors
Let Z be a curve over k.

Definition 3.17. Define the k-vector space of formal infinitesimal di-
visors on Z by

LDiv(Z) =
⊕

q∈Z(k)

Homcont
k (m̂Z,q, k)

where Homcont
k denotes the set of continuous k-linear maps. m̂Z,q carries the

m̂Z,q-adic topology, while k is endowed with the discrete topology.

Proposition 3.18. Let π : Z −→ C be a finite morphism of curves
over k. Then π induces a push-forward of formal infinitesimal divisors

π∗ : LDiv(Z) −→ LDiv(C)

induced by the homomorphisms

Homcont
k (m̂Z,q , k) −→ Homcont

k

(
m̂C,π(q), k

)
, h �−→ h ◦ π̂#

where q ∈ Z(k) and π̂# : ÔC,π(q) −→ ÔZ,q is the homomorphism of completed
structure sheaves associated to π.

Proposition 3.19. Let Z be a normal curve over k. Then there is an
isomorphism of k-vector spaces

fml : Lie (DivZ) −→ LDiv(Z).

Proof. We construct the isomorphism fml via factorization, i.e. give iso-
morphisms

Γ (KZ/OZ) ∼−→
⊕

q∈Z(k)

KZ,q/OZ,q ∼−→
⊕

q∈Z(k)

Homcont
k (m̂Z,q , k).

The first of these two maps is given by the natural k-linear map

Γ (KZ/OZ) −→
⊕

q∈Z(k)

KZ,q/OZ,q , δ �−→
∑

q∈Z(k)

[δ]q
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which is an isomorphism by the Approximation Lemma (see [S4, Part One,
Chapter I, §3]). As Z is normal, each local ring is regular. Since KZ,q/OZ,q =⋃
ν>0 t

−ν
q ÔZ,q

/
ÔZ,q for a local parameter tq of the maximal ideal mq ⊂ OZ,q,

Lemma 3.20 below yields a canonical isomorphism of k-vector spaces

KZ,q/OZ,q ∼−→ Homcont
k (m̂Z,q , k), [f ] �−→ Resq (f · d ).

Then the isomorphism fml is obtained by composition.

Lemma 3.20. Let (A,m) be a complete local k-algebra, endowed with
the m-adic topology, while k carries the discrete topology. Let l ∈ Homk (m, k)
be a k-linear map. Then the following conditions are equivalent :

(i) l is continuous,
(ii) ker (l) is open,
(iii) ker (l) ⊃ mν for some ν > 0,
(iv) l ∈ Homk (m/mν , k) for some ν > 0.

If furthermore A is a regular local ring, this is equivalent to
(v) l = Res (f · d ) : g �−→ Res (f · dg) for some f ∈ t−νA/A, ν ≥ 0

where t is a local parameter of m, K = Q (A) the quotient field,
Res : ΩK/k −→ k the residue and d : A −→ ΩA/k the universal
derivation.

Proof. (i)⇐⇒(ii)⇐⇒(iii) is folklore of rings with m-adic topology.
(iii)⇐⇒(iv) Homk (m/mν , k) = ker

(
Homk (m, k) −→ Homk (mν , k)

)
.

(iv)⇐⇒(v) If A is regular and t ∈ m a local parameter, then we may identify
A ∼= k[[t]] and K ∼= k((t)). The residue over k is defined as

Res : ΩK/k −→ k,
∑

ν
−∞
aνt

ν dt �−→ a−1

and the definition is independent of the choice of local parameter, (see [S3,
Chapter II, No. 7, Proposition 5]).

d : A −→ ΩA/k and Res : ΩK/k −→ k are both k-linear maps. Since
Res (ω) = 0 for all ω ∈ ΩA/k, the expression Res (f dg) is well defined for
g ∈ m/mν+1 and f ∈ t−νA/A.

The pairing t−νA/A × m/mν+1 −→ k, (f, g) �−→ Res (f dg) is a
perfect pairing, hence t−νA/A ∼−→ Homk

(
m/mν+1, k

)
, f �−→ Res (f d ) is

an isomorphism.

Lemma 3.21. Let C be a projective curve over a field k, and let π :
Z −→ C be its normalization. Then the kernel of the composition π∗ ◦ fml

ker
(

Lie (DivZ) fml−→ LDiv(Z) π∗−→ LDiv(C)
)

is a finite dimensional k-vector space. More precisely, if S denotes the inverse
image in Z of the singular locus of C, for each q ∈ S there is an integer nq ≥ 0
such that

⊕
q→p m̂

nq+1
Z,q ⊂ m̂C,p. Then
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ker (π∗ ◦ fml) ⊂ Γ

⎛⎝OZ
⎛⎝∑
q∈S

nq q

⎞⎠/OZ
⎞⎠

Proof. Since the normalization is birational, the set S of k-rational points
q ∈ Z such that (OZ,q ,mZ,q) �=

(OC,π(q),mC,π(q)

)
is finite. As π∗OZ/OC =∏

p∈π(S)OZ,p/OC,p is a coherent sheaf, OZ,p/OC,p is finite dimensional for each

p ∈ π(S), hence compatible with completion. Thus
(⊕

q→p m̂Z,q

)/
m̂C,p ⊂

ÔZ,p/ÔC,π(p) = OZ,p/OC,π(p) is also finite dimensional. We obtain

ker
(

LDiv(Z) −→ LDiv(C)
)

= ker

( ⊕
q∈Z(k)

Homcont
k

(
m̂Z,q, k

)
−→
⊕

p∈C(k)

Homcont
k

(
m̂C,p, k

))

=
⊕

p∈C(k)

ker

(⊕
q→p

Homcont
k

(
m̂Z,q , k

)
−→ Homcont

k

(
m̂C,p, k

))

=
⊕

p∈C(k)

ker

(
Homcont

k

(⊕
q→p

m̂Z,q , k

)
−→ Homcont

k

(
m̂C,p, k

))

=
⊕

p∈π(S)

Homk

((⊕
q→p

m̂Z,q

)/
m̂C,p , k

)

is finite dimensional. Since fml : Lie (DivZ) −→ LDiv(Z) is injective by Propo-
sition 3.19, it follows that ker (π∗ ◦ fml) is finite dimensional.

The finiteness of the dimension of
(⊕

q→p m̂Z,q

)/
m̂C,p implies that for

each q ∈ S there is an integer nq ≥ 0 such that
⊕

q→p m̂
nq+1
Z,q ⊂ m̂C,p. Then

ker
(
LDiv(Z) −→ LDiv(C)

) ⊂⊕
q∈S

Homk

(
m̂Z,q

/
(m̂Z,q)

nq+1
, k
)
.

If tq is a local parameter of m̂Z,q, Lemma 3.20 (iv)⇐⇒(v) yields

Homk

(
m̂Z,q

/
(m̂Z,q)

nq+1
, k
) ∼=⊕

q∈S
t−nq
q ÔZ,q/ÔZ,q

Then

ker (π∗ ◦ fml) ⊂ fml−1

⎛⎝⊕
q∈S

t−nq
q ÔZ,q/ÔZ,q

⎞⎠
= Γ

⎛⎝OZ(∑
q∈S

nq q

)/
OZ
⎞⎠ .
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3.4. The functor Div0
Y/X

The idea about Div0
Y/X is to define a functor which admits a natural trans-

formation to the Picard functor Pic0
Y and measures the difference between the

schemes Y and X, where π : Y −→ X is a projective resolution of singularities.
Roughly speaking, Div0

Y/X is a subfunctor of Div0
Y which lies in the kernel of

some kind of push-forward π∗.

Definition 3.22. For a k-scheme Y denote by WDiv(Y ) the abelian
group of Weil divisors on Y . Write weil : Div(Y ) −→ WDiv(Y ) for the ho-
momorphism which maps a Cartier divisor to its associated Weil divisor, as
defined in [Fu, 2.1].

Proposition 3.23. Let C be a projective curve over k, and let π : Z −→
C be its normalization. Then there is a subfunctor Div0

Z/C of Div0
Z , represented

by a formal group, characterized by the following conditions:

Div0
Z/C(k) = ker

(
Div0

Z(k) weil−→WDiv(Z) π∗−→WDiv(C)
)

Lie
(
Div0

Z/C

)
= ker
(
Lie
(
Div0

Z

) fml−→ LDiv(Z) π∗−→ LDiv(C)
)
.

Proof. A formal group in characteristic 0 is determined by its k-valued
points and its Lie-algebra (Corollary 1.7). Then the conditions on Div0

Z/C

determine uniquely a subfunctor of DivZ (cf. Proposition 2.13). Thus it suffices
to show that Div0

Z/C(k) is a free abelian group of finite rank and Lie
(
Div0

Z/C

)
is a k-vector space of finite dimension. The latter assertion was proven in
Lemma 3.21. For the first assertion note that the normalization π : Z −→ C is
an isomorphism on the regular locus of C. As Z is normal, weil : DivZ(k) −→
WDiv(Z) is an isomorphism. Then Div0

Z/C(k) is contained in the free abelian
group generated by the preimages of the singular points of C, of which there
exist only finitely many. Div0

Z/C(k) being a subgroup of a finitely generated
free abelian group is also free abelian of finite rank.

Proposition 3.24. Let X be a projective variety over k, characteristic
0, and let π : Y −→ X be a projective resolution of singularities. Let F :
Alg/k −→ Ab be the functor

F =
⋂
C

(
· C̃
)−1

Div0
eC/C

where C ranges over all Cartier curves in X relative to the singular locus Xsing

(Definition 3.1), C̃ is the normalization of C and · C̃ : DecY, eC −→ Div
eC the

pull-back of relative Cartier divisors from Y to C̃ (Definition 2.11, Proposition
2.12).

Then there is a subfunctor Div0
Y/X of Div0

Y , represented by a formal group,
characterized by the conditions Div0

Y/X(k) = F(k) and Lie
(
Div0

Y/X

)
= Lie (F).
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Remark 3.25. Let δ ∈ Lie
(
Div0

Y

)
= Γ (KY /OY ) be a deformation of

the zero divisor in Y . Then δ determines an effective divisor by the poles of its
local sections. Hence for each generic point η of height 1 in Y , with associated
discrete valuation vη, the expression vη(δ) is well defined and vη(δ) ≤ 0. Thus
we obtain a homomorphism vη : Lie

(
Div0

Y

) −→ Z.

Proof of Prop. 3.24. As in the proof of Proposition 3.23 it suffices to
show that Div0

Y/X (k) is a free abelian group of finite rank and Lie
(
Div0

Y/X

)
is a k-vector space of finite dimension.

Let D ∈ DivY (k) be a non-trivial divisor on Y whose support is not
contained in the inverse image SY = S ×X Y of the singular locus S = Xsing

of X. Then π
(
Supp(D)

)
on X is not contained in S. Let L be a very ample

line bundle on X, consider the space |L|d−1, where d = dimX, of complete
intersection curves C = H1 ∩ . . . ∩ Hd−1 with Hi ∈ |L| = P

(
H0(X,L)

)
for

i = 1, . . . , d − 1. For Cartier curves C in |L|d−1 the following properties are
open and dense:

(a) CY = C ×X Y is regular.
(b) C intersects π

(
Supp(D)

) ∩Xreg properly.
(c) D · CY is a non-trivial divisor on CY ∩Xreg.

(a) is a consequence of the Bertini theorems, (b) is due to the fact that L is very
ample and (c) follows from (b) and the fact that Supp(D) is locally a prime
divisor at almost every q ∈ Y . Therefore there exists a Cartier curve C in X
satisfying the conditions (a)-(c). Then the normalization ν : C̃ −→ C coincides
with π|CY

and hence is an isomorphism on CY ∩Xreg. Thus ν∗
(
D ·C̃) �= 0. This

implies D /∈ Div0
Y/X (k). Hence Div0

Y/X (k) is a subgroup of the free abelian
group generated by the irreducible components of SY of codimension 1. As SY
has only finitely many components, this group has finite rank. So Div0

Y/X (k)
is a subgroup of a free abelian group of finite rank, hence is also free abelian of
finite rank.

Now let δ ∈ Lie (DivY ) be a deformation of the trivial divisor on Y . The
same argument as above shows that if δ ∈ Lie

(
Div0

Y/X

)
, then Supp(δ) ⊂

SY . If C is a Cartier curve in X relative to Xsing, let CY denote the proper
transform of C, i.e. the closure of π−1(C ∩Xreg) in Y . As π|CY : CY −→ C

is a birational morphism, the normalization ν : C̃ −→ C factors through a
morphism μ : C̃ −→ CY . Given η ∈ Sht=1

Y , where Sht=1
Y denotes the set of

generic points of SY of height 1 in Y , let C be a Cartier curve in X such
that the proper transform CY intersects the prime divisor Eη associated to
η properly in a point p. As Y is regular, OY,η is a discrete valuation ring.
Let vη be the valuation at η, and let vq be the valuation attached to a point
q ∈ C̃ above p ∈ CY . Since Lie

(
Div0

eC/C

)
is finite dimensional, there exists

a number nq ∈ N such that vq(γ) ≥ −nq for all γ ∈ Lie
(
Div0

eC/C

)
. The

bound −nq depends on the singularity of C at q. More precisely, nq satisfies
m
nq+1
eC,q

⊂ mC,p (cf. Lemma 3.21). The number nq is related to the dimension
of the affine part of PicC , see [BLR, Section 9.2, proof of Proposition 9]. If
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L is a sufficiently ample line bundle on X (i.e. a sufficiently high power of
an ample line bundle on X), one finds a family T ⊂ |L|d−1 of Cartier curves
C whose proper transforms CY intersect Eη properly in points pC such that
the set {pC |C ∈ T} contains an open dense subset Uη of Eη. By upper semi-
continuity of dim PicC for the curves C in |L|d−1, we may assume that the
sets vqC

(
Lie
(
Div0

eC/C

))
for qC ∈ μ−1(pC) admit a common bound −nη for

all C ∈ T . Then for each δ ∈ Lie
(
Div0

Y/X

)
with η ∈ Supp(δ) there is a

curve C ∈ T with vqC

(
δ · C̃) = vη (δ), since this is an open dense property

among the curves that intersect Eη. By definition, δ ∈ Lie
(
Div0

Y/X

)
implies

that δ · C̃ ∈ Lie
(
Div0

eC/C

)
. Then vη (δ) = vqC

(
δ · C̃) ≥ −nη. We obtain

min
(
vη
(
Lie
(
Div0

Y/X

))) ≥ −nη, i.e. the orders of poles of deformations in
Lie
(
Div0

Y/X

)
are bounded. Hence for all η ∈ Sht=1

Y there exist nη such that

Lie
(
Div0

Y/X

)
⊂ Γ
(
OY
( ∑
η∈Sht=1

Y

nη Eη

)/
OY
)
.

As Y is projective, the k-vector space on the right hand side is finite dimen-
sional.

Remark 3.26. The construction of DivY/X involves an intersection
ranging over all Cartier curves in X, which makes this object hard to grasp.
In fact, once a formal subgroup E of Div0

Y containing Div0
Y/X is found, Div0

Y/X

can be computed from one single curve: Let (for example) E be the for-
mal group defined by E(k) = {D ∈ Div0

Y | Supp(D) ⊂ SY }, and Lie (E) =
Γ
(OY (∑η∈Sht=1

Y
nη Eη
)/OY ), as in the proof of Proposition 3.24. Then there

exists a Cartier curve C in X relative to Xsing such that

Div0
Y/X =

(
· C̃
)∣∣∣−1

E
Div0

eC/C
.

Indication of Proof. For each Cartier curve C in X, define a subfunctor
FC of E by FC :=

( · C̃)∣∣−1

E Div0
eC/C

. Then FC is a formal group for each C,

and it holds Div0
Y/X =

⋂
C FC . For each sequence {Cν} of Cartier curves the

formal groups E0 := E , Eν+1 := Eν ∩ FCν
form a descending chain

E0 ⊃ E1 ⊃ . . . ⊃ Eν ⊃ . . . ⊃
⋂
C

FC

of formal subgroups of E . It is obvious that if rD ∈ Div0
Y/X(k) for some

D ∈ DivY (k) and r ∈ Z \ {0}, then D ∈ Div0
Y/X(k). Therefore Div0

Y/X(k)
is generated by a subset of a set of generators of E(k), and this is a finitely
generated free abelian group. Moreover, Lie (E) is a finite dimensional k-vector
space. Hence the sequence {Eν} becomes stationary. Thus there is a finite set
of Cartier curves C1, . . . , Cr such that Div0

Y/X = FC1 ∩ . . . ∩ FCr
. Then each

Cartier curve C containing C1, . . . , Cr gives the desired Cartier curve.
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3.5. The category MrCH0(X)0

We keep the notation fixed at the beginning of Section 3: X is a projective
variety, π : Y −→ X a projective resolution of singularities and U ⊂ Xreg a
dense open subset.

Definition 3.27. MrCH0(X)0 is a category of rational maps from X

to algebraic groups defined as follows: The objects of MrCH0(X)0 are mor-
phisms ϕ : U −→ G whose associated map on zero-cycles of degree zero
Z0 (U)0 −→ G(k),

∑
li pi �−→

∑
li ϕ(pi) factors through a homomorphism

of groups CH0 (X)0 −→ G(k).*1

We refer to the objects of MrCH0(x)
0

as rational maps from X to algebraic
groups factoring through rational equivalence or factoring through CH0 (X)0.

Theorem 3.28. The category MrCH0(X)0 of morphisms from U to alge-
braic groups factoring through CH0 (X)0 is equivalent to the category MrDiv0

Y/X

of rational maps from Y to algebraic groups which induce a transformation of
formal groups to Div0

Y/X .

Proof. First notice that a rational map from Y to an algebraic group
which induces a transformation to Div0

Y/X is necessarily regular on U , since all
D∈Div0

Y/X have support only on Y \U . Then according to Definition 3.4 and
Definition 2.29 the task is to show that for a morphism ϕ : U −→ G from U to
an algebraic group G with canonical decomposition 0→ L→ G→ A→ 0 the
following conditions are equivalent:

(i) ϕ (div (f)C) = 0 ∀ (C, f) ∈ R0 (X,U)
(ii) divG (ϕY,λ)∈Div0

Y/X ∀λ∈L∨

where ϕY,λ is the induced section of the G-bundle λ∗GY over Y introduced in
Subsection 2.2. The principal L-bundle G is a direct sum of G-bundles λ∗G
over A, λ∈L∨; let ϕλ : U −→ λ∗G be the induced morphisms. Then condition
(i) is equivalent to

(i’) ϕλ (div (f)C) = 0 ∀λ∈L∨, ∀ (C, f) ∈ R0 (X,U).
Hence it comes down to show that for all λ∈L∨ the following conditions are
equivalent:

(j) ϕλ (div (f)C) = 0 ∀ (C, f) ∈ R0 (X,U),
(jj) divG (ϕY,λ)∈Div0

Y/X .
This is the content of Lemma 3.29 below.

Lemma 3.29. Let ϕλ : U −→ Gλ be a morphism from U to an algebraic
group Gλ ∈ Ext (A,G), i.e. Gλ is a G-bundle over an abelian variety A. Then
the following conditions are equivalent :

(i) ϕλ (div (f)C) = 0 ∀ (C, f) ∈ R0 (X,U),
(ii) divG (ϕY,λ)∈Div0

Y/X .

Proof. Let C be a Cartier curve inX relative toX\U , and let ν : C̃ −→ C
be its normalization. In the case G = Gm Lemma 3.30 and in the case G = Ga

*1A category of rational maps to algebraic groups is defined already by its objects, according
to Remark 2.24.



Generalized Albanese and its dual 943

Lemma 3.31 assert that the following conditions are equivalent:
(j) ϕλ|C (div (f)) = 0 ∀f ∈ K (C,C ∩ U)∗,
(jj) ν∗ (divG (ϕλ|C)) = 0.

We have divG (ϕλ|C) = divG (ϕY,λ) · C̃, where · C̃ : DecY, eC −→ Div
eC is the

pull-back of Cartier divisors from Y to C̃ (Definition 2.11, Proposition 2.12).
Using the equivalence (j)⇐⇒(jj) above, condition (i) is equivalent to

(i’) (νC)∗
(
divG (ϕY,λ) · C̃

)
= 0 ∀Cartier curves C relative to X \ U .

Conditions (i’) and (ii) are equivalent by definition of Div0
Y/X (Proposition

3.24), taking into account that divG (ϕY,λ)∈Div0
Y by Proposition 2.22.

Lemma 3.30. Let C be a projective curve and ν : C̃ −→ C its nor-
malization. Let ψ : C ��� Gμ be a rational map from C to an algebraic group
Gμ ∈ Ext (A,Gm), i.e. Gμ is a Gm-bundle over an abelian variety A. Suppose
that ψ is regular on a dense open subset UC ⊂ Creg, which we identify with its
preimage in C̃. Then the following conditions are equivalent :

(i) ψ (div (f)) = 0 ∀f ∈ K (C,UC)∗ ,
(ii) (f ◦ ν) (divGm (ψ)) = 0 ∀f ∈ K (C,UC)∗ ,
(iii) ν∗ (divGm (ψ)) = 0 .

Proof. (i)⇐⇒(ii) We show that for all f ∈ K (C,UC)∗ it holds

ψ (div (f)) = (f ◦ ν) (divGm (ψ)) .

Let f ∈ K (C,UC)∗. Write f̃ := ν#f = f ◦ ν. Set S := C̃ \ UC . For each s ∈ S
let Φs : Us×Gm −→ Gμ be a local trivialization of the induced Gm-bundle over

C̃ in a neighbourhood Us 
 s. Notice that vp (ψ) := vp
(
[ψ]Φp

)
is independent

of the local trivialization. Since f ∈ K(C,UC)∗, we have f ∈ O∗
C,s for all s ∈ S

and hence div (f) ∩ S = ∅. Then by Lemma 3.32 it holds

ψ (div (f)) = (ψ ◦ ν)
(
div
(
f̃
))

=
∏
c/∈S

ψ(c)vc( ef).

The defining properties of a local symbol from Definition 3.10 imply∏
c/∈S

ψ(c)vc( ef) =
∏
c/∈S

(
ψ, f̃
)
c

=
∏
s∈S

(
ψ, f̃
)−1

s
.

According to Lemma 3.16 and the explicit description from Example 3.13 of
local symbols for rational maps to Gm this is equal to∏

s∈S

(
ψ, f̃
)−1

s
=
∏
s∈S

(
[ψ]Φs

, f̃
)−1

s
=
∏
s∈S

(
f̃ , [ψ]Φs

)
s
.

Finally, using again the defining properties of a local symbol from Definition
3.10, we obtain∏

s∈S

(
f̃ , [ψ]Φs

)
s

=
∏

p/∈Supp(div( ef))
f̃(p)vp(ψ) = f̃ (divGm (ψ)) .
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(ii)⇐⇒(iii) The implication (iii)=⇒(ii) is clear. For the converse direction
first observe that the support of divGm(ψ) lies necessarily in C̃ \UC , since ψ is
regular on UC . For each s ∈ C \UC there is a rational function fs ∈ K(C,UC)∗

such that f(s) = t ∈ Gm \ {1} and f(z) = 1 for all z ∈ C \ (UC ∪ {s})
by the approximation theorem. Then (fs ◦ ν) (divGm (ψ)) = 0 if and only if
ν∗
(
divGm (ψ) |ν−1(s)

)
= 0, where divGm (ψ) |ν−1(s) is the part of divGm (ψ) which

has support on ν−1(s). As this is true for all s ∈ C\UC , it shows the implication
(ii)=⇒(iii).

Lemma 3.31. Let C be a projective curve and ν : C̃ −→ C its nor-
malization. Let ψ : C ��� Gα be rational map from C to an algebraic group
Gα ∈ Ext (A,Ga), i.e. Gα is a Ga-bundle over an abelian variety A. Suppose
that ψ is regular on a dense open subset UC ⊂ Creg, which we identify with its
preimage in C̃. Then the following conditions are equivalent :

(i) ψ (div (f)) = 0 ∀f ∈ K (C,UC)∗ ,
(ii)
∑
q→p Resq (ψ dg) = 0 ∀g ∈ ÔC,p, ∀p ∈ C,

(iii) ν∗ (divGa (ψ)) = 0.

Proof. (i)⇐⇒(ii) Let f ∈ K (C,UC)∗. We will identify f with f ′ := ν#f .
Set S := C̃\UC . For each s ∈ S let Φs : Us×Ga −→ Gα be a local trivialization
of the induced Ga-bundle over C̃ in a neighbourhood Us 
 s. Notice that
for each ω ∈ Ω

eC which is regular at q ∈ C̃ the expression Resq (ψ ω) :=

Resq
(
[ψ]Φq

ω
)

is independent of the local trivialization. Then by Lemma 3.32
it holds

ψ (div (f)) = (ψ ◦ ν) (div (f ′)) =
∑
c/∈S

vc (f ′) ψ(c).

The defining properties of a local symbol from Definition 3.10 imply∑
c/∈S

vc (f ′) ψ(c) =
∑
c/∈S

(ψ, f ′)c = −
∑
s∈S

(ψ, f ′)s .

According to Lemma 3.16 and the explicit description from Example 3.14 of
local symbols for rational maps to Ga we obtain

−
∑
s∈S

(ψ, f ′)s = −
∑
s∈S

(
[ψ]Φs

, f ′
)
s

= −
∑
s∈S

Ress (ψ df ′/f ′) .

Now df/f = d log f . More precisely, if f = α(1 + h) ∈ O∗
C,p with α ∈ k∗ and

h ∈ mC,p, then df/f = d(1+h)/(1+h) = d log(1+h) and log : 1+m̂C,p
∼−→ m̂C,p

is well-defined. Thus the implication (ii)=⇒(i) is clear.
For the converse, we first show that for each p ∈ ν(S), each g ∈ ÔC,p

and each effective divisor e supported on S there is a rational function fp ∈
K (C,UC)∗ such that d log fp ≡ dg mod e at ν−1(p) and fp ≡ 1 mod e at

s ∈ S \ ν−1(p). Since im
(
ÔC,p d−→ Ω

bOC,p

)
= im
(
m̂C,p

d−→ Ω
bOC,p

)
, we may

assume g ∈ m̂C,p. According to the approximation theorem, for d =
∑
s∈S ns s
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there is fp ∈ K eC such that fp ≡ exp g mod d at ν−1(p) and fp ≡ 1 mod d at
s ∈ S \ ν−1(p). One sees that fp ∈ K (C,UC)∗. In particular, there is h ∈ m̂C,p

with h ∈ m̂
nq

eC,q
for each q → p such that exp g = fp + h = fp(1 + f−1

p h). Then

g = log fp+log(1+f−1
p h), where log(1+f−1

p h) ∈ m̂
nq

eC,q
, since f−1

p h ∈ m̂
nq

eC,q
and

log(1 + m̂n
eC,q

) = m̂n
eC,q

for n ≥ 1. This yields d log fp ≡ dg mod e at ν−1(p) if
e =
∑

s∈Sms s and d =
∑
s∈S(ms + 1) s.

Choosing e =
∑

s∈Sms s large enough, i.e. ms larger than the pole order
of ψ at s, yields that Ress (ψ dfp/fp) = 0 for all s ∈ S \ ν−1(p), as dfp/fp has
a zero of order ≥ ms − 1 at s ∈ S \ ν−1(p). Hence ψ (div (fp)) = 0 if and only
if
∑

q→p Resp (ψ dfp/fp) =
∑
q→p Resp (ψ dg) = 0. It remains to remark that

Resc (ψ dh) = 0 for all h ∈ Ô
eC,c ⊃ ÔC,ν(c), c ∈ UC , since ψ and dh are both

regular at c.
(ii)⇐⇒(iii) Let q ∈ C̃. Then

∑
q→p Resp (ψ dg) = 0 for all g ∈ ÔC,p is

equivalent to the condition that the image
∑
q→p [divGa (ψ)]q of divGa (ψ) in⊕

q→p Homcont
k(q)

(
m̂

eC,q, k(q)
)

vanishes on m̂C,p, by construction ( Proposition

3.19), which says 0 =
∑
q→p [divGa (ψ)]q ◦ ν̂# ∈⊕q→p Homcont

k(q)

(
m̂C,ν(q), k(q)

)
.

This is true for all p ∈ C if and only if ν∗ (divGa (ψ)) = 0 by definition of the
push-forward for formal infinitesimal divisors (Proposition 3.18).

Lemma 3.32. Let C be a Cartier curve in X relative to X \ U and
ν : C̃ −→ C its normalization. If ψ : C ∩ U −→ G is a morphism from C ∩ U
to an algebraic group G, then for each f ∈ K (C,C ∩ U)∗ it holds

ψ (div (f)C) = (ψ ◦ ν) (div
(
ν#f
)

eC

)
.

Proof. Follows immediately from Definition 3.3.

3.6. Universal regular quotient
The results obtained up to now provide the necessary foundations for a

description of the universal regular quotient and its dual, which was the initial
intention of this work.

Existence and construction
The universal regular quotient Alb (X) of a (singular) projective variety

X is by definition (see [ESV]) the universal object for the category MrCH0(X)0

of morphisms from U ⊂ Xreg factoring through CH0 (X)0 (Definition 3.27).
In Theorem 3.28 we have seen that this category is equivalent to the category
MrDiv0

Y/X
of rational maps from a projective resolution of singularities Y for X

to algebraic groups which induce a transformation to the formal group Div0
Y/X .

Now Theorem 2.39 implies the existence of a universal object AlbDiv0
Y/X

(Y ) for
this category, which was constructed (Remark 2.41) as the dual 1-motive of[
Div0

Y/X −→ Pic0
Y

]
. As Alb (X) = AlbDiv0

Y/X
(Y ), this gives the existence and

an explicit construction of the universal regular quotient, as well as a description
of its dual. The proof of Theorem 0.1 is thus complete.
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Functoriality
Let X, V be projective varieties whose normalizations X̃, Ṽ are regular.

We analyze whether a morphism σ : V −→ X induces a homomorphism of
algebraic groups Alb (V ) −→ Alb (X).

As the functoriality of the universal objects AlbF (Y ), where Y is regular
and F ⊂ Div0

Y is a formal group, has already been treated in Proposition 2.52,
we will reduce the problem to this case. Therefore it obliges to show under
which assumptions the following conditions hold:

(α) A morphism σ : V −→ X induces a morphism σ̃ : Ṽ −→ X̃.
(β) The pull-back of relative Cartier divisors maps Div0

eX/X
toDiv0

eV /V
.

For this purpose we introduce the following notion, analogue to Definition 3.1
(keeping the notation fixed at the beginning of this Section 3):

Definition 3.33. A Cartier subvariety in X relative to X \U is a sub-
variety V ⊂ X satisfying

(a) V is equi-dimensional.
(b) No component of V is contained in X \ U .
(c) If p ∈ V \ U , the ideal of V in OX,p is generated by a regular

sequence.

Remark 3.34. A Cartier subvariety V in X relative to X \ U in codi-
mension one needs not to be a Cartier divisor on the whole of X. Point (c) of
Definition 3.33 implies that V is a locally principal divisor in a neighbourhood
of X \ U .

Proposition 3.35. Let V ⊂ X be a Cartier subvariety relative to X\U .
Then the pull-back of relative Cartier divisors and of line bundles induces a
transformation of 1-motives⎡⎣ Div0

eV /V

↓
Pic0

eV

⎤⎦←−
⎡⎣ Div0

eX/X

↓
Pic0

eX

⎤⎦ .
Proof. It suffices to verify the conditions (α) and (β) from above.
As no irreducible component of V is contained in X \ U by condition (b)

of Definition 3.33, the base change V ×X X̃ =: V
eX −→ V of X̃ −→ X is

birational for each irreducible component of V
eX , and there is exactly one irre-

ducible component of V
eX lying over each irreducible component of V . Thus the

normalization Ṽ −→ V factors through V
eX −→ V . We obtain a commutative

diagram
Ṽ

��

��

		�
��

��
��

�

V
eX

��

��

X̃

��
V �� X
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The morphism Ṽ −→ X̃ induces a pull-back of families of line bundles Pic0
eX
−→

Pic0
eV

and a pull-back of relative Cartier divisors Div0
eX/X

−→ Div0
eV
, since no

component of V is contained in Supp
(
Div0

eX/X

)
. A Cartier curve in V relative

to UV = V ×X U is also a Cartier curve in X relative to X \ U . Therefore
the definition of Div0

eV /V
(Proposition 3.24) implies that the image of Div0

eX/X

under pull-back ·Ṽ lies actually in Div0
eV /V

. This gives a commutative diagram
of natural transformations of functors

Div0
eV /V

��

Div0
eX/X

��

��

Pic0
eV

Pic0
eX

��

Dualization of 1-motives yields the following functoriality of the universal
regular quotient:

Proposition 3.36. Let ι : V ⊂ X be a Cartier subvariety relative to
X \ U . Then ι induces a homomorphism of algebraic groups

Alb(ι) : Alb (V ) −→ Alb (X).
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Groupes, SGA3, Lecture Notes in Math. 151, Springer-Verlag, 1959.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


