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TRANSVERSE KNOTS DISTINGUISHED
BY KNOT FLOER HOMOLOGY

Lenhard Ng, Peter Ozsváth, and Dylan Thurston

We use the recently defined knot Floer homology invariant for trans-
verse knots to show that certain pairs of transverse knots with the
same self-linking number are not transversely isotopic. We also show
that some of the algebraic refinements of knot Floer homology lead
to refined versions of these invariants, distinguishing additional trans-
versely non-isotopic knots with the same self-linking number.

1. Introduction

The aim of the present paper is to study the knot Floer homology invari-
ant for transverse knots in R

3 [25]. Specifically, we use this invariant to
distinguish transverse knots with the same classical invariants and, indeed,
we find some new transversally nonsimple knot types. Before stating our
results, we recall some notions from Legendrian and transverse knot theory
and also knot Floer homology.

Legendrian and transverse knots play a central role in contact geometry;
see Etnyre’s survey [12] for further background. For our purposes, a Leg-
endrian knot is a knot in R

3 with the property that the restriction of the
standard contact form dz−y dx to the knot vanishes identically; a transverse
knot is a knot in R

3 with the property that the restriction of the standard
contact form to the knot vanishes nowhere.

Legendrian knots in standard contact R
3, modulo isotopy through Leg-

endrian knots, have two “classical” numerical invariants, the Thurston–
Bennequin number tb and the rotation number r, whereas transverse knots
modulo transverse isotopy have one, the self-linking number sl. If one tries to
classify Legendrian and transverse knots in any particular topological knot
type, an obvious question arises: are the Legendrian or transverse isotopy
classes completely classified by their classical invariants? A topological knot
type is Legendrian (resp. transversely) simple if all Legendrian (transverse)
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knots in its class are determined up to Legendrian (transverse) isotopy by
their classical invariants.

Although some knot types, including the unknot [10], torus knots [13],
and the figure eight knot [13], are known to be Legendrian and transversely
simple, it has been known since the work of Chekanov and Eliashberg in the
mid 1990s that not all knots are Legendrian simple. In particular, using an
invariant, now called Legendrian contact homology, which counts pseudo-
holomorphic curves, Chekanov [5] produced examples of Legendrian 52 knots
which have the same tb and r but are not Legendrian isotopic. Subsequently,
Legendrian contact homology and other “nonclassical” Legendrian invari-
ants have been used to find many other examples of knots which are not
Legendrian simple [11, 23].

The situation with transverse knots is considerably more difficult. Until
now, the only examples of knots which are not transversely simple have been
produced using braid theory [3, 20] or convex surface theory [14]. These
include a family of knots of braid index three [2, 3]) and the (2, 3) cable of
the (2, 3) torus knot [14]. None of these cases uses any sort of nonclassical
invariant of transverse knots.

The purpose of this paper is to show that the invariant ̂θ(K) previ-
ously defined [25] constitutes an effective nonclassical invariant of transverse
knots; that is, it can be used to distinguish pairs of transverse knots with
the same topological type and self-linking number. We recall now the basic
properties of ̂θ(K), which takes its values in the knot Floer homology of K
(in a sense to be made precise).

Given a knot K ⊂ S3, knot Floer homology is a knot invariant which is
a finitely generated, bigraded Abelian group

ĤFK(K) =
⊕

d,s

ĤFKd(K, s),

whose bigraded Euler characteristic is the symmetrized Alexander polyno-
mial of K [24, 31]. This invariant is the homology of a chain complex
whose differentials count pseudo-holomorphic disks in a symplectic manifold
constructed from a Heegaard diagram associated to K, compare also [27].
Recent techniques have rendered the calculations of these groups purely
combinatorial [17, 18, 33]. Specifically, a grid diagram G [4, 7] for a knot
gives rise to a bigraded chain complex ̂CK(G) which can be explicitly deter-
mined from the combinatorics of G, and whose homology agrees with the
knot Floer homology groups mentioned above [17].

Indeed, knot Floer homology can be developed entirely within a combi-
natorial framework [18]. Any two grid diagrams for a given knot can be
connected by a standard set of moves, which we call grid moves [7] (see also
Section 2.2 below). Given a sequence M of grid moves from G1 to G2, there
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is a corresponding isomorphism

̂ΦM : ̂HK(G1) −→ ̂HK(G2).

A grid diagram G induces a transverse realization of its underlying knot
type, and in fact any transverse knot can be represented by a grid diagram G.
Moreover, there is a restricted set of grid moves, which we call transverse grid
moves (cf. Section 2.2), with the property that two grid diagrams G1 and
G2 represent transversely isotopic knots if and only if G1 can be connected
to G2 by a sequence of transverse grid moves. This is essentially a result of
Epstein et al. [11], cf. also [25].

Combinatorial knot Floer homology and transverse knot theory meet as
follows. The chain complex ̂CK(G) is equipped with a canonical cycle
x+(G). If M is a sequence of transverse grid moves carrying G1 to G2,
then the induced isomorphism ̂ΦM carries the homology class of x+(G1) to
the homology class of x+(G2). Thus, the homology class ̂θ of x+(G), up to
automorphisms of ̂HK(G), is an invariant of the transverse isotopy class of
the underlying transverse knot.

We have not yet investigated the precise dependence of ̂ΦM on the
sequence of moves M (though see Section 5), and this may be the input
required to distinguish the three-braid examples of Birman and Menasco [3].
(Note however that knot Floer homology does not distinguish all of Birman
and Menasco’s transverse examples; in particular, all of the knots in [2, Table
III] except 11a240 have ĤFK = 0 and HFK− of rank 1 in the relevant bide-
gree.) But even without such an investigation, the invariant ̂θ can be used
to distinguish transverse isotopy classes: for example, if ̂θ vanishes for some
grid representation of a transverse knot, then it must vanish for all grid repre-
sentations of transversely isotopic knots. And indeed, we have the following:

Theorem 1.1. The invariant ̂θ is an effective invariant of transverse knots.
In particular, it can be used to show that the knot types given by the mirrors
of 10132 and 12n200 are not transversely simple: each of these knot types has
pairs of transverse representatives T1 and T2, both with sl = −1, for which
̂θ(T1) = 0 and ̂θ(T2) �= 0.

This technique can also be used to distinguish transverse representatives
for the (2, 3) cable of the (2, 3) torus knot, which was first shown to be
transversely nonsimple by Etnyre and Honda [14], see also [20].

Some more refined invariants can also be extracted from additional struc-
ture on knot Floer homology. Recall that knot Floer homology is in fact
the homology of the graded object associated to some filtration of a chain
complex whose homology is Z, and moreover the filtered homotopy type of
this complex is a knot invariant. The preferred isomorphisms ̂Φ mentioned
above are in fact maps induced by filtered isomorphisms of the complexes.



464 L. NG, P. OZSVÁTH, AND D. THURSTON

In more concrete terms, the filtered structure immediately yields a map
δ1 : ĤFKd(K, s) → ĤFKd−1(K, s − 1) which satisfies δ2

1 = 0; moreover, if

̂Φ: ̂HK(G1) −→ ̂HK(G2)

is an isomorphism induced by grid moves, then

δ1 ◦ ̂Φ = ̂Φ ◦ δ1.

Thus, the isomorphism class of δ1 ◦ ̂θ is also a transverse knot invariant.

Theorem 1.2. The invariant δ1 ◦ ̂θ is an effective invariant of transverse
knots. In particular, it can be used to show that the pretzel knots P (−4,
−3, 3) and P (−6,−3, 3) are not transversely simple: each of these knot
types has pairs of transverse representatives T1 and T2, both with sl = −1,
for which both ̂θ(T1) and ̂θ(T2) are nonzero, but δ1 ◦ ̂θ(T1) = 0 while δ1 ◦
̂θ(T2) �= 0.

Knot Floer homology comes in a variety of versions. There is a version
HFK−, which is the homology of a chain complex CFK− over the ring Z[U ].
There is a more refined invariant θ− of transverse knots [25] which is a
homology class in this version. For our purpose, it suffices to consider a
specialization of knot Floer homology, which is a finitely generated vector
space over the field F with two elements, gotten by specializing CFK− to
F = Z[U ]/(2, U). The specialization to U = 0 allows us to work with a
finitely generated Abelian group, and working in characteristic 2 allows us to
avoid sign issues (cf. [18]) which demand additional computation complexity.
It seems likely that more information is contained in the more general theory,
but we do not address those issues here. Moreover, Theorem 1.2 uses δ1,
but more generally, there is an infinite sequence of maps

δk : ĤFKd(K, s) −→ ĤFKd−1(K, s − k)

which could presumably be employed to detect different transverse knot
types.

The calculations underpinning Theorems 1.1 and 1.2 above have been
done by a computer, using a C program available at http://www.math.
columbia.edu/˜petero/transverse.html. Calculating knot Floer homol-
ogy using the combinatorial complex is well suited for computers; for exam-
ple, Baldwin and Gillam [1] have written a program which uses this complex
to determine ĤFK(K) for all knots with 11 or fewer crossings. Our program
aims for the more modest task of determining whether or not a given cycle
is homologically trivial. (See Section 4 for details.) Accordingly, it is able to
handle knots of higher arc index: for example, it can be used to study the
Etnyre–Honda examples, which have grid number 17 (the underlying knot
class has arc index 16).
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In Section 2, we sketch the background for this paper, starting with knot
Floer homology, transverse knots, and then the transverse invariant. In
Section 3, we include the examples illustrating Theorem 1.1, Theorem 1.2,
and the Etnyre-Honda result, along with indications on how to find such
examples. Section 4 describes the algorithm used in our computations. In
Section 5, we present a conjecture on naturality in knot Floer homology and
some consequences of that conjecture, including the transverse nonsimplicity
of 72 and possibly other twist knots.

2. Preliminaries

2.1. Knot Floer homology. We review the combinatorial construction of
knot Floer homology with coefficients in Z/2Z = F [17].

A planar grid diagram G is a diagram on an n × n square grid in the
plane, where each square is decorated with an X, an O, or nothing, so that:

• every row contains exactly one X and one O;
• every column contains exactly one X and one O.

The number n is the grid number of G. Sometimes we number the Os
and Xs by {Oi}n

i=1 and {Xi}n
i=1, and we denote the two sets by O and X,

respectively.
From a planar diagram, we can construct an oriented, planar link projec-

tion by drawing horizontal segments from the Os to the Xs in each row, and
vertical segments from the Xs to the Os in each column. At every crossing,
the horizontal segment passes under the vertical one. This produces a planar
diagram for an oriented link �L in S3. We say that �L has a grid presentation
given by G. We focus on the case where �L is a knot �K.

If we cyclically permute the rows or columns of a grid diagram, we do
not change the knot that it represents, so we think of the grid diagram as
drawn on a torus T . Let the horizontal, resp. vertical, (grid) circles be the
circles in between two adjacent rows, resp. columns, of marked squares. We
denote the horizontal circles by {αi}n

i=1 and the vertical ones {βi}n
i=1.

We associate to each toroidal grid diagram G a chain complex
(

CK−(G; F),
∂
)

over F[U1, . . . , Un]. Let S = S(G) be the set of one-to-one correspon-
dences between the horizontal and vertical grid circles, which in turn can
be thought of as n-tuples of intersection points between the horizontal and
vertical grid circles such that no intersection point appears on more than one
horizontal or vertical grid circle. These generators are called (grid) states.

Let CK−(G; F) be the free F[U1, . . . , Un]-module generated by elements
of S(G).

The complex has a bigrading, induced by two functions A : S −→ Z and
M : S −→ Z defined as follows. Given two collections A, B of finitely
many points in the plane, let I(A, B) be the number of pairs (a, b), where
a = (a1, a2) ∈ A and b = (b1, b2) ∈ B with a1 < b1 and a2 < b2. Take
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a fundamental domain for the torus which is cut along a horizontal and a
vertical circle, with the left and bottom edges included. Given a generator
x ∈ S, we view x as a collection of points in this fundamental domain.
Similarly, we view O = {Oi}n

i=1 as a collection of points in the plane. Define
the Maslov grading

M(x) = MO(x) = I(x,x) − I(x, O) − I(O,x) + I(O, O) + 1.

Define MX(x) to be the same as MO(x) with the set X playing the role of O.
We define the Alexander grading

A(x) =
1
2

(

MO(x) − MX(x)
)

−
(n − 1

2

)

.

The module CK−(G; R) inherits a bigrading from M and A, with the addi-
tional convention that multiplication by Ui drops the Maslov grading by two
and the Alexander grading by one.

Given a pair of states x and y, and an embedded rectangle r in T whose
edges are arcs in the horizontal and vertical circles, we say that r connects
x to y if x and y agree along all but two horizontal circles, if all four
corners of r are intersection points in x ∪ y, and if the orientation induced
on each horizontal boundary component by the orientation of r inherited
from T goes from a point in x to a point in y. Let Rect(x,y) denote the
collection of rectangles connecting x to y. If x,y ∈ S agree along all but
two horizontal circles, then there are exactly two rectangles in Rect(x,y);
otherwise Rect(x,y) = ∅. A rectangle r ∈ Rect(x,y) is said to be empty if
Int(r)∩x = ∅. The space of empty rectangles connecting x and y is denoted
Rect◦(x,y).

We endow CK−(G; F) with an endomorphism

∂− : CK−(G; F) −→ CK−(G; F)

defined by

∂−(x) =
∑

y∈S

∑

r∈Rect◦(x,y)
X1(r)=···=Xn(r)=0

U
O1(r)
1 · · ·UOn(r)

n · y,

where Xi(r), resp. Oi(r), denotes the number of times Xi, resp. Oi, appears
in the interior of r. This chain complex has two natural specializations

(1.1) (̂CK(G; F), ̂∂) = (CK−(G; F)/(U1 = 0), ∂−)

and

(1.2) (˜CK(G; F), ˜∂) = (CK−(G; F)/(U1 = · · · = Un = 0), ∂−).

Knot Floer homology comes in two natural forms, ĤFK(K) and HFK−

(K), the first of which is a vector space over F, and the second of which is
a module over F[U ]. Let V be the two-dimensional bigraded vector space
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spanned by one generator in bigrading (−1,−1) and another in bigrading
(0, 0). Then the two forms of knot Floer homology are related to the above
specializations, according to the following special case of a more general
result:

Theorem 2.1 [17]. Fix a grid presentation G of a knot K, with grid num-
ber n. Then the homology groups H∗(CK−(G), ∂−) and H∗(̂CK(G), ̂∂) are
the knot invariants HFK−(K) and ĤFK(K), respectively. The homology
H∗(˜CK(G), ˜∂) is isomorphic to ĤFK(K) ⊗ V ⊗(n−1).

There are refinements of the above construction; we describe one that
is useful here. Consider the complex C−(G; F) over F[U1, . . . , Un], whose
underlying module agrees with CK−(G; F), but is equipped with the endo-
morphism

∂− =
∞

∑

k=0

∂−
k ,

where here
∂−

k : CK−
d (K, s) −→ CK−

d−1(K, s − k)

is given by

∂−
k (x) =

∑

y∈S

∑

r∈Rect◦(x,y)∑
Xi(r)=k

U
O1(r)
1 · · ·UOn(r)

n · y.

The map ∂− is a differential on the complex C−(G; F) equipped with its
Maslov grading (i.e., it decreases the Maslov grading by one), which respects
the filtration on C−(G; F) induced by A (the Alexander filtration). Similarly
define ̂∂k and ˜∂k.

The main result of [17] identifies the filtered quasi-isomorphism type of
(C−, ∂−) with the topologically invariant “knot filtration” of [24, 31]. Con-
cretely, if grid diagrams G1 and G2 represent the same knot, then in fact the
filtered complexes C−(G1, ∂

−) and C−(G2, ∂
−) are filtered quasi-isomorphic.

CK−(K) is the associated graded object for the Alexander filtration of
C−(K), and so its homology is a knot invariant, as stated in Theorem 2.1.
But the filtered quasi-isomorphism type of a complex has other invariants:
indeed, the entire Leray spectral sequence is preserved under filtered quasi-
isomorphisms (cf. [19]). In our case, this principle can be formulated as
follows:

Proposition 2.2. Given a grid diagram G, inductively define chain com-
plexes (Ek(G), δk) by

(E−
0 (G), δ−

0 ) = (CK−(G), ∂−),

(E−
k (G), δ−

k ) = (H∗(E−
k−1(G), δ−

k−1), [∂
−
k ]).
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If G1 and G2 represent isotopic knots, then there are isomorphisms

Φ−
k : (E−

k (G1), δk) −→ (E−
k (G2), δk)

for all k ≥ 0. We can define a similar spectral sequence for ̂CK(G): given a
grid diagram G, inductively define chain complexes ( ̂Ek(G), ̂δk) by

( ̂E0(G), ̂δ) = (̂CK(G), ̂∂),

( ̂Ek(G), ̂δk) = (H∗( ̂Ek−1(G), ̂δk−1), [̂∂k]).

If G1 and G2 represent isotopic knots, then there are isomorphisms of chain
complexes

̂Φk : ( ̂Ek(G1), ̂δk) −→ ( ̂Ek(G2), ̂δk)

for all k ≥ 0. Furthermore, the canonical map i : CK−(G) −→ ̂CK(G)
induces a map of spectral sequences making the following diagram commute:

(E−
k (G1), δ−

k )
Φ−

k−−−−→ (E−
k (G2), δ−

k )

ik

⏐

⏐




⏐

⏐



ik

( ̂Ek(G1), ̂δk)
Φ̂k−−−−→ ( ̂Ek(G2), ̂δk)

Finally, we can define a spectral sequence

( ˜E0(G), ˜δ) = (˜CK(G), ˜∂),

( ˜Ek(G), ˜δk) = (H∗( ˜Ek−1(G), ˜δk−1), [˜∂k]).

In this case, the canonical map j : ̂CK(G) −→ ˜CK(G) induces injective chain
maps for all k ≥ 0 :

jk : ( ̂Ek(G), ̂δ) −→ ( ˜Ek(G), ˜δ) ∼= ( ̂Ek(G), ̂δ) ⊗ V ⊗(n−1).

Proof. The filtered quasi-isomorphism class of the module C−(G; F) is a knot
invariant [17]. The first two spectral sequences are naturally associated to
this quasi-isomorphism type. Properties of the third spectral sequence also
follow from general algebraic principles; cf. [18, Lemma 2.11]. �

2.2. Transverse knots and grid diagrams. We now review the relation
between grid diagrams and Legendrian and transverse knots. According
to Cromwell [7] (see also [9]), two grid diagrams G1 and G2 on the torus
represent isotopic knots in S3 if and only if they can be connected by a finite
sequence of the following grid moves:

Commutation: For any pair of consecutive columns of G so that the X
and O from one column do not separate the X and O from the other
column, switch the decorations of these two columns. There is also a
similar move using rows rather than columns.
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Destabilization: For a corner c which is shared by a pair of vertically
stacked squares marked with an X and O, we delete the horizontal and
vertical circles containing c, and remove the markings of the initial X
and O (both of which mark now the same square in the destabilized
diagram). We further assume that one of the initial squares X and
O meets an additional square marked by an X or an O.

Stabilization: The inverse of destabilization.
In [18], an independent proof of the topological invariance of knot Floer
homology is provided, by exhibiting explicit filtered quasi-isomorphisms
between the complexes C−(G), as the grid undergoes each of the above
grid moves.

It will be convenient to classify (de)stabilization moves according to the
local configuration of Xs and Os. For any destabilization, there are three
marked squares in the original diagram sharing one corner. There are two
pieces of data to keep track of: the marking shared by two of these three
squares (i.e., an X or an O), and the placement of the unmarked square
relative to the shared corner, either NW, SW, SE, or NE. Stabilizations
then fall into eight types. Of these, the types O:SE, O:NE, O:NW, O:SW
are equivalent modulo commutation moves to a stabilization of type X:NW,
X:SW, X:SE, X:NE, respectively [25, Lemma 4.2].

There are restricted sets of moves to describe Legendrian and transverse
knots. Before describing these, we make a quick digression into Legendrian
knots.

Recall that Legendrian knots in R
3, endowed with the standard contact

form dz − y dx, are knots along which dz − y dx vanishes identically. These
can be studied via their front projections: images under the map (x, y, z) 
→
(x, z). A generic Legendrian front projection is a curve in the (x, z) plane
which has no vertical tangencies and is smooth away from finitely many
cusps and double-point crossings.

As explained earlier, a planar grid diagram G induces a projection for a
knot K. It also induces a Legendrian front projection for the mirror m(K)
of K: starting with the projection of K corresponding to G, reverse all
crossings (so that horizontal segments cross over vertical ones), smooth all
northwest and southeast corners, turn southwest and northeast corners into
cusps, and tilt the diagram 45◦ clockwise (so that the NE, resp. SW, corners
become right, resp. left, cusps). With the x axis as horizontal and z as
vertical, this gives a Legendrian front projection for the mirror of the knot K
described by G. Conversely, any Legendrian knot is Legendrian isotopic to
the front obtained from some grid diagram.

There are two classical invariants of oriented Legendrian knots modulo
isotopy through Legendrian knots: Thurston–Bennequin number tb and
rotation number r. In terms of grid diagrams, these are defined as follows.
Consider a grid diagram G corresponding to an oriented Legendrian knot L.
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Let wr(G) be the writhe of the knot projection given by G, i.e., the num-
ber of positive crossings minus the number of negative crossings; note that
because of crossing changes, this is −1 times the writhe of the front of m(L)
considered as a knot diagram. Let #NE(G) denote the number of northeast
corners in the knot projection given by G, let #NEX(G) be the number of
these corners occupied by Xs, and similarly define #NEO(G), #SWX(G),
and #SWO(G). Then

tb(L) = − wr(G) − #NE(G),

r(L) =
1
2
(

#NEX(G) − #NEO(G) − #SWX(G) + #SWO(G)
)

.

For example, Figure 1 gives a grid diagram for the right-handed trefoil,
yielding a Legendrian left-handed trefoil. This diagram has wr = 3, #NE =
3, #NEX = 1, #NEO = 2, #SWX = 2, and #SWO = 1, and thus tb =
−6 and r = −1. In the sequel, we will suppress crossing information in
Legendrian front diagrams; at any crossing, the negatively sloped strand
passes over the positively sloped strand.

For grid diagrams, Legendrian isotopy may be expressed as follows: two
grid diagrams correspond to Legendrian isotopic knots if and only if they
can be related by commutation moves and de/stabilization moves of type
X:NW and X:SE. O:SE and O:NW moves can also be included here if
desired. The other stabilization moves, while not changing topological knot
type, do change Legendrian isotopy class: X:NE (or O:SW) is called positive
stabilization, while X:SW (or O:NE) is called negative stabilization. These
stabilizations both decrease tb by 1; positive stabilization increases r by 1,
while negative stabilization decreases r by 1. In terms of front projections,
stabilization replaces a smooth section of the front by a zigzag, situated to
change r by ±1.

Closely related to Legendrian knots are transverse knots, which are every-
where transverse to the contact 2-plane field ker(dz−y dx). Each transverse
knot inherits a natural orientation from the coorientation of the contact
structure. That is, the contact 1-form dz − y dx evaluated on tangent vec-
tors to the knot is always positive. Any oriented Legendrian knot L can

Figure 1. Grid diagram for a right-handed trefoil and the
corresponding oriented Legendrian left-handed trefoil knot.
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be perturbed in the C∞ topology to a transverse knot by pushing it along
its length an arbitrary small amount in a generic direction transverse to
the contact planes. The resulting transverse knot is called the positive or
negative transverse pushoff of L, written L+ or L−, depending on whether
its orientation agrees or disagrees with the orientation from L. Pushing L
in opposite directions yields transverse pushoffs of opposite sign, and L− is
the positive transverse pushoff of the orientation reverse of L.

Both L+ and L− are well defined up to isotopy through transverse knots,
and Legendrian isotopic knots have pushoffs which are transversely isotopic.
Indeed, the set of transverse knots up to transverse isotopy is naturally
identified, through the correspondence L+ ↔ L, with the set of Legendrian
knots up to Legendrian isotopy and negative stabilization [11]. This fact
readily leads to the following characterization of transverse isotopy in terms
of grid diagrams [25, Corollary 4.5]:

Proposition 2.3. Two grid diagrams represent Legendrian links whose pos-
itive transverse pushoffs are transversely isotopic if and only if they can be
connected by a sequence of commutation and de/stabilization moves of types
X:NW,X:SE, and X:SW.

Negative stabilization does not change tb − r. We thus define the self-
linking number of the corresponding positive pushoff transverse knot:

sl(L+) = tb(L) − r(L).

The self-linking number is then invariant under transverse isotopy. We also
have sl(L−) = tb(L) + r(L).

2.3. The transverse invariant. We briefly recall now the transverse
invariant [25].

Given a grid diagram G, consider the chain x+(G) which occupies the
upper right corner of each square marked with an X. This element x+(G)
is easily seen to be a cycle in CK−(G). In fact, the homology class of
x+(G) is an invariant of the transverse isotopy class of the transverse knot
described by G [25]. This is proved by showing that if G1 and G2 are grid
diagrams which differ by a transverse grid move, then the corresponding
(filtered) quasi-isomorphism from CK−(G1) to CK−(G2) identified in [18]
carries the homology class of x+(G1) to that of x+(G2). Thus, if G rep-
resents the topological knot K and the Legendrian knot L of type m(K),
then the underlying homology class, λ+(L) ∈ HFK−(K), is an invariant of
the transverse isotopy class of L+. This results in a transverse invariant θ
defined by θ(L+) = λ+(L).

We can alternatively consider the chain x−(G) which occupies the lower
left corner of each square marked with an X. The homology class of this
element λ−(L) is then equal to θ(L−).
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Theorem 2.4 [25]. The homology classes λ±(L) are supported in HK−
d

(m(L), s), where d = sl(L±) + 1, 2s = d. Moreover, if L+
1 and L+

2 repre-
sent transversely isotopic transverse knots, then there is a filtered quasi-
isomorphism Φ− : C−(m(L+

1 )) −→ C−(m(L+
2 )) whose induced map on

homology

φ− : HK−(m(L+
1 )) −→ HK−(m(L+

2 ))

carries λ+(L+
1 ) to λ+(L+

2 ). An analogous result holds for λ− if L−
1 and L−

2
are transversely isotopic.

In practice, it is more convenient to work with ̂HK rather group HK−,
which is infinitely generated over F. Correspondingly, we let ̂λ+, ̂λ−, ̂θ
denote the images of λ+, λ−, θ, respectively, under the natural map

i : HK−(m(L)) −→ ̂HK(m(L)).

These images are also invariants of the respective Legendrian and transverse
knot types in view of Theorem 2.4 and Proposition 2.2.

3. Examples

In this section, we prove Theorems 1.1 and 1.2, showing that ̂θ and δ1 ◦ ̂θ are
effective nonclassical transverse invariants. The proofs consist of presenting
pairs of Legendrian knots in the relevant knot types and appealing to the
computer program. We also include some remarks for each example, and a
concluding subsection explaining the strategy used to find our examples.

For ease of reference, we collect our conventions here: L± are the positive
and negative transverse pushoffs of Legendrian L; sl(L±) = tb(L) ∓ r(L),
θ(L±) = λ±(L), and Legendrian knots are negatively/positively stably iso-
topic if and only if their positive/negative transverse pushoffs are isotopic.

3.1. m(10132) and m(12n200). Let L1 and L2 denote the oriented Legen-
drian knots of topological type m(10132) (the mirror of 10132) whose front
projections are given in Figure 2.1 Both L1 and L2 have tb = −1 and r = 0,
and hence the transverse pushoffs L±

1 and L±
2 all have sl = −1. Note that

L1 and L2 differ only within the dashed boxes.
The depictions of L1 and L2 in Figure 2 have been chosen to be easy

to translate to grid diagrams. We can represent an n × n grid diagram by
two n-tuples X = (x1, . . . , xn) and O = (o1, . . . , on), both permutations of
(1, . . . , n), so that column i contains an X in row xi and an O in row oi,
where we number rows from bottom to top and columns from left to right.

1L1 is also a Legendrian representative of m(10132), the only topological knot with 10
or fewer crossings for which the maximal value of tb is currently unknown [21].
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Figure 2. Legendrian m(10132) knots L1 (left) and L2
(right). As pictured, these knots differ only in the dashed
boxes, which are each topologically a negative half-twist on
three strands.

Then the tuples for L1 and L2 are given below the respective diagrams.
(It is possible to represent L1 and L2 by diagrams with grid number 9
rather than 10, but this obscures their similarity.)

We remark that L2 is Legendrian isotopic to the orientation reverse −L1
of L1, and thus L±

2 is transversely isotopic to L∓
1 . This can be seen as

follows. Reflection of an oriented front in the vertical axis does not change
Legendrian isotopy class, since it corresponds to rotating the xy projection
of the knot by 180◦. Reflecting L2 in the vertical axis, and then pushing
the pattern in the dashed box around the knot as in the Legendrian satellite
construction [22], yields −L1.

In a similar vein, let L′
1 and L′

2 denote the Legendrian m(12n200) knots
depicted in Figure 3, also with tb = −1 and r = 0. Then (L′

1)
± and (L′

2)
±

all have sl = −1, L′
2 is Legendrian isotopic to −L′

1, and (L′
2)

± is transversely
isotopic to (L′

1)
∓.

Proposition 3.1. L+
1 and L+

2 = L−
1 are not transversely isotopic; (L′

1)
+

and (L′
2)

+ = (L′
1)

− are not transversely isotopic.

Proof. The computer program tells us that ̂θ(L+
1 ) is null-homologous

in ĤFK0(m(10132), 0) while ̂θ(L+
2 ) is not null-homologous; similarly,

̂θ((L′
1)

+) = 0 in ĤFK0(m(12n200), 0) while ̂θ((L′
2)

+) �= 0. �

We remark that the Plamenevskaya invariant of transverse knots from
Khovanov homology [29] vanishes for L±

1 = L∓
2 and (L′

1)
± = (L′

2)
∓, because

in each case it lies in a trivial graded summand of Khovanov homology.
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Figure 3. Legendrian m(12n200) knots L′
1 (left) and L′

2 (right).

Presumably L1 and L2 are parts of a family of knots, obtained by adding
further full twists, which are not transversely simple, but establishing this
result for the entire family might be computationally difficult.

A corollary of Proposition 3.1 is that L1 and −L1 are not Legendrian
isotopic. We note that Legendrian contact homology, which in general is
quite good at distinguishing different Legendrian knots, does not distinguish
between L1 and −L1; the Z[t±1] differential graded algebras [15] for L1 and
−L1, which in theory could be distinct, are easily shown to be stable tame
isomorphic. This observation also holds for L′

1, as well as the knots L1 and
L′

2 defined in the next subsection.

3.2. P (−4,−3, 3) and P (−6,−3, 3). In the previous section, we presented
knots which were distinguished straightaway by ̂θ. Here we give examples
of transverse pretzel knots which are not distinguished by ̂θ, but rather
by δ1 ◦ ̂θ.

Let L1 and L2 be the Legendrian P (−4,−3, 3) = m(10140) pretzel knots
shown in Figure 4, and let L′

1 and L′
2 be the Legendrian P (−6,−3, 3) =

12n582 pretzel knots shown in Figure 5. All of these knots have tb = −1
and r = 0, and thus L±

1 , L±
2 , (L′

1)
±, and (L′

2)
± all have sl = −1. Note that

L1 and L2 (resp. L′
1 and L′

2) differ by the placement of a half-twist, à la the
“Eliashberg knots” of [11], and it is easy to check that L1 and L2 (resp. L′

1
and L′

2) are Legendrian isotopic after one positive stabilization. However,
the following result shows that they are not Legendrian isotopic after any
number of negative stabilizations.

Proposition 3.2. Each of the following pairs of knots is not transversely
isotopic: L+

1 and L+
2 ; (L′

1)
+ and (L′

2)
+; L+

1 and L−
1 ; (L′

2)
+ and (L′

2)
−.
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Figure 4. Legendrian P (−4,−3, 3) pretzel knots L1 (left)
and L2 (right).

Figure 5. Legendrian P (−6,−3, 3) pretzel knots L′
1 (left)

and L′
2 (right).

Proof. The computer program finds that in ĤFK−1(P (−4,−3, 3),−1),

δ1(̂θ(L+
1 )) = δ1(̂λ+(L1)) = 0,

δ1(̂θ(L+
2 )) = δ1(̂λ+(L2)) �= 0,

δ1(̂θ(L−
1 )) = δ1(̂λ−(L1)) �= 0;

similarly in ĤFK−1(P (−6,−3, 3),−1),

δ1(̂θ((L′
1)

+)) = δ1(̂θ((L′
2)

−)) = 0,

δ1(̂θ((L′
2)

+)) �= 0.

(On the other hand, ̂θ(L±
1 ), ̂θ(L±

2 ), ̂θ((L′
1)

±), ̂θ((L′
2)

±) are all nonzero
in ĤFK.) �
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One might guess that there is a generalization of Proposition 3.2 to show
that no pretzel knot P (−2n, −3, 3) for n ≥ 2 is transversely simple.

As in the previous subsection, the Plamenevskaya transverse invariant
[29] does not distinguish any of the examples in this subsection, though for
a different reason. Here the Khovanov homology in the relevant bigrading
has rank 1, and all of the transverse knots involved have quasipositive braid
representatives. To obtain a braid from a grid diagram, connect Xs and Os
as usual, but for each vertical segment with X above O, replace the segment
by a vertical segment that starts at the X, goes up through the top of the
diagram, and then returns to the O through the bottom of the diagram.
(All horizontal segments lie over all vertical segments.) We obtain a braid
going from bottom to top, and it can be proven that the transverse knots
represented by the grid diagram and by the corresponding braid are the
same. For instance, L+

1 and L+
2 are represented by the quasipositive braids

σ−1
3 σ2σ

2
3σ

2
1σ

−1
2 σ1σ2σ

−2
1 and σ3σ2σ

2
1σ

−1
3 σ−1

2 σ1σ2σ3σ
−2
1 , respectively.

3.3. The Etnyre–Honda cable example. In [14], Etnyre and Honda
describe a knot class, the (2, 3) cable of the (2, 3) torus knot, which has a Leg-
endrian representative which does not maximize the Thurston–Bennequin
number but is nonetheless not destabilizable. Their classification of Legen-
drian knots in this knot class includes the following result.

Proposition 3.3 [14]. There are nonisotopic Legendrian knots L1 and L2,
topologically the (2, 3) cable of the (2, 3) torus knot, both with tb = 5 and
r = 2, for which L1 is the positive stabilization of a Legendrian knot while
L2 is not. Furthermore, L1 and L2 are not Legendrian isotopic after any
number of negative stabilizations: L+

1 and L+
2 are not transversely isotopic.

Menasco and Matsuda [20] have presented explicit forms for L1 and L2;
equivalent but slightly modified versions, arranged to emphasize the local
change that relates them, are given in Figure 6. Since L1 is a positive
stabilization (as readily checked by Gridlink [8]), it follows from [25, Theo-
rem 1.3] that ̂θ(L+

1 ) = 0 in ĤFK; this can be confirmed by a computer. On
the other hand, the computer program verifies that the image of ̂θ(L+

2 ) in
ĤFK is nonzero. Thus, one can use ̂θ to reprove Proposition 3.3.

3.4. Finding transversely nonsimple knots. To conclude this section,
we give a heuristic explanation for how the transverse examples in Sec-
tions 3.1 and 3.2 were found. The techniques described here should allow
the interested reader to find other examples of knot types which are trans-
versely nonsimple.

We first describe how to find knot types for which the nonvanishing
of ̂θ might be applied to distinguish transverse representatives. The key



TRANSVERSE KNOTS DISTINGUISHED BY KNOT FLOER HOMOLOGY 477

Figure 6. Legendrian fronts for L1 (top) and L2 (bottom),
which are both (2, 3) cables of the (2, 3) torus knot. These
examples are derived from diagrams of Menasco and Matsuda
[20, Figures 16 and 15], respectively. Note that L1 and L2
differ only in the indicated regions.

observation here is that such knot types must be thick ; that is, their knot
Floer homology ĤFK must be supported on more than one diagonal. Indeed,
we have the following result.

Proposition 3.4. Let T be a transverse knot in a thin knot type K. Then
̂θ(T ) �= 0 if and only if sl(T ) = 2τ(K) − 1.
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Note that by Plamenevskaya [28], any transverse knot T of type K sat-
isfies sl(T ) ≤ 2τ(K) − 1; thus Proposition 3.4 states that the ̂θ invariant
of a transverse knot of thin type is nonzero if and only if the τ bound
is sharp.

Proof of Proposition 3.4. Let A and M denote Alexander and Maslov grad-
ing, respectively, in both ĤFK and HFK−. If K is thin, it is an easy exercise
in homological algebra to see that, along the line M = 2A, HFK−(m(K))
has the following form: it consists of the direct sum of a free module over
F[U ] generated by one generator in bidegree (A, M) = (τ(K), 2τ(K)), and
a summand in bidegree (τ(K), 2τ(K)) which is annihilated by multiplica-
tion by U . If T is a transverse knot of type K, then θ(T ) lies in bide-
gree ((sl(T ) + 1)/2, sl(T ) + 1) and is non-U -torsion [25, Theorem 1.5]; it
follows that θ(T ) is in the image of multiplication by U if and only if
sl(T ) < 2τ(K) − 1. Since ̂θ(T ) = 0 if and only if θ(T ) is in the image of U ,
the proposition follows. �

Now suppose that there are transverse knots T1, T2 in type K with the
same sl, for which ̂θ(T1) = 0 and ̂θ(T2) �= 0. By Proposition 3.4, K must
be thick. In addition, θ(T1) and θ(T2) are nonzero, unequal elements in
HFK−(m(K)) in grading ((sl + 1)/2, sl + 1). In particular, there must be a
group HFK−

d (m(K), s) with d = 2s which has rank at least 2 over F.
For the knot K = m(10132), ĤFK(m(K)) and HFK−(m(K)) are plotted

in Figure 7. Here HFK−
0 (10132, 0) = F

2, and indeed this is where θ sits

Figure 7. ĤFK(10132) and HFK−(10132). Large numbers
represent ranks over F. The arrows in ĤFK represent δ1
maps, with ranks shown; the dotted arrows in HFK− repre-
sent multiplication by U . The invariant θ lies in the boxed
group.
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for the two transverse representatives of m(10132). The Floer homology
calculations are taken from [1], where Baldwin and Gillam calculate ĤFK,
together with its δ1 differential. In the given example, this can be used to
determine HK−, together with its U action, with the help of the following:

Lemma 3.5. There is a spectral sequence starting at H∗(
⊕

t≤−s
̂HK(K, t),

δ1) and converging to HK−
∗−2s(K, s). Moreover, there is a map of spectral

sequences which induces the inclusion

H∗

⎛

⎝

⊕

t≤−s

̂HK∗(K, t), δ1

⎞

⎠ −→ H∗

⎛

⎝

⊕

t≤−s+1

̂HK∗(K, t), δ1

⎞

⎠

on the E1 page, and converges to the map

U : HK−
∗−2s(K, s) −→ HK−

∗−2s−2(K, s − 1).

Proof. The spectral sequence comes from the following. Consider the sub-
complex ̂F(K, s) of ̂C(K) = C−(K)/(U1 = 0) generated by those x with
A(x) ≤ s. There are isomorphisms

φs : HK−
∗ (K, s)

∼=−→ H∗−2s( ̂F∗(K, −s)),

which fit into a commutative diagram

HK−
∗ (K, s)

φs−−−−→ H∗−2s( ̂F∗(K, −s))

U

⏐

⏐




⏐

⏐


i

HK−
∗−2(K, s − 1)

φs−1−−−−→ H∗−2s( ̂F∗(K, −s + 1))

This result is immediate for the holomorphic curves definition of the invari-
ant [24], see also the proof of Lemma A.2 [25], for the result proved in the
combinatorial context.

We now consider the filtration of ̂F(K, −s) by subcomplexes ̂F(K, t) ⊂
̂F(K, −s) with t ≤ −s. The homology of the associated graded object is
⊕

t≤−s
̂HK(K, −s), endowed with differential δ1. �

Glancing at the δ1 differential displayed on the left-hand side in Figure 7,
we see at once that the above spectral sequence collapses at the E2 stage,
and hence that HK− is as shown on the right-hand side of the same figure.

As for finding different transverse representatives in a candidate knot
class such as m(10132), we found the program Gridlink [8], and its ability
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Figure 8. A local sequence of grid moves corresponding in
the Legendrian category to a positive stabilization and desta-
bilization. This sequence can be used to relate the pairs from
Sections 3.2 and 3.3.

to quickly produce Legendrian forms of any reasonably small knot, to be
very useful. In the case of m(10132), which is reversible, the Legendrian
knot produced by Gridlink has r = 0, and thus its orientation reverse gives
a transverse knot with the same tb and r ; these two knots are the ones with
different positive transverse pushoffs. If the trick of reversing the orientation
on a Legendrian knot with r = 0 does not work, there are other ways to find
candidates for different transverse knots. For instance, one can look in the
front for a negative half-twist on two strands, with one strand consisting of
a downward-oriented zigzag, for which the crossing is positive; one can then
move the zigzag to the other strand and produce another Legendrian knot
with possibly different transverse pushoff; see Figure 8 or the dashed boxes
in Figure 6 for an illustration (there are similar regions in Figures 4 or 5).

Finding possible candidate knot types for transverse knots which are
distinguished by whether or not δ1(̂θ) = 0 is similar. Here we again

Figure 9. ĤFK(P (−4,−3, 3)) and HFK−(P (−4,−3, 3)).
The invariant θ lies in the boxed group, δ1 ◦ θ in the circled
group.
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need a knot K such that some HFK−
d (m(K), s) with s = 2d has rank

at least 2. In addition, ĤFKd(m(K), s) should have rank at least 2, and
HFK−

d−1(m(K), s − 1) and ĤFKd−1(m(K), s − 1) should be nonzero.

For K = P (−4,−3, 3) = m(10140), ĤFK(m(K)) and HFK−(m(K)) are
plotted in Figure 9. Note that HFK−

0 (m(K), 0) has rank 2; this is where θ
sits for the two transverse knots.

4. The algorithm

We have seen in the last section applications of the transverse knot invariant
̂θ(L) ∈ ĤFK(m(L)) (and also its image under δ1).

In practice, it is preferable to work with the finitely generated chain com-
plex ˜CK(m(L); F) from Equation (1.2). As in Theorem 2.1, the homol-
ogy groups of this complex can be used to reconstruct ĤFK(m(L)), which,
although it does contain less information than HFK−(m(L)), is sufficient for
the purposes of this article.

The strategy from [1] for calculating knot Floer homology can be adapted
to the task at hand, trying to determine whether or not ̂θ is trivial. First
observe that the question of whether or not ̂θ is homologically trivial is
equivalent to the question of whether or not the image j∗(̂θ) ∈ ˜HK(m(L))
is trivial, where here j∗ is the map on homology induced by the projec-
tion j : ̂CK(m(L)) −→ ˜CK(m(L)), cf. Proposition 2.2 (we are using here
the statement that j1 is an injection). Of course, j∗(̂θ) is the homology
class represented by the cycle x+, thought of now as a homology class in
H∗(˜CK(m(L))).

The limiting factor in determining knot Floer homology at the moment
is memory: for a knot with grid number n, one needs to keep track of n!
generators. However, determining whether or not a given cycle such as x+

is null-homologous requires less work than calculating the ranks of all the
homology groups, as much of the chain complex is irrelevant to this problem.
Indeed, this can be formalized in the following algorithm.

Construct two sets

A =
∞
∐

i=0

Ak and B =
∞
∐

i=0

Bk

defined inductively, as follows. Let A0 = ∅ and B0 = {x+}. Having built
Ak and Bk, we construct Ak+1 and Bk+1 as follows. Let Ak+1 consist of all
x ∈ S(G) − Ak for which there is some y ∈ Bk which appears with nonzero
multiplicity in ˜∂(x). Let Bk+1 consist of all y ∈ S(G) − Bk for which there
is some x ∈ Ak+1 for which y appears with nonzero multiplicity in ˜∂(x).
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The important point here is that the construction of Ak+1 and Bk+1 requires
keeping track of the grid states representing only Ak and Bk (rather than
all the Ai and Bi for i = 1, . . . , k).

Let A (respectively, B, Ak, Bk) be the free vector space over F generated
by elements in A (respectively, B,Ak,Bk), and form the chain complex
C ′ = A ⊕ B, endowed with the differential

D : A −→ B

gotten by counting rectangles as in the definition of ˜∂. By construction,
there is a natural quotient map

Q : ˜CK −→ C ′.

It is easy to see that x+ is homologically trivial if and only if Q(x+) is;
so, since C ′ is significantly smaller than ˜CK (in particular, it generated by
elements with Maslov grading d and d + 1, where d = sl(L) + 1), we work
with it instead.

To determine whether or not the given element x+ is nontrivial in C ′, we
proceed as follows. First, we enlarge C ′ to a chain complex C ′′ = A′ ⊕ B
with one additional (distinguished) generator a0 ∈ A′ (i.e., A′ = A⊕F) with
D′(a0) = x+. (We can think of x+ as inducing a chain map from F to C ′,
and hence that C ′′ is the mapping cone of this map.) As in Baldwin and
Gillam [1], we view the differential on the complex C ′′ as giving a graph on
the generating set of C ′′, drawing an edge from a generator a of C ′′ to b in C ′′

whenever b appears with nonzero multiplicity in D′(a). As in their scheme,
given an edge e from a to b, we can “contract” it (and reduce the number
of generators of our complex by two) without affecting the homology, as
follows. Draw additional edges from a′ to b′ (and then cancel identical edges
in pairs), for all a′ for which there is an edge from a′ to b and all b′ for
which there is an edge from a to b′. This has the effect of a change of basis
a′ 
→ a′ +a, b′ 
→ b′ + b for all such a′, b′. After this change of basis, the only
edge involving a or b is the edge between them, and we can then contract
the complex by deleting a, b, and the edge between them.

It will be important for us to perform these contractions in a controlled
manner. Let C0 be the initial complex C ′′. We construct now a finite
sequence of contractions to obtain a finite sequence of complexes {Ck}m

k=0
as follows. Given Ck, we consider the distinguished element a0. If there are
no edges leaving a0, then our sequence terminates, and we conclude that
x+ had to be homologically trivial in C, and hence also in ˜CK. If there are
edges leaving a0, we ask if there are edges e connecting some a �= a0 to some
b, which is also the endpoint of a different edge leaving a0. If there is no
such edge e, then our sequence terminates, and we conclude that the original
element x+ had to be homologically nontrivial in C, and hence also in ˜CK.
Otherwise, we let Ck+1 be the complex obtained from C after contracting e.
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Finally, we remark that some time is saved if we perform both operations
simultaneously: before building the next level of the complex Ak+1 and
Bk+1 from Ak and Bk, we contract all possible edges which point from Ak+1
into Bk. This is, in fact, the algorithm we implemented for performing the
calculations from the present paper.

We indicate how this works in a particular example, the pretzel knot
P (−4,−3, 3) represented by

X = (9, 8, 1, 4, 6, 5, 7, 2, 3), O = (4, 2, 5, 7, 9, 8, 3, 6, 1)

investigated in the last section. The computation is slightly easier, and the
algorithm equally well demonstrated, if we investigate x− rather than x+.
In this case, it turns out that the above algorithm encounters only eight grid
states (of the 9! = 362880 grid states which generate ˜CK(G)).

We start with the initial state x−, which we could alternatively denote
by its y-coordinates (9, 8, 1, 4, 6, 5, 7, 2, 3). Thus, we start with the chain
complex A′

0 generated by the distinguished element a0, and B0, generated by

B0 = {(9, 8, 1, 4, 6, 5, 7, 2, 3)}.

A casual glance at the grid picture reveals exactly two rectangles pointing
into this grid state (see Figure 10), and these are rectangles leaving states

A1 = {(9, 8, 1, 4, 5, 6, 7, 2, 3), (8, 9, 1, 4, 6, 5, 7, 2, 3)}.

For each of the above states a ∈ A1, there are exactly two empty rectangles
leaving a; one goes back to x−, and the other points to a new state in

B1 = {(9, 8, 1, 4, 5, 7, 6, 2, 3), (8, 1, 9, 4, 6, 5, 7, 2, 3)}.

Thus, so far, we have the complex pictured on the top in Figure 11.

Figure 10. Finding states for the chain complex for P (−4,
−3, 3). The columns represent states in B0, A1,B1,A2,B2,
respectively. Shaded rectangles connect states in a given col-
umn to states in the next column.
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Figure 11. Contracting edges in the chain complex for
P (−4,−3, 3). At the first stage of building the complex
for P (−4,−3, 3), we obtain the complex pictured on the
top. Here, the asterisk denotes the distinguished element a0.
Contracting the dotted edge, we obtain the second complex,
shown at the bottom.

Contracting one edge pointing back to the generator (9, 8, 1, 4, 6, 5, 7, 2, 3)
∈ B0, we obtain a smaller complex, having thrown out the generator of B0.
But we have no further need for such a generator: in building A2, we need to
only remember the states in B1. Proceeding in this manner, the persistent
reader can verify that

A2 = {(8, 9, 1, 4, 5, 7, 6, 2, 3), (8, 1, 9, 4, 5, 6, 7, 2, 3)},

B2 = {(8, 1, 9, 4, 5, 7, 6, 2, 3)}.

There are no new states (i.e., states not already in A2) pointing into B2; thus
we need to only calculate the homology of what we have so far, to determine
that a0 is not a cycle, and hence that x− was homologically nontrivial.

A mild modification of the above procedure applies when determining
whether δ1(̂θ) is null-homologous. In this case, we start with A0 = ∅ and B0

consisting of all of the terms in ˜∂1(x+), that is, containing exactly one X:

B0 =
∑

{y | y ∈ S, ∃!r ∈ Rect◦(x,y) with
∑

Oi(r) = 0,
∑

Xi(r) = 1}.

We build the complex C ′ from here as before. We enlarge this to C ′′ by
adding one additional distinguished generator a0 whose differential consists
of all the terms in B0. Arguing as before, we have that δ1(̂θ) is trivial if and
only if a0 has no edges pointing out of it (after all other edges have been
contracted).



TRANSVERSE KNOTS DISTINGUISHED BY KNOT FLOER HOMOLOGY 485

Although the pretzel example we illustrated above had a reasonably small
complex, most of the other examples in this paper are quite involved; and
hence, we implemented the above algorithm in a C program.

5. Naturality questions

We end with a conjecture that would, if true, greatly increase the power of
the transverse invariant ̂θ. Consider a sequence S of elementary grid diagram
moves, including symmetries of the grid diagram that fix the vertical axis,
which start and end at the same grid diagram G for a knot K. This sequence
of grid diagrams gives a path in the space of embeddings of K, and thus an
element [S] in Mod+(S3, K), the mapping class group of S3 relative to K,
preserving the orientations of both S3 and K.

Conjecture 5.1. The map Φ(S) : HFK−(G) → HFK−(G) induced by S
on Heegaard Floer homology depends only on [S] ∈ Mod+(S3, K), up to a
possible overall sign.

More generally, one might conjecture that any cobordism between knots
gives a well-defined map on the homology.

Conjecture 5.2. For any pair of oriented knots K, K ′ ⊂ S3 and oriented
surface Σ ⊂ S3 × [0, 1] so that ∂Σ = (−K × {0}) ∪ (K ′ × {1}) (where −K is
K with the orientation reversed), there is a map

Φ(Σ) : HFK−(K) → HFK−(K ′),

which depends only on the isotopy class of Σ.

(The analogous theorem is true for Khovanov homology [6, 16].)
If Conjecture 5.1 were true, the transverse invariant θ(T ) of a trans-

verse knot T of topological type K would be well defined as an element
of HFK−(K)/ Mod+(S3, K). Since the mapping class groups Mod+(S3, K)
are generally smaller than the group of all automorphisms of HFK−(K),
the invariant would become stronger. For instance, let E(1, 5) and E(2, 4)
denote two of the “Eliashberg knots” considered by Epstein et al. [11]2 and
shown in Figure 12. Then we have the following.

Proposition 5.3. If Conjecture 5.1 were true, then E(1, 5)+ and E(2, 4)+

would not be transversely isotopic.

Proof. Both knots are of topological type 72. The mapping class group
Mod+(S3, 72) is Z/2Z [32]; the nontrivial element φ is the one that exists
for every two-bridge knot: if the knot is in the bridge position with respect
to a sphere S, φ interchanges the two positive and two negative intersections
with S (so preserving the orientation of the knot).

2Warning: Epstein et al. [11] uses the opposite convention for transverse pushoffs; their
L± is our L∓.
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Figure 12. Legendrian knots from grid diagrams G1 for
E(2, 4) (top left) and G2 for E(1, 5) (top right) of type 72.
An alternate, symmetric form G3 of E(1, 5) is shown below.

Let G1 = E(2, 4), G2 = E(1, 5), G3 be the diagrams shown in Figure 12,
and note that one representative for φ is rotation by 180◦ on G3. This
symmetry interchanges [z+(G3)] and [z−(G3)], which therefore form an orbit
of Mod+(S3, 72). Now G2 and G3 are Legendrian isotopic by Figure 13, and
[z±] are preserved by Legendrian isotopy; hence [z+(G2)] and [z−(G2)] form
an orbit of Mod+(S3, 72).

On the other hand, G1 and G2 can be related by a sequence of grid moves,
as shown in Figure 8. It is straightforward to check by hand, using the quasi-
isomorphisms under grid moves from [18], that this sequence takes [z+(G1)]
to (2, 7, 8, 4, 5, 9, 3, 6, 1) + (4, 7, 8, 9, 5, 2, 3, 6, 1) in the complex ˜CK for G2
(in the notation from Section 4). By inspection, this sum is not homolo-
gous in ˜CK to [z+(G2)] or [z−(G2)]. On the assumption of Conjecture 5.1,
it follows that the positive transverse pushoffs E(1, 5)+ and E(2, 4)+ are
distinct. �

By comparison, note that, by [11, Theorem 2.2] (or see Figure 8), E(1, 5)−

and E(2, 4)− are transversely isotopic.
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Figure 13. A Legendrian isotopy between G2 and G3, the
two forms of E(5, 1). Starting from the upper left and mov-
ing clockwise, rotate (in the toroidal grid diagram) to the
right one step, then rotate to the right and down two steps
each, then perform a stabilization of type O:NW, and finally
perform two commutations.

We close this section with some speculation about transverse twist knots.
The knots E(k, l) of [11], which are twist knots of crossing number n + 1
if k + l = n, generalize Chekanov’s celebrated examples of nonisotopic Leg-
endrian 52 knots [5]. More specifically, E(k, l) and E(k′, l′) are Legendrian
isotopic if and only if {k, l} = {k′, l′} [11], and the E(k, l) provide candidates
for nonisotopic transverse knots. It is conjectured in [11] that E(k, l)+ and
E(k − 1, l + 1)+ are not transversely isotopic in general whenever l is even.
This turns out not to be true: for instance, the transverse 52 knots E(2, 2)+

and E(1, 3)+ are isotopic.
In general, one can show that if n is odd, then the oriented knots

E(1, n − 1), E(2, n − 2), . . . , E(n − 1, 1)

are all Legendrian isotopic after one negative stabilization (and also all iso-
topic after one positive stabilization). Analogously, if k, l ≥ 2 are both even,
then E(k, l), E(k + 1, l − 1), E(l − 1, k + 1), and E(l − 2, k + 2) (this last
assuming l ≥ 4) are all Legendrian isotopic after one negative stabilization.
Even with this in mind, however, it is still possible that if n is even, several
of E(1, n− 1), E(2, n− 2), . . . , E(n− 1, 1) are not negatively stably isotopic.

Conjecture 5.4. If n is even, the �n/4� transverse knots

E(1, n − 1)+, E(3, n − 3)+, . . . , E(2�n/2� − 1, 2�n/2� + 1)+,

all with sl = 1, are pairwise transversely nonisotopic.

We note that the Legendrian knots E(1, n−1), E(3, n−3), . . . , E(2�n/2�−
1, 2�n/2� + 1) are hardly arbitrarily chosen: they are particularly simple
examples of the Legendrian satellite construction [22]. More precisely, they
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are Whitehead doubles of the unknot obtained by taking the Legendrian
satellites of unknots with Thurston–Bennequin number −n/2 and the Leg-
endrian Whitehead knot W0 described in the appendix of [22]. It is straight-
forward to check that these Legendrian Whitehead doubles are unchanged
up to isotopy by reversing the orientation of the underlying unknot; note
that the number of different unoriented Legendrian unknots with tb = −n/2
is �n/4� [10].

Considering the Alexander polynomial, and using the structure of knot
Floer homology of two-bridge knots [30], see also [26], one sees that the
transverse invariant ̂θ for the knots in Conjecture 5.4 lies in an ĤFK group
of rank n/2. Just as for 72, the mapping class group of the underlying
topological twist knot is Z/2Z; quotienting by the Z/2Z action yields a
group of rank �n/4�. It does not seem unreasonable to guess that each of
the �n/4� transverse knots from Conjecture 5.4 maps under ̂θ to a different
generator in the quotient.
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