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ISOTOPIES OF LEGENDRIAN 1-KNOTS AND
LEGENDRIAN 2-TORI

Tobias Ekholm and Tamás Kálmán

We construct a Legendrian 2-torus in the 1-jet space of S1 × R (or
of R

2) from a loop of Legendrian knots in the 1-jet space of R. The
differential graded algebra (DGA) for the Legendrian contact homology
of the torus is explicitly computed in terms of the DGA of the knot
and the monodromy operator of the loop. The contact homology of
the torus is shown to depend only on the chain homotopy type of the
monodromy operator. The construction leads to many new examples
of Legendrian knotted tori. In particular, it allows us to construct a
Legendrian torus with DGA which does not admit any augmentation
(linearization) but which still has non-trivial homology, as well as two
Legendrian tori with isomorphic linearized contact homologies but with
distinct contact homologies.

1. Introduction

Let M be a smooth n-manifold and consider the 1-jet space J1(M) =
T ∗M ×R with coordinates (x, y, z), where x ∈ M , y ∈ T ∗

xM , and z ∈ R. The
1-form α = dz −

∑
j yj dxj is a contact 1-form and ξ = ker(α) is the stan-

dard contact structure on J1(M). The Reeb vector field of a contact form
β is the unique vector field Rβ which satisfies dβ(Rβ, ·) = 0 and β(Rβ) = 0.
Hence, if α is the standard contact form then Rα = ∂z. An n-dimensional
submanifold L ⊂ J1(M) which is everywhere tangent to ξ is called Leg-
endrian. The isotopy problem for Legendrian submanifolds is the problem
of distinguishing the path components of the space of Legendrian submani-
folds. It is a very rich and interesting problem; see e.g. [3, 6, 10, 16, 17].
In [15] the related problem of detecting non-contractible loops in the space
of Legendrian 1-submanifolds of J1(R) was studied. In this paper we relate
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the latter problem to the former problem for Legendrian tori in J1(R × S1)
(and in J1(R2)).

The introduction of Legendrian contact homology (see [3, 11]), led to
major breakthroughs in the study of the Legendrian isotopy problem. The
contact homology of a Legendrian submanifold L ⊂ J1(M) is the homology
of a differential graded algebra (DGA) A(L) associated to L. Here A(L)
is the (non-commutative) unital DGA freely generated by the Reeb chords
of L (flow lines of the Reeb vector field starting and ending on L) graded
by their Conley–Zehnder indices. (For simplicity, throughout this paper we
will work with Z2-coefficients so that A(L) is an algebra over a Z2-group
ring, rather than a Z-group ring.) The differential on A(L) is defined using
moduli spaces of boundary-punctured holomorphic disks in the symplecti-
zation J1(M)×R with Lagrangian boundary condition L×R ⊂ J1(M)×R

and with certain asymptotic properties near the punctures; see Sections 2.1
and 2.2. For 1-dimensional Legendrian submanifolds of J1(R), the Riemann
mapping theorem allows for a purely combinatorial description of contact
homology; see [3]. For higher-dimensional Legendrian submanifolds, ana-
lytical foundations for contact homology were worked out in [6, 8]. In [4],
a more combinatorial description was obtained: Legendrian contact homol-
ogy in 1-jet spaces was described entirely in terms of Morse theoretic objects
called flow trees; see Section 2.3.

Contact homology has certain functorial properties. In particular, each
isotopy of Legendrian knots induces a Lagrangian cobordism which in turn
induces a morphism of the contact homologies at its endpoints. Such mor-
phisms induced by isotopies were dealt with from a purely combinatorial
point of view in [15]. (The techniques used in this paper lead to a descrip-
tion of these morphisms in terms of moduli spaces of holomorphic curves in
a cobordism; see [9].)

In order to state the main theorem of the paper we first describe the under-
lying geometric construction. Let L ⊂ J1(M) be a Legendrian submani-
fold which is in sufficiently general position with respect to the projection
ΠF : J1(M) → J0(M). The image ΠF(L) is the front of L and determines L.
If γ(t), t ∈ S1, is a 1-parameter family of Legendrian submanifolds, starting
and ending at L, then (ΠF(γ(t)), t) ⊂ J0(M×S1) is the front of a Legendrian
embedding L × S1 → J1(M × S1). We call this Legendrian embedding the
trace of the isotopy and denote the corresponding Legendrian submanifold
by Σγ(L). When M = R, consider an embedding S1 × R → R

2 obtained
by identifying S1 × R with a small tubular neighborhood of the unit circle.
Using this embedding we may consider Σγ(L) ⊂ J1(S1 × R) ⊂ J1(R2).

See Figure 1 for the front of Σγ(L) in the simplest case when L is the
standard Legendrian unknot and γ is the constant isotopy. Note that if
γ is a constant isotopy then for each Reeb chord of L, Σγ(L) has an S1-
family of Reeb chords. The Reeb chord families are analogous to critical
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submanifolds of a Morse–Bott function, and after a small perturbation each
Reeb chord family of Σγ(L) contributes two Reeb chords of Conley–Zehnder
indices equal to, respectively, one larger than that of the corresponding
chord of L. The following result shows that DGAs of general isotopy traces
admit presentations with generators similar to the Reeb chords of traces of
constant isotopies and gives the differential in terms of the contact homology
morphism induced by the isotopy.

Theorem 1.1. Let γ(t), t ∈ S1, be a loop of Legendrian submanifolds of
J1(R) starting and ending at L ⊂ J1(R). Let A = Z2[H1(L)]〈c1, . . . , cr〉
be the DGA of L, let |cj | denote the degree of the generator cj, and let
φ : A → A be the monodromy operator associated to γ. Then the DGA of
Σγ(L) as a Legendrian submanifold of J1(S1 × R) or of J1(R2) is stable
tame isomorphic to the algebra (Â, Δ), where

Â = Z2[H1(L × S1)]〈c1, . . . , cr, ĉ1, . . . , ĉr〉,

with |ĉj | = |cj | + 1 for all j, and where

Δ(cj) = ∂cj ,

Δ(ĉj) = cj + φ(cj) + Γφ(∂cj),

with Γφ : A → Â denoting the degree 1 derivation defined by Γ(cs) = ĉs and
extended to all of A by

Γφ(αβ) = Γφ(α)φ(β) + αΓφ(β).

Theorem 1.1 is proved in Section 7. Using it, we provide examples estab-
lishing the following.

Theorem 1.2. Let Y denote J1(S1×R) or J1(R2) equipped with its standard
contact form.

(a) There exists a Legendrian torus in Y with DGA which has no aug-
mentation but which has non-zero homology.

(b) There exists a Legendrian torus in Y with linearized contact homology
isomorphic to the linearized contact homology of the standard torus
(the standard torus is the trace of the constant isotopy of the unknot)
but with full contact homology different from that of the standard
torus.

Theorem 1.2 is proved in Section 8; see [18] for similar results for
1-dimensional Legendrian submanifolds. The Legendrian tori in (a) and
(b) are the traces of isotopies of Legendrian (3, 2) and (7, 2) torus knots,
respectively, that were studied in [15]. We show they have properties as
claimed by computing their contact homology algebras in degree 0.
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The paper is organized as follows. In Section 2 we recall the definition
of contact homology and describe how to compute it in 1-jet spaces using
flow trees. In Section 3 we discuss certain slight generalizations of contact
homology described in terms of perturbed flow trees. In Section 4 we explain
how the differential ∂ of the DGA A of the trace of the constant isotopy can
be computed in terms of perturbed flow trees which arise from a geometric
perturbation of the Legendrian submanifold. This computation is however
not explicit enough to yield a closed formula for ∂. In Section 5 we design
an abstract perturbation for the trace of the constant isotopy which yields
a closed formula for another differential ∂′ on the DGA A. By a result from
Section 3, the DGAs (A, ∂) and (A, ∂′) are tame isomorphic. In Section 6 we
discuss how to decompose an isotopy into simple pieces and how to compute
the DGAs of the traces of such simple pieces. Concatenation of the pieces
then yields the DGA for the full isotopy. However, the concatenation gives
a DGA with an enormous number of generators. In Section 7 we show,
using a purely algebraic argument, that the DGA with the large number
of generators is stable tame isomorphic to the DGA in the formulation of
Theorem 1.1. We also give an algebraic proof of fact that the contact homol-
ogy of the trace of an isotopy depends only on the chain homotopy class of
the morphism of the isotopy. In Section 8 we study examples needed to
establish Theorem 1.2.

2. Background

In this section we give a brief description of Legendrian contact homology
and how to compute it for Legendrian submanifolds in 1-jet spaces. For
details we refer to [4, 6, 8]. More precisely, the DGA associated to a Leg-
endrian submanifold is described in Sections 2.1 and 2.2. In Section 2.3 we
define flow trees and describe the relation between rigid flow trees and rigid
holomorphic disks.

2.1. Holomorphic disks. Let M be a smooth n-manifold, endow J1(M) =
T ∗M × R with its standard contact form, and let z be a coordinate in the
R-direction. Let L be a closed Legendrian submanifold . We assume that L
is sufficiently generic so that the Lagrangian projection ΠC : J1(M) → T ∗M
restricted to L has only transverse double points. If c is a double point of
ΠC(L) then we write Π−1

C
(c) ∩ L = {c+, c−}, where z(c+) > z(c−). (Since

the Reeb field of the standard contact form dz − y dx is ∂z, there exists a
1–1 correspondence between double points of ΠC(L) and Reeb chords on L,
and we will use these two notions interchangeably.)

Let Dm+k be the unit disk D in the complex plane C with punctures
x1, . . . , xm, y1, . . . , yk on the boundary, and let J be an almost complex struc-
ture on T ∗M which is tamed by the standard symplectic form ω = dx ∧ dy
on T ∗M .
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Definition 2.1. A J-holomorphic disk with positive punctures p1, . . . , pm

and negative punctures q1, . . . , qk and with boundary on L is a map
u : Dm+k → T ∗M with the following properties.

• ∂̄Ju = du + J ◦ du ◦ i = 0 (where i is the complex structure on the
complex plane).

• The restriction u|∂Dm+k has a continuous lift ũ : ∂Dm+k → L ⊂
J1(M).

• limζ→xj
u(ζ) = pj and limζ→xj± ũ(ζ) = p±

j , where limζ→xj+ means
that ζ approaches xj from the region in ∂Dm+k in the counterclock-
wise direction as seen from xj and limζ→xj− means it approaches xj

from the region in the clockwise direction.
• limζ→yj

u(ζ) = qj and limζ→yj± ũ(ζ) = q∓
j .

In this paper we will restrict attention to holomorphic disks with exactly
one positive puncture. The moduli space of holomorphic disks with bound-
ary on L has certain compactness properties: a version of Gromov’s com-
pactness theorem holds; see [2, 5, 8]. Since the linearized ∂̄J -operator is
elliptic and since the double points of ΠC(L) are transverse, the lineariza-
tion of the equation which defines the moduli space of J-holomorphic disks
is a Fredholm operator and its index determines the expected dimension of
the moduli space. Details of the computation of the Fredholm index can be
found in [5, 8]. Here we simply state the result. Pick for each Reeb chord c
of L a capping path γc in L connecting c+ to c−. Define Γc to be the path
of Lagrangian subspaces ΠC(TγcL) closed up by a positive rotation. Define

|c| = μ(Γc) − 1,

where μ is the Maslov index. Given any boundary condition of a holomorphic
disk with positive puncture at a and negative punctures at b1, . . . , bk, we can
close it up to a loop by adding appropriately oriented capping paths at the
Reeb chords. Let A ∈ H1(L; Z) denote the homology class of the closed-up
loop and let MA(a; b1, . . . , bk) denote the moduli space of holomorphic disks
with positive puncture a, negative punctures at b1, . . . , bk, and boundary
condition inducing the homology class A. Then

dim
(
MA(a; b1, . . . , bk)

)
= |a| −

k∑

j=1

|bk| + μ(ΓA) − 1,

where ΓA is the path of Lagrangian subspaces along a loop in L
representing A.

2.2. Legendrian contact homology. Let L ⊂ J1(M) be a Legendrian
submanifold. The DGA A(L) of L is the free algebra over the Z2-group ring
of H1(L; Z) generated by the Reeb chords of L,

A(L) = Z2[H1(L; Z)]〈c1, . . . , cm〉.
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The differential ∂ : A(L) → A(L) counts rigid holomorphic disks. It is
defined to be linear over the algebra coefficients and to satisfy Leibniz rule
and is thus determined by its action on generators. If a is a generator then

∂a =
∑

dim(MA(a;b1,...,bk))=0

|MA(a; b1, . . . , bk)|A b1 · · · bk,

where |M| denotes the modulo 2 number of points in the compact 0-manifold
M. For this definition to make sense we require that L is generic with
respect to holomorphic disks so that all moduli spaces of holomorphic disks
of dimension ≤1 are transversely cut out. It is shown in [5, 7] how to achieve
such transversality by perturbing L. In these papers it is also shown that
∂ : A(L) → A(L) is a differential (i.e., ∂2 = 0) and that the contact homology
ker(∂)/im(∂) is invariant under Legendrian isotopies.

Remark 2.2. In the case that L is a spin manifold and M is orientable,
one can lift the DGA over Z2[H1(L; Z)] described above to a DGA over
Z[H1(L; Z)]. In this paper we will, as mentioned in Section 1, concentrate
on the Z2-case. This is mainly for simplicity; the results of the paper have
straightforward generalizations to the more general setting of Z-coefficients.
2.3. Flow trees. We refer to [4] for the detailed definitions of flow trees
and only sketch the main points here. Let L ⊂ J1(M) be a Legendrian
submanifold. Locally around points outside a codimension 1 subset of M ,
the image of L under the front projection ΠF : J1(M) → J0(M) = M × R,
can be described as the graphs of a finite number of functions on M . We
call such functions local functions of L. If M is equipped with a Riemannian
metric then these local functions define local gradients. We say that a curve
γ(t) in M is a flow line of L if it satisfies the differential equation

γ̇(t) = −∇(f1 − f2)(γ(t)),

where f1 and f2 are local functions of L. Any flow line has a natural 1-jet
lift, which consists of two curves in L lying over γ. These curves are naturally
oriented by the lifts of the vectors −∇(f1 − f2) and −∇(f2 − f1) to the
sheets corresponding to f1 and f2, respectively. Projecting the 1-jet lift to
the cotangent bundle we get the cotangent lift.

Definition 2.3. A flow tree of L ⊂ J1(M) is a continuous map φ : Γ → M ,
where Γ is a tree which satisfies the following conditions.

(a) If e is an edge of Γ then φ : e → M is an injective parameterization
of a flow line of L.

(b) Let v be a k-valent vertex with cyclically ordered adjacent edges
e1, . . . , ek. Let {φ̄1

j , φ̄
2
j} be the cotangent lift corresponding to ej ,

1 ≤ j ≤ k. We require that there exists a pairing of lift components
such that for every 1 ≤ j ≤ k (with k + 1 ≡ 1)

φ̄2
j (v) = φ̄1

j+1(v) = m̄ ∈ ΠC(L) ⊂ T ∗M,
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and such that the flow orientation of φ̄2
j at m̄ is directed toward m̄ if

and only if the flow orientation of φ̄1
j+1 at m̄ is directed away from m̄.

(c) The cotangent lifts of the edges of Γ fit together to an oriented curve
φ̄ in ΠC(L). We require that this curve is closed.

For simpler notation we will often denote flow trees simply by Γ, sup-
pressing the parameterization map φ from the notation. We will also write
Γ̄ and Γ̃ for the cotangent and the 1-jet lifts of Γ, respectively. See Figure 1
for examples of flow trees.

We next define punctures of a flow tree Γ. Let v be a k-valent vertex of
Γ with cyclically ordered edges e1, . . . , ek. Consider two paired cotangent
lifts φ̄2

j and φ̄1
j+1 and the corresponding 1-jet lifts φ̃2

j and φ̃1
j+1 at v. If

φ̃2
j (v) 
= φ̃1

j+1(v) then both must equal Reeb chord endpoints. If this is the
case then we say that v contains a puncture after ej . It is shown in [4] that
any flow tree with a vertex v which contains more than one puncture is a
union of flow trees such that every vertex of each one of them contains at
most one puncture. Thus we may restrict attention to flow trees with at
most one puncture at each vertex and we call such a vertex a puncture of
the tree.

Let p be a puncture of a flow tree. Let φ̃1 and φ̃2 be the 1-jet lifts which
map to the Reeb chord at p, with notation chosen so that φ̃1 is oriented
toward φ̃1(p) and φ̃2 oriented away from φ̃2(p). Then we say that p is a
positive puncture if

z(φ̃1(p)) < z(φ̃2(p)),

Figure 1. A standard Legendrian torus.
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and we say it is negative if the opposite inequality holds. (Recall that z
is the coordinate in the R-direction of J1(M) = T ∗M × R.) Using the
symplectic area of a flow tree it is not hard to show that every flow tree Γ
in M has at least one positive puncture. If q is a puncture of a flow tree
then q corresponds to some Reeb chord of L which in turn corresponds to a
critical point of some local function difference of L. If L is generic then the
Hessian at this critical point is non-degenerate. Let I(q) denote the index
of the critical point of the positive function difference corresponding to the
Reeb chord.

As for holomorphic disks there is a simple dimension formula for flow trees
which computes the expected dimension of the space of flow trees with 1-jet
lift homotopic to that of the given tree. For trees with exactly one positive
puncture this formula reads

dim(Γ) = (I(p) − 1) −
∑

q∈Q(Γ)

(I(q) − 1) +
∑

r∈R(Γ)

μ(r) − 1,

where p is the positive puncture of Γ, Q(Γ) its set of negative punctures,
R(Γ) its set of vertices which are not punctures, and μ(r) is the Maslov
content of r; see [4, Section 3.1.1].

Example 2.4. In Figure 1 the rigid flow trees of the standard Legendrian
torus are shown. The top left picture shows the torus with an S1-family
of Reeb chords. The top right picture shows the torus after perturbation.
Now it has two Reeb chords ĉ and c which satisfy I(ĉ) = 2 and I(c) = 1,
respectively. The rigid flow lines Γ1 and Γ′

1 connect ĉ to c and the rigid flow
trees Γ2 and Γ′

2 have their positive puncture at c and an end at the cusp
edge. Gluing Γ1 and Γ2 (Γ1 and Γ′

2) we get a 1-parameter family of trees
which end at the broken tree consisting of Γ′

1 and Γ2 (Γ′
1 and Γ′

2).

Viewing the 1-jet lift as a boundary condition for a holomorphic disk,
the dimension formula just stated agrees with the dimension formula for
holomorphic disks. In fact for rigid disks and trees, more is true as the
following theorem shows. (See [4, Theorem 1.1] for a more general version.)

Theorem 2.5. If L ⊂ J1(M) is a Legendrian submanifold of dimension ≤2
then there is a generic complex structure J on T ∗M such that there is a 1–1
correspondence between rigid J-holomorphic disks with boundary on L and
rigid flow trees determined by L.

This theorem has the consequence that one may replace holomorphic disks
in the definition of Legendrian contact homology differential with flow trees.
We will often do so below.

We will sometimes talk about convergence of flow trees. When doing so
we employ the following topology on the space of flow trees. Let Γ be a
flow tree with one positive puncture p0. Orient Γ by declaring any edge
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starting at p0 to be oriented away from p0 and by requiring that at each
vertex different from p0 there is exactly one edge oriented toward it. We
will associate a planar domain ΔΓ to Γ as follows. For each 1-valent vertex
different from p0 and for each puncture different from p0, pick a half infinite
strip of width 1. For each vertex where such edges begin, pick a strip of
width which equals the sum of the widths of the edges going out from it and
of length agreeing with the natural flow length of the edge coming in to that
vertex. Gluing the half strips to the strip, we obtain a half strip domain
of finite width with slits toward +∞. (Here we consider the half strip of a
negative puncture at a vertex of valence ≥2 as outgoing from that vertex.)
Continuing inductively in this way, we get a strip domain with slits toward
+∞ and where −∞ corresponds to p0. This domain ΔΓ is determined up to
over-all translation of the slits. Thus the conformal structure on ΔΓ thought
of as a disk with boundary punctures is uniquely determined by Γ.

Note that the cotangent lift of Γ is naturally defined as a map from
the boundary ∂ΔΓ to ΠC(L). Consider the bundle of mapping spaces of
maps from the boundary of a punctured disk into ΠC(L) over the space
of conformal structures on the disk with m punctures, endowed with the
C0-topology. We topologize the space of flow trees by giving it the subspace
topology with respect to this topology on the bundle of mapping spaces.

3. Generalizations of Legendrian contact homology

In this section, we generalize Legendrian contact homology slightly. The
first generalization concerns a special kind of non-closed Legendrian sub-
manifolds which can be concatenated in a natural way, see Section 3.2. The
concatenation property will be important in the proof of Theorem 1.1 where
isotopies are cut into small pieces which are studied separately and then
concatenated. The second generalization (see Sections 3.3 and 3.4) concerns
stabilization of Legendrian submanifolds. It is more elaborate than the first
and is inspired by Morse–Bott techniques for contact homology (see [1]), as
well as so-called abstract perturbations (see [12–14]). This generalization
will be used in the computation of the contact homology corresponding to
a small piece of an isotopy.

3.1. Holomorphic disks and flow trees of 1-dimensional Legendrian
submanifolds. Let L ⊂ J1(R) be a Legendrian submanifold. Using the
Riemann mapping theorem, moduli spaces of holomorphic disks with bound-
ary on L can be understood geometrically as follows. The Reeb chords
of the diagram correspond to double point of the Lagrangian projection
ΠC : J1(R) → T ∗

R ≈ C. Holomorphic disks correspond to ordinary holo-
morphic disks in C with boundary on the knot diagram ΠC(L). The
punctures are located at double points of the diagram where the holo-
morphic disks have corners. A puncture is positive (negative) if, in terms



416 T. EKHOLM AND T. KÁLMÁN

of the orientation of the boundary of the holomorphic disk, the boundary
component oriented toward (away from) the corner maps to the lower strand
of the diagram at the double point and the boundary component oriented
away from (toward) the corner maps to the upper strand.

Lemma 3.1. Let F denote the space of flow trees with one positive puncture
determined by L, let M denote the moduli space of all holomorphic disks
with one positive puncture determined by L, and let M′ ⊂ M denote the
subspace of all disks without interior branch points. Then the spaces F and
M′ are homeomorphic and the subset M′ ⊂ M is closed and has a natural
compactification consisting of broken disks from M′.

Proof. Let Γ be a tree. Joining corresponding points on the cotangent lift
of Γ by straight lines in the fibers of T ∗

R, we obtain a map of a disk with
branch points on the boundary. By the Riemann mapping theorem it admits
a holomorphic parameterization. Conversely, any holomorphic disk without
interior branch points gives flow lines joined at branch points. That is, a flow
tree with higher valence vertices corresponding to branch points. Thus there
is a natural bijection between F and M as sets. We then need only show that
the map M → F is continuous and open. This however is straightforward: a
holomorphic disk is determined by the location of its branch points, varying
these give an open subset in the space of trees. Finally, it is clear that the
subset of the compactified moduli space of holomorphic disks which consists
of (broken) disks without interior branch points is closed. Being a closed
subset of a compact space it is compact as well. �
Corollary 3.2. The space of flow trees is a manifold with boundary with
corners. In particular, the boundary of a component of the space of trees
consists of broken trees.

Proof. This holds for the compactified moduli space of holomorphic disks.
The corollary thus follows from Lemma 3.1. �
Remark 3.3. In order to see the relation between M and M′, note that
any disk with interior branch points can be connected to a disk of the same
dimension with all its branch points on the boundary by pushing the branch
points. For example, a second-order branch point which is pushed to the
boundary becomes a third-order boundary branch point which splits into
two ordinary boundary branch points. A local model can be obtained as
follows. Consider the map f(z) = z2 with domain Ω bounded by the curve
{2xy = −ε, x > 0}, ε > 0, and containing the coordinate axes. Note that f
maps ∂Ω to the line y = −ε and that it has a branch point at 0. To see what
happens as the branch point approaches the boundary we let ε → 0. In the
limit f becomes a map f0 from the complement of the open fourth quadrant
of the complex plane. Consider the map z(w) = w3/2, taking the upper half
plane to the domain of f0. Then the map f0(z(w)) looks like w �→ w3 near
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the origin and the 2-parameter family continues as w �→ δ1 + w(w2 − δ2) for
δ1, δ2 ∈ R, δ2 > 0.

3.2. Legendrian submanifolds with standard ends. Let L ⊂ J1(Rn)
be a Legendrian submanifold parameterized by γ(p) = (x(p), y(p), z(p)) ∈
J1(Rn). For κ > 0, consider the Legendrian submanifold L̃[κ, τ ] ⊂ J1(Rn+1)
parameterized by

γ̃[κ, τ ](p, t) =
(
t, x(p), 2κ(t−τ)z(p), κ

(
1+(t−τ)2

)
·y(p), κ

(
1+(t−τ)2

)
·z(p)

)
.

Note that the Reeb chords of L̃[κ, τ ] correspond to the Reeb chords of L,
lying in the slice x0 = τ . In terms of fronts L̃[κ, τ ] can be described as fol-
lows. Consider the front FL ⊂ J0(Rn) and the product FL × R ⊂ J0(Rn+1).
The front FL̃[κ,τ ] ⊂ J0(Rn+1) is obtained by scaling the function coordinate
z of FL×R by a quadratic function on R. The parameter τ determines where
the scaling function has its minimum and the t-slices of the front grow as t
moves away from t = τ . The parameter κ determines the overall size of the
scaling. Note, in particular, that the intersection of L̃[κ, τ ] with the slice
t = τ gives a copy of L.

Let M be an (n + 1)-manifold with boundary ∂M = L− � L+. Let
f : M → J1(Rn+1) be a Legendrian embedding such that |x0 ◦ f | ≤ 1,
such that |x0 ◦ f | < 1 in the interior of M , and such that f agrees with
γ+[κ, +1] : L+ × (−ε, 0] in some collar neighborhood L+ × (−ε, 0] of L+, and
such that it agrees with γ−[κ, −1] : L− × [0, ε) in some collar neighborhood
L− × [0, ε) of L+, where γ± are some Legendrian embeddings of L±. We
say that f(M) is a Legendrian embedding with standard ends. In the proof
of Theorem 1.1, manifolds with boundary are used in order to concatenate
isotopies and, in that way, express the contact homology of the trace of an
isotopy subdivided into small pieces in a piece-by-piece manner.

If f : M → J1(Rn+1) is a Legendrian embedding with standard ends, then
we can construct a Legendrian embedding F of a non-compact manifold M̂
obtained by adding γ+(L+ × [0,∞)) and γ−(L− × (−∞, 0]) to F . Note that
the Reeb chords of F are exactly those of f . Moreover we have the following.

Lemma 3.4. Any holomorphic disk of finite area with boundary on F (M̂)
lies in the region |x0| ≤ 1 and the space of holomorphic disks is Gromov com-
pact. Moreover any holomorphic disk with its positive puncture at x0 = ±1
lies entirely in this slice.

Proof. As in [7], projection to the (x0 + iy0)-line in combination with the
maximum principle establishes the first and third statements. The sec-
ond then follows from the standard proof of Gromov compactness; see
e.g. [5]. �

We have the corresponding statement for flow trees.
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Lemma 3.5. Any flow tree of F (M̂) of finite symplectic area is contained in
the region |x0| ≤ 1, and any flow tree with its positive puncture at x0 = ±1
stays entirely in this slice. Moreover, there is a 1–1 correspondence between,
on the one hand, rigid holomorphic disks with boundary on F (M̂) and, on
the other, rigid flow trees determined by F (M̂) and rigid flow trees of L± in
slices.

Proof. The statements about flow trees follow from the fact that all gradient
differences in the slices x0 = ±1 have trivial x0-component. The second
statement follows from a slight modification of the proof of [4, Theorem 1.1],
which consists of two parts: convergence of holomorphic disks to flow trees
and construction of holomorphic disks near rigid flow trees. The convergence
part of the proof holds without change in this more general setting. The
construction part can be subdivided into two parts: for trees not in the slices
x0 = ±1 the proof from [4] applies. For trees in slices x0 = ±1 we apply the
proof from [4] to L± thought of as lying in the slice. �

Lemma 3.4 implies that the contact homology of F (M̂) is well defined.
(Here we restrict attention to Legendrian isotopies in the class of Legendrian
submanifolds with standard ends). Lemma 3.5 implies that we can compute
it using flow trees instead of holomorphic disks. We then define the contact
homology of f : M → J1(Rn+1) to equal the contact homology of F : M̂ →
J1(Rn+1).

Remark 3.6. If fj : Mj → J1(Rn+1) is a Legendrian submanifold with
standard ends and if one of the ends of (f0, M0) agrees with an end of
(f1, M1) then the two Legendrian embeddings can be joined to a Legendrian
embedding f01 of the manifold M01 obtained by joining M0 and M1 along
their common boundary. The contact homology differential of the join is
determined in a straightforward way by the contact homology differentials
of its pieces.

3.3. Generalized flow trees. In this section we introduce the notion of
generalized flow trees for the product of a given Legendrian submanifold
L ⊂ J1(R) and a manifold with boundary equipped with a Morse function.
In the present paper we will apply this construction only in the case when
the auxiliary manifold factor is an interval or a 2-disk.

Let N be a manifold with boundary ∂N . We will use Morse functions
β : N → R of the following form. The restriction β∂ = β|∂N is a Morse
function on ∂N and there is a collar neighborhood ∂N × [0, ε) of ∂N in N
where β(x, t) = β∂(x) + kt2, where (x, t) ∈ ∂N × [0, ε), and where k > 0 is
a constant. We call a Morse function of this type boundary adjusted.

Consider the Legendrian submanifold L × N ⊂ J1(R × N). The Reeb
chords of this Legendrian submanifold come in N -families, one for each
Reeb chord of L. We denote the manifold of Reeb chords corresponding
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to the Reeb chord c by Nc. Choose a boundary-adjusted Morse function
βc : Nc → R for each Reeb chord manifold Nc. Endow N with a Riemannian
metric g which has the following form in the collar neighborhood of the
boundary:

(3.1) g(x, t) = g∂(x) + dt2,

for (x, t) ∈ ∂N × [0, ε), where g∂ is a Riemannian metric on ∂N .
A flow line γ in a Reeb chord manifold Nc is an oriented segment which

can be parameterized in an orientation-preserving manner by a solution to
the gradient equation

q̇ = −∇βc(q), q ∈ N,

where the gradient is defined using the Riemannian metric g of (3.1). Note
that a gradient line which starts in ∂Nc stays in ∂Nc and that a gradient
line which starts in Nc − ∂Nc can hit ∂Nc only at a critical point in the
boundary.

In order to define the notion of a generalized tree we first introduce some
preliminary concepts. If Γ is a flow tree of L and if q0 ∈ N then we let
Γq0 denote this flow tree considered as a flow tree of L × N and lying in
the slice {(q, x) ∈ N × R : q = q0}. We call Γq0 a slice tree. A level is a
finite collection Θ = {Γq1 , . . . ,Γqr} of (unbroken) slice trees. A connector
is a finite collection of flow lines θ = {γ1, . . . , γk} in Reeb chord manifolds,
where we allow also flow lines of length 0.

A generalized flow tree with k levels is an ordered collection (Θ1, . . . ,Θk)
of levels together with an ordered collection (θ0, . . . , θk) of connectors which
have the following properties.

• The connector θ0 consists of exactly one flow line in Na emanating at
a critical point p0 ∈ Na of βa for some Reeb chord a and ending at
q0 ∈ Na. If k = 0 then q0 is a critical point of βα as well, and if k > 0
then q0 is not a critical point. Let p1 = q0.

• The level Θ1 consists of exactly one slice tree Γp1 with positive punc-
ture at a.

• Let j > 0, let (Γj,1)
pj
1
, . . . , (Γj,r)

pj
r

denote the slice trees in the jth

level Θj , and let cj,s
1 , . . . , cj,s

ms denote the Reeb chords at the negative
punctures of Γj,s, s = 1, . . . , r. Then θj consists of flow lines ema-
nating from those pj

s ∈ N
cj,s
t

, s = 1, . . . , r; t = 1, . . . , ms, which are

not critical points of β
cj,s
t

. Let qj
1, . . . , q

j
l be the endpoints of the flow

lines γj
1, . . . , γ

j
l in θj which are not critical points. Let pj+1

s = qj
s,

s = 1, . . . , l.
• For 0 < j ≤ k, Θj+1 consists of slice trees (Γj+1,1)

pj+1
1

, . . . , (Γj+1,r)
pj+1

l

such that the positive puncture of Γj+1,s is at the Reeb chord aj+1
s

where γj
s ⊂ N

aj+1
s

, s = 1, . . . , l.
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• Let q ∈ Nc be a point where some flow line γ in a connector θs,
s = 0, 1, . . . , k, ends. Then if there is no level tree Γq in Θs+1 with
positive puncture matching the Reeb chord c, then q is a critical point
of βc.

If G is a generalized flow tree as just described, then we say that G
has positive puncture at the critical point of aj ∈ Na of βa and negative
punctures at all negative punctures of slice trees in Θj where no flow line
in θj begins (these are critical points bt

s ∈ Nbs) and at the critical points
bt
s ∈ Nbs where some flow lines in some θl, 1 ≤ l ≤ k, end. Any generalized

flow tree has natural 1-jet and cotangent lifts. Adding suitably oriented
capping paths at the punctures to the projection of the 1-jet lift of G to
J1(R), we get a homology class A ∈ H1(L; Z). We write GA(aj ; bj1

1 , . . . , bjm
m )

for the space of such generalized trees.

Example 3.7. Figure 2 shows a stabilized unknot L with Reeb chords a
and b and two of its rigid trees Γ1 and Γ2. The flow tree Γ1 starts at a as a
flow line between sheets A and B. This flow line splits over the leftmost cusp
into two flow lines between A and C and between C and D, respectively.
The latter ends at b, the former splits over the middle cusp into two flow
lines between A and D and C and D, respectively. The latter ends at
the rightmost cusp and the former ends at b. The flow tree Γ2 starts at b
and splits immediately into two flow lines between D and C and C and B,
respectively. Both of these end in cusps.

Figure 3 shows a generalized 2-level tree of L × [0, 1] : the first level is Γ1
and the second is Γ2.

As for flow trees we associate a planar domain and a map of its boundary
into T ∗

R
2 to any generalized flow tree. Using the map from the boundary

of the planar domain we may endow the set of generalized flow trees with a
topology. It is a straightforward consequence of the compactness properties

Figure 2. Two flow trees of a stabilized unknot.
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Figure 3. A 2-level flow tree of L × [0, 1]. Cusp edges are
solid, Reeb chord manifolds are dashed.

of flow trees (see Lemma 3.2) that also the space of generalized flow trees has
a natural compactification consisting of broken generalized flow trees. We
denote the space of generalized flow trees by G and its compactification G.

3.4. Perturbed generalized flow trees. Let L ⊂ J1(R) be a Legendrian
submanifold and let N be a manifold with boundary. As in Section 3.3 we
consider the Legendrian submanifold L × N ⊂ J1(R × N) and we equip N
with a Riemannian metric and each Reeb chord manifold Nc, c ∈ R(L), with
a Morse function βc satisfying conditions as stated there. Let M denote the
moduli space of flow trees on L and fix a function v : M×N → Ck(S1, TN)
with the following properties.

• v(Γ, n) ∈ TnN and v(Γ, n) is tangent to ∂N for n ∈ ∂N .
• By scaling lengths, we think of the source S1 of v(Γ, n) as the cotan-

gent lift Γ̄ of Γ (with resolved self intersections). We require v to be
constant in neighborhoods of the punctures of Γ̄ and equal to zero
near the positive puncture. Consider a broken tree Γ containing a
broken tree Γ′′. Let Γ′ denote the broken tree obtained by removing
Γ′′ from Γ, and assume that Γ′′ is attached to Γ′ at a point y in its
cotangent lift. Then we require that for x ∈ Γ′′ the following join
equation holds

(3.2) v(Γ, n)(x) = v(Γ′, n)(y) + v(Γ′′, n)(x).

We call a function v : M × N → Ck(S1, TN) with these properties a pertur-
bation function.

The definition of a perturbed flow tree is analogous to that of a generalized
flow tree. Fix a perturbation function v. If Γ is a flow tree of L and if
q ∈ N, then recall that Γq was used to denote the slice tree corresponding
to Γ. Think of Γq as a map Γq = (ΓR, q) : S1 → R × N, where S1 is
the cotangent lift of Γ and the map (ΓR(t), q) equals the natural map into
T ∗

R×T ∗N followed by projection to R×N . We let Γ̃q denote the following
map S1 → R × N

Γ̃q(t) =
(
ΓR(t), expq

(
v(Γ, q)(t)

))
,
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where exp denotes the exponential map in a Riemannian metric of the form
given in (3.1). We call Γ̃q a perturbed slice tree, and if x is a negative
puncture of Γ, then we write e(q, x) = expq(v(Γ, q)(x)). A perturbed level is
a finite collection Θ̃ = {Γ̃q1 , . . . , Γ̃qr} of (unbroken) perturbed slice trees. A
connector is a finite collection of flow lines θ = {γ1, . . . , γk} in Reeb chord
manifolds, where we allow also flow lines of length 0.

A perturbed flow tree with k levels is an ordered collection (Θ̃1, . . . , Θ̃k)
of levels together with an ordered collection (θ0, . . . , θk) of connectors which
have the following properties.

• The connector θ0 consists of exactly one flow line in Na emanating
at a critical point p0 ∈ Na of βa for some a ∈ R(L) and ending at
q0 ∈ Na. If k = 0 then q0 is a critical point of βα as well, if k > 0
then q0 is not a critical point. Let p1 = q0.

• The level Θ̃1 consists of exactly one slice tree Γ̃p1 with positive punc-
ture at a.

• Let j > 0 and let (Γ̃j,1)
pj
1
, . . . , (Γ̃j,r)

pj
r

denote the slice trees in the jth

level Θ̃j and let cj,s
1 , . . . , cj,s

ms denote the Reeb chords at the negative
punctures of Γj,s, s = 1, . . . , r. Then θj consists of flow lines emanat-
ing from those e(pj

s, x) ∈ N
cj,s
t

, s = 1, . . . , r; t = 1, . . . , ms, where x

denotes the negative puncture corresponding to the Reeb chord cj,s
t

which are not critical points of β
cj,s
t

. Let qj
1, . . . , q

j
l be the endpoints

of the flow lines γj
1, . . . , γ

j
l in θj which are not critical points. Let

pj+1
s = qj

s, s = 1, . . . , l.
• For 0 < j ≤ k, Θ̃j+1 consists of perturbed slice trees (Γ̃j+1,1)

pj+1
1

, . . . ,

(Γ̃j+1,r)
pj+1

l
such that the positive puncture of Γj+1,s is at the Reeb

chord aj+1
s where γj

s ⊂ N
aj+1

s
, s = 1, . . . , l.

• Let q ∈ Nc be a point where some flow line γ in a connector θs,
s = 0, 1, . . . , k, ends. If there is no perturbed level tree Γ̃q in Θ̃s+1

with positive puncture matching the Reeb chord c, then q is a critical
point of βc.

In analogy with generalized flow trees, we use the notion Gp;A(aj ; bj1
1 , . . . ,

bjm
m ) to denote the space of perturbed trees with specified punctures and

boundary data as well as the notions Gp for the space of all perturbed flow
trees and Gp for its natural compactification consisting of several level trees.

Example 3.8. The top picture in Figure 4 shows a 1-level generalized flow
tree of L×[0, 1] where L is the stabilized unknot as in Example 3.7. Applying
the dimension formula for flow trees, we see that this tree has formal dimen-
sion −1. The bottom picture shows a rigid 1-level tree arising from this
configuration after perturbation by a generic perturbation function.
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Figure 4. Generalized and perturbed flow trees.

Given a perturbation function and Morse functions on all Reeb chord
manifolds, we associate a contact homology algebra with a differential to
the Legendrian submanifold L × N . The algebra A(L × N) is the free
Z2[H1(L; Z)]-algebra generated by critical points of the Morse functions βc,
for Reeb chords c, and the differential ∂p : A → A counts rigid perturbed
flow trees. More precisely it satisfies the Leibniz rule and is defined as follows
on generators:

∂pa =
∑

dim(Gp;A(a;b1,...,bk))=0

|Gp;A(a, b1, . . . , bk)|A b1 · · · bk.

Lemma 3.9. For generic sufficiently small perturbations and Morse func-
tions βc, the moduli space of perturbed flow trees of formal dimension ≤ 1
is transversely cut out. Consequently, ∂p is a differential i.e., ∂2

p = 0.

Proof. The transversality properties follows from standard applications of
the finite-dimensional jet-transversality theorem. Furthermore, it is clear
that, for small enough perturbation function, any sequence of perturbed
rigid trees converges to a possibly broken perturbed rigid tree. The state-
ment on the differential then follows from the usual gluing argument, which
is technically very easy in this case since we need only glue Morse flow
lines. (The perturbation function has to be sufficiently small so that for
any (Γ, n) ∈ M × N , v(Γ, n) is smaller than the injectivity radius of the
Riemannian metric.) �

We next concentrate on the case important for our applications. Let
N = I = [−1, 1] and consider L×I equipped with two different perturbation
functions v0 and v1 and with two different sets of Morse functions {β0

c }
and {β1

c } where c ranges over all Reeb chords. These data determine two
different differentials ∂0 and ∂1 on A(L×I). We show next that the resulting
DGAs are tame isomorphic. We restrict the Morse functions so that they
have minima at ±1 and exactly one interior maximum. We then write the
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algebra generators as {ĉ, c[−1], c[+1]}, where ĉ denotes the maximum in Ic,
c[±1] the minima at ±1 ∈ Nc, and where c ranges over all Reeb chords.

In order to see how the differentials ∂0 and ∂1 are related, we chose a
generic path (vs, {βs

c}), 0 ≤ s ≤ 1, of perturbations and Morse functions
connecting the two sets of given data, where we restrict the Morse functions
to be of the form described above. With such a path chosen, we get for each
s a moduli space Gs

p of perturbed trees of L × I.

Lemma 3.10. For a generic path, there exist no perturbed flow trees in Gs
p of

formal dimension ≤ −2 and there exist finitely many instances where there
are perturbed flow trees of formal dimension −1, and at such an instance,
there is exactly one perturbed flow tree of dimension −1 which is transversely
cut out in the sense of 1-parameter families.

Proof. This follows since the slice trees are transversely cut out and hence
the only degeneration possible is when some incidence equation (involving
the perturbation function and stable/unstable manifolds of the Morse func-
tions) has non-transverse solutions. �

Thus, for s which is not a (−1)-tree instance, we get an induced differential
∂s on A(L × I) by counting rigid perturbed trees.

Remark 3.11. We note that the appearance of a (−1)-tree as in Lemma 3.10
implies that many of the perturbed flow trees of formal dimension 0 are
in fact appearing in higher dimensional families. These are obtained from
rigid flow trees with some negative punctures at the positive puncture of the
(−1)-disk by gluing. One way to relate the differentials is to study the details
of how such families split as the deformation variable changes. Below we
will however use a less explicit but technically simpler method.

To show that the DGAs (A(L×I), ∂0) and (A(L×I), ∂1) are tame isomor-
phic, we use a stabilization argument which is very close to the argument
given in [7, Section 4.3]. Consider first the 1-parameter family of moduli
spaces Gs

p and let Gs
p(0) denote the part of Gs

p which consists of all perturbed
trees of formal dimension 0. If s varies in an interval [s0, s1] which does not
contain any (−1)-tree instance, then the 1-manifold

∪s∈[s0,s1]Gs
p(0)

gives a cobordism between Gs0
p (0), and Gs1

p (0), and consequently ∂s0 = ∂s1 .
To show that ∂0 and ∂1 are tame isomorphic, it is thus sufficient to show

that the DGAs on both sides of a (−1)-disk instance are tame isomorphic.
We consider the product L×D where D is a 2-disk. Think of the boundary
of this disk as consisting of I0 and I1. Let β0

c and β1
c denote the Morse

functions on the Reeb chord manifolds on the two sides of the (−1)-disk
moment. Choose the Morse functions βc : D → R as extensions of these
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Figure 5. The Morse flow on the disk. Flow lines connecting
c̃ to ĉ[σ] and c[σ], as well as ĉ[σ] to c[σ] are indicated.

functions with exactly one maximum and with Morse flows as shown in
Figure 5.

Let furthermore the extension of the perturbation to the disk be that of
the generic family, let Ã = A(L × D), and let Δ denote the corresponding
differential. Write c̃ for the maximum Reeb chords, ĉ[0] and ĉ[1] for the
saddle Reeb chords, and c[0] and c[1] for the minimum Reeb chords. Let
Ω: Ã → A be the algebra morphism which takes c̃ to 0, ĉ[σ] to ĉ, and c[σ]
to c.

Lemma 3.12. The differential Δ satisfies

Δc[σ] = (∂1c)[σ] = (∂0c)[σ], σ = 0, 1,

Δĉ[σ] = (∂σ ĉ)[σ], σ = 0, 1,

Δc̃ = ĉ[0] + ĉ[1] + ε + O(1),(3.3)

where Ωε = mα, where α is the word of negative punctures of the (−1)-disk
multiplied by the homology class of its boundary condition, where m ∈ Z2,
and where O(1) denotes words which contain at least one c̃-variable.

Proof. The first two equations follow from the nature of the metric and
the Morse function near the boundary. The second property follows from a
limiting argument where we let the disk limit to the middle family containing
the (−1)-disk. Any rigid disk must limit to a disk of formal dimension 0. All
such disks which are not the (−1)-disk have at least one negative puncture
at a c̃ variable. �

Corollary 3.13. There exists a tame isomorphism between the algebras
(A, ∂0) and (A, ∂1).

Proof. This follows from the fact that Δ2 = 0 in combination with (3.3).
The details of the proof are found in [6, Lemma 4.21]. �
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4. Geometric perturbations of the trace of the constant isotopy

In this section, we study the contact homology of Legendrian submanifolds
which are traces of constant isotopies. We show that the contact homology
differential can be expressed in terms of perturbed flow trees in this case.

4.1. Structure of the perturbation. Let L ⊂ J1(R) be a Legendrian
submanifold with Reeb chords c1, . . . , cm and let L × I ⊂ J1(R2) denote
the trace of the constant isotopy starting and ending at L. For convenient
notation we take I = [−1, 1] and we think of L × I ⊂ L × R. Note that
the Reeb chords of L × R form 1-dimensional manifolds ≈ [−1, 1], one for
each Reeb chord of L. We will denote these manifolds Mc ⊂ T ∗

R
2, where

c ∈ {c1, . . . , cm} is the corresponding Reeb chord of L, and we will sometimes
think of these manifolds as submanifolds of J0(R2). Furthermore, we will
write M+

c and M−
c for the corresponding submanifolds of L × I of Reeb

chord endpoints. In order to define the Legendrian contact homology of
L × I, we use any small perturbation which turns L × I into a Legendrian
submanifold with standard ends and employ the definition from Section 3.2.

To get a more detailed understanding of the contact homology of L × I,
we will choose very specific perturbations. More precisely, we will design
perturbations in four steps as follows:

(1) Make the ends of L × I standard.
(2) Make |x0| non-increasing along any flow line of a positive function

difference of L×I and decreasing outside a neighborhood of the Reeb
chord manifolds and outside a neighborhood of {x0 = 0}.

(3) Make the Reeb chords isolated in such a way that there are three
Reeb chords of L× I corresponding to each Reeb chord manifold, one
at x0 = ±1 and one near x0 = 0.

(4) Make L × I generic with respect to rigid flow trees.
The goal of this perturbation process is to obtain a description of the rigid
trees needed to compute the contact homology of L×I in terms of perturbed
flow trees of L × I.

Steps (1)–(3) are straightforward to describe and are the subject of Sec-
tion 4.2. Step (4) is more involved. It uses generalized flow trees, introduced
in Section 3.3, and will be completed in Section 4.4.

4.2. Standard ends and isolated Reeb chords. Consider Step (1). Let
L ⊂ J1(R) be given by

a(q) =
(
x1(q), y1(q), z(q)

)
, q ∈ L.

In coordinates (x0, y0, x1, y1, z) on J1(R2) = T ∗
R

2 × R, the unperturbed
trace of the constant isotopy is then given by

A(q, t) =
(
t, 0, x1(q), y1(q), z(q)

)
, (q, t) ∈ L × I.
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Fix a smooth even function ψ : [−1, 1] → R with the following properties:
ψ(0) = 1, ψ and all its derivatives vanish in [0, 1

2 ], ψ is decreasing on [12 , 1],
and ψ has a non-degenerate minimum at 1, ψ(1) = 1

2 . Let ψ̇ denote the
derivative of ψ. For η > 0, define the Legendrian embedding A

(1)
η : L × I →

J1(R2) by

(4.1) A(1)
η (q, t) =

(
t, ηψ̇(t)z(q), x1(q), ηψ(t)y1(q), ηψ(t)z(q)

)
.

The Reeb chords of A
(1)
η (L × I) are of two types: isolated Reeb chords in

{x0 = ±1} at the locations of the Reeb chords of L and non-isolated Reeb
chords along the manifolds M̂c = Mc ∩

{
|x0| ≤ 1

2

}
.

Consider Step (2). Fix a function φ : [−1, 1] → (−∞, 0], with the following
properties: φ is even, φ(0) = 0, φ is decreasing on (0, 1

2), and φ and all its
derivatives vanish at [12 , 1]. Consider a neighborhood N(M±

c ) of a Reeb
chord endpoint manifold M±

c which, under Π: J1(R2) → R
2, maps to the

product Π(Mc) × K, where K = {x1 : |x1 − x1(c)| < δ}, where x1(c) is the
x1-coordinate of the Reeb chord c, for some small δ > 0. Consider a cut-off
function ξ̂K : K → [0, 1] which equals 0 on |x1 − x1(c)| ≤ 1

2δ and equals 1
on 3

4δ < |x1 − x1(c)| < δ. Let ξ̂ : Mc × K → [0, 1] denote the function with
ξ̂|{p} × K = ξ̂K for every p. Consider the pull-back of ξ̂ to N(Mc) and note
that it extends constantly to all of L × I. Denote the extension ξ. Write

A(1)
η (q, t) =

(
t, yη

0(q, t), xη
1(q, t), y

η
1(q, t), zη(q, t)

)
,

where A
(1)
η (q, t) is as in (4.1). The function φ depends only on the

x0-coordinate and the function ξ only on the x1 coordinate. Denote
their respective derivatives by φ̇ and ξ̇. Define the Legendrian embedding
A

(2)
η : L × I → J1(R2) by

(4.2) A(2)
η (q, t) =

(
t, (1+ηξφ)yη

0 +ηξφ̇, xη
1, (1+ηξφ)yη

1 +ηξ̇φ, (1+ηξφ)zη
)
.

If γ is a flow line of a Legendrian submanifold H ⊂ J1(M), write γ+ and γ−

for the 1-jet lift of γ with the larger and smaller z-coordinate, respectively.

Lemma 4.1. Let η > 0 and let p be a point on a flow line γ of a positive
function difference of A

(2)
η (L × I). Assume that p does not lie in {x0 = 0}

and that not both γ+ and γ− lie in the region where ξ = 0. Then |x0| is
decreasing along γ at p.

Proof. This follows from the choice of φ together with the fact that the
x0-component of ∇ξ is everywhere 0. �

Consider Step (3). In order to make Reeb chords of L × I isolated, we
fix functions βc : Mc → (−∞, 0] for each Reeb chord c of L. Consider
Mc = [−1, 1] after projection to the x0-line. Choose βc so that it has non-
degenerate minima at ±1, a non-degenerate maximum with value 0 close
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to x1 = 0, and no other critical points. We assume moreover that the
x0-coordinates of the maxima of βc and βc′ are different if c 
= c′. Further-
more, let ξ be a function just like ξ discussed above but replacing δ by δ

100
and let α = 1 − ξ. We pull back the functions βc to neighborhoods N(M±

c )
of the form describe above. Cutting these pull-backs off with α, we find that
the function α

∑
c βc extends in an obvious way to all of L × I. We denote

the extension αβ. Similarly, the functions α̇β = α̇
∑

c βc and αβ̇ = α
∑

c β̇c

may be considered as functions on all of L × I. Write

A(2)
η (q, t) =

(
t, yη

0(q, t), xη
1(q, t), y

η
1(q, t), zη(q, t)

)
,

where A
(2)
η (q, t) is as in (4.2). Define A

(3)
η : L × I → J1(R2) by

A(3)
η (q, t) =

(
t, (1+η2αβ)yη

0 +η2αβ̇, xη
1, (1+η2αβ)yη

1 +η2α̇β, (1+η2αβ)zη
)
.

Then A
(3)
η (q, t) has isolated Reeb chords as claimed in Step (3) above.

Example 4.2. The top picture in Figure 6 shows part of the front of a
Legendrian knot L which supports a rigid flow tree. The flow tree starts
at a as a flow line between sheets A and B. This flow line splits into
the Reeb chord b and a flow line between sheets A and C which ends at
c. The two bottom pictures show two perturbations of L × I which make
its Reeb chords isolated as well as two rigid flow trees of the perturbed
L × I. Note that the flow trees depend in a crucial way on the choice of
perturbation.

Figure 6. Flow trees and perturbations.



ISOTOPIES OF LEGENDRIAN 1-KNOTS AND LEGENDRIAN 2-TORI 429

4.3. Rough and fine scales — limits on the rough scale. As men-
tioned, we will consider the details of Step (4), where we introduce our final
perturbation of L × I resulting in a Legendrian embedding A

(4)
η : L × I →

J1(R2), in Section 4.4. In this section, we will use rough properties of the
perturbation of A

(4)
η in order to derive rough results. More precisely, the

property we use is the following.

• A
(4)
η is a perturbation of A

(3)
η of size O(η2) which is supported in the

region outside the fixed neighborhoods of the Reeb chord manifolds.

In order to describe rigid flow trees of A
(4)
η (L × I), we consider convergence

of such trees on two scales. On the rougher scale, the important part of
any flow trees concentrates in x0-slices. This is fairly independent of the
details of the perturbations in Step (4). However, around such a slice of
concentration, we then re-scale the x0-coordinate by η−1 and study the
corresponding microscopic limit as well. It is on this fine scale that the
details of the perturbation in Step (4) manifest themselves.

Lemma 4.3. Let γη, η → 0 be a sequence of flow lines of A
(4)
η (L×I). Then,

as η → 0, some subsequence of γη converges to a broken flow line on L × I
consisting of flow lines of L in horizontal slices and vertical flow lines of βc

along Mc.

Proof. Outside a neighborhood of Mc, the flow lines of A
(4)
η (L×I) obviously

converge to horizontal curves which are parallel copies of flow lines of L.
Inside a neighborhood of the manifolds Mc, the flow lines are as in a standard
Morse–Bott situation, and any sequence of such flow lines converges to a
combination of vertical flow lines of βc and horizontal flow lines. �

Lemma 4.3 gives the local convergence on the rough scale. The following
lemma describes the rough limits of flow trees of A

(4)
η (L × I) as η → 0.

Lemma 4.4. Any sequence of flow trees, of A
(4)
η (L×I) of uniformly bounded

formal dimension and which are not contained in {x0 = ±1}, has a subse-
quence that converges to a generalized flow tree on L × I.

Proof. Note that any gradient difference along a cusp edge of A
(4)
η (L × I)

is transverse to the cusp edge. In particular, the preliminary transversality
condition is met, see [4, Subsection 3.1]. It is a consequence of [4, Lemma
3.12] and the preliminary transversality condition that the number of edges
and vertices of trees in such a sequence is uniformly bounded. Hence, by
passing to a subsequence, we may assume that the topological type of the
trees in the sequence remains constant. The lemma then follows by applying
Lemma 4.3 to the edges of the trees in the sequence. �

As a first step toward the description of rigid flow trees of A
(4)
η (L × I),

we rule out some generalized flow trees as limits of sequences of rigid trees.
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Lemma 4.5. Consider a sequence Γη of rigid flow trees (with fixed
punctures) of A

(4)
η (L × I) which converges to a generalized flow tree G. Let

Γr
t , r = 1, . . . , m, be the slice trees of G and let n̂(G) denote the number of

negative punctures of G (or of Γη) which lie at ĉ ∈ Mc for some c. Then

(4.3)
m∑

r=1

(dim(Γr
t ) + 1) − n̂(G) = 0.

Proof. It follows from the dimension formula for flow trees that the formal
dimension of a flow tree close to G is given by the left-hand side of (4.3). �
Note in particular that if the Legendrian knot L is generic, then dim(Γr

t ) ≥ 0
for all trees in (4.3).

4.4. Flow tree genericity. In this subsection, we present the details of
the construction of A

(4)
η : L × I → J1(R2). The Legendrian submanifold

A
(4)
η (L× I) will be generic with respect to rigid flow trees for all sufficiently

small η > 0 and its rigid flow trees will admit a description in terms of
generalized flow trees with auxiliary data. In fact, we will first perturb A

(2)
η

outside a neighborhood of the Reeb chord manifolds in such a way that A
(4)
η

is obtained from the perturbed A
(2)
η exactly as A

(3)
η was obtained from the

original A
(2)
η in Section 4.2.

To this end, we first describe the space of (partial) generalized trees near
a slice tree. Let a, b1, . . . , bk be Reeb chords of L and consider [τ −δ, τ +δ] ⊂
[−1, 1], where τ = x0(b̂) for b = bj some j. Then by our choice of functions
βc : Mc → R, the gradient of βc induces an orientation on Mc∩{|x0−τ | ≤ δ}
for every c 
= b provided δ > 0 is sufficiently small. Consider the compactified
moduli space of trees

M = M(a; b1, . . . , bk)
of L with positive puncture at a and negative punctures at b1, . . . , bk. The
interior of this space is a manifold of dimension d. (Local coordinates can
be obtained by the location of the branch points on the boundary of the
corresponding holomorphic disks.) The boundary ∂M of M consists of
products of lower-dimensional moduli spaces corresponding to broken disks.
If M1 ×M2 × . . .×Mr is such a product, then the positive puncture of M1
is a, the positive puncture of Mj agrees with a unique negative puncture
of some Mk, for k < j, the negative punctures which are not matched by
some positive puncture are b1, . . . , bk, and the dimensions dj of Mj satisfy

(4.4)
r∑

j=1

dj + (r − 1) = d.

As with generalized flow trees, it is convenient to organize such a product of
moduli spaces into levels, where M1 is the first level and all moduli spaces
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with positive puncture paired with a negative puncture of M1 constitute
the second level, and, in general, all moduli spaces with positive puncture
paired with a negative puncture of a moduli space of level j constitute the
(j +1)th level. In this way, M is a naturally stratified space (a manifold with
boundary with corners endowed with a Kuranishi structure, see [12] for this
notion). We will associate a (d + 1)-dimensional stratified space of (partial)
generalized flow trees to M. We call this space P = P(a; b1, . . . , bk). It is
constructed from strata of M exactly as the space of generalized flow trees
except that gradient lines need not be complete, as follows. Consider first the
top-dimensional stratum. We associate to this stratum the space P0 which
consists of trees Γt in M(a; b1, . . . , bk) viewed as a tree in a slice, t ∈ [τ − δ,
τ + δ]. This is a (d+1)-dimensional space: d dimensions for the tree and one
dimension for the slice. Consider next a stratum S with k levels L1, . . . , Lk.
We associate a (d + 1)-dimensional space PS of partial generalized trees to
this stratum as follows. First consider the tree in L1 as a slice tree Γt. For
each negative puncture of Γt, which matches a positive puncture of some
tree in M2, pick an oriented flow segment of the corresponding Reeb chord
manifold and let the tree in the second level have its positive puncture where
this flow line ends and continue in this way until Mk is reached. It follows
from (4.4) that the dimension of PS equals (d + 1). Moreover, the spaces
constructed fit together in an obvious way to a (d + 1)-dimensional space,
which is our space P. In a sense it is a resolution of M.

Our next objective is to define an evaluation map

evF : P(a; b1, . . . , bk) → Mb1 × . . . × Mbk
,

where F labels a specific perturbation of the Legendrian L × I. This map
is constructed inductively.

The starting point for the construction is the observation that it is easy to
reconstruct actual flow trees of A

(2)
η (L×I), see Section 4.2, near flow trees in

slices. More precisely, let F : L× I → J1(R2) be a deformation of L× I. We
are only interested in small perturbations, so let its size be O(η) as η → 0.
Assume further that the perturbation is supported in the complement of
the Reeb chord manifolds Mc (just like for A

(2)
η in Section 4.2). Outside

the neighborhood of the Reeb chord manifolds, the x1-component of the
gradient of any local function difference of L × I is bounded from below. It
follows from this that the projection of any flow tree on F (L × I) for η > 0
sufficiently small to a slice is a tree.

Conversely, given a tree Γ′ in a slice, we can integrate it to a tree on
F (L × I) for small η. The integration procedure is inductive and amounts
to solving the gradient equation corresponding to the perturbation F along
the edges of the tree. For the x1-component of the edge, this results in
a re-parameterization and the x0-component simply become non-constant
along the edge. To extend the integration over the entire tree, we start
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integrating along the edge (edges) emanating from the positive puncture of
the tree with the initial condition given by the x0-coordinate of the slice
of Γ′ and follow the flow orientation. Inductively, the result of integrations
along edges closer to the positive puncture in the tree gives initial conditions
for the integrations along outgoing edges at any vertex in the tree. If Γ′ ∈
M(a; b1, . . . , bk), if the punctures of Γ are p0, p1, . . . , pk with p0 the positive
puncture, and if Γ′ is considered a tree in a slice with x0-coordinate α, then
we write ι(p0, pj) ∈ Mbj

for the result of integration along Γ′ at the negative
puncture pj , with initial condition given by the x0-coordinate at the positive
puncture p0.

Let Γ ∈ P(a; b1, . . . , bk) be a partial generalized flow tree with levels
(Γ1

j , . . . ,Γ
sj

j ), j = 1, . . . , r. We define evF (Γ) as follows. Apply the inte-
gration procedure to the top level Γ1

1, starting at the x0-coordinate of its
positive puncture in Ma. This gives points ι(p1

0, p
1
j ) ∈ Mcj for all the neg-

ative punctures p1
j of Γ1

1. If a negative puncture p1
j of Γ1

1 is also a negative
puncture of Γ, then define ι′(p1

j ) = ι(p1
j ) ∈ Mcj to be the corresponding

Mcj -component of the evaluation map evF . If a negative puncture p1
k of Γ1

1
is not a negative puncture of Γ, then ι(p1

0, p
1
k) ∈ Mck

is the initial condition
for the integration procedure of the second level tree attached at p1

k. Con-
tinuing inductively in this way over all the levels, we get for each negative
puncture pj of Γ, which is a negative puncture qr of some level tree in Γ
with positive puncture q0, a point ι′(pj) = ι(q0, qs) ∈ Mbj

. Define

evF (Γ) =
(
ι′(p1), . . . , ι′(pk)

)
∈ Mb1 × . . . × Mbk

.

Let b be a Reeb chord, let τ = x0(b̂), and let p0, p1, . . . , pk denote the
punctures of Γ ∈ P(a; b1, . . . , bk). Let J = {pj1 , . . . , pjs} be a subset of the
punctures of Γ. Consider the subvariety ΣJ,τ ⊂ Mb1 × . . . × Mbk

,

ΣJ,τ = {(t1, . . . , tk) : tj = τ, for all j such that pj ∈ J} .

We show next that there are small perturbations F of A
(2)
η such that evF is

transverse to ΣJ,τ for all small η > 0. We will write evF
J for the evaluation

map evF composed with the projection to Πpj∈JMbj
(i.e., to the product of

the factors corresponding to punctures in J).
We start with the following preliminary lemma concerning a general fact

about flow trees with only one positive puncture.

Lemma 4.6. Let Γ be a flow tree of a Legendrian submanifold L ⊂ J1(M)
with only one positive puncture and let v be a vertex of Γ. Then any sheet
of L which contains some point ṽ in the 1-jet lift of v contains the 1-jet lift
of exactly two flow lines with endpoint at ṽ.

Proof. We label a sheet by its corresponding local function. As mentioned
above, each edge in a tree with one positive puncture is naturally oriented
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by using the negative gradient flow of the local function difference which is
positive and with this convention exactly one edge at each vertex is oriented
toward it (incoming flow line), all others away from it (outgoing flow lines).

Assume that some sheet, f1 say, contains lifts of more than two flow lines.
As the 1-jet lift is an oriented curve, there must exist at least two lifts which
are oriented away from ṽ. By the definition of a flow tree, there must exist
matching edges oriented toward ṽ and at most one of these can be a lift of
the incoming edge. The remaining one must come from an outgoing edge
which thus is a flow between f2 and f1, where f2 > f1. Continuing this
argument with the matching lift of the 1-jet lift segment in f2 etc., we find
that the tree has at least two incoming edges at v since there are only finitely
many sheets. This contradiction establishes the lemma. �

Next we derive certain injectivity properties of flow trees of A
(2)
η (L × I).

Lemma 4.7. Assume that the set of points where two local gradient differ-
ences of L agree is discrete (this is obviously an open condition on L). If
v is any vertex of a flow tree Γ of A

(2)
η (L × I) with incoming edge ei and

outgoing edges eo
1, . . . , e

o
m, then the self intersections of the 1-jet lift of Γ

near the 1-jet lift of v form a discrete set.

Proof. Consider an arc in one of the sheets. It is a consequence of Lemma 4.6
that there is one incoming and one outgoing flow in this sheet. The genericity
condition on L implies that the flows of the corresponding gradients intersect
only at a discrete set of points. �

In order to establish the desired transversality, we will work with a
re-scaled version of the map evF

J ,

sη[evF
J ] =

1
η

(
evF

J −(τ, . . . , τ)
)

: P → R
|J |,

where |J | denotes the cardinality of J . Here we will take η → 0, and apply
the Sard–Smale theorem. Let F be the space of perturbations of L × I as
described. (To get a hold of this space, we can think of it as of the space of
all functions on L × I supported outside a neighborhood of the Mc.) The
evaluation map discussed above then gives a map

evJ : F × P → Mb×
r· · · ×Mb,

with a re-scaling sη[evJ ] analogous to that defined above.

Lemma 4.8. The map sη[evJ ] is transverse to 0 ∈ R
|J | in a neighborhood

of A
(2)
η for all sufficiently small η > 0.

Proof. Since transversality is an open condition, we need only show that the
differential is onto at any (F, Γ) ∈ F × P with sη[evF

J ](Γ) = 0. Fix such
(F, Γ). To prove surjectivity, we show that ∂j + O(η) is in the image of the
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differential for each j, where ∂j is the tangent vector along the jth factor in
the product (Mb)r.

Consider the jth puncture qj mapping to τ ∈ Mb. Assume for definiteness
that τ < 0. Start at qj and follow Γ in the direction opposite to the flow
orientation. Then we meet a first edge e which leaves the region N(Mb)
around Mb where no perturbation is supported. Perturb this edge near
the entrance point of N(Mb) by deforming the Legendrian submanifold. We
claim that if the region N(Mb) is chosen small enough, then the only negative
puncture in Γ, which appears after the edge e in the flow orientation and
which map to τ ∈ Mb, is qj . To see this, we use the fact that the distance
between any two negative punctures in a tree is uniformly bounded from
below, see Lemma 5.1, to conclude that to get to a negative puncture after
qj , we must follow some edge which leaves N(Mb) and in such a region,
integration along any edge induces a strict decrease in the x0-coordinate.
Thus, the x0-coordinate is smaller than τ at any later puncture.

Consider next punctures qr, which appear after qj , map to τ ∈ Mb but lie
on a lower level tree. For such punctures, we can remove the corresponding
components of ∂r which the already introduced perturbation gives rise to
by varying the length of the attaching flow line.

Finally, we must deal with punctures connected to e only via vertices
above e. (The perturbation could affect such a vertex.) Consider the vertices
connected to e by an edge attached as close to e as possible. These vertices
lie above the perturbation region in e. After Lemma 4.7, we know that Γ
has injective points in this region and it is therefore easy to compensate for
the shifts induced by earlier perturbations. Using an obvious induction, we
take care of all punctures in the tree above qj . (Note that all perturbations
needed for these additional punctures appear off the main stem connecting
qj to the positive puncture and at x0-levels above that of e.) �

Corollary 4.9. For an open dense set of perturbations F of A
(2)
η ,

(evF
J )−1 ((τ, r. . ., τ)) ,

where evF
J : P(a; b1, . . . , bk) → Mb× r. . . ×Mb, dim(P(a; b1, . . . , bk)) = d + 1

is a manifold of dimension d + 1 − r.

Proof. This is a standard application of the Sard–Smale theorem. �

We next specialize to the situation of most importance to us. Consider a
compactified moduli space M(a; b1, . . . , bk) of flow trees on L of dimension d
and with at least m ≥ d negative punctures mapping to b (i.e., bj = b for at
least d indices j). Consider the corresponding space P = P(a; b1, . . . , bk) and
let J be a subset of the punctures of trees in P mapping to Mb of cardinality
|J | = d. Note that the map sη[evF

J ] : P → R
|J | is continuous on the space

sη[P] obtained from P by re-scaling the lengths of all connector flow lines
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by η−1. Moreover, it is clear that the closed subset
(
sη[evF

J ]
)−1 (0) ⊂ sη[P],

where F is of size O(η), is bounded. Hence it is compact. Thus, Corol-
lary 4.9 implies that, for generic F ,

(
evF

J

)−1 (τ, . . . , τ) is empty if |J | > d+1
and is a compact 0-dimensional manifold if |J | = d + 1. Furthermore, any
point in such a 0-dimensional manifold

(
evF

J

)−1 (τ, . . . , τ) corresponds to a
point in the interior M = M(a; b1, . . . , bk) of M = M(a; b1, . . . , bk) for the
following reason. Recall that the boundary of the d-dimensional M consists
of products of the form

Md1 × · · · × Mdr ,

where Mdj
is a moduli space of dimension dj ≥ 0 and where

d1 + · · · + dr + (r − 1) = d.

Thus if
(
evF

J

)−1 (τ, . . . , τ) intersects ∂M, then there are subsets Jl, J = ∪lJl

of negative punctures of trees in Mdl
for which evF

Jl
(τ, . . . , τ) is non-empty.

The genericity condition then implies that |Jl| ≤ dl + 1. Then d − (r − 1) =∑
l dl ≥

∑
l |Jl| − 1 = |J | − 1 and d + 1 > |J | since r ≥ 2. This however

contradicts |J | = d + 1 and thus shows that all points lie in M.
Let p0, p1, . . . , pk denote the punctures of the generalized flow trees in

P(a; b1, . . . , bk), where dim(M(a; b1, . . . , bk)) = d, let F be a generic pertur-
bation, let J denote a subset of the punctures mapping to the Reeb chord
b with |J | = d + 1, and let x0(b̂) = τ . We write EF

J

(
M(a; b1, . . . , bk)

)
=

(
evF

J

)−1 (τ, . . . , τ).

Remark 4.10. It is easy to see that if dim(M(a; b1, . . . , bk)) = 0, then
EF

J (M(a; b1, . . . , bk)) consists of exactly one point.

Since the moduli space of flow trees of L is compact and since there Q3
are only finitely many Reeb chord manifolds, Lemma 4.8 implies that
we can find a perturbation F of A

(2)
η which makes all evaluation maps

evF : M(a; b1, . . . , bk) transverse to all varieties ΣJ,τ , where τ = x0(b) for
some b and where J is any subset of the negative punctures which map to
b, for all moduli spaces and all choices of collections of punctures.

We fix a choice of such an F and perform also the perturbations of size
O(η2) along the Reeb chord manifolds which were used to obtain A(3) from
A(2) in Section 4.2. Denote the resulting Legendrian embedding A

(4)
η : L ×

I → J1(R2). We next give a description of the rigid flow trees of A
(4)
η (L×I)

for small η > 0.
Consider a generalized flow tree G ∈ P(a; b1, . . . , bs) on L×I. A complete

slice S of G is a collection of slice trees of G of the following form.

• There is one slice tree Γ0 in S which lies on a level above (i.e., a level
of lower numbering than) all other slice trees in S.
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• The positive puncture of Γ0 is either the positive puncture of G or
connected to a negative puncture of some other slice tree in G by a
flow line of length > 0.

• Every slice tree in S of level k, which is lower than the level of the
top slice tree Γ0, is connected at its positive puncture via a flow line
of length 0 to the negative puncture of some slice tree in S of level
k − 1.

Thus, a complete slice S is a (possibly broken) tree in a level lying in some
compactified moduli space MS = M(e; c1, . . . , ck). If the complete slice S
lies in the x0-slice of ĉ, where c = cj for one of the negative punctures cj ,
then EF

J (MS) may be non-empty for suitable J .
Consider a generalized flow tree G ∈ P(a; b1, . . . , bs) of L × I and let

SG
1 , . . . , SG

k be its complete slices. We say that G is potentially rigid if for
every SG

k ∈ M(e; c1, . . . , ck) in an x0(ĉ)-slice, c = cj for some j, the number
of punctures mapping to c (i.e., the number of indices j such that c = cj) is
larger than dim(MSG

j
). In this case, we take EF (MSG

j
) to be the union of

all the manifolds EF
J (MSG

j
) over all distinct choices of subsets J of negative

punctures with |I| = d + 1.

Lemma 4.11. For all sufficiently small η > 0, there is a 1 − 1 correspon-
dence between, on the one hand, rigid flow trees of A

(4)
η (L × I) and, on the

other, the union over all potentially rigid generalized flow trees G of the
product sets

(4.5) EF (MSG
1
) × EF (MSG

2
) × . . . × EF (MSG

k
),

where SG
j , j = 1, . . . , k, are the complete slices of G.

Proof. Let G be a potentially rigid generalized flow tree and let F denote
the perturbation of A

(2)
η discussed above. A point in the product

EF (MSG
1
) × EF (MSG

2
) × . . . × EF (MSG

k
)

corresponds to k complete slices of G, each of which gives a transverse solu-
tion to an equation sη[evF

J ] = 0 for some Reeb chord b and some collection
of punctures J . The Legendrian embedding F is at O(η) distance from the
inclusion of L × I and has Morse–Bott Reeb chords along M̂c for all Reeb
chords c of L. To obtain A

(4)
η from F, we make a perturbation of size O(η2)

in a small neighborhood of the manifolds M̂c.
The evaluation map is re-scaled by η−1. After this re-scaling, the per-

turbation from F to A
(4)
η is a standard perturbation out of a Morse–Bott

situation into a Morse situation. In particular, flow lines before the perturba-
tion with evaluation map transversely equal to the location of the maximum,
correspond in a 1–1 fashion to flow lines after the perturbation ending at the
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created maximum. We conclude that for η > 0 sufficiently close to 0, any
point in the product gives rise to a collection of partial flow trees, with one
negative puncture at a ĉ for each negative puncture which maps to x0(ĉ) by
the evaluation map.

We show that these pieces can be glued in a unique way to a rigid flow tree
of A

(4)
η (L×I). This is straightforward: by the definition of complete slice, all

complete slices are connected to other complete slices by flow lines of length
bounded from below. In order to glue the pieces, we thus need only make
sure that the gluing problem for the flow lines of βc connecting the negative
puncture at a complete slice of an above level to a complete slice in the
level below has a unique solution. Consider first the case when the critical
point is a maximum. Since the Morse–Bott perturbation is of size O(η2),
a change in the tree of the higher level near the negative puncture of size
O(η2) produces a finite change in the level of the outgoing flow line. Since
the solution to sη[evF

c ] = 0 on the higher level is uniformly transverse, it
persists under changes of size O(η2). The case when the negative puncture
has minimum character is similar: in order to connect the subtrees only,
perturbations of the pieces of size O(η2) are needed and the solutions to
sη[evF

b ] = 0 persist under such perturbations. We conclude that near each
point in the product (4.5), there is a unique rigid flow tree of A

(4)
η (L × I)

for all η > 0 sufficiently small.
In order to finish the proof, it remains only to check that any sequence

of rigid trees of A
(4)
η (L × I) converges to a potentially rigid generalized tree

and gives a solution to the evaluation condition of (4.5). The fact that it
converges to a potentially rigid tree is an easy consequence of Lemma 4.4.
Re-scaling by η−1 takes us, as mentioned above, to a standard Morse–Bott
situation near the Reeb chord manifolds, and it follows that any sequence
of trees gives a solution. �

We call the product of 0-dimensional manifolds as in (4.5) incidence
spaces. Thus, the conclusion of Lemma 4.11 is that the contact homology
differential of A

(4)
η (L × I), for η > 0 sufficiently small, admits a description

in terms of generalized flow trees and their corresponding incidence spaces.
Although this is a rather nice geometric description, algebraically, it is in
general messy. Moreover, even geometrically it is not very explicit: it is, in
general, difficult to determine the incidence numbers since they require exact
knowledge of moduli spaces of flow trees on L of arbitrary dimension. (For
a fixed knot L, this is less of a problem since any L admits a presentation in
which there are no disks with multiple negative punctures and for such knots
the description of the algebra is straightforward.) However, we need to deal
with 1-parameter families of knots and want the algebra as simple as possi-
ble, and as we shall see, there is an algebraically much preferable description
of an algebra which is stable tame isomorphic to the one discussed above.
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This algebra arises from abstract perturbations and is related to the one
above directly through its description in terms of generalized flow trees and
incidence spaces. For this reason we note the following.

Remark 4.12. Fix a small η > 0 for which Lemma 4.11 holds. Consider
the Legendrian submanifold F (L × I), where F is a small perturbation of
A

(2)
η . The integration along trees discussed above can be viewed as a map

M × I → Ck(S1, T ∗I), where S1 is naturally identified with the cotangent
lift of the tree. Lemma 4.11 then gives a description of the moduli space of
rigid trees determined by A

(4)
η (L× I) in terms of perturbed trees and Morse

functions βc : Mc → R on the Reeb chord manifolds, where the perturbation
function is the x0-component of the integration map discussed above.

5. Abstract perturbations and contact homology computations

In this section, we design a perturbation for the trace of the constant isotopy
which leads to a simple differential.

5.1. A perturbation function. Let Γ be a flow tree on L ⊂ J1(R). Note
that the cotangent lift of Γ is naturally parameterized by a map of a circle
SΓ with metric induced by the parameterization and with ordered marked
points p0, p1, . . . , pk at the punctures of Γ. (Here p0 corresponds to the
positive puncture.) We will associate to Γ a function φΓ : SΓ → R such that
φΓ ≥ 0 and such that

φΓ(p0) = 0 = φΓ(pk) < · · · < φΓ(p1).

Furthermore, the functions φΓ will vary continuously with Γ in the moduli
space of flow trees on L. In order to get a common source circle for all the
maps φΓ, we scale all cotangent lift circles SΓ so that they have length 2π and
view Γ �→ φΓ as a map M → Ck(S1, R), where M is the compactified moduli
space of trees of L and where k ≥ 1. Before discussing these functions, we
prove a preliminary lemma.

Lemma 5.1. There exists a constant C > 0 such that for any flow tree Γ of
L with one positive puncture, the distance in SΓ between any two punctures
is bounded below by C.

Proof. Let c be a Reeb chord of L. The only Reeb chord in a neighborhood
of c is c itself. For area reasons, if c is the positive puncture of a tree, then
it cannot also appear as a negative puncture in that tree. Thus it suffices
to consider two neighboring negative punctures in a tree Γ which both map
to c. Consider the 1-jet lift Γ̃ of Γ. Since the path of Γ̃ which connects the
punctures is incoming at one of them and outgoing at the other, it connects
the top endpoint of c to the bottom endpoint of c and thus its length is
bounded from below. �
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Assume that L ⊂ J1(R) is sufficiently generic so that the lengths of all
its Reeb chords are pairwise distinct. Let the lengths be

0 < l1 < l2 < · · · < lm.

It follows by the Stokes theorem that there exists M (take M > lm
l1

) such
that no flow tree with one positive puncture has more than M negative
punctures, and that there exists K (take K > lm

minj{lj+1−lj ,l1}) such that no
broken tree has more than K levels.

Choose a function h : R → R, h > 0 such that for every j = 1, . . . , r

1
2KM h(lj+1) > h(lj).

We will define the map M → Ck(S1, R) in an inductive manner using the
area filtration of M. In the first step, we define the map on the moduli
space of flow trees of smallest area. In later steps, we define the map on
the compactification of the moduli space of trees of higher areas assuming
that the map is already defined for all moduli spaces of trees of smaller area.
Since the compactification of a moduli space of trees of a given area consists
of broken trees with pieces of smaller areas, the map has a natural definition
on the boundary of the moduli space and we show how to extend it to the
interior.

Let Γ be a flow tree. We say that a smooth function φΓ : SΓ → R is
stretching if the following holds:

• If Γ has one or zero negative punctures, then φΓ = 0.
• If Γ has r > 1 negative punctures and if l is the length of its positive

Reeb chord, then φΓ(p0) = φΓ(pr) = 0, φΓ increases monotonically
as we move along the circle in the negative direction from the point
midway between pr and pr−1 to the point q midway between p1 and p0,
φΓ decreases monotonically between q and the point midway between
q and p0 and then it is constant. Furthermore, φΓ(pj) − φΓ(pj+1) =
1
M h(l) for j = 1, . . . , r − 1.

Let

(5.1) Γ = Γ1
1 ∪

(
Γ1

2 ∪ . . . ∪ Γs2
2

)
∪ . . . ∪

(
Γ1

l ∪ . . . ∪ Γsl
l

)

be a broken tree where Γ1
j , . . . ,Γ

t
j are the trees of level j. Let φΓt

j
: SΓt

j
→ R

be smooth functions which are constant in neighborhoods of punctures.
Then these functions glue in an obvious way to a smooth function
φΓ : SΓ → R as follows. For points x ∈ Γ1

1 ⊂ Γ, let φΓ(x) = φΓ1
1
(x).

Assume inductively that φΓ has been defined for all points in trees of level
< j. Let x ∈ Γt

j and let qt
j ∈ Γr

j−1 denote the negative puncture in the
level j − 1 tree Γr

j−1 where the positive puncture of Γt
j is attached. Define

φΓ(x) = φΓ(pt
j) + φΓt

j
(x).
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We define the common ancestor AΓ(q, q′) of two negative punctures q, q′

in the broken tree Γ as an unbroken subtree of Γ, inductively, in the following
way. If both q and q′ are negative punctures of the same unbroken tree Γt

j ,

then we take A(q, q′) = Γt
j . If q and q′ lie on different levels l(q) and l(q′)

with l(q) < l(q′), say, then we take AΓ(q, q′) = AΓ′(q, q′′), where q′′ is the
negative puncture of the tree of level l(q′)−1 where the positive puncture of
the tree of q′ is attached and where Γ′ is the broken tree obtained from Γ by
cutting at q′′. If q and q′ lie on the same level but not in the same tree, then
we take AΓ(q, q′) = AΓ′(p, p′), where p and p′ are the negative punctures in
the trees of level l(q) − 1 = l(q′) − 1 where the positive punctures of the
trees of q and q′, respectively, are attached, and where Γ′ is the broken tree
obtained from Γ by cutting at p and at p′.

Let p0, p1, . . . , pr denote the punctures of a broken tree Γ as in (5.1) .

Lemma 5.2. If φΓt
j

are stretching for all j, then for any t, 1 ≤ t ≤ r − 1,

φΓ(pt) − φΓ(pt+1) >

(

1 − L

(K + 1)

)
1
M

h(l(pt, pt+1)),

where L is the number of levels in Γ and where l(pt, pt+1) is the length of
the Reeb chord of the positive puncture in AΓ(pt, pt+1).

Proof. We use induction. For trees of only one level this is immediate.
Assume next that it holds for all broken trees of L − 1 levels and consider
attaching an Lth level to an (L − 1)-level broken tree Γ′ to form an L-level
tree Γ. The only point that needs to be checked is that if q is the first
negative puncture in a tree Δ of level L and if p is the negative puncture in
Γ preceding it in Γ, then

φΓ(p) − φΓ(q) >

(

1 − L

K + 1

)
1
M

h(l(p, q)).

Note that either p = p′, where p′ lies in a tree of level at most L−1, or p lies
in a tree of level L attached at a puncture p′ of some tree of level L − 1. In
the latter case we have φΓ(p) = φΓ′(p′). If q′ denotes the negative puncture
in the tree Γ′ at which the tree Δ is attached, then the inductive assumption
implies

φΓ′(p′) − φΓ′(q′) <

(

1 − L − 1
K + 1

)
1
M

h(l(p′, q′)).
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By the definition of common ancestor, A(p′, q′) = A(p, q) and hence
h(l(p′, q′)) = h(l(p, q)). Thus, since φΔ is stretching, with l = l(p, q),

φΓ(p) − φΓ(q) = φΓ′(p′) − φΓ′(q′) − φΔ(q)

>

(

1 − L − 1
K + 1

)
1
M

h(l) − M
1

2KM
h(l)

>

(

1 − L − 1
K + 1

− 1
K + 1

)
1
M

h(l) =
(

1 − L

K + 1

)
1
M

h(l).

�

Lemma 5.3. There exists a continuous function M → Ck(S1, R), Γ �→ φΓ,
such that the following holds. If Γ is any (broken) tree in M with negative
punctures p1, . . . , pr, then

φΓ(pt) − φΓ(pt+1) > δ > 0,

and if Γ is a broken tree, then φΓ satisfies the join equation (3.2).

Proof. Possible areas of trees of L with one positive puncture constitutes a
finite set of numbers

0 < α1 < α2 < . . . < αm.

Let Mj denote the compactification of the moduli space of trees of area
≤ αj . Pick a stretching function Γ �→ φΓ for Γ ∈ M1. Assume inductively
that we have defined a function Mj → Ck(S1, R) in such a way that there
exists an ε > 0 with the following properties. In an ε-neighborhood of
each broken tree, the function satisfies the join equation. For Γ outside a
2ε-neighborhood of the boundary of Mj , the functions φΓ are stretching. In
the region between these neighborhoods, the inequality,

φΓ(pt) − φΓ(pt+1) >
1
2

(

1 − L

(K + 1)

)
1
M

h(l(pt, pt+)),

where the notation is as in Lemma 5.2, holds. We want to extend the
function to Mj+1. Since the boundary of Mj+1 consists of broken trees
of area strictly smaller than αj+1, we define the map ∂Mj+1 → Ck(S1, R)
by imposing the join equation in a small neighborhood of the boundary of
Mj+1. Using Lemma 5.2, it is not hard to see that if ε > 0 is sufficiently
small, then we can extend this family to all of Mj+1 respecting the above
conditions on ε-neighborhood as well as on the 2ε-neighborhood and its
complement. We obtain a function on M with properties as desired. �

We view a function M → Ck(S1, R) with properties as in Lemma 5.3 as a
function into Ck(S1, T ∗I) by identifying R with the fiber in T ∗I. Fix such a
function and use it as a perturbation function for flow trees, see Section 3.4.
Let Δa denote the corresponding differential on A(L × I).
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Remark 5.4. By scaling, the total variation of any function φΓ, Γ ∈ M
can be assumed arbitrarily small.

Lemma 5.5. Any rigid perturbed flow tree has only one level. The flow
tree corresponding to the perturbed slice tree in that level is itself rigid and
exactly one of its negative punctures lies at the 0-level, or the tree is entirely
contained in {x0 = ±1}.

Proof. This follows from the choice of abstract perturbation. Since it orders
the negative punctures, at most one at a time can lie at the 0-level. The
lemma is then an easy consequence of the dimension formula. �

Let ∂ : A(L) → A(L) denote the contact homology differential and let
the notation for generators be ĉ for the maximum in Ic and c[±1] for the
minima at ±1 ∈ Ic, for any Reeb chord c of L.

Corollary 5.6. The differential Δa : A(L × I) → A(L × I) satisfies the
following

Δac[±1] = ∂c[±1],(5.2)

Δaĉ = c[+1] + c[−1] + Γ(∂c),(5.3)

where Γ(1) = 0 and

Γ(a1a2 · · · am) = â1a2[−1] · · · am[−1]

+ a1[+1]â2a3[−1] · · · am[−1]
...

+ a1[+1] · · · am−1[+1]âm.

Proof. It is easy to construct the rigid perturbed trees mentioned in
Lemma 5.5, which give the second term in (5.3), as well as the flow lines of
βc which give the first term in (5.3). Lemma 5.5 shows that there are no
other rigid perturbed trees. �

Let Δ: A(L×I) → A(L×I) denote the differential on the contact homol-
ogy algebra of the trace of the constant isotopy which arises from a geometric
deformation.

Corollary 5.7. There exists a tame isomorphism between the algebras
(A(L × I), Δ) and (A(L × I), Δa).

Proof. Remark 4.12 shows that Δ can be expressed as a differential Δg
induced by a perturbation function and by collections of Morse functions on
the Reeb chord manifolds. Corollary 3.13 then shows that (A(L × I), Δa)
and (A(L × I), Δg) are tame isomorphic. �
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6. Decomposing isotopies and differentials

In this section, we first discuss how to subdivide a Legendrian isotopy into
pieces in such a way that each piece corresponds either to a sufficiently good
approximation of a constant isotopy or to a move isotopy which is constant
except in a small region where it has one of the several standard forms.
The computations of Section 5 allow us to describe the DGA of the trace
of the almost constant isotopy, see Section 6.1. Slight extensions of these
computations allow us to describe the DGAs of traces of move isotopies as
well, see Sections 6.2 and 6.3.

6.1. The trace of an almost constant isotopy. Let L ⊂ J1(R) be a
generic Legendrian submanifold. Let Lt, −1 ≤ t ≤ 1, be an isotopy of
L = L0 and let Φ(L×I) be the trace of Lt with standard ends. Let Ψ: J1(R×
I) → J1(R × I) be the perturbation which makes the trace L × I of the
constant isotopy generic with respect to flow trees.

Lemma 6.1. There exists ε = ε(L) > 0 such that if the isotopy Lt is con-
tained in a the C2 ε-neighborhood of the constant isotopy, then the contact
homology algebra of Ψ(Φ(L × I)) and that of Ψ(L × I) are canonically iso-
morphic.

Proof. Assume not. Then there exists a sequence of isotopy traces Φj : L ×
I → J1(R × I), j = 1, 2, . . . , such that the space of rigid flow trees of
Ψ(Φj(L×I)) and that of Ψ(L×I) are non-isomorphic and such that Φj → id
as j → ∞. By the compactness properties of the space of flow trees, this
contradicts the flow trees of Ψ(L × I) being transversely cut out . �

Let Lt, 0 ≤ t ≤ 1, be a Legendrian isotopy. It is well known that we may
deform this isotopy into an isotopy with the property that Lt is a generic
Legendrian submanifold for t 
= tj where 0 < t1 < · · · < tm < 1 is a finite
collection of instances and such that around every tj the isotopy is constant
outside a small disk and inside this disk the Legendrian undergoes one of
the following standard moves.
(F1) A first Redemeister front move.
(F2) A second Redemeister front move.
(F3) A third Redemeister front move.
(L1) A Lagrangian triple point move.
(L2) A pair of Reeb chords disappears.
(L3) A pair of Reeb chords appears.

We call such an isotopy an isotopy with standard moves.
Given an isotopy with standard moves, we may subdivide the intervals

between the standard moves in sufficiently short isotopies through generic
Legendrian submanifolds. This gives a representative of the trace of the
isotopy which is a join of approximately constant isotopies and isotopies
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with standard moves. Let L be the middle stage of an almost constant
isotopy and let {ĉ, c[−1], c[+1]} denote the Reeb chords of the trace of the
almost constant isotopy, where c ranges over the Reeb chords of L, where ĉ
corresponds to the maximum in Ic and c[±1] to the minima at the endpoints
of Ic. If w ∈ A(L) is an element, then write w[±1] for the corresponding
element in A(L × I) where every generator c has been replaced by c[±1].

Corollary 6.2. The DGA differential Δ of the trace of an almost constant
isotopy is the following

Δc[±1] = (∂c)[±1],

Δĉ = c[−1] + (id c)[+1] + Γid(∂c),(6.1)

for every Reeb chord c.

Proof. This follows from Lemma 3.12 in combination with Lemma 6.1. �
Concatenation of the almost constant isotopies of an isotopy without

moves then gives an expression for the differential of the trace of the total
isotopy.

6.2. Front moves. In this subsection, we study moves (F1)–(F3). In fact,
none of these moves changes the differential from that of the trace of the
constant isotopy.

Lemma 6.3. The DGA of the trace of an (F1)-move is identical to the
DGA of the trace of an almost constant isotopy, see (6.1).

Proof. We parameterize the trace by keeping the isotopy constant on x0 ∈
[−1, 1

2 ], then performing the move, and keeping it again constant close to
x0 = 1. It is straightforward to check that there is a natural 1–1 correspon-
dence between flow trees of the trace of the constant isotopy and flow trees of
the (F1)-isotopy. The only difference between the two kinds of trees appears
as they pass the bifurcation region where trees in one of the situations are
obtained from trees in the other situation by adding a Y1-vertex and an end,
see Figure 7. �

Lemma 6.4. The DGA of the trace of an (F2)-move is identical to the
DGA of the trace of an almost constant isotopy, see (6.1).

Figure 7. Flow line of the trace of the constant isotopy (left)
and corresponding flow tree of the (F1)-isotopy (right).
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Proof. As in the proof of Lemma 6.3, it is straightforward to find a 1–1
correspondence between rigid flow trees of the trace of the constant isotopy
and the trace of the isotopy of the move. To see this, use the cotangent
lift of the trees and the fact that the Lagrangian projection of the trace of
an (F2)-isotopy is qualitatively indistinguishable from that of the constant
isotopy. �
Lemma 6.5. The DGA of the trace of an (F3)-move is identical to the
DGA of the trace of an almost constant isotopy, see (6.1).

Proof. The same argument as in the proof of Lemma 6.4 applies. �

6.3. Lagrangian moves. In this subsection, we study the moves (L1)–
(L3). To this end we will append the move isotopy to one end of a constant
isotopy. As in Section 3.4, our computation uses abstract perturbations.
That is, we use perturbed flow trees in our computations. The argument
which shows that this computation gives a DGA which is tame isomorphic
to the DGA which arises from a geometric perturbation is almost identical
to the proof of Lemma 3.12 and Corollary 3.13 and will not be repeated.

Let L−1 and L+1 be Legendrian submanifolds of J1(R) such that L+1 is
obtained from L−1 via an (Lj)-move. Then we write φLj : A(L−1) → A(L+1)
for the induced homomorphism, j = 1,2,3, see [15]. Furthermore we write
∂± for the differential on A(L±1) and if φ : A(L−1) → A(L+1) is a homo-
morphism, we use the notion Γφ : A(L−1) → A(L × I) as in Theorem 1.1.

We first consider the simpler cases of (L1) and (L2) where the abstract
perturbations and the move region can be taken disjoint. We let the move
happen inside a box of the form 1

2 ≤ x0 ≤ 1
2 + δ, |x1 − a| ≤ ε. Inside this

box, we can draw the flow explicitly and from that information compute the
differential.

Lemma 6.6. The differential Δ of the trace of a move isotopy of type (L1)
satisfies

(6.2) Δĉ = c[−1] + φL1(c)[+1] + ΓφL1(∂−c).

Proof. We chose abstract perturbations of the same form as in Section 3.4
and we use a cut-off function supported above the move region. As there, we
find that as η → 0 outside the move region, any sequence of trees converges
to a generalized tree. In particular, any rigid flow tree has all its limit slice
trees near x0 = 0. The difference arises as the descending flow lines near the
Reeb chord manifolds enter the box of the move. There are two different
(L1)-moves, see Figures 8 and 9. The corresponding flow pictures are shown
in Figures 10 and 11. It is clear from these pictures that there is no effect on
the differential in the first case and that in the second case we get exactly
c[−1]+φ(c)[+1]+Γφ(∂c) in the right hand side of (6.2), where φ(a) = a+bc
and φ is the identity on other generators. �
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Figure 8. The first (L1)-isotopy.

Figure 9. The second (L1)-isotopy.

Figure 10. The trace of the first (L1)-isotopy. Every flow
line belonging to a rigid tree passes right through the isotopy
box.

Figure 11. The trace of the second (L1)-isotopy. Any flow
line on its way toward a can either split over a Y0-vertex into
a rigid configuration of a flow line toward b and a flow line
toward c or pass right through the isotopy box.
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Lemma 6.7. The differential Δ of the trace of a move isotopy of type (L2)
satisfies

Δĉ = c[−1] + φ(c)[+1] + ΓφL2(∂−c)

Proof. The proof is very similar to the proof of Lemma 6.6. We use abstract
perturbations supported outside the move box. The move is depicted in
Figure 12 and the corresponding flow box in Figure 13. It follows that

Δĉ = c[−1] + φL2(c)[+1] + ΓφL2(∂−c),

where φ takes a to 0, b to ∂a + b = v, and is the identity on all other
generators. �

Lemma 6.8. The differential Δ of the trace of a move isotopy of type (L3)
satisfies

Δĉ = c[−1] + φL3(c)[+1] + ΓφL3(∂c).

Proof. To prove this result, we use an abstract perturbation of the kind
discussed in Section 5, which orders the punctures according to their natural
boundary ordering. This time we let the perturbation of the horizontal trees
be cut-off only after the flow box of the move. This flow box is depicted
in Figure 14. Our choice of perturbation guarantees that the flow lines of

Figure 12. An (L2)-isotopy.

Figure 13. The trace of the (L2)-isotopy. Any flow line on
its way toward a goes on toward a word contributing to v.
The corresponding tree lives in a 1-parameter family since
nearby flow lines (which would formerly be attracted by b)
also go on toward the same word in v. A flow line of a rigid
tree on its way toward b is determined uniquely already in
the region above. It goes on to a word contributing to v.
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Figure 14. The flow of an (L3)-isotopy. Consider a general-
ized perturbed flow tree near the [−1]-chords moving upward.
When one of its b-chords hits the flow line going to a in
the flow box, a 1-parameter family of perturbed flow trees
becomes rigid. When the puncture moves further up, the
flow goes instead to a word contributing to v and stays there
until the next b-puncture hits the flow line ending at a.

a generalized perturbed tree hit the a-flow line in the order they appear on
the boundary. The formula for the differential follows. �

7. Algebraic treatment of concatenation and of homotopy
of isotopies

In this section, we first show that the DGAs of traces, after destabilization,
and tame isomorphisms have certain naturality properties with respect to
concatenation. Together with the results of Section 6, this lead to a proof of
Theorem 1.1 as follows. Concatenation of small pieces of an isotopy yields
the DGA for the full isotopy by the results of Section 6. However, this
gives a DGA with an enormous number of generators. We show below,
using a purely algebraic argument, that the DGA with the large number
of generators is stable tame isomorphic to the DGA in the formulation of
Theorem 1.1. Second, we show that the contact homology of the trace of an
isotopy depends only on the chain homotopy type of the contact homology
morphism induced by the isotopy. Geometrically, such a chain homotopy
corresponds to a homotopy of isotopies.

7.1. Concatenation and the proof of Theorem 1.1. Let (A±, ∂±) be
a DGA with a finite set of generators g(A±) and let ϕ : A− → A+ be a
DGA morphism. Let the non-commutative algebra Cϕ be generated by the
following:

• a generator a± for each a± ∈ g(A±), with grading |a±| as in A±,
• a generator â for each a− ∈ g(A−), with grading |â| = |a−| + 1.

There are obvious embeddings (algebra monomorphisms) ι± : A± → Cϕ

defined (on generators) by ι±(a±) = a±, see Figure 15.
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Figure 15. The mapping cone of a DGA morphism.

We define a map Δϕ : Cϕ → Cϕ as follows on generators

Δϕa± = ι±(∂±a±),

Δϕâ = a− + ι+(ϕ(a−)) + Γϕ(∂−a−)

and extend it to all of Cϕ by the Leibniz rule. Here Γϕ : A− → Cϕ is defined
as follows. On generators a− of A−,

Γϕ(a−) = â

and for products uv ∈ A−,

Γϕ(uv) = ι−(u)Γϕ(v) + Γϕ(u)ι+(ϕ(v)).

The (ι−, ι+ ◦ ϕ)-derivation Γϕ increases grading by 1 and consequently Δϕ

decreases grading by 1.
Since ∂± also satisfies the Leibniz rule, it follows that Δϕι±(u±) =

ι±(∂±u±) for all u± ∈ A±. In other words, ι± will be DGA morphisms
once we show that (Cϕ, Δϕ) is a DGA. To establish that we must show that
Δ2

ϕ = 0 and it is enough to prove this for generators of Cϕ. For gener-
ators a± this is trivial and for generators â, it follows from the following
lemma.

Lemma 7.1. For all u ∈ A−,

(7.1) D(u) = ι−(u) + ι+(ϕ(u)) + ΔϕΓϕ(u) + Γϕ(∂−u) = 0.

In particular Δ2
ϕâ = 0 for any generator â.

Proof. If a− is a generator of A−, then

D(a−) = ι−(a−) + ι+(ϕ(a−)) + ΔϕΓϕ(a−) + Γϕ(∂−a−)

= a− + ι+(ϕ(a−)) + Δϕâ + Γϕ(∂−a−) = 0
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by definition of Δϕâ. If D(u) = D(v) = 0, then

D(uv) = ι−(uv) + ι+(ϕ(uv)) + ΔϕΓϕ(uv) + Γϕ(∂(uv))

= ι−(u)ι−(v) + ι+(ϕ(u))ι+(ϕ(v)) + Δϕ(ι−(u)Γϕ(v)

+ Γϕ(u)ι+(ϕ(v))) + Γϕ(∂−u · v + u · ∂−v)

= ι−(u)ι−(v) + ι+(ϕ(u))ι+(ϕ(v))

+ Δϕ(ι−(u)) · Γϕ(v) + ι−(u) · ΔϕΓϕ(v) + ΔϕΓϕ(u) · ι+(ϕ(v))

+ Γϕ(u) · Δϕι+(ϕ(v)) + ι−(∂−u)Γϕ(v) + Γϕ(∂−u)ι+(ϕ(v))

+ ι−(u)Γϕ(∂v) + Γϕ(u)ι+(ϕ(∂v))

= (ι+(ϕ(u)) + ΔϕΓϕ(u) + Γϕ(∂−u)) j(ϕ(v)) + ι−(u)(ι−(v)

+ ΔϕΓϕ(v) + Γϕ(∂−v))

= ι−(u)ι+(ϕ(v)) + ι−(u)ι+(ϕ(v)) = 0.

For the second statement, note that Δ2
ϕâ = D(∂−a). �

We call the DGA (Cϕ, Δϕ) the mapping cone of the chain map ϕ : A− →
A+.

The proof of the main theorem of this section relies on the following result
which is often used in the subject of contact homology. For a proof see [3].

Theorem 7.2. Let A = T (q1, q2, . . . , qm, a, b) and A′ = T (q1, q2, . . . , qm) be
DGAs freely generated by the indicated generators with differentials ∂ and
∂′, respectively, which decrease grading by one and which satisfy the Leibniz
rule. Assume that A and A′ come equipped with height filtrations, that is,
that there exists an ordering of the generators c ∈ {q1, . . . , qm, a, b} of A with
the following property. For each c, the expression ∂c (∂′c) is a polynomial of
other generators of A (of A′) in which all generators are of smaller height
than c. Assume that ∂a = b + v. Define the projection

τ : A → A′

by τ(qj) = qj, 1 ≤ j ≤ m, τ(a) = 0, and τ(b) = v. Extend τ to a grading
preserving algebra homomorphism and suppose it is a chain map. Then, the
DGAs (A, ∂) and (A′, ∂′) are stable tame isomorphic. In particular, they
have isomorphic homologies.

Let now (A1, ∂1), (A2, ∂2), and (A3, ∂3) be filtered DGAs with α : A1 →
A2 and β : A2 → A3 DGA morphisms between them (see Figure 16). Let
(Cα, Δα) be the mapping cone of α and (Cβ, Δβ) be the mapping cone of
β. Define the algebra B by taking the disjoint union of Cα and Cβ and
identifying for each generator b of A2, the corresponding generator b ∈ Cα

with b ∈ Cβ. This is the algebraic version of concatenation and Δα and Δβ
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Figure 16. Concatenating mapping cones.

define a differential Δ on B. Note that the inclusions of Aj → B, j = 1, 2, 3,
are DGA morphisms.

Lemma 7.3. The DGA (B, Δ) is stable tame isomorphic to the mapping
cone (Cβα, Δβα) of the chain map β ◦ α : A1 → A3.

Proof. We remove pairs of generators (b, b̂) for b ∈ A2 inductively. Let the
generators of A2 be arranged by height from b1 (the longest) to bk (the
shortest). We eliminate b1 first, then the second longest generator b2, and
so on until we reach bk. Starting from B = B0, we obtain the DGAs Bi

(i = 0, 1, . . . , k) that are generated by a and â for each generator a ∈ A1,
c for each generator c ∈ A3, and by bi+1, b̂i+1, . . . , bk, b̂k. We may assume
that in each Bi, the heights of the â generators are all greater than those of
the b and b̂ generators.

Starting from Δ0 = Δ, we define differentials Δi on Bi recursively. If
Δi−1b̂i = bi + vi, then we define the projection τi : Bi−1 → Bi as in Theo-
rem 7.2. (We remark that Δi−1b̂i will always have that form, in fact with
vi = β(bi) + Γβ(∂2bi), since we eliminate in the order of decreasing height;
the interesting part of this definition is Δiâ for a ∈ A1.) For any genera-
tor c of Bi, we define Δic = τi(Δi−1c). Then τi is a DGA morphism and
Theorem 7.2 implies that all Bi are stable tame isomorphic.

To finish the proof we use the following: for all b ∈ A2 ⊂ B,

(7.2) τk ◦ τk−1 ◦ · · · ◦ τ1(b) = β(b).

To see this, note that

τk ◦ τk−1 ◦ · · · ◦ τ1(bi) = τk ◦ · · · ◦ τi(bi) = τk ◦ · · · ◦ τi+1(β(bi) + Γβ(∂2bi)).

Here, each monomial of Γβ(∂2bi) contains a b̂j-factor for some i+1 ≤ j ≤ k,
thus one of the remaining projections will annihilate it, and β(bi) is in A3
and is therefore fixed by all projections.

We claim that (Bk, Δk) is isomorphic to the mapping cone (Cβα, Δβα).
Their sets of generators agree and the differentials for generators a ∈ A1
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and c ∈ A3 are obviously the same. For any generator a ∈ A1,

Δkâ = Δkτk ◦ τk−1 ◦ · · · ◦ τ1(â)

= τk ◦ τk−1 ◦ · · · ◦ τ1(Δ0â)

= τk ◦ τk−1 ◦ · · · ◦ τ1(a + α(a) + Γα(∂1a))

= a + τk ◦ τk−1 ◦ · · · ◦ τ1(α(a)) + τk ◦ τk−1 ◦ · · · ◦ τ1(Γα(∂1a))

= a + β(α(a)) + Γβ◦α(∂1a)).

To see that the last equality holds, note that each summand of Γα(∂1a) is
a three-fold product of an element of A1 (possibly 1), an â-generator (these
are all fixed by projections), and the α-image of an element of A1; note that
projections are algebra homomorphisms and use (7.2). �

Proof of Theorem 1.1. Subdivide the isotopy in sufficiently small pieces so
that each piece contains at most one move, see Section 6 for a description
of moves, and so that the isotopy of each piece without move is sufficiently
close to constant. Then Lemma 6.1 implies that the DGA of each piece
without move is isomorphic to the DGA of the trace of the constant isotopy
and Corollary 6.2 gives the DGA for such pieces. Lemmas 6.3–6.8 give the
DGAs for pieces with moves. Concatenating all pieces gives a DGA with
many generators corresponding to the full isotopy. Lemma 7.3 shows that
this many-generator DGA is stable tame isomorphic to the DGA in the
formulation of the theorem. �

7.2. Chain homotopy. Consider two DGAs (A+, ∂+) and (A−, ∂−). Let
ψ, φ : A+ → A− be chain maps and let K : A+ → A− be a chain homotopy
between them. That is,

φ + ψ = K ◦ ∂+ + ∂− ◦ K.

Consider the mapping cone DGAs (Cφ, Δφ) and (Cψ, Δψ). Define the map
ΓK : A+ → Cψ to equal zero on constants and on linear monomials and by
the following expression for monomials b1 · · · br of length r ≥ 2

ΓK(b1 · · · br) = b̂1K(b2 · · · br) + b1b̂2K(b3 · · · br) + · · · + b1 · · · br−2b̂r−1K(br).

Lemma 7.4. The algebra map F : (Cφ, Δφ) → (Cψ, Δψ) defined on genera-
tors as follows

F (c) = c, c ∈ A+,

F (v) = v, v ∈ A−,

F (ĉ) = ĉ + K(c) + ΓK(∂+c), c ∈ Â+,

is a (tame) chain isomorphism. That is,

F ◦ Δφ = Δψ ◦ F.
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Proof. For simpler notation, we write Cφ = A = Cψ and consider this as
one algebra with two differentials and in order to facilitate computations,
we introduce the following notation. Let H : A+ → A and θ : A+ → A be
maps. Then define the map ΩH

θ : A+ → A as follows on monomials

ΩH
θ (b1 · · · br) = H(b1)θ(b2 · · · br)+b1H(b2)θ(b3 · · · br)+ · · ·+b1 · · · br−1H(br).

We compute

F (Δφ(ĉ)) = F (c + φ(c) + Γφ(∂+c))

= c + φ(c) + Γφ(∂+c) + ΩK
φ (∂+c) + ΩΓK◦∂+

φ (∂+c),(7.3)

and

Δψ(F (ĉ)) = Δψ(ĉ + K(c) + ΓK(∂+c))

= c + ψ(c) + Γψ(∂+c) + ∂−(K(c)) + Δψ(ΓK(∂+c)).(7.4)

We note that the monomials in (7.3) and (7.4) are of two types: monomials
which are constant in Â+-generators and monomials which are linear in
Â+-generators. We first show that the monomials of the former kind cancel
between the two equations.

The contribution from (7.3) to monomials of the first kind is

c + φ(c) + ΩK
φ (∂+c),

and the contribution from (7.4) is

c + ψ(c) + ∂−(K(c)) + Δψ(ΓK(∂+c))0,

where w0 denotes the term in an element which is constant in the Â+-
generators. Thus, if we show that

(7.5) ΩK
φ (∂+c) + Δψ(ΓK(∂+c))0 = K(∂+c),

then it follows that monomials of the first type cancel. Now, if b1 · · · br is a
monomial in ∂+c, then the contribution from this monomial to the left-hand
side of (7.5), which is non-constant in the A+-generators, vanishes for the
following reason. Terms arising from ΩK

φ have the form

b1 · · · bsK(bs+1)φ(bs+2) · · ·φ(br)

and are canceled by terms in Δψ(b1 · · · b̂sK(bs+1)φ(bs+2) · · ·φ(br)) corre-
sponding to the bs-term in Δψ(b̂s). Remaining terms in Δψ(b1 . . . b̂s

K(bs+1 . . . br)) corresponding to the bs-term in Δψ(b̂s) cancel with terms
in Δψ(b1 . . . bsb̂s+1K(bs+2 . . . br)) corresponding to the ψ(bs+1)-term in
Δψ(b̂s+1). Thus if b1 . . . br is any monomial in ∂+c, then its contribution
to the left-hand side of (7.5) is exactly

K(b1)φ(b2) · · ·φ(br) + ψ(b1)K(b2)φ(b3) · · ·φ(br) + · · ·ψ(b1) · · ·ψ(br−1)K(br)

and (7.5) follows.
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We next consider monomials linear in Â+-generators contributing to (7.3)
and (7.4). To this end, we define the maps A, B, C, D : A+ → A as follows
on monomials.

A(b1 · · · bs) = Γψ(∂+b1)K(b2 · · · bs) + b1Γψ(∂+b2)K(b3 · · · bs)

+ · · · + b1 · · · bs−2Γψ(bs−1)K(bs),

if s ≥ 2 and 0 otherwise.

B(b1 · · · bs) = b̂1K(∂+(b2 · · · bs)) + b1b̂2K(∂+(b3 · · · bs))

+ · · · + b1 · · · bs−2b̂s−1K(∂+(bs)),

if s ≥ 2 and 0 otherwise.

C(b1 · · · bs) = (∂+b1)b̂2K(b3 · · · bs) + ∂+(b1b2)b̂3K((b4 · · · bs))

+ · · · + ∂(b1 · · · bs−2)b̂s−1K(bs),

if s ≥ 2 and 0 otherwise.

D(b1 · · · bs) = b̂1∂−(K(b2 · · · bs)) + b1b̂2∂−(K(b3 · · · bs))

+ · · · + b1 · · · bs−2b̂s−1∂−(K(bs)),

if s ≥ 2 and 0 otherwise.
We have

0 = ΓK(∂+∂+c) = ΩΓK◦∂+(∂+c) + A(∂+c) + B(∂+c) + C(∂+c).

(To see this, one subdivides contributing monomials as follows. Let b1 · · · bs

be a monomial in ∂+c. The first term corresponds to the Â+-variable and
the K-variable both located in a ∂bj-monomial for some j. The second
term corresponds to the Â+-variable in a ∂bj-monomial and the K-variable
outside. The third term corresponds to the Â+-variable outside a ∂+bj-
monomial and the variable on which the ∂+-operator acts being on the
right of the Â+-generator. The fourth term corresponds to the Â+-variable
outside a ∂+bj-monomial and the variable on which the ∂+-operator acts
being on the left of the Â+-generator.)

Similarly, we have

Δψ(ΓK(∂+c))1 = A(∂+c) + C(∂+c) + D(∂+c),

where w1 denotes the term of an element which is linear in the Â+-
generators. Consequently, the contribution of monomials of the second kind
to the sum of (7.3) and (7.4) is

Γφ(∂+c) + Γψ(∂+c) + ΩΓK◦∂+(∂+c) + Δψ(ΓK(∂+c))1
= Γφ(∂+c) + Γψ(∂+c) + B(∂+c) + D(∂+c) = 0.

The lemma follows. �
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8. Examples

The results of this paper allow us to construct many interesting Legendrian
submanifolds. To illustrate this, we shall apply Theorem 1.1 to some of the
loops of Legendrian knots discussed in [15]. In particular, we will concen-
trate on augmentations of the contact homology of the resulting Legendrian
tori. Our examples give a proof of Theorem 1.2.

In any situation when the Legendrian L ⊂ J1(R), of Maslov class r = 0,
only has Reeb chords of non-negative grading (and L is the base point of a
closed loop that gives rise to the Legendrian torus Λ), the following obser-
vation applies. The “long chords” (hat variables) of Λ have positive grading
so they cannot be augmented. We have to select index 0 chords b of L
(“short chords”) on which the augmentation should take a non-zero value.
Grading 1 short chords impose the same relations on these as when search-
ing for augmentations of L itself. So augmentations of Λ are in fact also
augmentations of L. But there are also relations imposed by the grading 1
long chords. Because of the absence of negative grading chords, these are of
the form Δb̂ = b + φ(b), where φ is the monodromy of our loop. Hence, an
augmentation of L will be an augmentation of Λ if and only if it is invariant
under φ.

In [15], a natural loop is described in the space of braid-positive
Legendrian knots. The (p, 2) torus knots are its simplest special case, when
conjugating a single crossing from one end of the braid to the other already
results in a closed loop. We will examine the cases p = 3 and p = 7.

Proof of Theorem 1.2 (a). The diagram of the loop for p = 3 is reprinted in
Figure 17. We recall from [15, Section 5] that, after restoring the original
labels, the monodromy φ of this loop acts on the index 0 variables b1, b2,

Figure 17. A loop of Legendrian trefoil knots.
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and b3 as follows:

φ(b1) = 1 + b2b3; φ(b2) = b1; φ(b3) = b2.

The crossings a1 and a2 are of index 1 and they are not cycles, so for
the time being we only concern ourselves with their boundaries (see, for
example, [15, Example 2.14]):

∂a1 = 1 + b1 + b3 + b1b2b3; ∂a2 = b2 + b1b2 + b2b3 + b2b3b1b2.

The other three relations that determine the index 0 part CH0 of the
contact homology of the corresponding torus are

(8.1) Δb̂1 = b1 + 1 + b2b3; Δb̂2 = b2 + b1; Δb̂3 = b3 + b2.

The last two relations in (8.1) imply that CH0 has a single generator. We
denote it b. It is subject to the relations

1 + b3 = 0; b + b4 = 0; 1 + b + b2 = 0.

The first two of these follow from the third by multiplication with b+1 and
b(b + 1), respectively. (Recall that we work over Z2.) Therefore,

CH0 ∼= Z2[b]/〈1 + b + b2 = 0〉.

Thus CH0 is non-trivial. On the other hand, because neither 0 nor 1 is a
root of the relation, this contact homology cannot be augmented. (Indeed,
the five augmentations of the trefoil are permuted in a single cycle by φ, so
none of them is fixed.) �

Proof of Theorem 1.2 (b). Let p = 7 for the knots considered above. For
convenience, we introduce terminology that applies for any odd number p.
The loop is the same as in Figure 17 except that there are p − 3 more index
0 crossings b4, . . . , bp that, just like b2 and b3, are essentially unaffected by
the monodromy (they simply get re-labeled at the end).

They do however influence ∂a1 and ∂a2 as follows:

∂a1 = 1 + B11; ∂a2 = 1 + B22 + B21B12.

Here, the polynomials Bij are natural generalizations of the expressions
B11 = b1 + b3 + b1b2b3, B12 = 1 + b2b3, B21 = 1 + b1b2, and B22 = b2 in the
p = 3 case; see [15, Section 6] for more details. In particular when p = 7,
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we obtain

Δa1 = ∂a1 = 1 + b1 + b3 + b5 + b7 + b1b2b3 + b1b2b5 + b1b2b7

+ b1b4b5 + b1b4b7 + b1b6b7 + b3b4b5 + b3b4b7 + b3b6b7

+ b5b6b7 + b1b2b3b4b5 + b1b2b3b4b7 + b1b2b3b6b7 + b1b2b5b6b7

+ b1b4b5b6b7 + b3b4b5b6b7 + b1b2b3b4b5b6b7;
Δa2 = ∂a2 = 1 + b2 + b4 + b6 + b2b3b4 + b2b3b6 + b2b5b6 + b4b5b6

+ b2b3b4b5b6 + (1 + b2b3 + b2b5 + b2b7 + b4b5 + b4b7 + b6b7

+ b2b3b4b5 + b2b3b4b7 + b2b3b6b7 + b2b5b6b7 + b4b5b6b7

+ b2b3b4b5b6b7) · (1 + b1b2 + b1b4 + b1b6 + b3b4 + b3b6 + b5b6

+ b1b2b3b4 + b1b2b3b6 + b1b2b5b6 + b1b4b5b6 + b3b4b5b6

+ b1b2b3b4b5b6).

These formulas are special cases of [15, Theorem 6.7]. The relations Δb̂2 =
b2 + b1 = 0, . . . ,Δb̂p = bp + bp−1 = 0 reduce CH0 of this torus to a single-
generator algebra. If b denotes a generator of CH0 then, when p = 7, the
previous two formulas impose the relations

1 + b7 = 0 and 1 + b + b5 + (1 + b4 + b6)2 = b + b5 + b8 + b12 = 0.

The second of these is equal to b + b5 times the first. For a general p,
identifying the grading 0 generators leads to the reductions

B11 �→ Qp(b), B12, B21 �→ Qp−1(b), B22 �→ Qp−2(b),

where the polynomials Qk are defined by setting Q−1(b) = 0, Q0(b) = 1
and then applying the recursion Qk(b) = bQk−1(b)+Qk−2(b). They are also
characterized by the formula

[
b 1
1 0

]k

=
[

Qk(b) Qk−1(b)
Qk−1(b) Qk−2(b)

]

.

(This follows by a straightforward induction argument, and explicit formulas
for the coefficients can be obtained from Pascal’s triangle). In particular,
because the determinant of the above matrix is 1, Δa2 = ∂a2 = 1 + B22 +
B21B12 reduces to 1+Qp−2(b)+Qp−1(b)2 = Qp−2(b)+Qp(b)Qp−2(b) = (1+
Qp(b))Qp−2(b). Here of course, 1+Qp(b) is just the reduction of Δa1 = ∂a1.
Thus so far, we obtained only one relation, 1 + Qp(b) = 0, for the single
generator b of CH0.

The other relation, again for p = 7, comes from

Δb̂1 = b1 + 1 + b2b3 + b2b5 + b2b7 + b4b5 + b4b7 + b6b7 + b2b3b4b5

+ b2b3b4b7 + b2b3b6b7 + b2b5b6b7 + b4b5b6b7 + b2b3b4b5b6b7,

which simplifies to
1 + b + b4 + b6 = 0.
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(For general p, Δb̂1 = b1 + B21, which reduces to b + Qp−1(b). This follows
from Theorem 1.1 and [15, Proposition 8.2].) The Euclidean algorithm
shows that the greatest common divisor of this and 1+ b7 is 1+ b2 + b3 + b4.
(Indeed, (1 + b + b2)(1 + b2 + b3 + b4) = 1 + b + b4 + b6 and (1 + b2 + b3)
(1 + b2 + b3 + b4) = 1 + b7.) Thus in this case,

(8.2) CH0 ∼= Z2[b]/〈1 + b2 + b3 + b4 = 0〉.

Setting b = 1 defines the only augmentation; this corresponds to the fact that
ε(b1) = · · · = ε(b7) = 1 is an invariant augmentation of the (7, 2) torus knot.
(Other, more typical augmentations of the knot are not invariant under the
monodromy of the loop: 81 of them form nine 9-cycles, and there is a 3-cycle
too.) With this augmentation of the torus, the linearized differential Δ̃ takes
the following form:

Δ̃b1 = · · · = Δ̃b7 = 0; Δ̃a1 = b1 + b4 + b7, Δ̃a2 = 0;(8.3)

Δ̃b̂1 = b1 + b3 + b6, Δ̃b̂2 = b1 + b2, . . . , Δ̃b̂7 = b6 + b7;(8.4)

Δ̃â1 = a1 + a2 + b̂1 + b̂4 + b̂7, Δ̃â2 = 0.(8.5)

Here, (8.3) and (8.4) follow directly from the formulas already given, but
(8.5) needs explanation. First, we need to understand φ(a1) and φ(a2). The
key to this is [15, Remark 3.4] and the second diagram in Figure 17. Note
that there exist no admissible disks there with a positive corner at a1 and a
negative corner at the newly created c. Thus the image of a1 is itself in this
step, and it is not affected later either, except for re-labeling to φ(a1) = a2
at the end. There are, however, admissible disks from a2 to c. With their
contributions, the image of a2 is a2 + B21d. The two triangle moves that
follow affect d, namely d �→ d+a1c �→ d+ b1a2 +a1c. Then at the last move
before re-labeling, d �→ 0 and b1 �→ B′

21. Here, B′
21 refers to the braid with

crossings labeled b2, . . . , bp, c. So far, the image of a2 is a2+B21(B′
21a2+a1c).

This gets re-labeled to φ(a2) = a1 + B12(B21a1 + a2bp).
So we have

Δâ1 = a1 + a2 + Γφ(∂a1)

and

Δâ2 = a2 + a1 + B12B21a1 + B12a2bp + Γφ(∂a2).

All monomials in these expressions have a single grading 1 factor and several
augmented grading 0 factors. To linearize them, we just have to count the
number of times each grading 1 variable appears. When p = 7, we have
already checked that B12 and B21 are sums of an odd number of terms (13,
to be exact). To compute the contributions from the Γφ(∂ai) terms, note
that it is essentially the same task as the linearization of Δai = ∂ai: each



ISOTOPIES OF LEGENDRIAN 1-KNOTS AND LEGENDRIAN 2-TORI 459

monomial contributes the sum of its terms to the latter, and the sum of the
hat equivalents of its terms to the former.

Now it is straightforward to compute that the homology of this complex
has rank 1 in gradings 1 and 2 and rank 0 everywhere else. This is identical
to the linearized contact homology of the standard torus that is the trace
of the constant isotopy of the unknot. (The latter has single generators in
gradings 1 and 2 and a trivial differential, hence 0 is its only augmentation.)
Yet, the torus derived from the (7, 2) torus knot is different since its CH0,
given by (8.2), is non-trivial. �
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