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REDUCTION OF BRANES IN GENERALIZED
COMPLEX GEOMETRY

Marco Zambon

We show that certain submanifolds of generalized complex mani-
folds (“weak branes”) admit a natural quotient which inherits a gen-
eralized complex structure. This is analog to quotienting coisotropic
submanifolds of symplectic manifolds. In particular, Gualtieri’s gener-
alized complex submanifolds (“branes”) quotient to space-filling branes.
Along the way, we perform reductions by foliations (i.e., no group action
is involved) for exact Courant algebroids — interpreting the reduced
Ševera class — and for Dirac structures.
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1. Introduction

Consider the following setup in ordinary geometry: a manifold M and a
submanifold C endowed with some integrable distribution F so that C :=
C/F be smooth. Then we have a projection pr : C → C, which induces
a vector bundle morphism pr∗ : TC → TC. If M is endowed with some
geometric structure, such as a symplectic 2-form ω, one can ask when ω
induces a symplectic form on C.

This happens for example when C is a coisotropic submanifold1. Indeed,
in this case, the pullback i∗ω of ω to C has a kernel F which is of constant
rank and integrable, and the closeness of ω ensures that if p and q lie in the
same F-leaf, then (i∗ω)p and (i∗ω)q project to the same linear symplectic
form at pr(p) = pr(q), so that one obtains a well-defined symplectic form
on C. An instance of the above is when there is a Lie group G acting
hamiltonianly on M with moment map ν : M → g∗ and C is the zero level
set of ν (Marsden–Weinstein reduction [16]).

In this paper, we consider the geometry that arises when one replaces
the tangent bundle TM with an exact Courant algebroid E over M (any
such E is non-canonically isomorphic to TM ⊕ T ∗M). In this context,
reduction by the action of a Lie group has been considered by several authors
[3, 10, 11, 14, 15, 18]; in this paper, we do not assume any group action.
Unlike the tangent bundle case, knowing C does not automatically determine
the exact Courant algebroid over it. We have to replace the foliation F by
more data, namely a suitable subbundle K of E|C , and we construct by
a quotienting procedure a Courant algebroid E on C (Theorem 3.7). Our
construction follows closely the one of [3], where the group action provides an
identification between fibers of E at different points; in our case, we make up
for this by asking that there exist enough “basic sections” (Definition 3.3).
Further, we describe in a simple way (see Definition 5.1) which splittings of
E induce 3-forms on M (representing the Ševera class of E), which descend
to 3-forms on C (representing the Ševera class of E).

Once we know how to reduce an exact Courant algebroid, we can ask
when geometric structures defined on them descend to the reduced exact
Courant algebroid. We consider Dirac structures (suitable subbundles of E)
and generalized complex structures (suitable endomorphisms of E). We give
sufficient conditions for these structures to descend in Proposition 4.1
and Proposition 6.1, respectively. The ideas and techniques are borrowed
the literature cited above, in particular from [3, 18] (however our proof
differs from these two references in that we reduce generalized complex
structures directly and not viewing them as Dirac structures in the
complexification of E).

1This means that the symplectic orthogonal of TC is contained in TC.
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The heart of this paper is Section 7, where we identify the objects that
automatically satisfy the assumptions needed to perform generalized com-
plex reduction. When M is a generalized complex manifold, we consider
pairs consisting of a submanifold C of M and suitable maximal isotropic
subbundle L of E|C (we call them “weak branes” in Definition 7.10). We
show in Proposition 7.11 that weak branes admit a canonical quotient C
which is endowed with an exact Courant algebroid and a generalized complex
structure; this construction is inspired by Theorem 2.1 of Vaisman’s work
[20] in the setting of the standard Courant algebroid.

Particular cases of weak branes are generalized complex submanifolds
(C, L) (also known as “branes”, see Definition 7.3), which were first intro-
duced by Gualtieri [7] and are relevant to physics [13]. Using our reduction
of Dirac structures, we show in Theorem 7.4 that the quotients C of branes,
which by the above are generalized complex manifolds, are also endowed
with the structure of a space-filling brane. This is interesting also because
space-filling branes induce an honest complex structure on the underlying
manifold [8].

The reduction statements we had to develop in order to prove the results
of Section 7 are versions “without group action” of statements that already
appeared in the literature [2, 3, 10, 11, 14, 15, 18, 20]. Consequently,
many ideas and techniques are borrowed from the existing literature; we
make appropriate references in the text whenever possible. In particular, we
followed closely [3] (also as far as notation and conventions are concerned).

Plan of the paper. In Section 2, we review exact Courant algebroids. In
Section 3, we perform the reduction of exact Courant algebroids and deter-
mine objects that naturally satisfy the assumptions needed for the reduction.
In Section 4, we perform the reduction of Dirac structures. In Section 5,
we describe the reduced Ševera class. In Section 6, we reduce generalized
complex structures and comment briefly on generalized Kähler reduction.
The main section of this paper is Section 7: we reduce branes and weak
branes, providing few examples. We also give a criterion that allows us to
obtain weak branes by restricting to cosymplectic submanifolds.

2. Review of Courant algebroids

We review the notion of exact Courant algebroid; see [3, 10] for more details.

Definition 2.1. A Courant algebroid over a manifold M is a vector bundle
E → M equipped with a fiberwise non-degenerate symmetric bilinear form
〈·, ·〉, a bilinear bracket [·, ·] on the smooth sections Γ(E), and a bundle map
π : E → TM called the anchor, which satisfy the following conditions for
all e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M):

C1) [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],
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C2) π([e1, e2]) = [π(e1), π(e2)],
C3) [e1, fe2] = f [e1, e2] + (π(e1)f)e2,
C4) π(e1)〈e2, e3〉 = 〈[e1, e2], e3〉 + 〈e2, [e1, e3]〉,
C5) [e1, e1] = D〈e1, e1〉,

where D = 1
2π∗ ◦ d : C∞(M) → Γ(E) (using 〈·, ·〉 to identify E with E∗).

We see from axiom C5 that the bracket is not skew-symmetric:

[e1, e2] = −[e2, e1] + 2D〈e1, e2〉.

Hence we have the following “Leibniz rule for the first entry”: [fe1, e2] =
f [e1, e2] − (π(e2)f)e1 + 2〈e1, e2〉Df .

Definition 2.2. A Courant algebroid is exact if the following sequence is
exact:

(2.1) 0 −→ T ∗M
π∗

−→ E
π−→ TM −→ 0.

To simplify the notation, in the sequel we will often omit the map T ∗M
π∗
→

E∗ ∼= E and think of T ∗M as being a subbundle of E. Given an exact
Courant algebroid, we may always choose a right splitting σ : TM → E
whose image in E is isotropic with respect to 〈·, ·〉. Such a splitting induces
the closed 3-form on M given by

H(X, Y, Z) = 2〈[σX, σY ], σZ〉.

Using the bundle isomorphism ∇+ 1
2π∗ : TM⊕T ∗M → E, one can transport

the Courant algebroid structure onto TM ⊕ T ∗M . The resulting structure
is as follows (where Xi + ξi ∈ Γ(TM ⊕ TM∗)): the bilinear pairing is

(2.2) 〈X1 + ξ1, X2 + ξ2〉 =
1
2
(ξ2(X1) + ξ1(X2)),

and the bracket is

(2.3) [X1 + ξ1, X2 + ξ2]H = [X1, X2] + LX1ξ2 − iX2dξ1 + iX2iX1H,

which is the H-twisted Courant bracket on TM ⊕ T ∗M [17]. Isotropic
splittings of (2.1) differ by 2-forms b ∈ Ω2(M), and a change of splitting
modifies the curvature H by the exact form db. Hence, there is a well-
defined cohomology class [H] ∈ H3(M, R) attached to the exact Courant
algebroid structure on E; [H] is called the Ševera class of E.

We refer to [3, 10] for information on the group of automorphisms Aut(E)
and its Lie algebra Der(E). Here we just mention few facts, the first of which
underlies many of our constructions: for any e ∈ Γ(E), [e, ·] is an element of
Der(E) and hence integrates to an automorphism of the Courant algebroid
E. Notice that for closed 1-forms ξ (seen as sections of T ∗M ⊂ E), we have
[ξ, ·] = 0 by (2.3). Further, any 2-form B on M determines a vector bundle
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map TM ⊕TM∗ → TM ⊕TM∗ by eB : X + ξ �→ X + ξ + iXB [7] and these
“gauge transformations” satisfy

(2.4) [eB ·, eB ·]H = eB[·, ·]H+dB.

3. The case of exact Courant algebroids

In this section, we reduce exact Courant algebroids (Theorem 3.7).
Let M be a manifold, E an exact Courant algebroid over M , and C a

submanifold.

Lemma 3.1. Let D → C be a subbundle of E such that π(D⊥) ⊂ TC (where
D⊥ denotes the orthogonal to D w.r.t. the symmetric pairing), and e1, e2
sections of D⊥. Then the expression [ẽ1, ẽ2]|C , where ẽi are extensions of ei

to sections of E → M, depends on the extensions only up to sections of D.

Proof. Fix extensions ẽi of ei (i = 1, 2). We have to show that for functions
fi vanishing on C and sections êi of E, we have [ẽ1 + f1ê1, ẽ2 + f2ê2]|C =
[ẽ1, ẽ2]|C up to sections of D. By the Leibniz rule C3 and since π(e1) ⊂ TC,
we have [ẽ1, f2ê2]|C = 0. Also [f1ê1, ẽ2]|C = 2〈ê1, ẽ2〉(Df1)|C ⊂ N∗C ⊂
(π(D⊥))◦ = D ∩ T ∗M . The term [f1ê1, f2ê2]|C vanishes by the above since
(f1ê1)|C is a section of D. �
Remark 3.2. If D → C is a subbundle of E such that π(D⊥) ⊂ TC, we can
make sense of a statement like “[e1, e2] ⊂ D” for e1, e2 ∈ Γ(D⊥): it means
that [ẽ1, ẽ2]|C ⊂ D for one (or equivalently, by Lemma 3.1, for all) extension
ẽi to sections of E → M . Similarly, we take [Γ(D⊥), Γ(D⊥)] ⊂ Γ(D) to
mean [e1, e2] ⊂ D for all e1, e2 ∈ Γ(D⊥).

Now fix an isotropic subbundle K → C of E, i.e., K ⊂ K⊥, such that
π(K⊥) = TC.

Definition 3.3. We define the space of sections of K⊥ which are basic
w.r.t. K as

(3.1) Γbas(K⊥) := {e ∈ Γ(K⊥) : [Γ(K), e] ⊂ Γ(K)}.

Remark 3.4. To ensure that a section e of K⊥ be basic, it suffices to
consider locally defined sections of K that span K pointwise. That is, it
suffices to show that for every point of C, there is a neighborhood U ⊂ C
and a subset S ⊂ Γ(K|U ) with span{kp : k ∈ S} = Kp (for every p ∈ U) so
that [S, e|U ] ⊂ Γ(K|U ). Indeed, from the “Leibniz rule in the first entry”, it
follows that [Γ(K), e] ⊂ Γ(K) .

Lemma 3.5. Assume that the sections of Γbas(K⊥) span K⊥ at every point,
i.e., that span{ep : e ∈ Γbas(K⊥)} = K⊥

p for every p ∈ C. Then

1) [Γ(K), Γ(K⊥)] ⊂ Γ(K⊥);
2) [Γ(K), Γ(K)] ⊂ Γ(K).
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Proof. Fix a subset of sections {ei} ⊂ Γbas(K⊥) that spans pointwise K⊥.
For any section k of K and functions fi (so that the sum

∑
fiei is locally

finite) by the Leibniz rule, we have [k,
∑

fiei] ⊂ K⊥, proving 1. Now
1 is equivalent to 2, as can be seen using axiom C4 in the definition of
Courant algebroid: let k1, k2 be sections of K and e a section of K⊥. Then
〈[k1, e], k2〉 + 〈e, [k1, k2]〉 = π(k1)〈e, k2〉 = 0 because π(K) ⊂ π(K⊥) = TC.

�

Remark 3.6. A converse to Lemma 3.5 for local sections is given in [4].

The proof of the following theorem is modeled on Theorem 3.3 of [3].
When referring to the smoothness of the quotient of a manifold by a foliation,
we refer to the unique differentiable structure so that the projection map is
a submersion.

Theorem 3.7 (Exact Courant algebroid reduction). Let E be an exact
Courant algebroid over M, C a submanifold of M, and K an isotropic sub-
bundle of E over C such that π(K⊥) = TC. Assume that the space of
(global) sections Γbas(K⊥) spans pointwise K⊥ (i.e., that span{ep : e ∈
Γbas(K⊥)} = K⊥

p for every p ∈ C) and that the quotient C of C by the
foliation integrating π(K) be a smooth manifold. Then there is an exact
Courant algebroid E over C that fits in the following pullback diagram of
vector bundles:

K⊥/K ��

��

E

��
C �� C

Proof. Notice that since π(K) has constant rank iff π(D⊥) does (use, for
example, equation (2.17) of [19]), it follows that π(K) is a regular distri-
bution on C. Further, by the assumption on basic sections and item 2 of
Lemma 3.5, π(K) is an integrable distribution, so there exists a regular
foliation integrating π(K). We divide the proof into two steps.

Step 1. To describe the vector bundle E, we have to explain how we
identify fibers of K⊥/K over two points p, q lying in the same leaf F of
π(K). We do this as follows: we identify two elements ê(p) ∈ (K⊥/K)p

and ê(q) ∈ (K⊥/K)q iff there is a section e ∈ Γbas(K⊥) which under the
projection K⊥ → K⊥/K maps2 to ê(p) at p and ê(q) at q. To show that
this procedure gives a well-defined identification of (K⊥/K)p and (K⊥/K)q,
we need to show that if e1 and e2 are sections of Γbas(K⊥) such that e1(p)

2In other words, we give a canonical trivialization of (K⊥/K)|F by projecting into
it a frame for K⊥|F consisting of basic sections; by assumptions, we have enough basic
sections to really get a frame for (K⊥/K)|F .
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and e2(p) map to ê(p), then e1(q) and e2(q) map to the same element of
(K⊥/K)q.

Pick a finite sequence of local sections k1, . . . , kn of K that join p to q, i.e.,
such that following successively the vector fields π(ki) for times ti ,the point
p is mapped to q. Extend each ki to a section k̃i of E. Denote by e

adk̃i the
Courant algebroid automorphism of E obtained by integrating adk̃i

= [k̃i, ·],
and by Φ the composition eadtnk̃n ◦ · · · ◦ e

adt1k̃1 . Since e1 is a basic section,
we have [ki, e1] ⊂ K for all i. So Φ(e1(p))− e1(q) ∈ Kq, and similarly for e2.
Now e1(p) − e2(p) ∈ Kp by assumption, so because of item 2 of Lemma 3.5
we have Φ(e1(p) − e2(p)) ∈ Kq. We deduce that e1(q) − e2(q) also belong to
Kq and therefore project to the zero vector in (K⊥/K)q.

It is clear that E, obtained from K⊥/K by identifying the fibers over
each leaf of π(K) as above, is endowed with a projection pr onto C (induced
from the projection pr : K⊥/K → C). E is indeed a smooth vector bundle:
given any point p of C, choose a preimage p ∈ C and a submanifold S ⊂ C
through p transverse to the leaves of π(K). S provides a chart around p

for the manifold C, and pr−1(S) is a vector subbundle of K⊥/K proving a
chart for E around p.

Notice that pulling back by the vector bundle epimorphism K⊥/K → E,
we can embed the space of sections of E into the space of sections of K⊥/K,
the image being the image of Γbas(K⊥) under the map K⊥ → K⊥/K. In
other words, we have a canonical identification Γ(E) ∼= Γbas(K⊥)/Γ(K).

Step 2. The pairing 〈·, ·〉 on the fibers of E induces a non-degenerate
symmetric bilinear form on each fiber of K⊥/K, which moreover descends
to E, because for any two given sections e1, e2 ∈ Γbas(K⊥) and k ∈ Γ(K),
we have π(k)〈e1, e2〉 = 0 using C4.

For the bracket of sections of E, first notice that Γbas(K⊥) is closed (in
the sense of Remark 3.2) under the bracket [·, ·] of E: if e1, e2 ∈ Γbas(K⊥),
[e1, e2] is a section of K⊥ by the argument (using C4) in Theorem 3.3 of [3].
Further, [e1, e2] is again basic by the “Jacobi identity” C1: for any section
k of K, we have [k, [e1, e2]] = [[k, e1], e2] + [e1, [k, e2]]. Now by definition of
basic section, each [k, ei] lies in K, and applying once more the definition
of basic section,3 we see that [k, [e1, e2]] ⊂ K, i.e., that [e1, e2] is basic. In
the light of Lemma 3.1, what we really have a well-defined bilinear form
Γbas(K⊥) × Γbas(K⊥) → Γbas(K⊥)/Γ(K). Using the definition of basic
section, we then have an induced bracket on Γbas(K⊥)/Γ(K), which as we
saw is canonically isomorphic to Γ(E).

The induced anchor map π : E → TC is well-defined since π(e) is a pro-
jectable vector field for any basic section e ∈ Γbas(K⊥), as follows using C2.

3Together with the fact that for any section k̂ of K we have [e1, k̂] = −[k̂, e1]+2D〈e1, k̂〉
and D〈e1, k̂〉 ⊂ N∗C = K ∩ T ∗M .
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It is straightforward to check that E → C, endowed with the induced
symmetric pairing, bilinear bracket on Γ(E), and anchor π, satisfies axioms
C1–C5 in the definition of the Courant algebroid (Definition 2.1). Further,
the proof of Theorem 3.3 of [3] shows that E is an exact Courant algebroid.

�

Remark 3.8. The subbundle {(e, e)|e ∈ K⊥} → {(p, p)|p ∈ C} of E ×E →
M × C provides a morphism of Courant algebroids from E to E. Here we
use (a slight variation of) the definition of morphism of Courant algebroids
given in Definition 6.12 of [1] or in Definition 3.5.1 of [12].

Example 3.9 (Quotients of submanifolds). Take E to be TM ⊕ T ∗M with
the untwisted bracket. Let C be a submanifold endowed with a regular
distribution F , and assume that the quotient C = C/F be smooth. Take
K := F ⊕ N∗C. Γ(K) is spanned by vector fields on C lying in F and
differentials of functions vanishing on C. Since the latter act trivially, it is
enough to consider the action of a vector field X ⊂ F . Let Y ⊕ df |C be a
section of K⊥, where Y is a projectable vector field and f is the extension
to M of the pullback of a function on C. The action of X on this section
is just [X, Y ] ⊕ (LXdf)|C , which lies again in K. Since such Y ⊕ df |C span
K⊥, we can apply Theorem 3.7 and obtain a reduced Courant algebroid on
C, namely TC ⊕ T ∗C with the untwisted bracket.

Example 3.10. Let E be an exact Courant algebroid over M and C a
submanifold of M . Then with K = N∗C, the assumptions of Theorem 3.7
are satisfied; indeed all the sections of K⊥ = π−1(TC) are basic. Hence, we
recover Lemma 3.7 of [3].

4. The case of Dirac structures

Let E be an exact Courant algebroid over M . Recall [6] that a Dirac
structure is a maximal isotropic subbundle of E which is closed under the
Courant bracket. Now we let C be a submanifold of M and consider a max-
imal isotropic subbundle L ⊂ E defined over C (not necessarily satisfying
π(L) ⊂ TC). The following is analog to Theorem 4.2 of [3].

Proposition 4.1 (Dirac reduction). Let E → M and K → C satisfy the
assumptions of Theorem 3.7, so that we have an exact Courant algebroid
E → C. Let L be a maximally isotropic subbundle of E|C such that L ∩ K⊥

has constant rank, and assume that

(4.1) [Γ(K), Γ(L ∩ K⊥)] ⊂ Γ(L + K).

Then L descends to a maximal isotropic subbundle L of E → C. If further-
more

(4.2) [Γbas(L ∩ K⊥), Γbas(L ∩ K⊥)] ⊂ Γ(L + K),
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then L is an (integrable) Dirac structure. Here Γbas(L ∩ K⊥) := Γ(L) ∩
Γbas(K⊥).

Proof. At every p ∈ C, we have a Lagrangian relation between Ep and
(K⊥/K)p given by {(e, e + Kp) : e ∈ K⊥

p }. The image of Lp under this
relation, which we denote by L(p), is maximal isotropic because Lp is. Doing
this at every point of C, we obtain a maximally isotropic subbundle of
K⊥/K, which is furthermore smooth because L(p) is the image of (L ∩
K⊥)p, which has constant rank by assumption, under the projection K⊥

p →
(K⊥/K)p.

Recall that in Theorem 3.7, we identified (K⊥/K)p and (K⊥/K)q when
p and q lie in the same leaf of π(K). The identification is induced by
the Courant algebroid automorphism Φ of E obtained by integrating any
sequence of locally defined sections k1, . . . , kn of K that join p to q. Assump-
tion (4.1) (with Lemma 3.5, 1) is exactly what is needed to ensure that Φ
maps L∩K⊥ into (L+K)∩K⊥ = (L∩K⊥)+K, so that L(p) gets identified
with L(q). As a consequence, we obtain a well-defined smooth maximally
isotropic subbundle L of the reduced Courant algebroid E, i.e., an almost
Dirac structure for E. Now assume that (4.2) holds, and take two sections
of L, which by abuse of notation we denote e1, e2. Since L∩K⊥ has constant
rank, we can lift them to sections e1, e2 of Γbas(L∩K⊥). As for all elements
of Γbas(K⊥), their bracket lies in Γbas(K⊥), and by assumption it also lies
in L + K, so [e1, e2] is a basic section of (L + K) ∩ K⊥ = (L ∩ K⊥) + K. Its
projection under K⊥/K → E, which is by definition the bracket of e1 and
e2, lies then in L. �
Example 4.2 (Coisotropic reduction). Let (M, Π) be a Poisson manifold
and C a coisotropic submanifold4 . It is known [6] that the characteristic
distribution F := �N∗C is a singular integrable distribution; assume that
it is regular and the quotient C = C/F be smooth. It is known that D =
{(�ξ, ξ) : ξ ∈ T ∗P} is a Dirac structure for the untwisted Courant algebroid
TM ⊕ T ∗M . By Example 3.9, choosing K = F ⊕ N∗C, we know that
we can reduce this Courant algebroid and obtain the standard Courant
algebroid on C.

Using Proposition 4.1, now we show that L := D|C also descends. L∩K⊥

has constant rank since it’s isomorphic to F◦. To check (4.1), we use the
fact that K is spanned by closed 1-forms and hamiltonian vector fields of
functions vanishing on C. The former act trivially, the latter (acting by Lie
derivative) map Γ(L) to itself because hamiltonian vector fields preserve the
Poisson structure. An arbitrary section of K maps Γ(L∩ K⊥)] to Γ(L + K)
by the “Leibniz rule in the first entry” (see Section 2), so (4.1) is satisfied.
Further it is known [6] that the integrability of Π is equivalent to Γ(D) being

4This means that �N∗C ⊂ TC, where � : T ∗M → TM is the contraction with Π.
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closed under the Courant bracket, so (4.2) holds. Hence, Proposition 4.1 tells
us that Π descends to a Dirac structure on C. This of course is the Poisson
structure obtained by the classical coisotropic reduction.

5. On the reduced Courant algebroid

Using the methods of Section 4, we derive some results on the reduced
Courant algebroid obtained in Theorem 3.7. In this section, E is an exact
Courant algebroid over M and C a submanifold endowed with a coisotropic
subbundle K⊥ of E satisfying π(K⊥) = TC and so that π(K) is an inte-
grable distribution with smooth quotient C := C/π(K).

5.1. Adapted splittings. In this subsection, we consider “good” splittings
of the exact Courant algebroid E → M , and using their existence we deter-
mine simple data on a foliated submanifold that induce an exact Courant
algebroid on the leaf space (Proposition 5.6).

Definition 5.1. We call a splitting σ : TM → E of the sequence (2.1)
adapted to K if
a) The image of σ is isotropic;
b) σ(TC) ⊂ K⊥;
c) for any vector field X on C which is projectable to C, we have σ(X) ∈

Γbas(K⊥).

Remark 5.2. For such a splitting, it follows automatically that σ(π(K)) ⊂
K. Indeed by π(K⊥) = TC, b in the definition above, and K⊥ ∩ T ∗M =
(π(K))◦, we have K⊥ = σ(TC) + (π(K))◦. Now 〈σ(π(K)), σ(TC)〉 = 0 by
a in the definition above and 〈σ(π(K)), (π(K))◦〉 = 0. Hence σ(π(K)) has
zero symmetric pairing with K⊥.

Lemma 5.3. By the prescription σ �→ Lσ := σ(TM), splittings σ adapted
to K correspond exactly to subbundles Lσ ⊂ E, with π(Lσ) = TM satisfying
a) Lσ is maximal isotropic;
b) π(Lσ ∩ K⊥) = TC;
c) [Γ(K), Γ(Lσ ∩ K⊥)] ⊂ Γ(Lσ + K).

Proof. We just show that condition c is equivalent to item c in Defini-
tion 5.1. Assume condition c; we want to check that if k ∈ Γ(K) and
X is a projectable vector field on C, then [k, σ(X)] ∈ Γ(K). Since
σ(X) ⊂ Lσ ∩ K⊥, this bracket is a section of Lσ + K. Further, since
π([k, σ(X)]) = [π(k), X] ⊂ π(K) (because X is projectable), it actually lies
in (Lσ + K) ∩ π−1(π(K)) =K.

The other implication follows because Lσ ∩ K⊥ = σ(TC) admits a
frame of basic sections, namely σ(X) as X ranges over projectable vector
fields on C. �
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Lemma 5.4. Let E be an exact Courant algebroid over a manifold M, C
a submanifold endowed with a regular foliation F so that C/F is smooth,
and L a maximal isotropic subbundle L ⊂ E|C with π(L) = TC such that
[Γ(K), Γ(L)] ⊂ Γ(L) where K := L ∩ π−1(F). Then there exists a splitting
adapted to K.

Proof. Notice that K is isotropic and has constant rank, because ker(π|K) =
K ∩T ∗M = L∩T ∗M = N∗C has constant rank and π(K) = F has constant
rank by assumption. Also K⊥ = L+F◦, so π(K⊥) = TC. Let σ : TM → E
be an isotropic splitting such that σ(TC) ⊂ L. Then Lσ := σ(TM) clearly
satisfies conditions a and b in Lemma 5.3. Further, it satisfies condition
c because Lσ ∩ K⊥ + K = L. Hence, by Lemma 5.3, σ is a splitting
adapted to K. �

The following proposition says that splittings adapted to K exist if and
only if the reduced exact Courant algebroid E as in Theorem 3.7 exists.

Proposition 5.5. Let K → C be an isotropic subbundle of E with π(K⊥) =
TC and assume that π(K) be integrable and C := C/π(K) be smooth. Then
splittings adapted to K exist if and only if Γbas(K⊥) spans K⊥ at every
point of C.

Proof. Assume first that a splitting σ adapted to K exists. Let X be a pro-
jectable vector field on C. By c of Definition 5.1, σ(X) will lie in Γbas(K⊥).
Take a function on C, pull it back to a function C, and extend it to a func-
tion f on M . Then df |C is a section of (π(K))◦ = T ∗M ∩ K⊥. Further, it
lies in Γbas(K⊥): for any k ∈ Γ(K), we have

[k, df |C ] = −[df |C , k] + d〈k, df |C〉 ⊂ N∗C ⊂ K

because df as a closed 1-form acts trivially and it annihilates π(K). Since
K⊥ = σ(TC) + (T ∗M ∩ K⊥), taking all projectable vector fields X and
functions f as above, we see that Γbas(K⊥) spans K⊥ at every point of M .

Conversely, assume now that Γbas(K⊥) spans K⊥ at every point of C.
Then by Theorem 3.7, the reduced Courant algebroid E over C exists; let
σ : TC → E be any isotropic splitting. Denote by L the preimage of
the maximal isotropic subbundle σ(TC) under p : K⊥ → K⊥/K → E.
L is a maximal isotropic subbundle of K⊥, and π(L) = TC. Further-
more, lifting sections of σ(TC) to basic sections of K⊥, we see that Γbas(L)
(the basic sections that lie in L) spans L at every point of C, hence from
[Γ(K), Γbas(L)] ⊂ Γ(K) we can conclude [Γ(K), Γ(L)] ⊂ Γ(L). Notice also
that L∩π−1(π(K)) = p−1(σ(TC)∩T ∗C) = K. Hence we can apply Lemma
5.4 and obtain a splitting of E adapted to K. �
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Putting together Lemma 5.4, Proposition 5.5, and Theorem 3.7, we are
obtain:

Proposition 5.6. Let E be an exact Courant algebroid over a manifold
M, C a submanifold endowed with a regular integrable foliation F so that
C/F be smooth, and L a maximal isotropic subbundle L ⊂ E|C with π(L) =
TC such that [Γ(K), Γ(L)] ⊂ Γ(L) where K := L∩π−1(F). Then E descends
to an exact Courant algebroid on C/F .

5.2. The Ševera class of the reduced Courant algebroid. In Theorem
3.7, we showed that, when certain assumptions are met, one obtains an exact
Courant algebroid E over the quotient C of C by the distribution π(K). In
this subsection, we will discuss how to obtain the Ševera class of E from the
one of E.

We start observing that if σ is a splitting adapted to K, then j∗Hσ

descends to a 3-form on C, where j is the inclusion of C in M . Since
Hσ is closed, we just need to check iX(j∗Hσ) = 0, where X ∈ π(K). Extend
X to a vector field tangent to π(K); take vectors Y, Z ∈ TpC and extend
them locally to projectable vector fields of C. Since σ is an splitting adapted
to K, we know that σ(Y ) ∈ Γbas(K⊥), and since σ(X) ⊂ K (by Remark
5.2), we have [σ(X), σ(Y )] ⊂ K. Therefore, indeed,

(5.1) Hσ(X, Y, Z) = 2〈[σ(X), σ(Y )], σ(Z)〉 = 0.

Even more is true by the following, which is an analog of Proposition 3.6
of [3] (but unlike that proposition does not involve equivariant cohomology;
see also [15, 14]).

Proposition 5.7. If σ is a splitting adapted to K, then j∗(Hσ) descends to
a closed 3-form on C, which represents the Ševera class of E.

Proof. Since σ is an adapted splitting, Lσ := σ(TM) satisfies the conditions
listed in Lemma 5.3; in particular condition b implies that Lσ ∩K⊥ has con-
stant rank, and condition c is just equation (4.1). Hence, by Proposition 4.1,
Lσ descends to a maximal isotropic subbundle of E, which by condition b
is the image of a splitting σ : TC → E. Notice that if X ∈ TC is a lift of
X ∈ TC, then σ(X) ∈ Lσ ∩ K⊥ is a lift of σ(X) ∈ E.

To compute the 3-form on C induced by j∗Hσ, pick three tangent vectors
on C at some point p, which by abuse by notation we denote by X, Y , Z.
Extend them to vector fields on C and lift them to obtain projectable vec-
tor fields X, Y, Z. σ(Z) lies in Γbas(K⊥), and as seen above it is a lift
of σ(Z) ∈ Γ(E). The same holds for X and Y , therefore, by the definition
of Courant bracket on E, we know that [σ(X), σ(Y )] ∈ Γbas(K⊥) is a lift of
[σ(X), σ(Y )] ∈ Γ(E). Hence,

Hσ(X, Y, Z) = 2〈[σ(X), σ(Y )], σ(Z)〉 = 2〈[σ(X), σ(Y )], σ(Z)〉.
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That is, Hσ descends to the curvature 3-form of E induced by the isotropic
splitting σ. �

Remark 5.8. If σ and σ̂ are any two isotropic splittings for E → TM ,
then there is a 2-form b ∈ Ω2(M) for which σ(X) − σ̂(X) = b(X, ·) ∈ T ∗M
for all X ∈ TM . It is also known that Hσ and Hσ̂ differ by db. Now let
σ and σ̂ be adapted to K; we claim that j∗b descends to a 2-form on C.
Indeed, if X ∈ π(K), b(X, ·) = σ(X) − σ̂(X) ∈ K ∩ T ∗M = N∗C, so the
interior product of X with j∗b vanishes, and the same is true for d(j∗b) as
the difference of 3-forms which descend to C. This is consistent with the
fact that by Proposition 5.7, Hσ and Hσ̂ descend to 3-forms that represent
the same element of H3(C, R) (the Ševera class of E).

As an instance of how a splitting adapted to K is used to compute the
Ševera class of the reduced Courant algebroid, we revisit Example 3.12 of [3].

Example 5.9. Let M = C = S3 × S1; denote by ∂t the infinitesimal
generator of the action of the circle on S3 giving rise to the Hopf bundle
p : S3 → S2, and by s the coordinate on the second factor S1. Let E = TM⊕
T ∗M , the untwisted (i.e., H = 0) Courant algebroid on M . We choose the
rank 1 subbundle K to be spanned by ∂t+ds. Choose a connection one form
α for the circle bundle S3 → S2, and denote by XH ∈ TS3 the horizontal
lift of a vector X on S2. K⊥ is spanned by {∂t, ∂s − α, XH , p∗ξ, ds}, where
X (resp. ξ) runs over all vectors (resp. covectors) on S2. Since ds is closed,
the adjoint action of ∂t + ds is just the Lie derivative w.r.t. ∂t, which kills
any of ∂t, α, XH , p∗ξ, ∂s, ds. In particular, Γbas(K⊥) spans K⊥. Hence, the
assumptions of Theorem 3.7 are satisfied, and on S2 ×S1 we have a reduced
exact Courant algebroid. Now we choose the splitting σ : TM → K⊥ as
follows:

σ(∂t) = ∂t + ds, σ(XH) = XH + 0 for all X ∈ TS2, σ(∂s) = ∂s − α.

This is a splitting adapted5 to K.
Now we compute Hσ. If X, Y are vector fields on S2, we have

[σ(XH), σ(Y H)] = [XH , Y H ] + 0 = ([X, Y ]H − F (X, Y )∂t) + 0, where
F ∈ Ω2(S2) is the curvature of α. Also [σ(∂s), σ(XH)] = 0 + p∗(iXF ),
and the analog computation for other other combinations of pairs of
σ(∂t), σ(XH), σ(∂s) is zero. From this, we deduce that Hσ = p∗F ∧ ds,
which descends to the 3-form F ∧ ds on S2 × S1, which in turn by Proposi-
tion 5.7 represents the Ševera class of E.

As pointed out in [3], F ∧ ds defines a non-trivial cohomology class. An
“explanation” for this fact is that by Proposition 5.7 to obtain a 3-form on C
that descends to a representative of the Ševera class of E, we need to choose

5To check that it maps projectable vector fields to elements of Γbas(K⊥), use [∂t +
ds, ·] = L∂t .
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a splitting adapted to K; the trivial splitting σ̂, which delivers Hσ̂ = 0, fails
to be one because it does not map into K⊥.

6. The case of generalized complex structures

Let E be an exact Courant algebroid over M . Recall that a generalized
complex structure is a vector bundle endomorphism J of E which preserves
〈·, ·〉, squares to −IdE and for which the Nijenhuis tensor

(6.1) NJ (e1, e2) := [J e1,J e2] − [e1, e2] − J ([e1,J e2] + [J e1, e2])

vanishes.
The following proposition is modeled on Theorem 4.8 of [18].

Proposition 6.1 (Generalized complex reduction). Let E → M and K →
C satisfy the assumptions of Theorem 3.7, so that we have an exact Courant
algebroid E → C. Let J be a generalized complex structure on M such that
J K ∩ K⊥ has constant rank and is contained in K. Assume further that J
applied to any basic section of J K⊥ ∩ K⊥ is again a basic section. Then J
descends to a generalized complex structure J on E → C.

Remark 6.2. The linear algebra conditions on J K ∩ K⊥ are in particular
satisfied when J K = K, in which case J K ∩ K⊥ = K. The opposite
extreme is when J K ∩ K⊥ = {0}.

Proof. First we show that J induces a smooth6 endomorphism of the vector
bundle K⊥/K over C. Indeed J K ∩ K⊥ ⊂ K is equivalent to J K⊥ + K ⊃
K⊥, so that K⊥ = K⊥ ∩ (J K⊥ + K) = (K⊥ ∩ J K⊥) + K. From this, it
is clear that K⊥ ∩ J K⊥ maps surjectively under Π : K⊥ → K⊥/K. Since
ker(Π|K⊥∩J K⊥) = (K⊥ ∩ J K⊥) ∩ K = K ∩ J K⊥, by our constant rank
assumption, we obtain a smooth vector bundle K⊥ ∩J K⊥/ker(Π|K⊥∩J K⊥)
canonically isomorphic to K⊥/K.

We use again the assumption J K ∩ K⊥ ⊂ K, interpreting it as fol-
lows: if e lies in the kernel of Π : K⊥ → K⊥/K and J e ∈ K⊥,
then J e is still in the kernel. This applies in particular to all e ∈
ker(Π|K⊥∩J K⊥) (since K⊥ ∩ J K⊥ is J -invariant), so we deduce that J
leaves ker(ΠK⊥∩J K⊥) invariant, i.e., J induces a well-defined endomorphism
on K⊥∩J K⊥/ker(Π|K⊥∩J K⊥) ∼= K⊥/K. Further, it is clear that it squares
to −1 and preserves the induced symmetric pairing on K⊥/K.

Now take a section e of E, lift it to a (automatically basic) section e
of K⊥ ∩ J K⊥. Then by assumption, J e is again a basic section; this
shows that the endomorphism on K⊥ ∩ J K⊥/ker(Π|K⊥∩J K⊥) descends to
an endomorphism J of E.

To show that J is integrable, one can apply the proof of Theorem 6.1 in
[3], where J is encoded by complex Dirac structures. Alternatively, one can

6This is clear when J preserves K⊥.
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show that the Nijenhuis tensor of J (which vanishes) restricted to K⊥∩J K⊥

is a lift7 of the Nijenhuis tensor of J . �
In Proposition 6.1, the condition that J preserve Γbas(K⊥ ∩ J K⊥) does

not follow from the integrability of J (see Example 6.3 below for an explicit
example). In Section 7, we will consider submanifolds C for which the
integrability of J does imply all the assumptions of Proposition 6.1, in
analogy to the case of coisotropic submanifolds in the Poisson setting.

Example 6.3 (Complex foliations). Take E to be the standard Courant
algebroid and J be given by a complex structure J on M . Take F to
be a real integrable distribution on M preserved by J (so J induces the
structure of a complex manifold on each leaf of F) and K = F ⊕ 0,
so that M := M/π(K) = M/F be smooth. The generalized complex
structure J preserves K. If J mapped Γbas(K⊥) into itself8 , then by
Proposition 6.1 it would follow that M would have an induced generalized
complex structure. Further, it would necessarily correspond to an honest
complex structure on M that makes M → M into a holomorphic map. How-
ever, there are examples for which such a complex structure on M does not
exist; in [21], Winkelmann quotes an example where M is a twistor space
of real dimension 6 and M is the 4-dimensional torus.

Example 6.4 (Symplectic foliations). Take again E to be the standard
Courant algebroid and J be given by a symplectic form ω on M . Take
K = F to be a real integrable distribution on M . One checks that J K∩K⊥

is contained in K only if it is trivial, which is equivalent to saying that
the leaves of F are symplectic submanifolds. J maps basic sections of
J K⊥ ∩ K⊥ = Fω ⊕ F◦ into basic sections iff the hamiltonian vector field
Xπ∗f is a projectable vector field for any function f , where pr : M → M :=
M/F . When this is the case, the induced generalized complex structure on
M is the symplectic structure given by the isomorphism of vector spaces
Fω

x
∼= Tpr(x)M (where x ∈ M).

Remark 6.5. It is known that a generalized complex manifold (M, J )
comes with a canonical Poisson structure Π, whose sharp map � is given
by the composition T ∗M ↪→ E

J→ E
π→ TM . If in Proposition 6.1 we

assume that J preserves K, then C is a necessarily a coisotropic sub-
manifold, because from N∗C = (π(K⊥))◦ = K ∩ ker(π) ⊂ K, we have
�(N∗C) = π(J N∗C) ⊂ π(K) ⊂ π(K⊥) = TC. So C/�N∗C (if smooth)
has an induced Poisson structure. We know that also C := C/π(K) has a

7The computation is straightforward except for showing that the term [e1, J e2] +
[J e1, e2] of (6.1) is a section of J K⊥ for all e1, e2 ∈ Γbas(K⊥ ∩ J K⊥), which follows
using the Leibniz rule C4).

8This is equivalent to saying that for any vector field X on M which is projectable the
vector field J(X) is also projectable.
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Poisson structure, induced from the reduced generalized complex structure.
In general, π(K) is not the characteristic distribution of C; we just have an
inclusion �N∗C ⊂ π(K)9 . The projection C/�N∗C → C/π(K) is a Poisson
map.

Given an exact Courant algebroid E on M , recall that a generalized Kähler
structure consists of two commuting generalized complex structures J1,J2
such that the symmetric bilinear form on E given by 〈J1J2·, ·〉 be positive
definite. The following result borrows the proof of Theorem 6.1 of [3].

Proposition 6.6 (Generalized Kähler reduction). Let E → M and K → C
satisfy the assumptions of Proposition 3.7, so that we have an exact Courant
algebroid E → C. Let J1,J2 be a generalized Kähler structure on M such
that J1K = K. Assume further that J1 maps Γbas(K⊥) into itself and that
J2 maps Γbas(J2K

⊥ ∩K⊥) into itself. Then J1,J2 descend to a generalized
Kähler structure on E → C.

Proof. By Proposition 6.1, J1 induces a generalized complex structure J1

on E. The orthogonal KG of K w.r.t. 〈J1J2·, ·〉 is (J2J1K)⊥ = J2K
⊥.

Because of the identity K⊥ = K ⊕ (KG ∩ K⊥), the restriction to J2K
⊥ ∩

K⊥ of the projection K⊥ → K⊥/K is an isomorphism. So we can apply
Proposition 6.1 to J2 and obtain a generalized complex structure J2 on E.
Notice that both J1 and J2 preserve J2K

⊥ ∩ K⊥; pulling back sections of
E to basic sections of J2K

⊥ ∩ K⊥, one sees that J1,J2 form a generalized
Kähler structure on E. �

7. The case of (weak) branes

In this section, we define branes and show that they admit a natural quo-
tient which is a generalized complex manifold endowed with a space-filling
brane. Then we notice that quotients of more general objects, which we call
“weak branes”, also inherit a generalized complex structure; examples of
weak branes are coisotropic submanifolds in symplectic manifolds. Finally
we show how weak branes can be obtained by passing from a generalized
complex manifold to a suitable submanifold.

7.1. Reducing branes.

Definition 7.1. Let E be an exact Courant algebroid over a manifold M . A
generalized submanifold is a pair (C, L) consisting of a submanifold C ⊂ M
and a maximal isotropic subbundle L ⊂ E over C with π(L) = TC, which
is closed under the Courant bracket (i.e., [Γ(L), Γ(L)] ⊂ Γ(L) with the
conventions of Remark 3.2).

9A case in which this inclusion is strict is when J corresponds to the standard complex
structure on M = C

n (with complex coordinates zk = xk + iyk) and K = span{ ∂
∂x1

, ∂
∂y1

}.
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This definition, which already appeared in the literature10 , is just a
splitting-independent rephrasing11 of Gualtieri’s original definition (Defi-
nition 7.4 of [7]); see also Lemma 3.2.3 of [12].

Lemma 7.2. Let E be an exact Courant algebroid over M . Choose an
isotropic splitting σ for E, giving rise to an isomorphism of Courant alge-
broids (E, [·, ·]) ∼= (TM ⊕ T ∗M, [·, ·]Hσ), where Hσ is the curvature 3-form
of the splitting. Then pairs (C, L) as in Definition 7.1 correspond bijectively
to pairs (C, F ), where F ∈ Ω2(C) satisfies −i∗Hσ = dF (for i the inclusion
of C in M).

Proof. The fact that L ⊂ E is maximal isotropic and π(L) = TC means
that under the isomorphism it maps to

τF
C := {(X, ξ) ∈ TC ⊕ T ∗M |C : ξ|TC = iXF}

for some 2-form F on C. The correspondence L ↔ F is clearly bijective.
The integrability conditions correspond because of the following fact, which
follows from a straight-forward computation: if Xi + ξi are sections of τF

C ,
then

(7.1) 2〈[X1 + ξ1, X2 + ξ2], X3 + ξ3〉 = (i∗H + dF )(X1, X2, X3).

�
By Lemma 7.2, the following definition is equivalent to Gualtieri’s original

one (i.e., to Definition 7.6 of [7], again up to a sign):

Definition 7.3. Let E be an exact Courant algebroid over a manifold M
and J be a generalized complex structure on E. A generalized complex sub-
manifold or brane is a generalized submanifold (C, L) satisfying J (L) = L.

Now we state the main theorem of this paper. Recall that we gave the
definition of coisotropic submanifold in Remark 6.5.

Theorem 7.4 (Brane reduction). Let E be an exact Courant algebroid over
a manifold M, J a generalized complex structure on E, and (C, L) a brane.
Then C is coisotropic w.r.t. the Poisson structure induced by J on M . If
the quotient C of C by its characteristic foliation is smooth, then
a) E induces an exact Courant algebroid E over C;
b) J induces a generalized complex structure J on E → C;
c) L induces the structures of a space-filling brane on C and the Ševera class

of E is trivial.
10It appeared in Definition 3.2.2 of [12] with the name “maximally isotropic extended

submanifold”. Also, a subbundle L, as above, but for which we just ask π(L) ⊂ TC
is called generalized Dirac structure in Definition 6.8 of [1] (in the setting of the skew-
symmetric Courant bracket).

11Up to a sign, since Definition 7.4 of [7] requires i∗Hσ = dF (in the notation of this
lemma).
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Proof. Recall that the Poisson structure Π induced by J on M (or rather
its sharp map �) is given by the composition T ∗M ↪→ E

J→ E
π→ TM . Since

N∗C = (π(L))◦ = L ∩ ker(π) ⊂ L, we have �(N∗C) = π(J N∗C) ⊂ π(L) =
TC, so C is a coisotropic submanifold. Let F := �N∗C.
a) C, L, and F satisfy the assumptions of Proposition 5.6, hence we obtain

an exact Courant algebroid E over C (constructed as in Theorem 3.7 with
K := L∩π−1(F)). Notice that we have not made use of the integrability
of J here, if not for the fact that the induced bivector Π is integrable
and hence the distribution F is involutive.

b) Now we check that the assumptions of Proposition 6.1 are satisfied. From
L ∩ T ∗M = N∗C, the fact that J N∗C is contained in L, and that it
projects onto F , we deduce that K = N∗C+J N∗C, which is clearly pre-
served by J . So we just need to check that, for any basic section e of K⊥,
J e is again basic. Locally we can write K = span{(dgi)|C ,J (dgi)|C},
where g1, . . . , gcodim(C) are local functions on M vanishing on C. Since
each dgi is a closed 1-form, [(dgi)|C ,J e] ⊂ K. Using the fact that the
Nijenhuis tensor NJ vanishes (6.1), we have

[J (dgi)|C ,J e] = J [J (dgi)|C , e] + J [(dgi)|C ,J e] + [(dgi)|C , e].

The first term on the r.h.s. lies in K because e is a basic section, and the
last two because dgi is a closed 1-form. So [J (dgi)|C ,J e] ⊂ K, hence e
is again a basic section. Hence, the assumptions of Proposition 6.1 are
satisfied, concluding the proof of b.

c) We want to apply Proposition 4.1 to obtain a brane on C. Since L ⊂ K⊥,
the assumption (4.1) needed for L to descend reads [Γ(K), Γ(L)] ⊂ Γ(L),
and the integrability assumption (4.2) reads [Γbas(L), Γbas(L)] ⊂ Γ(L).
As L is closed under the bracket, both assumptions hold, and we obtain
an (integrable) Dirac structure L on C. Furthermore, from the fact that
J preserves L, we see that J preserves L. Hence, (C, L) is a brane for
the generalized complex structure J on E.
If we choose any isotropic splitting for E, as discussed in Lemma 7.2, then

L gives rise to a 2-form F̂ on C such that −dF̂ equals the curvature of the
splitting, which hence is an exact 3-form. This concludes the proof of c and
of the theorem. �

Remark 7.5. Let us denote with (C,J ) a generalized complex manifold
admitting a space-filling brane (C, L). By Example 6.12 of [8], using the
splitting TC → E with image L, the exact Courant algebroid E is identified
with the untwisted Courant algebroid, and the generalized complex structure
assumes the form

(7.2)
(

−I Π
0 I∗

)

.
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Here I is an honest complex structure on C, which corresponds to J : L → L
under the identification L ∼= TC given by the anchor, and Π is the Poisson
structure induced by J .

Further, Π is the imaginary part of a holomorphic Poisson bivector field
on C. Therefore, Theorem 7.4 implies that the generalized complex struc-
ture J on the quotient of a brane (when smooth) is a holomorphic Poisson
deformation of a complex structure.

Now assume the set-up of Theorem 7.4, i.e., that E is an exact Courant
algebroid over M , J a generalized complex structure, and (C, L) a brane
with smooth quotient C. Encoding generalized complex structures by their
+i-eigenbundles Gualtieri (Corollary 6.6 of [8]) provides a direct way to
describe the reduced generalized complex structure J we obtained in The-
orem 7.4, as follows. We saw that in a suitable splitting, the reduced
generalized complex structure is given by (7.2), hence it is determined by
the tensors I and Π appearing there. Let � denote the +i-eigenbundle of
J : L ⊗ C → L ⊗ C, and A := π(�) ⊂ TC ⊗ C. Then A descends to
a distribution A on C so that A ⊕ Ā = TC ⊗ C, which defines a com-
plex structure on C. This agrees with the complex structure I, since the
+i-eigenbundle of the complexification of I is the image under π of the +i-
eigenbundle of J : L ⊗ C → L ⊗ C, which is just π(�) = A. The Poisson
structure Π can be obtained directly simply by coisotropic reduction.

Remark 7.6. We saw in Theorem 7.4 that branes C are coisotropic and
their quotient by the characteristic foliation is endowed with a generalized
complex structure. As pointed out in Remark 6.5, if one starts with a J -
invariant coisotropic subbundle K⊥ of E|C (instead of constructing one from
the brane (C, L) as in Theorem 7.4) in general, it is a different quotient of C
that is endowed with a generalized complex structure (via Proposition 6.1).
If one picks just any arbitrary coisotropic submanifold C, its quotient by
the characteristic foliation inherits a Poisson structure, but in general it
does not inherit a generalized complex structure: take for example any odd
dimensional submanifold of a complex manifold.

Remark 7.7. When the characteristic foliation of a brane (C, L) ⊂ M
is regular, using coordinates adapted to the foliation, one sees that the
quotient of small enough open sets U of C by the characteristic foliation
is smooth, and Theorem 7.4 gives a local statement. However, in general,
the characteristic foliation is singular, as the following example shows. Take
M = C

2, the untwisted exact Courant algebroid as E, and as J take
(

I Π
0 −I∗

)
.

Here I(∂xi) = ∂yi is the canonical complex structure on C
2 and Π = y1(∂x1 ∧

∂x2 − ∂y1 ∧ ∂y2) − x1(∂y1 ∧ ∂x2 + ∂x1 ∧ ∂y2) is the imaginary part of the
holomorphic Poisson bivector (see [8, 9]) z1∂z1 ∧∂z2 . It is easy to check that
C = {z2 = 0} with F = 0 define a brane for J , and that the characteristic
distribution of C has rank zero at the origin and rank 2 elsewhere.
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Example 7.8 (Branes in symplectic manifolds). Consider a symplectic
manifold (M, ω) and view it as a generalized complex structure J =(

0 −ω−1

ω 0

)
on the standard Courant algebroid. Let (C, F ) be a brane, i.e., F

is a closed 2-form on C such that L := τF
C is preserved by J . F descends

to the quotient of C by the characteristic distribution F := TCω, hence
the isotropic subbundle K = L ∩ π−1(F) defined in the proof of Theo-
rem 7.4a is just F⊕N∗C. The reduced Courant algebroid K⊥/K is therefore
canonically isomorphic to TC ⊕ T ∗C, and the reduced generalized complex
structure is J =

(
0 −ω−1

ω 0

)
, where ω denotes the symplectic form on C

obtained from ω.
The Dirac structure on C obtained in Theorem 7.4c pushing forward L

is just graph(F ), where F ∈ Ω2(C) denotes the pushforward of F ∈ Ω2(C).
The action of J on graph(F ) delivers I := −ω−1F for the complex structure
on C induced as in Remark 7.5. Applying the gauge transformation by the
closed 2-form F brings J into the form (7.2) (with Π = −ω−1).

Further, as shown in Example 7.8 of [7], F+iω is a holomorphic symplectic
form on C.

Remark 7.9. Suppose that in the setting of Theorem 7.4 E is additionally
endowed with some J2 so that J1,J2 form a generalized Kähler structure.
Then using Proposition 6.6, we see that if J2 descends to E, then E is
endowed with a generalized Kähler structure too.

7.2. Reducing weak branes. We weaken the conditions in the definition
of brane; at least for the time being, we refer to resulting object as “weak
branes”.

Definition 7.10. Let E be an exact Courant algebroid over a manifold M ,
J a generalized complex structure on E. We will call weak brane a pair
(C, L) consisting of a submanifold C and a maximal isotropic subbundle
L ⊂ E|C with π(L) = TC such that

(7.3) J (N∗C) ⊂ L, [Γ(K), Γ(L)] ⊂ Γ(L)

(where K := L ∩ π−1(F) and F := �N∗C, or equivalently K = N∗C +
J N∗C).

Notice that weak branes for which F has constant rank automatically
satisfy the assumptions of Proposition 5.6. Also notice that in the proof of
Theorem 7.4 (except for c), we just used properties of weak branes, hence
we obtain

Proposition 7.11. Assume the setup of Theorem 7.4 but allowing (C, L)
to be a weak brane. Then a and b of Theorem 7.4 still hold, i.e., there is a
reduced Courant algebroid and a reduced generalized complex structure on C.
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Remark 7.12. The reduced Courant algebroid and generalized complex
structure depend on C but not on L, since they are constructed out of the
subbundle K = N∗C + J N∗C.

We describe how weak branes look like in the split case, i.e., when E =
(TM ⊕ T ∗M, [·, ·]H). We write J in matrix form as

(
A Π
ω −A∗

)
, where A is an

endomorphism of TM , Π the Poisson bivector canonically associated to J ,
and ω a 2-form on M .

Corollary 7.13. Let C be a submanifold of M and F ∈ Ω2(C). Fix an
extension B ∈ Ω2(M) of F . Then (C, τF

C ) is a weak brane (with smooth
quotient C) iff C is coisotropic (with smooth quotient C), A + ΠB : TM →
TM preserves TC, and the 3-form dF + i∗H on C descends to C.

In this case, the Ševera class of the reduced Courant algebroid E is repre-
sented by the pushforward of dF + i∗H. Further, there is a splitting of E in
which the reduced generalized complex structure is

J̃ =
(

Ã Π̃
ω̃ −Ã

∗

)

,

where the endomorphism Ã is the pushforward of (A+ΠB)|TC , the Poisson
bivector Π̃ is induced by Π, and the 2-form ω̃ is the pushforward of i∗(ω −
BΠB − BA − A∗B).

Proof. Since K is τF
C ∩ π−1(F), equation (7.1) shows that [Γ(K), Γ(τF

C )] ⊂
Γ(τF

C ) is equivalent to the fact that the closed 3-form i∗H + dF descend to
C. Now perform a −B-transformation; the transformed objects are L̃ =
TC ⊕ N∗C and J̃ =

(
Ã Π̃
ω̃ −Ã∗

)
, with components Ã = A + ΠB, Π̃ = Π, and

ω̃ = ω − BΠB − BA − A∗B (see, for example, [20]). Hence, we see that
the first condition in (7.3) is equivalent to C begin coisotropic and A + ΠB
preserving TC (a condition independent of the extension B). Further, since
by the proof of Theorem 7.4 J preserves TC ⊕ F◦ and F ⊕ N∗C, it is clear
that in the induced splitting of E, the components of J̃ are induced from
those of J̃ .

Now we show that the Ševera class of the reduced Courant algebroid E
is represented by the pushforward of dF + i∗H. By the proof of Lemma
5.4, any isotropic splitting σ of (TM ⊕ T ∗M, [·, ·]H) with σ(TC) ⊂ τF

C (for
example, one is given by σ(X) := X + iXB) is automatically a splitting
adapted to K. Hence, by Proposition 5.7, i∗Hσ pushes down to a repre-
sentative of the Ševera class of E. Now i∗Hσ is just dF + i∗H, because
for vectors Xi ∈ TC we have Hσ(X1, X2, X3) = 2〈[σ(X1), σ(X2)], σ(X3)〉 =
(i∗H + dF )(X1, X2, X3), where we used σ(Xi) ⊂ τF

C and (7.1) in the last
equality. �
Example 7.14 (Coisotropic reduction). If J corresponds to a symplectic
structure on M , then any coisotropic submanifold C endowed with F = 0
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is a weak brane. The generalized complex structure on C (assumed to be a
smooth manifold) corresponds to the reduced symplectic form.

If J corresponds to a complex structure, then any weak brane is necessar-
ily a complex submanifold. If J is obtained deforming a complex structure
in direction of a holomorphic Poisson structure [8, 9], this is no longer the
case, as in the following two examples. In both cases, however, the reduced
generalized complex structures we obtain are quite trivial.

Example 7.15. Similarly to Remark 7.7 take M to be the open halfspace
{(x1, y1, x2, y2) : y1 > 0} ⊂ C

2, the untwisted exact Courant algebroid as E,
and as J take

(
I Π
0 −I∗

)
, where I(∂xi) = ∂yi is the canonical complex structure

on C
2 and Π = y1(∂x1 ∧ ∂x2 − ∂y1 ∧ ∂y2) − x1(∂y1 ∧ ∂x2 + ∂x1 ∧ ∂y2) is the

imaginary part of the holomorphic Poisson bivector z1∂z1 ∧∂z2 . We now take
C = {(x1, y1, x2, 0) : y1 > 0} and on C the closed 2-form F := − 1

y1
dy1 ∧dx2.

We show that the pair (C, F ) forms a weak brane. By dimension reasons,
C is coisotropic (the characteristic distribution is regular and spanned by
x1∂x1 + y1∂y1), so we just have to check that I + ΠB preserves TC, where
B is the 2-form on M given by the same formula as F . This is true as one
computes I + ΠB : ∂x1 �→ ∂y1 , ∂y1 �→ −x1

y1
∂y1 , ∂x2 �→ −x1

y1
∂x2 .

Now we want to compute the generalized complex structure on C given
by Proposition 7.11, We do so by first applying the gauge transformation
by −B to obtain a generalized complex structure J̃ and then using the dif-
feomorphism C ∼= (−π

2 , π
2 ) × R induced by C → (−π

2 , π
2 ) × R, (x1, y1, x2) �→

(θ := arc tg(x1
y1

), x2). The Poisson bracket of the coordinate functions θ

and x2 on C is computed by pulling back the two functions to C, extend-
ing them to the whole of M and taking their Poisson bracket there. This
gives the constant function 1. Next the coordinate vector field ∂θ on C is
lifted by the vector field x2

1+y2
1

y1
∂x1 on C, and of course ∂x2 on C is lifted by

∂x2 on C. Applying the endomorphism I + ΠB of TC, we see the induced
endomorphism on TC is just multiplication by −tg(θ). Finally, the compo-
nent ω̃ of J̃ is given by −BI − BΠB − I∗B, which on C restricts to the
2-form 1

y2
1
(y1dx1 − x1dy1) ∧ dx2, which in turn is the pullback of the 2-form

(1+ tg2(θ))dθ∧dx2 on C. Hence, the induced generalized complex structure
on C is (

−tg(θ) · Id ∂θ ∧ ∂x2

(1 + tg2(θ))dθ ∧ dx2 tg(θ) · Id

)

.

This is just the gauge transformation by the closed 2-form tg(θ)dθ ∧ dx2 of
the generalized complex structure on (−π

2 , π
2 ) × R that corresponds to the

symplectic form dθ ∧ dx2.

Example 7.16. Similarly to the previous example we take M = C
2, the

untwisted exact Courant algebroid as E, and as J we take
(

I Π
0 −I∗

)
, where
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I(∂xi) = ∂yi is the canonical complex structure on C
2 and Π = y1(∂x1 ∧

∂x2 −∂y1 ∧∂y2)−x1(∂y1 ∧∂x2 +∂x1 ∧∂y2). Now we let C be the hypersurface
{x2

1 + y2
1 = 1}. The characteristic distribution is generated by ∂y2 , so the

quotient C is a cylinder. Let a, b, c ∈ C∞(C) so that, denoting by F(a,b,c)
the pullback to C of

B(a,b,c) := a · dx1 ∧ dy1 + b · dx1 ∧ dx2 + c · dy1 ∧ dx2 − y1 · dx1 ∧ dy2

+ x1 · dy1 ∧ dy2,

dF(a,b,c) descends12 to C. One checks that I∗ + B(a,b,c)Π preserves N∗C, so
that (C, F(a,b,c)) is a weak brane. A computation analog to the one of the
previous example shows that the reduced generalized complex structure on
C = S1 × R with coordinates θ and x2 is

(
λ(a,b) · Id ∂θ ∧ ∂x2

(1 + λ2
(a,b))dθ ∧ dx2 −λ(a,b) · Id

)

,

where λ(a,b) ∈ C∞(C) is the function that lifts to −by1 + cx1 ∈ C∞(C) via
C → C. Again this is a gauge transformation of the standard symplectic
structure on S1 × R.

A consequence is that for no choice of a, b, c as above, the weak brane
(C, F(a,b,c)) is actually a brane. Indeed if this was the case by Theorem 7.4,
we would obtain a space-filling brane for a symplectic structure on S1 × R;
applying again Theorem 7.4, by Example 7.8 of [7], we would obtain the
structure of a holomorphic symplectic manifold on S1 × R, which cannot
exist because holomorphic symplectic manifolds have real dimension 4k.

7.3. Cosymplectic submanifolds. Recall that a submanifold M̃ of a
Poisson manifold (M, Π) is cosymplectic if �N∗M̃ ⊕ TM̃ = TM |M̃ . It is
known (see, for example, [22]) that a cosymplectic submanifold inherits
canonically a Poisson structure. The following lemma, which follows also
from more general results of [2], says that generalized complex structures
are also inherited by cosymplectic submanifolds.

Lemma 7.17. Let E be an exact Courant algebroid over a manifold M, J
a generalized complex structure on E, and M̃ a cosymplectic submanifold of
M (w.r.t. the natural Poisson structure on M induced by J ). Then M̃ is
naturally endowed with a generalized complex structure.

Proof. We want to apply Proposition 6.1 with K = N∗M̃ (so K⊥ =
π−1(TM̃)). The intersection J K ∩ K⊥ is trivial. Indeed if ξ ∈ N∗M̃ and
π(J ξ) ∈ TM̃ , then by the definition of cosymplectic submanifold, π(J ξ) = 0
(recall that � = πJ |T ∗M ) and the restriction � to N∗M̃ is injective, so that
ξ = 0. Further, all sections of K⊥ are basic, so J maps the set of basic

12This happens exactly when F(a,b,c) is closed.
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sections of J K⊥ ∩K⊥ into itself. Hence, the assumptions of Proposition 6.1
are satisfied and we obtain a generalized complex structure on M̃ . �

Now we describe how a pair (C, L) which does not quite satisfy the con-
ditions of Definition 7.10 can be regarded as a weak brane by passing to a
cosymplectic submanifold.

Proposition 7.18. Let E be an exact Courant algebroid over a mani-
fold M, J a generalized complex structure on E, C a submanifold and
L a maximal isotropic subbundle of E|C with π(L) = TC. Suppose that
J (N∗C) ∩ π−1(TC) is contained in L and has constant rank. Then there
exists a submanifold M̃ (containing C) which inherits a generalized complex
structure J̃ from M, and so that L̃ satisfies J̃ (Ñ∗C) ⊂ L̃. Here L̃ is the
pullback of L to M̃ and Ñ∗C the conormal bundle of C in M̃ .

Further assume that [Γ(L∩π−1(F)), Γ(L)] ⊂ Γ(L), where F := �N∗C∩TC

is the characteristic distribution of C. Then [Γ(L̃ ∩ π̃−1(F)), Γ(L̃)] ⊂ Γ(L̃).
Hence, (C, L̃) is a weak brane in (M̃, J̃ ).

Proof. Since the intersection of J (N∗C) and π−1(TC) has constant rank,
the same holds for their sum and for π(J (N∗C)+π−1(TC)) = �N∗C +TC.
Hence, C is a pre-Poisson submanifold [5] of (M, Π). Fix any complement R
of �N∗C + TC in TM |C ; by Theorem 3.3 of [5], “extending” C in direction
of R we obtain a submanifold M̃ of M which is cosymplectic. By Lemma
7.17, we know that M̃ is endowed with a generalized complex structure J̃ .
Further, by the same lemma J K ∩ K⊥ is trivial. The projection K⊥ →
K⊥/K (for K = N∗M̃) maps J K⊥ ∩ K⊥ isomorphically onto K⊥/K, and
J̃ is induced by the action of J on J K⊥ ∩ K⊥. Therefore, denoting by
L̃ := L/K the pullback of L to M̃ , requiring J̃ (Ñ∗C) ⊂ L̃ is equivalent to
requiring that J (N∗C ∩ (J K⊥ ∩ K⊥)) maps into L̃ under K⊥ → K⊥/K,
which in turn means J (N∗C) ∩ K⊥ ⊂ L. Now using K⊥ = π−1(TM̃),
TM̃ |C = R ⊕ TC, and recalling that R was chosen so that R ⊕ (�N∗C +
TC) = TM |C , it follows that J (N∗C) ∩ K⊥ = J (N∗C) ∩ π−1(TC). So our
assumption ensures that J̃ (Ñ∗C) ⊂ L̃.

Finally notice that the projection K⊥ → K⊥/K maps L onto L̃. Since
π−1(F) is mapped onto π̃−1(F), we also have that L ∩ π−1(F) is mapped
onto L̃ ∩ π̃−1(F). Hence, our assumption [Γ(L ∩ π−1(F)), Γ(L)] ⊂ Γ(L)
implies [Γ(L̃ ∩ π̃−1(F)), Γ(L̃)] ⊂ Γ(L̃). �
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