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TEST CONFIGURATIONS FOR K-STABILITY AND
GEODESIC RAYS

Duong H. Phong and Jacob Sturm

Let X be a compact complex manifold, L → X an ample line bundle
over X, and H the space of all positively curved metrics on L. We
show that a pair (h0, T ) consisting of a point h0 ∈ H and a test con-
figuration T = (L → X → C), canonically determines a weak geodesic
ray R(h0, T ) in H which emanates from h0. Thus a test configuration
behaves like a vector field on the space of Kähler potentials H. We
prove that R is non-trivial if the C× action on X0, the central fiber of
X , is non-trivial. The ray R is obtained as limit of smooth geodesic
rays Rk ⊆ Hk, where Hk ⊆ H is the subspace of Bergman metrics.

Dedicated to Dusa McDuff

1. Introduction

Let X be a compact complex manifold. According to a basic conjecture of
Yau [33], the existence of canonical metrics on X should be equivalent to a
stability condition in the sense of geometric invariant theory. A version of
this conjecture, due to Tian [31] and Donaldson [14], says that if L → X
is an ample line bundle, then X has a metric of constant scalar curvature
in c1(L) if and only if the pair (X, L) is K-stable, that is, if and only if the
Futaki invariant F (T ) is negative for each non-trivial test configuration T .
In particular, F (T ) < 0 for all such T should imply that the K-energy
ν : H → R is bounded below, where H is the space of all positively curved
metrics on L.

Now it is well known that the K-energy is convex along geodesics of H
(Donaldson [12]). Thus, if h0 ∈ H and if R : (−∞, 0] → H is a smooth
geodesic ray emanating from h0, then the restriction of ν to R is a smooth
convex function νR : (−∞, 0] → R and hence limt→−∞ ν̇R = a(R) is well
defined (here ν̇R is the time derivative of the K-energy). In particular, if
a(R) < 0, then ν is bounded below on the ray R.
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We are thus led to the following plan for relating K-stability to lower
bounds for the K-energy. Given a non-trivial test configuration T = (L →
X → C) and a point h0 ∈ H,

(A) Associate to (h0, T ) a canonical non-trivial geodesic ray R(T, h0)
emanating from h0.

(B) Prove that the quantity d(T ) defined by limt→−∞ ν̇R = F (T ) + d(T )
satisfies d(T ) = 0 if X0, the central fiber of X , has no multiplicity,
and that F (T ) < 0 implies F (T ) + d(T ) < 0.

If this plan could be implemented, then F (T ) < 0 for a single test config-
uration T would imply that ν is bounded below on the ray R(T, h0). And
the K-stability of (X, L) would imply that ν is bounded below on all the
rays R(T, h0) emanating from h0.

In this paper, we take a step in the direction of the plan outlined above.
For step (A), we start with an arbitrary test configuration T and an arbitrary
point h0 ∈ H. We associate to this data a weak geodesic R(h0, T ) which is
upper semi-continuous (but may not be smooth). If the C× action on X0
is non-trivial (in particular, if F (T ) �= 0), then we show that R(h0, T ) is a
non-trivial geodesic.

Our assignment of the weak geodesic R(h0, T ) to each point h0 ∈ H is
canonical. Thus a test configuration can be viewed as a (weak) vector field
on H. Even though the precise regularity properties of this vector field are
not yet known, it is an intrinsic object which can be expected to play a role
in future developments.

We also provide evidence for step (B). The ray R(h0, T ) is constructed
as a limit of Bergman geodesic rays h(t; k). Under certain geometric
conditions, (which are necessary for our proofs, but we expect can be
removed) we observe that the limit of the K-energy time derivative along
h(t; k) = h0e

−φ(t;k) converges to the Futaki invariant F (T ) as k → ∞ if X0
is multiplicity free.

After raising L and L to sufficiently high powers, we may assume that
L is very ample, that H0(X, L) generates ⊕∞

k=0H
0(X, Lk), and that L has

exponent one (note that raising the power of the line bundle will just amount
to a reparametrization of the geodesic). These assumptions will be made
throughout this paper.

Our main results are Theorems 1 and 2 below, with relevant notation
provided in § 4.

Theorem 1.1. Let L → X be a very ample line bundle, h0 a positively
curved metric on L, and T a test configuration for (X, L). Let

(1.1) φt = lim
k→∞

(
sup
l≥k

[φ(t; l)]
)∗

.
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Then h(t) = h0e
−φt is a weak geodesic ray emanating from h0. Here we

make use of the notation u∗(ζ0) = limε→0 sup|ζ−ζ0|<ε u(ζ) for any locally
bounded u : X × (−∞, 0] → R.

Theorem 1.2. Assume that the action of C× on X0 is non-trivial. Then
the weak geodesic defined by φt in Theorem 1.1 is non-trivial.

We note that the C× action on X0 is non-trivial if the Futaki invariant
F (T ) of the test configuration T does not vanish.

The following Theorem 1.3 is a direct consequence of the work of Tian
[31] and Paul–Tian [22].

Theorem 1.3. Assume that the test configuration can be equivariantly
imbedded in a proper family X → B, where X and B are smooth compact
manifolds with the property that the Chern class map Pic(B) → H2(B,Z)
is injective and X0 is multiplicity free. Then, for each k > 0,

(1.2) lim
t→−∞

ν̇k = F (T ).

Here νk is the restriction of ν to the Bergman geodesic h(t; k).

Remark. Theorem 1.1 holds in a wider context than that stated above;
our proofs show that one can associate a weak geodesic ray to an arbitrary
traceless hermitian matrix A ∈ gl(H0(X, L)) with rational eigenvalues. This
can be reduced to the integer case by a base change t → tN for some large
integer N .

To define what is meant by a weak geodesic, we start by recalling that
H is an infinite-dimensional symmetric space with respect to its natural
Riemannian structure (see Mabuchi [19], Semmes [29], and Donaldson
[11–13, 15]). Furthermore, the geodesic equation for h0e

−φt is equivalent
to the degenerate Monge–Ampère equation

(1.3) Ωn+1 = 0 on X × A,

where A ⊆ C is an annulus (in the case of a geodesic segment) or a punctured
disk (in the case of a geodesic ray). Here Ω = Ωφ is the smooth (1, 1)-form on
X ×A determined by: Ω = Ω0 +

√
−1
2 ∂∂̄Φ, where Ω0 = p∗

1ω0, ω0 is the curva-
ture of h0, p1(x, w) = x, Φ(x, w) = φt(x), and t = log |w|. A weak geodesic
φt is one for which Ωφ is a plurisubharmonic, locally bounded, solution to
(1.3) in the sense of pluripotential theory [2]. (Note that the Monge–Ampère
operator Ωn+1 is well defined for such potentials.) We expect the solution
constructed in Theorem 1.1 to be of class C1,1, but this has not yet been
established at the present time.

The problem of constructing geodesic rays from test configurations has
been considered previously by Arezzo–Tian [1]. They show that, if the
central fiber of the test configuration T is smooth, then one can use the
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Cauchy–Kowalevska theorem to find a local analytic solution near infinity
to the geodesic equation, and in this way, they construct a geodesic ray
R(T ) in H. In fact, they construct a family of rays Rj(T ), where j ranges
over certain free parameters which determine the power series coefficients.
These rays have the advantage of being real-analytic, but it does not appear
that their origins can be prescribed by this method. Moreover, the relation
of Rj(T ) to F (T ) is unclear.

We now provide an outline of the paper. The starting point is the approx-
imation theorem for Kähler metrics by Bergman metrics. For k ≥ 1, the
space Hk ⊆ H of Bergman metrics associated to Lk is a finite-dimensional
symmetric Riemannian sub-manifold. If h ∈ H and h(k) ∈ Hk is the associ-
ated Bergman metric, then the theorem of Tian–Yau–Zelditch [31, 34, 35]
implies h(k) → h in the C∞ topology.

Now fix h0, h1 ∈ H, a pair of distinct elements, and let h(t; k) be the
unique smooth geodesic segment in Hk defined by the conditions h(0; k) =
h0(k) and h(1; k) = h1(k). It was proved in [27] that the sequence h(t; k)
converges uniformly, in the weak C0 sense of Theorem 1.1, to a weak geodesic
segment h(t) in H with the property: h(0) = h0 and h(1) = h1. Moreover,
h(t) equals the C1,1 geodesic joining h0 to h1, whose existence was estab-
lished by Chen [9]. We note that another approximation of the C1,1 geodesic
by potentials h̃(t; k) in c1(L) + 1

kc1(KX) has been very recently constructed
by Berndtsson [4, 5].

The proof of Theorem 1.1 follows the method of [27]. First, we construct
a geodesic ray h(t; k) = h0e

−φ(t;k) with h(0; k) = h0(k) that “points in the
direction of T”. Then we prove that

∫

X×A
Ωn+1

k = O(k−1),(1.4)

where Ωk is associated to φ(t; k). This step relies on the ideas developed
in the recent work of Donaldson [16]. It also requires some estimates
on test configurations, which include the following very simple, but basic
estimate for the endomorphisms Ak on H0(X0, L

k
0) determined by a test

configuration,

‖Ak‖op = O(k).(1.5)

Next, we use the methods of pluripotential theory to establish the conver-
gence of the φ(t; k). In the case of geodesic rays, the annulus A is actually a
punctured disk, and the boundary behavior at the puncture has to be treated
carefully, by controlling the asymptotics for the φ(t; k) at the puncture.

For Theorem 1.2, we show that, when the test configuration is non-trivial,
the sup norm of φt goes to ∞ near the puncture. This implies that the
geodesic is non-trivial. A key ingredient is Donaldson’s formula [16] for the
leading coefficient of Tr(A2

k).
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Regarding Theorem 1.3, we apply the formula in [31] which relates the
metric of the CM line bundle LCM to the K-energy. We then use [22] which
relates the line bundle λCM on the Hilbert scheme to LCM.

We would like to add some references that have come to our attention since
the posting of the first version of this paper. In a paper [23] which appeared
shortly after ours, Paul and Tian present several results which include, in
particular, Theorem 1.3. In fact, they actually prove a stronger result, in
which the assumption on the injectivity of the Chern map is removed. As
should be clear from its proof and as we already noted above, Theorem 1.3
was in any case an immediate consequence of their earlier work. In the recent
paper [10], Chen shows that geodesic rays parallel to a given geodesic ray can
be constructed under a certain assumption of tame ambient geometry. We
would also like to note that constructions involving upper envelopes appear
frequently in pluripotential theory, notably in the work of Kolodziej [17]
(motivated, in part, by the work of Yau [32]).
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2. Test configurations: preliminaries

2.1. Definition. Let L → X be an ample line bundle over a compact com-
plex manifold. A test configuration, as defined by Donaldson [14], consists
of the following data:

(1) a scheme X with a C× action ρ,
(2) a C× equivariant line bundle L → X which is ample on all fibers,
(3) a flat C× equivariant map π : X → C where C× acts on C by multi-

plication,
satisfying the following. The fiber X1 is isomorphic to X and the pair (X, Lr)
is isomorphic to (X1, L1) where, for w ∈ C, Xw = π−1(w) and Lw = L|Xw .
After raising L and L to sufficiently high powers, we may assume that L
is very ample, that H0(X, L) generates

⊕∞
k=0 H0(X, Lk), and that L has

exponent one. Thus we set r = 1.
If τ ∈ C× and w ∈ C, let ρk(τ, w) : H0(Xw, Lk

w) → H0(Xτw, Lk
τw) be the

isomorphism induced by ρ. If w = 0 we write ρk(τ, 0) = ρk(τ). We also let
Bk ∈ End(Vk) be defined by

ρk(et) = etBk(2.1)

for t ∈ R, and Ak the traceless part of Bk. The eigenvalues of Ak are denoted
by λ

(k)
0 ≤ λ

(k)
1 ≤ · · · ≤ λ

(k)
Nk

, and the eigenvalues of Bk are denoted by

η
(k)
0 ≤ η

(k)
1 ≤ · · · ≤ η

(k)
Nk

. Thus ρk :C× → GL(Vk), where Vk = H0(X0, L
k
0).

Let dk = dimVk and w(k) = Tr(Bk), the weight of the induced action on
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det(Vk). Then, as was observed in [14], there is an asymptotic expansion

(2.2)
w(k)
kdk

= F0 + F1k
−1 + F2k

−2 + · · · as k → ∞

The Donaldson–Futaki invariant F (T ), or simply Futaki invariant, of T is
defined by the formula: F (T ) = F1.

2.2. Equivariant imbeddings of test configurations. The construction
of the Bergman geodesics associated to a test configuration T relies on the
existence of an equivariant, unitary imbedding of T into projective space,
whose existence was first established by Donaldson [16]. In this section, we
begin by recalling the statement of Donaldson’s result.

Let T be a test configuration of exponent r = 1 for the pair (X, L).
For k large, since L is very ample, we have canonical compatible imbed-
dings ιk : X1 ⊆ P(H0(X1, L

k
1)

∗) and ιk : Lk
1 ↪→ O1(1), where Ow(1) →

P(H0(Xw, Lk
w)∗) is the hyperplane line bundle, where H0(Xw, Lk

w)∗ is the
dual of H0(Xw, Lk

w).
One can show that the bundle π∗Lk → C has an equivariant trivialization

and thus the test configuration has an equivariant imbedding into projec-
tive space. To be precise, let Θ be an arbitrary vector space isomorphism
Θ :H0(X0, L

k
0) → H0(X1, L

k
1), let X × = π−1(C×) and let L× = L|X × .

Define an imbedding IΘ : (L×)k ↪→ O0(1) × C× by the formula

(2.3) IΘ(ρ(τ)l) = [(ρk(τ)Θ∗(ιk(l)), τ ] ,

where τ ∈ C×, l ∈ Lk
1 and Θ∗ : O1(1) → O0(1) is the isomorphism induced

by the dual vector space isomorphism Θ∗ : H0(X1, L
k
1)

∗ → H1(X0, L
k
0)

∗. We
similarly define the imbedding IΘ : X × ↪→ P(H0(X0, L

k
0)) × C×. Then we

say Θ : H0(X0, L
k
0) → H0(X1, L

k
1) is a “regular generator of T” if IΘ extends

to an imbedding Lk ↪→ O0(1) × C which restricts, over the central fiber, to
the canonical embedding Lk

0 ↪→ O0(1).
Next let h be a fixed metric on L. It is shown in [16] that there exists

an regular generator Θ which respects h structure in the following sense.
The metric h defines a hermitian metric Hk on H0(X, Lk) by the formula
〈s, s′〉 =

∫
X(s, s′)hk ωn, where ω is the curvature of h. If Θ is a regular

generator of T , then we can use the isomorphism Θ : Vk → H0(X, Lk) to
define a metric on Vk, which we call Hk(Θ). Let Bk be the endomophism
of Vk defined by: ρk(et) = etBk for t ∈ R. We say Θ is a regular hermitian
generator if Bk is hermitian with respect to Hk(Θ). In other words, Θ is
regular hermitian if ρk(τ) : Vk → Vk is an isometry for |τ | = 1.

In [16, Lemma 2], the following is proved.

Lemma 2.1. Let T be a test configuration for (X, L) and h a positively
curved metric on L. Then there exists Θ, a regular hermitian generator
for T . The metric Hk = Hk(Θ) is independent of the choice of such a Θ.
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Moreover, the map Θ : Vk → H0(X1, L
k
1) is unique up to an isometry of Vk

which commutes with Bk.

There are actually several closely related other versions of this lemma,
namely Lemmas 2.3 and 2.7 below. See the remark after the statement
of Lemma 2.3 for the precise relationship between these versions and the
version appearing in [16].

For the sake of exposition and completeness, we shall provide a com-
plete proof of Lemma 2.1 (which is of course essentially the one which
appears in [16]).

Let E → C be an algebraic vector bundle of rank r. Then E(C), the space
of global sections of E, is a free C[t] module of rank N +1. A “trivialization
of E” is just a choice of ordered basis S0, . . . , SN of the C[t] module E(C).

If S0, . . . , SN is a trivialization of E, and if t ∈ C then S0(t), . . . , SN (t)
is a basis of the fiber Et, and so we have a well defined isomorphism φt2,t1 :
Et1 ≈ Et2 for any pair t1, t2 ∈ C, which takes the basis Sj(t1) to the basis
Sj(t2). The collection {φt2,t1} defines a regular cocycle, that is: φt3,t2φt2,t1 =
φt3,t1 and for every e ∈ Et1 , the map t �→ φt,t1(e) is a global section of E.
Conversely, a regular cocycle φt2,t1 defines a trivialization of E.

Now suppose E → C is a vector bundle with a C× action, covering the
usual action of C× on C. This means that we are given an algebraic map
ρ : C× → Aut(E → C). Thus, if τ ∈ C× then ρ(τ) : E → E is a function
with the following properties.

(1) The function ρ(τ) maps the fiber Et into the fiber Eτt, that is:
π(ρ(τ)e) = ρ(τ)π(e).

(2) The function ρ(τ) : Et → Eτt is an isomorphism of vector spaces.
(3) If τ1, τ2 ∈ C×, then ρ(τ1τ2) = ρ(τ1)ρ(τ2).
(4) The map C× × E → E given by (τ, e) → ρ(τ)e is algebraic.
Let S0, . . . , SN be a basis of global sections for E. If S : C → E is an

arbitrary global section, and if τ ∈ C×, then Sρ(τ)(t) = ρ(τ)−1S(τt) is also
a global section. Hence, there is a matrix A(τ, t) ∈ GL(N + 1,C[τ, τ−1, t])
with the property:

(2.4) Sρ(τ) = A(τ, t)S,

where S is the column vector whose components are the Sj . Note that

Sρ(τ2τ1) = ρ(τ2τ1)−1S(τ2τ1x) = ρ(τ1)−1A(τ2, τ1t)S(τ1x)

= A(τ2, τ1t)A(τ1, t)S(x)

where, in the last equality, we are using the fact that ρ(τ1)−1 is linear on
the fibers. Hence:

(2.5) A(τ2τ1, t) = A(τ2, τ1t)A(τ1, t)

In particular, if A(τ) = A(τ, 0) then A(τ) : C× → GL(N + 1,C) is a one
parameter subgroup.
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With these preliminaries in place, we now show that if E → C is an vector
bundle with C× action, then E has a C× equivariant trivialization.

Lemma 2.2. Let E → C be a vector bundle of rank r = N + 1 with a
C× action. Then there exists a basis of global sections S0, . . . , SN such that
A(τ, t) is independent of t, that is, A(τ, t) = A(τ, 0) ≡ A(τ). In other words,
there exists a regular cocycle {φt2,t1} satisfying

(2.6) ρ(τ)φt2,t1ρ(τ)−1 = φτt2,τ t1

The basis S0, . . . , SN is unique up to change of basis matrices M(t) ∈
GL(N + 1,C[t]) with the property: M(τt) = A(τ)M(t)A(τ)−1.

Proof. Choose any C[t] basis S0, . . . , SN ∈ E(C) and define A(τ, t) ∈
GL(N + 1,C[τ, τ−1, t]) as in equation (2.4). Thus det(A(τ, t)) = aτp =
det(A(τ)) for some integer p and some a ∈ C×. Now consider the set

S = {S
ρ(τ)
j : τ ∈ C×, 0 ≤ j ≤ N}

Let V ⊆ E(C) be the complex vector space generated by S. We claim that
V is finite-dimensional and invariant under the action of C×. In fact, since
Sρ(τ) = A(τ, t)S, we see that the S

ρ(τ)
j are all linear combinations, with C

coefficients, of elements in the set {tmSj : 0 ≤ j ≤ N, 0 ≤ m ≤ M}, where
M is chosen so that the entries of A(τ, t), which are polynomials in t with
coefficients in A[τ, τ−1], all have degree at most M .

Choose a basis {Tμ; 0 ≤ μ ≤ K} of V with the property T
ρ(τ)
μ = τ lμTμ

for some integers lμ. Choose μj , 0 ≤ j ≤ N such that Tμj (0) are linearly
independent. This can certainly be done since the Tμ span V , and V contains
the Sj . Let T be the column vector consisting of the Tμj . Then T (t) =
C(t)S(t) for some (N + 1) × (N + 1) matrix C(t) with coefficeints in C[t],
for which C(0) is invertible. The existence of such a matrix is guaranteed
by the fact that the Sj form a C[t] basis of E(C). Replacing S by C(0)S
does not change V and allows us to assume C(0) = I. Now

T ρ(τ)(t) = ρ(τ)−1T (τt) = ρ(τ)−1C(τt)S(τt) = C(τt)A(τ, t)S(t).

On the other hand, T ρ(τ)(t) = U(τ)T (t), where U(τ) is diagonal with dia-
gonal entries of the form τ l. Hence

U(τ)S(0) = U(τ)T (0) = T ρ(τ)(0) = Sρ(τ)(0) = A(τ)S(0)

so U(τ) = A(τ). Thus

C(τt)A(τ, t)S(t) = T ρ(τ)(t) = A(τ)T (t) = A(τ)C(t)S(t)

which implies: A(τ)C(t) = C(τt)A(τ, t). Since det(A(τ)) = det(A(τ, t))
for all t, we have det(C(τt)) = det(C(t)) which means that det(C(t)) is
independent of t. Since C(0) = I, we conclude that det(C(t)) = 1 and this
implies that T is a C[t] basis of E(C). This now establishes Lemma 2.2.
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At this point, we can prove the existence of a regular generator for T .
Let E = π∗(Lk)∗ so that Et = H(Xt, L

k
t )

∗. Then we define Θ∗ : E1 → E0
by the formula: Θ∗ = φ0,1 where φt2,t1 satisfies (2.6), with ρ(τ) replaced by
ρ∗(τ) = ρ(τ−1)∗. One easily checks that Θ is a regular generator of T .

Lemma 2.3. Let H1 be a hermitian metric on E1. Then there is a unique
equivariant trivialization φt2,t1 such that ρ(τ)−1φτ,1 : E1 → E1 is an isometry
for all τ ∈ C× with |τ | = 1.

Our formulation of Lemma 2.3 is somewhat different from that given in
[16, Lemma 2]. The precise relation is as follows. Lemma 2 in [16] says
that there is an equivariant trivialization F : C × E0 → E which takes a
hermitian metric H1 on the fiber at τ = 1 to a hermitian metric on the
central fiber which is preserved by the action S1 ⊂ C× on E0. This is the
content of Lemma 2.3 above, which is stated in terms of the cocycle φt1,t2 .
The precise relationship is

F (t, e) = φ0,t(e).

Proof of Lemma 2.3. Let {φt2,t1} be any equivariant trivialization. Consider
the decomposition E0 = ⊕Vi into eigenspaces for the action of C×. Let τwj

be the restriction of ρ(τ) to the subspace Vj . We may assume that w1 <

w2 < · · · < wl. Thus
∑l

j=1 wj dim(Vj) = N + 1 = dim(E0). Let e0, . . . , eN

of E0 be given by the union of the bases of the Vj and define Sj(t) = φt,0(ej)
and let Wi = φt,0(Vi) ⊆ E1. Then S0, . . . , SN is a trivialization of E → C.

Let A(τ) be the diagonal matrix which represents the automorphism
ρ(τ) : E0 → E0 with respect to the basis ej . Then A(τ) also repre-
sents the automorphism ρ(τ)−1φτ,1 : E1 → E1 with respect to the basis
Sj(1). We want to modify the equivariant trivialization φt2,t1 in such a way
that this automorphism is an isometry. To do this, we must find a matrix
M(t) ∈ GL(N + 1,C[t]) satisfying:

(1) M(τt)A(τ)M(t)−1 = A(τ) for all t, τ ;
(2) M(1)Sj(1) is orthonormal with respect to H.

The first condition says that M(t) is a block matrix with blocks twi−wjαij ,
where αij is independent of t. Since M(t) ∈ GL(N + 1,C[t]), this implies
that αij = 0 if i < j. Thus M(t) is lower block triangular. On the other
hand, the usual Gram–Schmidt process allows us to choose an M(1) of this
form which satisfies condition (2). First choose an orthonormal basis of W0.
Then choose an orthonormal basis of W⊥

0 ⊆ W0 ⊕ W1, etc.
Finally we prove uniqueness. Let M(t) ∈ GL(N + 1,C[t]) satisfy (1) and

(2) and assume furthermore that the ej are orthonormal and that M(0) = I.
Then we must show that M(t) = I for all t. Since the ej are orthonormal,
the matrix M(1) is unitary. On the other hand, it is lower block triangular.
This implies it is block diagonal. Since the i, j block is of the form twi−wjαij ,
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and since αij = 0 for i �= j, we see that M(t) is independent of t so M(t) =
M(0) = I. The lemma is proved.

Note that if φ is any equivariant trivialization, then ρ(τ)−1φτ,1 : C× →
GL(E1) is a homomorphism:

ρ(τ1)−1φτ1,1ρ(τ2)−1φτ2,1 = ρ(τ1τ2)−1φτ1τ2,τ2φτ2,1 = ρ(τ1τ2)−1φτ1τ2,1

where the first equality makes use of the equivariance property of φ, and
the second follows from the cocycle property of φ. Thus the theorem can
be restated as follows. There exists an equivariant trivialization φ such that
ρ(τ)−1φτ,1 : S1 → GL(E1) is a unitary representation.

To deduce Lemma 2.1 from Lemma 2.3, we again define Θ∗ = φ0,1.
Let τ ∈ C× be of unit length. Then to show ρk(τ)∗ : V ∗

k → V ∗
k is

an isometry is equivalent, by definition of the metric on Vk, to showing
(Θ∗)−1ρk(τ)∗Θ∗ : H(X1, L

k)∗ → H(X1, L
k)∗ is an isometry. Thus we must

show φ1,0ρk(τ)∗φ0,1 = φ1,0ρ
∗
k(τ

−1)φ0,1 is an isometry. But (2.6) implies

φ1,0ρ
∗
k(τ

−1)φ0,1 = ρ∗(τ)−1φτ,0φ0,1 = ρ∗(τ)−1φτ,1

which is an isometry by the result of Lemma 2.3. This proves Lemma 2.1.

3. Estimates for test configurations

3.1. Bounds for Ak. Let T be a test configuration, and define the endo-
morphisms Ak and Bk and their eigenvalues λ

(k)
α and η

(k)
α as in § 2.1. The

following simple estimate for the operator norm ‖Ak‖op of the endomor-
phisms Ak plays an important role in the subsequent bounds for the total
masses of the Monge–Ampère currents.

Lemma 3.1. There is a constant C > 0 which is independent of k such that
|λ(k)

α | ≤ Ck for all k > 0 and all α such that 0 ≤ α ≤ Nk.

Proof. After applying Lemma 2.1 with k = 1, we may assume that X ⊆
Pm × C, m = N1 + 1, and that ρ(τ) is a diagonal matrix in GL(m + 1)
whose entries are τη0 , . . . , τηm where η0 ≤ · · · ≤ ηm are integers. The scheme
X0 ⊆ Pm is defined by a homogenous ideal I ⊆ C[X0, . . . , Xm] and we write

C[X0, . . . , Xm]/I =
⊕
k≥0

Sk/Ik,

where Sk ⊆ C[X0, . . . , Xm] is the space of polnomials which are homoge-
neous of degree k and Ik = Sk ∩ I. Then, for k � 0, we have H0(X0, L

k
0) =

Sk/Ik. The matrix ρ(τ) defines an automorphism of C[X0, . . . , Xm], deter-
mined by the formula: Xj �→ τηjXj . This automorphism leaves Sk and
Ik invariant, and thus it induces an automorphism of Sk/Ik which is, by
definition, the map ρk(τ).

The monomials of degree k form a basis of Sk which are eigenfunctions
of ρ(τ). More precisely, if Xp is a monomial, with p = (p0, . . . , pm) and
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p0 + · · ·+ pm = k, then we have ρ(τ) ·Xp = τp·ηXα. Since the monomials of
degree k span Sk/Ik, some subset form a basis of eigenvectors for that space.
Thus the eigenvalues of the Bk form a subset of {p · η : p0 + · · · + pm = k}.
On the other hand, for such an p, we clearly have |p · η| ≤ sup |ηj | · k and
this proves that

|η(k)
α | ≤ C k,(3.1)

with C = sup0≤j≤m |ηj |. On the other hand,

λ(k)
α = η(k)

α − Tr(Bk)
Nk + 1

= η(k)
α + O(k).(3.2)

This proves Lemma 3.1.

3.2. An alternative characterization of the Futaki invariant.

3.2.1. The F 0
ω functional. Let X be a compact complex manifold of

dimension n and ω = ω0 a Kähler metric on X. Let H = Hω be the
space of Kähler potentials:

(3.3) Hω =
{

φ ∈ C∞(X) : ωφ = ω +
√

−1
2

∂∂̄φ > 0
}

.

The functionals F 0
ω , νω : H → R play an important role in Kähler geometry

and are defined as follows:

F 0
ω(φ) = − 1

n + 1

(∫

X
ωn

)−1 n∑
j=0

∫

X
φωj

φωn−j ,

= − 1
n + 1

(∫

X
ωn

)−1

Eω(φ),

νω(φ) = −
(∫

X
ωn

)−1 ∫ 1

0

∫

X
φ̇(s − ŝ)ωn

t dt.(3.4)

Here φt, 0 ≤ t ≤ 1, is a smooth path in Hω joining the potential φ0 for ω0
to φ = φ1. Then a simple calculation shows
(3.5)

Ėω(φt) = (n + 1)
∫

X
φ̇t ωn

φt
and Ëω(φt) = (n + 1)

∫

X
(φ̈t − |∂φ̇t|2) ωn

φt
.

Thus E satisfies the cocycle property: Eω(φ) + Eωφ
(ψ) = Eω(φ + ψ). Note

as well that if f : Y → X is a biholomorphic map, then

(3.6) Ef∗ω(φ ◦ f) = Eω(φ).
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3.2.2. The Chow weight and the Futaki invariant. Let V be a finite-
dimensional vector space, Z ⊆ P(V ) a smooth subvariety, and B ∈ gl(V ).
Then we wish to define the generalized Chow weight μ(Z, B) ∈ R. We start
by assuming the V = CN+1 so that B is a (N + 1) × (N + 1) matrix. Let
ωFS be the Fubini-Study metric on PN . We shall also denote by ωFS the
restriction of the Fubini-Study metric to Z. For t ∈ R, let σt ∈ GL(N+1,C)
be the matrix σt = etB and let ψt : PN → R be the function

(3.7) ψt(z) = log
|σtz|2
|z|2 .

Here we view z as an element in PN and, when there is no fear of confusion,
a column vector in CN+1.

Then ψt is a smooth path in H. In fact, σ∗
t ωFS = ωFS +

√
−1
2 ∂∂̄ψt. Define

(3.8) μ(Z, B) = − lim
t→−∞

ĖωFS(ψt) = −Ė(−∞).

Note that the function E(t) = EωFS(ψt) : R → R is convex (see [24, 25]),
so the limit in (3.8) exists.

Next we compute the derivative of E(t):

d

dt
EωFS(ψt) = (n + 1)

∫

Z

z∗σ∗
t · (B + B∗) · σtz

z∗σ∗
t σtz

σ∗
t ω

n
FS

= (n + 1)
∫

σt(Z)

z∗ · (B + B∗) · z

z∗z
ωn

FS(3.9)

where, for C a matrix with complex entries, we write C∗ = tC̄. In particular,

(3.10) ĖωFS(ψt)|t=0 = Ė(0) = (n + 1)Tr((B + B∗) · M)

where

(3.11) Mαβ = Mαβ(Z) =
∫

Z

zαz̄β

‖z‖2 ωn
FS.

Lemma 3.2. Let V be a finite-dimensional complex vector space, B ∈ gl(V )
and Z ⊆ P(V ) a smooth subvariety. Let θ : V → CN+1 be an isomorphism.
Then μ(θ(Z), θBθ−1) is independent of θ.

Proof. We make use of the formula of Zhang [36] and Paul [21] (see also
[24, 26]): If Z ⊆ PN (C) is a subvariety of dimension n and degree d, let
Chow(Z) ∈ P(H0(Gr(N − n,CN+1, O(d)))) be the Chow point of Z ⊆ PN .
If B ∈ gl(N + 1,C), σt = etB, and ψσt = log |σt(z)|2

|z|2 then

(3.12) EωFS|Z (ψσt) = log
‖σt · Chow(Z)‖2

‖Chow(Z)‖2 = log
‖Chow(σtZ)‖2

‖Chow(Z)‖2

where ‖ · ‖ is the Chow norm defined on H0(Gr(N − n,CN+1, O(d))).
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Suppose M ∈ GL(N + 1,C). Then

(3.13) EωFS|MZ
(ψMσtM−1) = log

‖MσtM
−1 · Chow(MZ)‖2

‖Chow(MZ)‖2 .

Subtracting (3.12) from (3.13) we get

EωFS|MZ
(ψMσtM−1) − EωFS|Z (ψσt)

= log
‖Mσt · Chow(Z)‖2

‖σt · Chow(Z)‖2 − log
‖M · Chow(Z)‖2

‖Chow(Z)‖2

which is a bounded function of t, and hence the limit of its first derivative
is zero. This proves Lemma 3.2.

Now let Z ⊆ P(V ) and B ∈ gl(V ). Let θ : V → CN+1 be an isomorphism
and define μ(Z, B) = μ(θ(Z), θBθ−1). The lemma guarantees that this
definition is unambiguous. Note that (3.12) shows that μ(Z, B) is just the
usual Chow weight. (The Chow weight is normally defined only when B
is a traceless diagonalizable matrix with integer eigenvalues, but we find it
convenient to work with this somewhat more general notion.)

If τ ∈ GL(V ) then

μ(τ(Z), B) = μ(θτ(Z), θBθ−1) = μ((θτ)(Z), (θτ)τ−1Bτ(θτ)−1).

We conclude that

(3.14) μ(τ(Z), B) = μ(Z, τ−1Bτ).

In particular, if τ commutes with B, then μ(Z, B) = μ(τ(Z), B).
If we replace the functional E by ν, the K energy functional, we

may define a corresponding invariant μ̃(Z, B) for Z ⊆ PN (C) and B ∈ gl
(N + 1,C):

(3.15) μ̃(Z, B) = lim
t→−∞

ν̇ωFS(ψt).

It will be convenient for us to introduce an alternative characterization of
the Futaki invariant. Fix, once and for all, an isomorphism κ : (X, Lr) →
(X1, L1). We continue to assume that r = 1 (the case r > 1 can be treated
in a similar fashion). Then we have an induced isomorphism H0(X, Lk) =
H0(X1, L

k
1).

Let Θ be an equivariant trivialization of π∗Lk. Then

IΘ|X1 : X1 ↪→ P(H0(X0, L
k
0)).

Let Zk ⊆ P(H0(X0, L
k
0)

∗) be the image of IΘ|X1 and Z
(0)
k the image of

the canonical imbedding X0 ⊆ P(H0(X0, L
k
0)

∗). Note that Zk depends on
the choice of Θ, but that if Θ′ is another choice, then Θ′ = UΘ where
UAk = AkU , and thus the value μ(Zk, Ak) is independent of the choice of
equivariant Θ.
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Lemma 3.3. We have

(3.16) F (T ) = −c(X, ω) · lim
k→∞

μ(Zk, Ak)
kn

,

where c(X, ω) = 1
n!(n+1)!

∫
X ωn.

Proof. Since this argument is implicit in Donaldson [14], we only briefly
sketch the proof (see as well Ross–Thomas [28]). If Z ⊆ PN and λ : C× →
SL(N + 1,C) is a one parameter subgroup, let A ∈ sl(N + 1) be such that
λ(et) = etA and Z(0) = limτ→0 λ(τ)(Z) (the flat limit) so Z(0) ⊆ PN is
a subscheme of PN with the same Hilbert polynomial as Z. Let M0 =
O(1)|Z(0) . Then λ(τ) defines an automorphism of H0(Z(0), Mp

0 ) and we let
w̃(Z, A, p) be the weight of this action on det(H0(X0, M

p
0 )). It is known

that w̃(p) is a polynomial in p for p large such that

(3.17) w̃(Z, A, p) =
μ(Z, A)
(n + 1)!

· pn+1 + O(pn) and w̃(Z(0), 1) = 0

(see, for example, Mumford [20]). Now let T be a test configuration, let
r > 0 and consider Zr ⊆ P(H0(X0, L

r
0)

∗). Applying (3.17) to Z = Zr,
A = rNrAr and M0 = Lr

0, we get

(3.18) w̃(Zr, rNrAr, p) =
μ(Zr, rNrAr)

(n + 1)!
· pn+1 + O(pn)

On the other hand, since Mp
0 = Lrp

0 , we get, with k = rp:

(3.19) w̃(Zr, rNrAr, p) = w(k)rNr − w(r)kNk = eT (r)kn+1 + O(kn),

where eT is a polynomial in r of degree at most n. If follows from the
definition of F (T ) that −F (T ) is the leading coefficient of eT (r). Comparing
with (3.18) we get

lim
r→∞

μ(Zr, rNrAr)
rnrn+1(n + 1)!

= −F (T )

Since r−nNr = 1
n!

∫
ωn + O(r−1), Lemma 3.3 follows.

4. Completion of the proof of Theorem 1.2

4.1. The Tian–Yau–Zelditch expansion. Let L → X be an ample line
bundle over a compact complex manifold X. If h is a smooth hermitian
metric on L then the curvature of h is given by ω = R(h) = −

√
−1
2 ∂∂̄ log h.

Let H be the space of positively curved hermitian metrics on L. Then H
contains a canonical family of finite-dimensional negatively curved symmet-
ric spaces Hk, the space of Bergman metrics, which are defined as follows.
For k � 0 and for s = (s0, . . . , sNk

) an ordered basis of H0(X, Lk), let

ιs : X ↪→ PNk
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be the Kodaira imbedding given by x �→ (s0(x), . . . , sNk
(x)). Then we have

a canonical isomorphism ιs : Lk → ι∗sO(1) given by

(4.1) ιs(l) =
[(s0

s
,
s1

s
, . . . ,

sN

s

)
�→ l

s

]
,

where l ∈ Lk and s is any locally trivializing section of Lk.
Fix h0 ∈ H. Let hFS be the Fubini-study metric on O(1) → PNk and let

(4.2) hs = (ι∗shFS)1/k =
h0(∑Nk

α=0 |sα|2
hk
0

)1/k
.

Note that the right-hand side of (4.2) is independent of the choice of h0 ∈ H.
In particular,

(4.3)
Nk∑
α=0

|sα|2hk
s

= 1.

Let
Hk = {hs : s a basis of H0(X, Lk)} ⊆ H.

Then Hk = GL(Nk +1)/U(Nk +1) is a finite-dimensional negatively curved
symmetric space sitting inside of H. It is well known that the Hk are topo-
logically dense in H. If h ∈ H then there exists h(k) ∈ Hk such that
h(k) → h in the C∞ topology. This follows from the Tian–Yau–Zelditch
theorem on the density of states (Tian [30], Yau [33], and Zelditch [35]; see
also Catlin [7] for corresponding results for the Bergman kernel). In fact,
if h ∈ H, then there is a canonical choice of the approximating sequence
h(k). Let s be a basis of H0(X, Lk) which is orthonormal with respect to
the metrics h. In other words,

(4.4) 〈sα, sβ〉h =
∫

X
(sα, sβ)hk ωn = δαβ where ω = R(h).

The basis s is unique up to an element of U(Nk + 1). Define ρk(h) =
ρk(ω) =

∑
α |sα|2

hk . Then [35, Theorem 1], which is the C∞ version of the
C2 approximation result first estsablished in [30], says that for h fixed, we
have a C∞ asymptotic expansion as k → ∞:

(4.5) ρk(ω) ∼ kn + A1(ω)kn−1 + A2(ω)kn−1 + · · · .

Here the Aj(ω) are smooth functions on X defined locally by ω which can
be computed in terms of the curvature of ω by the work of Lu [18]. In
particular, it is shown there that

(4.6) A1(ω) =
s(ω)
2π

,

where s(ω) is the scalar curvature of ω.
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Let ŝ = k−n/2s and h(k) = hŝ. Then (4.2) and (4.5) imply that

h(k)
h

= 1 − s(ω)
2π

· 1
k2 + O

(
1
k3

)
, ω(k) = ω + O

(
1
k2

)
,

φ(k) = φ + O

(
1
k2

)
.(4.7)

Here, as before, ω = R(h), ω(k) = R(h(k)), h = h0e
−φ, and h(k) = h0e

−φ(k).
In particular, ω0 +

√
−1
2 ∂∂̄φ(k) = ω(k) = 1

k ι∗sωFS.
Lemma 2.1 can now be conveniently reformulated as follows.

Lemma 4.1. Let ρ : C× → Aut(L → X → C) be a test configuration T
of exponent one for the pair (X, L), where L → X is ample. Let h0 be a
positively curved metric on L → X. Let k be an integer such that Lk is very
ample. Then there is

(1) an orthonormal basis s = (s0, . . . , sNk
) of H0(X, Lk) = H0(X1, L

k
1),

(2) an imbedding Is : (Lk → X → C) ↪→ (O(1) × C → PNk × C → C),
satisfying the following property: the imbedding Is restricts to ιs on the fiber
Lk

1 and Is intertwines ρ(τ) and τBk . More precisely, for every τ ∈ C× and
every lw ∈ Lk

w,

(4.8) Is(ρ(τ)lw) =
(
τBk · Is (lw) , τw

)
,

where τBk is a diagonal matrix whose eigenvalues are the eigenvalues of
ρk(τ) : Vk → Vk.

The matrix Bk is uniquely determined, up to a permutation of the
diagnonal entries, by k and the test configuration T . Moreover, the basis
s is uniquely determined by h0 and T , up to an element of U(Nk + 1) which
commutes with Bk. The image of X1 is Zk ⊆ PNk .

This lemma can be illustrated by the following simple example:

Example. Let λ0, . . . , λN be a sequence of integers, and, for τ ∈ C×, let
σ(τ) be the diagonal matrix whose entries are τλ0 , . . . , τλN . Then σ(τ)
defines maps σ(τ) : PN → PN as well as σ(τ) : O(1) → O(1).

Let X ⊆ PN be a smooth projective variety and assume that for all
τ ∈ C× we have σ(τ)(X) = X. Let L = O(1)|X so that σ(τ) : L → L and
let h be a hermitian metric on L which is invariant under the S1 action:
σ(τ)∗h = h for all τ with |τ | = 1.

Now define a test configuration T as follows: X = X × C and L = π∗
1L,

where π1 : X → C and π2 : X → X are the projection maps. Here we let
ρ(τ) : X → X be the map ρ(τ)(x, t) = (σ(τ)x, τt). We wish to spell out the
basis s and the imbedding Is from Lemma 4.1.

To do this we fix k � 1 and let σk : C× → H0(X, Lk) be the
action on H0(X, Lk) induced by σ. To describe σk concretely, we define
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an action of C× on C[X0, . . . , XN ] by the formula: F τ (X0, . . . , XN ) =
F (τλ0X0, . . . , τ

λN XN ). We let Rk ⊆ C[X0, . . . , XN ] be the space of polyno-
mials which are homogeneous of degree k and let Zk ⊆ Rk be the subspace
which vanishes on X. Then Rk and Zk are invariant under the C× action,
and thus there is a well defined C× action σk on H0(X, Lk) = Rk/Zk.

Now we decompose the vector space H0(X, Lk) = U1 ⊕ · · · ⊕ Ur, where
the Uj are the eigenspaces of the matrix σk(τ). This means that there are
distinct integers aj such that σk(τ)(vj) = τajvj for all vj ∈ Vj . Since h is
invariant, we have 〈vj , vl〉 = τaj−al〈vj , vl〉 whenever |τ | = 1. Thus Vj and Vl

are orthogonal if j �= l.
Fix an orthonormal basis Bj of each Vj , and let s be the basis of H0(X, Lk)

defined by s = (B1, . . . , Br). Define Is : (Lk × C → X × C → C) ↪→
(O(1) × C → PNk × C → C) as follows: Is(x, t) = (s0(x), . . . , sN (x); t).

4.2. Growth bounds for the Bergman geodesic rays. We make precise
the notation which appears in Theorem 1.1. Let L → X be an ample line
bundle over a compact complex manifold, and H the space of positively
curved metrics on L. Let h0 ∈ H and let T be a test configuration for the
pair (X, L) of exponent r. We wish to associate to the pair (h0, T ) an infinite
geodesic ray in H whose initial point is h0. After replacing L by Lr we may
assume, without loss of generality, that r = 1 and that L is very ample.

Let k be a large positive integer and choose s, an orthonormal basis of
H0(X, Lk) as in Lemma 4.1. Define Ak to be the traceless part of Bk and
let λ

(k)
0 ≤ λ

(k)
1 ≤ · · · ≤ λ

(k)
Nk

be the diagonal entries of Ak. Set ŝ = k−n/2s

so that hŝ = h0(k), where hŝ is defined as in (4.2). Now let ŝ(t; k) =
(etλ0 ŝ0, e

tλ1 ŝ1, ..., e
tλN ŝN ), and define

(4.9) h(t; k) = hŝ(t;k) = h0e
−φ(t;k) = h0(k)e−(φ(t;k)−φ(k)),

so that h(t; k) : (−∞, 0] → Hk is a geodesic ray in Hk and h(0; k) = h0(k).
In particular, we have

φ(t; k) =
1
k

log

(
k−n ·

Nk∑
α=0

e2tλα |sα|2
hk
0

)
(4.10)

=
1
k

log

(
k−n ·

Nk∑
α=0

e2tλα |sα|2h0(k)k

)
+ φ(k).

Let

(4.11) f(k) =
w(k)
kdk

− F0 =
F (T )

k
+ O

(
1
k2

)
,

where w(k), dk and F0 are defined as in (2.2). In particular, f(k) = O( 1
k ).
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Lemma 4.2. Let k, l be positive integers with k < l. Then there exists
Ck,l > 0 with the following property:

(4.12) −Ck,l < [φ(t; l) + 2t · f(l)] − [φ(t; k) + 2t · f(k)] < Ck,l.

Proof. If suffices to prove (4.12) in the case k = 1. Then, replacing l by k,
we have

[φ(t; k) + 2t · f(k)] − [φ(t; 1) + 2t · f(1)]

= log

(
k−n ·

∑Nk
α=0 e2tη

(k)
α |s(k)

α |2
hk
0

)1/k

(∑N
β=0 e2tη

(1)
β |sβ|2h0

) ,(4.13)

where η
(k)
0 ≤ η

(k)
1 · · · ≤ η

(k)
Nk

are the eigenvalues of the diagonal matrix Bk,

N = N1 and sβ = s
(1)
β .

We now have

(4.14) log

⎛
⎝

N∑
β=0

e2tη
(1)
β |sβ|2h0

⎞
⎠ =

1
k

log

(
Nk∑
α=0

e2tη
(k)
α |s̃(k)

α |2
hk
0

)
+ O(1),

where the O(1) term is independent of t, and, for η ∈ Z,

{s̃(k)
α : η(k)

α = η} ⊂

⎧
⎨
⎩sp0

0 ⊗ · · · ⊗ spN
N ∈ H0(X, Lk) :

∑
β

pβ = k,

and
∑

β

pβη
(1)
β = η

⎫
⎬
⎭ ,(4.15)

is a maximally linearly independent subset. On the other hand, (s(k)
0 , . . . ,

s
(k)
Nk

) and (s̃(k)
0 , . . . , s̃

(k)
Nk

) are two bases of the same vector space which differ
by a lower block triangular matrix. This proves Lemma 4.2.

4.3. The volume formula. Let φt : [a, b] → Hω be a smooth path and let
Ua,b = {w ∈ C× : ea ≤ |w| ≤ eb}. Let Ma,b = X × Ua,b and Ω0 be the (1, 1)
form on Ma,b defined by pulling back ω0. Define Φ(z, w) : Ma,b → R by

(4.16) Φ(z, w) = φt(z) where t = log |w|.

Let ΩΦ be the (1, 1) form on Ma,b defined by ΩΦ = Ω0 +
√

−1
2 ∂∂̄Φ. Then

(4.17) Ωn+1
Φ =

1
4
(φ̈t − |∂φ̇t|2)ωn

φt
∧
(√

−1
2

dw ∧ dw̄

)
.
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In particular, we have the key observation of [12, 19, 29]:

Ωn+1
Φ = 0 ⇐⇒ φ̈t − |∂φ̇t|2ωφt

= 0

⇐⇒ φt is a smooth geodesic in H.(4.18)

We say that a function φt(x) on [a, b]×X is a weak geodesic if Φ is bounded,
plurisubharmonic with respect to Ω0, and if Ωn+1

Φ = 0.
Finally, we obtain, using (3.5), the following useful volume formula [27]:

(4.19) (n + 1)
∫

X×Ua,b

Ωn+1
Φ = Ėω(b) − Ėω(a),

where Eω(t) = Eω(φt).

4.4. Volume estimates for the Monge–Ampère measure. We first
need a few lemmas. Let D× = {w ∈ C : 0 < |w| < 1}. We associate to
φ(t; k) the function Φ(k) on X × D× as in (4.16):

(4.20) Φ(k)(z, w) = φ(t; k)(z) where t = log |w|
and we let Ω0 be the pullback of ω0 to X × D× and we let ΩΦ(k) = Ω0 +
√

−1
2 ∂∂̄Φ(k).

Lemma 4.3. We have limk→∞
∫
X×D× Ωn+1

Φ(k) = 0. In fact,

(4.21)
∫

X×D×
Ωn+1

Φ(k) = O(k−1).

Proof. According to (4.19),

(4.22)
∫

X×D×
Ωn+1

Φ(k) =
∫

X
φ̇(0; k) ωn

φ(0;k) − lim
t→∞

∫

X
φ̇(t; k) ωn

φ(t;k)

Hence it suffices to show that each of the two terms in (4.21) is O( 1
k ).

Let ψ(t; k) = k[φ(t; k) − φ(k)] + n log k. Then ψ(t; k) = log |σtz|2
|z|2 , where

σt = etAk . Recall that ω0 +
√

−1
2 ∂∂̄φ(k) = ω0(k) and ω0(k) = 1

k ι∗sωFS. Thus

ωφ(t;k) = ω0 +
√

−1
2

∂∂̄φ(t; k) = ω0(k) +
1
k

√
−1
2

∂∂̄ψt

=
1
k
ι∗s

(
ωFS +

√
−1
2

∂∂̄ψt

)
.

Since we also have φ̇(t; k) = 1
k ψ̇(t; k) we conclude that

(n + 1)
∫

X
φ̇(t; k) ωn

φ(t;k) = (n + 1) · 1
k

· 1
kn

·
∫

Zk

ψ̇t

(
ωFS +

√
−1
2

∂∂̄ψt

)n

=
1
k

· 1
kn

· ĖωFS(ψt).(4.23)
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Thus

(4.24) − lim
t→−∞

∫

X
φ̇(t; k) ωn

φ(t;k) =
1

(n + 1)
1
k

μ(Zk, Ak)
kn

Now, according to Lemma 3.3, μ(Zk,Ak)
kn has a finite limit as k tends to

infinity. In fact, the limit is equal to F (T ), the Futaki invariant. Thus the
second term in (4.22) is O( 1

k ).
In order to treat the first term, we require the following result from [16].

Lemma 4.4. Let L → X be an ample line bundle over a compact complex
manifold X and h a metric on L with positive curvature ω. Let s be an
orthonormal basis of H0(X, Lk) and let ιŝ : X ↪→ PNk be the associated
Kodaira imbedding. Let Zk be the image of ιs. Define M

(k)
αβ = Mαβ(Zk) as

in (3.11). Then

M
(k)
αβ =

∫

Zk

zαz̄β

|z|2 ωn
FS =

∫

X
(sα, sβ)hk ·

(
h(k)
h

)k

· ω(k)n

ωn
· ωn

= δαβ − k−1
∫

X
(sα, sβ)hk · s(ω) ωn + O(k−2)

=
(

1
n!

∫

X
ωn

)
kn

Nk
δαβ − k−1

∫
(sα, sβ)hk [s(ω) − s̄] ωn + O(k−2)

=
(

1
n!

∫

X
ωn

)
kn

Nk
δαβ − k−1

∫
xαx̄β

|x|2 [s(ω) − ŝ] ωn
FS + O(k−2),(4.25)

where ŝ ∈ R is defined by:
∫
X [s(ω) − ŝ]ωn = 0. The proof of Lemma 4.4

follows from (4.7).
We return to the proof of Lemma 4.3: Applying (4.25) to (3.10) we obtain:

1
n + 1

∫

X
φ̇(0; k) ωn

φ(0;k) =
1
k

· 1
kn

· ĖωFS(ψt) =
1
kn

2
k
tr(AkM

(k))

= − 1
kn

2
k

∫ ∑
α

(sα, sα)hk

λ
(k)
α

k
[s(ω) − ŝ] ωn

+ O(k−2)
1
kn

1
k

∑
α

|λα|(4.26)

where in the first equality we use the fact that Ak = A∗
k and in the last

equality we have made use of the fact that Ak is traceless.
If we apply Lemma 3.1 to equation (4.26) we obtain

(4.27)
∣∣∣∣
∫

X
φ̇(0; k) ωn

φ(0;k)

∣∣∣∣ ≤ C ′ 1
kn

1
k

∑
α

∫
|sα|2hk ωn + O(k−2)

1
kn

1
k
CkNk,
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where C ′ = C supX |s(ω) − ŝ|. The first term equals C ′ 1
k

Nk+1
kn . Since Nk+1

kn

is bounded as a function of k, the first term is O(k−1). Similarly, the second
term is O(k−2).

4.5. The Monge–Ampère equation on a punctured disk. We now
complete the proof of Theorem 1.1. As in the proof of [27, Theorem 3], we
can choose a sequence of positive real numbers ck ↘ 0 in such a way that

φ(0; k) + ck > φ(0; k + 1) + ck+1.(4.28)

Indeed, by the Tian–Yau–Zelditch theorem, supX |φ(0; k) − φ| ≤ C k−2, so
that the sequence ck = 2 C

∑
j≥k j−2 is such a choice. Choose also εk =

k−1/2 and make the replacement

φ(t; k) −→ φ(t; k) + ck − εkt.(4.29)

Then it is still true that φ(0; k) → φ, and that
∫

Ωn+1
Φ(k) = O( 1

k ). Moreover,
the value of φt, as defined in (1.1) does not change under this replacement.

Next, we show that φt is continuous at t = 0 and has the desired initial
value. As in [27], the essential ingredient is a uniform bound for |Y φ(t; k)|
near the boundary S1 × X, where Y = ∂t. In fact, differentiating the
expression for φ(t; k) gives

|φ̇(t; k)| ≤ 2
k

∑N
α=0 |λα|e2tλα |sα|2∑N

α=0 e2λα |sα|2
+ εk

≤ 2
k
supα|λα| + εk ≤ C,(4.30)

where in the last step, we made use of the bound ‖Ak‖op ≤ C k provided by
Lemma 3.1. On the boundary X×S1, the monotonicity of φ(t; k) guarantees
that, for any pair k, l with k < l,

φ(t; k) − φ(t; l) > φ(t; k) − φ(t; k + 1) > δk on X × S1,(4.31)

where δk is a strictly positive constant independent of l. Since |φ̇(t; m)| is
uniformly bounded in m, it follows that φ(t; k) − φ(t; l) > 1

2δk in a neigh-
borhood Uk of X × S1 independent of l. Thus, we have for any k,[

sup
l≥k

φ(t; l)

]∗

= φ(t; k)(4.32)

in an open neighborhood Uk of X × S1. Extend now the original potential
φ on X as a function in a neighborhood of X × S1, by making it constant
along the flow lines of Y . For any ε > 0, choose k large enough so that
supX |φ(0; k) − φ| < ε. Then the above estimate for φ̇(t; k) shows that we
have

supU |φ(t; k) − φ| < 2ε(4.33)
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for some neighborhood U of X × S1 in X × D×, independent of k. This
implies that φt = limk→∞[supl≥kφ(t; k)]∗ is continuous at X × S1, and that
φt = φ at t = 0.

On the other hand, for fixed l ≥ j > k > 0, Lemma 4.2 implies that

φ(t; j) − φ(t; k) ≤ Ck,j + cj − ck + 2tf(k) − 2tf(j) − (εk − εj)|t|

≤
[

sup
k<m≤l

Ck,m

]
+ 1 − 1

2
(εk − εk+1)|t|,(4.34)

for k sufficiently large. Thus, we can make sure that

φ(t; k) > 1 + φ(t; j)(4.35)

for all j such that k < j ≤ l and all t such that

|t| > 2
2 + supk<m≤lCk,m

εk − εk+1
≡ − log rk,l.(4.36)

Clearly, we have rk,l+1 < rk,l and, by choosing Ck,l in Lemma 4.2 large
enough, we can make sure that

lim
l→∞

rk,l = lim
l→∞

rl,l+1 = 0(4.37)

for each k > 0. Thus, if we set

φ(t; k, l) = sup
k≤j≤l

[φ(t; j)],(4.38)

and let Ωk,l be the (1, 1) form on X × D× corresponding to φ(t; k, l) via
(4.16), we have, for l > k,∫

X×Drk,k+1

Ωn+1
k,l ≤

∫

X×Drk,l

Ωn+1
k,l =

∫

X×Drk,l

Ωn+1
Φ(k)

≤
∫

X×D×
Ωn+1

Φ(k) ≤ C

k
,(4.39)

where C is independent of k, l and

Dr = {w ∈ C : 1 > |w| > r}.

In the middle equality above, we made use of the fact that the volume
integrals depend only on the values of the currents in a neighborhood of the
boundary of X × Drk,l

(see, [27, Lemma 2]).
Now φ(t; k, l) is an increasing sequence in the index l which converges

pointwise, almost everywhere, to ξ(t; k) = supk≤j [φ(t; j)]∗. Let Ξk be the
(1, 1) form on D× × M corresponding to ξ(t; k). Then, by the Bedford–
Taylor monotonicity theorem [3] applied to the increasing sequence φ(t; k, l)
(see also Blocki [6] and Cegrell [8]), we have

(4.40)
∫

X×Drk,k+1

Ξn+1
k = lim

l→∞

∫

X×Drk,k+1

Ωn+1
k,l ≤ C

k
.
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Moreover, if l ≥ k,

(4.41)
∫

X×Drk,k+1

Ξn+1
l ≤

∫

X×Drl,l+1

Ξn+1
l ≤ C

l
.

Finally, since ξ(t; l) is monotonically decreasing to φ(t) (by definition of
φ(t)) we have, using the Bedford–Taylor monotonicity theorem again (but
this time for decreasing sequences):

∫

X×Drk,k+1

Ωn+1
Φ = lim

l→∞

∫

X×Drk,k+1

Ξn+1
l = 0.(4.42)

Since this is true for all k, we obtain
∫

X×D×
Ωn+1

Φ = 0.(4.43)

Thus Ωn+1
Φ = 0, and this proves the theorem.

5. Proof of Theorem 1.2

In this section, we show that if the expression N2(T )2 defined below by (5.3)
is strictly positive, then φt is a non-trivial geodesic, i.e., φt is not a constant
function of t.

Let N1 + 1 = dim(X, L) and set N = N1. Let λ0 ≥ λ1 ≥ · · · ≥ λN be the
diagonal entries of A1 and let N1 + 1 = dimH0(X, L). By Lemma 2.1 we
may assume that T is imbedded in PN and that the action ρ(τ) is given by
the diagonal matrix whose diagonal entries are given by τλ0 , . . . , τλN . As
usual, we denote by X0 ⊆ PN the central fiber of T .

Define h : PN → R by

h(z) =
∑N

α=0 λα|zα|2∑N
α=0 |zα|2

.(5.1)

We next recall the formula in Donaldson [16]:

Tr(A2
k) = N2(T )2 · kn+2 + O(kn+1),(5.2)

where the coefficient N2(T ) is given by

N2(T )2 =
∫

X0

(h − ĥ)2ωn
FS,(5.3)

and ĥ is determined by
∫
X0

(h − ĥ)ωn
FS = 0. The test configuration T is

trivial if and only if N2(T ) = 0.
Now let λ = λN so that λ ≤ λα for all α. Denote by λ

(k)
0 ≥ λ

(k)
1 ≥

· · · ≥ λ
(k)
Nk

the eigenvalues of the endomorphism Ak (for convenience, the
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eigenvalues are ordered here in the opposite order than previously). Set
λ(k) = λ

(k)
Nk

. Then λ(k) = kλ − Tr Bk
Nk

, and λ(k)k−1 has a limit. Set

Λ = lim
k→∞

λ(k)

k
.(5.4)

If N2(T ) > 0 then (5.3) implies that the average absolute eigenvalue |λ(k)
j |

has size at least k. On the other hand, since TrAk = 0, one easily sees that
|λ(k)| has size at least k and thus Λ > 0.

Next, recall that

φ(t; k) =
1
k

log

(
k−n ·

Nk∑
α=0

e2tλ
(k)
α |s(k)

α |2
hk
0

)
.

Observe that ∫ Nk∑
α=0

e2tλα |sα|2
hk
0
ωn

0 ≥ e2|tλ(k)|

so

2|t| |λ
(k)|
k

+ O

(
1
k2

)
≥ sup

Xt

φ(t; k) ≥ 2|t| |λ
(k)|
k

− n
log k

k

− 1
k

log
(∫

X
ωn

0

)
(5.5)

so, letting k → ∞,

(5.6) sup
Xt

φt = 2 |t| · |Λ|

Since |Λ| > 0, this already shows that φt is non-trivial if N2(T ) > 0. This
establishes Theorem 2.

Under the additional technical assumption (which we expect can be
removed) that for k0 large enough, [supk≥k0

φ(t; k)]∗ = supk≥k0
φ(t; k) for

|t| > tk0 � 1, then the geodesic φt can be shown to be non-trivial in the
stronger sense that it defines a non-trivial ray in H/R.

To show strong non-triviality, we observe that N2(T ) > 0 implies (and is
in fact, equivalent to) the following. There exist p ∈ X such that sα(p) = 0
for all α such that λα = λ. Fix such a p. Let γ = inf{λα : λα > λ} and
γ(k) = inf{λ

(k)
α : λ

(k)
α > λ(k)}. Note that |γ| < |λ|. Again, γ(k) = kγ − Tr Bk

Nk
,

and γ(k)

k has a limit as k → ∞,

Γ = lim
k→∞

γ(k)

k
(5.7)

satisfying |Γ| < |Λ|. Now, at the point p, we have for all k,

(5.8) φ(t; k)(p) ≤ 2|t| |γ
(k)|
k

+ O

(
1
k

)
.
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Fix ε > 0 so small that |Γ| + 2ε < |Λ|. Then there exists k0 so that

φ(t; k)(p) ≤ 2(|Γ| + ε)|t|(5.9)

for all |t| > 1 and all k ≥ k0. We have then, for |t| sufficiently large,

φt(p) ≤
[

sup
k≥k0

φ(t; k)

]∗

(p)

= sup
k≥k0

φ(t; k)(p) ≤ 2(|Γ| + ε)|t|.(5.10)

In view of (5.6), this shows limt→−∞ oscXtφt = ∞ where oscXtφt =
supXt

φt − infXt φt. Thus φt is strongly non-trivial.

6. Proof of Theorem 1.3

The formula in Lemma 8.8 of Tian [31] implies that

(6.1) lim
t→−∞

ν̇k = FCM(T )

where FCM(T ) is the CM-Futaki invariant (see [31] for the precise definition).
On the other hand, the recent work of Paul–Tian [22] shows that

FCM(T ) = F (T ) under the hypothesis of Theorem 1.3.
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