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TEST CONFIGURATIONS FOR K-STABILITY AND
GEODESIC RAYS

DuoNG H. PHONG AND JACOB STURM

Let X be a compact complex manifold, L. — X an ample line bundle
over X, and H the space of all positively curved metrics on L. We
show that a pair (hg,T') consisting of a point hy € H and a test con-
figuration T'= (£ — X — C), canonically determines a weak geodesic
ray R(ho,T) in H which emanates from hg. Thus a test configuration
behaves like a vector field on the space of Kéhler potentials H. We
prove that R is non-trivial if the C* action on Xy, the central fiber of
X, is non-trivial. The ray R is obtained as limit of smooth geodesic
rays Ry C Hy, where Hy C H is the subspace of Bergman metrics.

Dedicated to Dusa McDuff

1. Introduction

Let X be a compact complex manifold. According to a basic conjecture of
Yau [33], the existence of canonical metrics on X should be equivalent to a
stability condition in the sense of geometric invariant theory. A version of
this conjecture, due to Tian [31] and Donaldson [14], says that if L — X
is an ample line bundle, then X has a metric of constant scalar curvature
in ¢1(L) if and only if the pair (X, L) is K-stable, that is, if and only if the
Futaki invariant F(T') is negative for each non-trivial test configuration 7'
In particular, F(T)) < 0 for all such 7" should imply that the K-energy
v:H — R is bounded below, where H is the space of all positively curved
metrics on L.

Now it is well known that the K-energy is convex along geodesics of H
(Donaldson [12]). Thus, if hyp € H and if R:(—o00,0] — H is a smooth
geodesic ray emanating from hg, then the restriction of v to R is a smooth
convex function vg:(—00,0] — R and hence lim;, g = a(R) is well
defined (here g is the time derivative of the K-energy). In particular, if
a(R) < 0, then v is bounded below on the ray R.
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We are thus led to the following plan for relating K-stability to lower
bounds for the K-energy. Given a non-trivial test configuration T = (£ —
X — C) and a point hg € H,

(A) Associate to (hg,T) a canonical non-trivial geodesic ray R(T\ hg)
emanating from hyg.

(B) Prove that the quantity d(7T") defined by lim;—, o vgr = F(T) + d(T)
satisfies d(T") = 0 if Xj, the central fiber of X, has no multiplicity,
and that F(T') < 0 implies F(T) + d(T) < 0.

If this plan could be implemented, then F(T") < 0 for a single test config-
uration 7" would imply that v is bounded below on the ray R(T, hg). And
the K-stability of (X, L) would imply that v is bounded below on all the
rays R(T, hp) emanating from hy.

In this paper, we take a step in the direction of the plan outlined above.
For step (A), we start with an arbitrary test configuration 7" and an arbitrary
point hg € H. We associate to this data a weak geodesic R(ho,T") which is
upper semi-continuous (but may not be smooth). If the C* action on Xy
is non-trivial (in particular, if F'(T') # 0), then we show that R(ho,T) is a
non-trivial geodesic.

Our assignment of the weak geodesic R(ho,T") to each point hg € H is
canonical. Thus a test configuration can be viewed as a (weak) vector field
on H. Even though the precise regularity properties of this vector field are
not yet known, it is an intrinsic object which can be expected to play a role
in future developments.

We also provide evidence for step (B). The ray R(ho,T) is constructed
as a limit of Bergman geodesic rays h(t;k). Under certain geometric
conditions, (which are necessary for our proofs, but we expect can be
removed) we observe that the limit of the K-energy time derivative along
h(t; k) = hoe~ ) converges to the Futaki invariant F(T') as k — oo if Xo
is multiplicity free.

After raising £ and L to sufficiently high powers, we may assume that
L is very ample, that H°(X, L) generates @?’ZOHO(X, LF), and that £ has
exponent one (note that raising the power of the line bundle will just amount
to a reparametrization of the geodesic). These assumptions will be made
throughout this paper.

Our main results are Theorems 1 and 2 below, with relevant notation
provided in § 4.

Theorem 1.1. Let L — X be a very ample line bundle, hg a positively
curved metric on L, and T a test configuration for (X,L). Let

(1.1) g = lim (sup[(t;1)])

k—o0 >k
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Then h(t) = hoe™% is a weak geodesic ray emanating from hg. Here we
make use of the notation u*(Co) = lime—osupjc_¢<c u(¢) for any locally
bounded u: X x (—o0,0] — R.

Theorem 1.2. Assume that the action of C* on Xy is non-trivial. Then
the weak geodesic defined by ¢ in Theorem 1.1 is non-trivial.

We note that the C* action on X is non-trivial if the Futaki invariant
F(T) of the test configuration 7" does not vanish.

The following Theorem 1.3 is a direct consequence of the work of Tian
[31] and Paul-Tian [22].

Theorem 1.3. Assume that the test configuration can be equivariantly
imbedded in a proper family X — B, where X and B are smooth compact
manifolds with the property that the Chern class map Pic(B) — H?(B,Z)
is injective and Xq is multiplicity free. Then, for each k > 0,

(1.2) tl}lr_noo v, = F(T).
Here vy, is the restriction of v to the Bergman geodesic h(t; k).

Remark. Theorem 1.1 holds in a wider context than that stated above;
our proofs show that one can associate a weak geodesic ray to an arbitrary
traceless hermitian matrix A € gl(H%(X, L)) with rational eigenvalues. This
can be reduced to the integer case by a base change t — tV for some large
integer N.

To define what is meant by a weak geodesic, we start by recalling that
‘H is an infinite-dimensional symmetric space with respect to its natural
Riemannian structure (see Mabuchi [19], Semmes [29], and Donaldson
[11-13, 15]). Furthermore, the geodesic equation for hoe~®t is equivalent
to the degenerate Monge—Ampere equation

(1.3) Q" =0 on X x A4,

where A C C is an annulus (in the case of a geodesic segment) or a punctured
disk (in the case of a geodesic ray). Here 2 =  is the smooth (1, 1)-form on
X x A determined by: Q = Q-+ ‘/le@é@, where Q¢ = pjwo, wo is the curva-
ture of hg, p1(z,w) =z, ®(x,w) = ¢(x), and t = log |w|. A weak geodesic
¢¢ is one for which (24 is a plurisubharmonic, locally bounded, solution to
(1.3) in the sense of pluripotential theory [2]. (Note that the Monge—Ampere
operator Q"+ is well defined for such potentials.) We expect the solution
constructed in Theorem 1.1 to be of class C!, but this has not yet been
established at the present time.

The problem of constructing geodesic rays from test configurations has
been considered previously by Arezzo-Tian [1]. They show that, if the
central fiber of the test configuration T is smooth, then one can use the
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Cauchy—Kowalevska theorem to find a local analytic solution near infinity
to the geodesic equation, and in this way, they construct a geodesic ray
R(T) in H. In fact, they construct a family of rays R;(T"), where j ranges
over certain free parameters which determine the power series coefficients.
These rays have the advantage of being real-analytic, but it does not appear
that their origins can be prescribed by this method. Moreover, the relation
of R;(T) to F(T') is unclear.

We now provide an outline of the paper. The starting point is the approx-
imation theorem for Kéhler metrics by Bergman metrics. For k > 1, the
space Hi C H of Bergman metrics associated to L* is a finite-dimensional
symmetric Riemannian sub-manifold. If h € H and h(k) € H, is the associ-
ated Bergman metric, then the theorem of Tian—Yau—Zelditch [31, 34, 35]
implies h(k) — h in the C'*° topology.

Now fix hg,h1 € H, a pair of distinct elements, and let h(t; k) be the
unique smooth geodesic segment in Hy defined by the conditions h(0; k) =
ho(k) and h(1;k) = hi(k). It was proved in [27] that the sequence h(t; k)
converges uniformly, in the weak C° sense of Theorem 1.1, to a weak geodesic
segment h(t) in H with the property: h(0) = ho and h(1) = h;. Moreover,
h(t) equals the C! geodesic joining hg to hi, whose existence was estab-
lished by Chen [9]. We note that another approximation of the C'1! geodesic
by potentials A(t; k) in ¢1 (L) + 1c1(Kx) has been very recently constructed
by Berndtsson [4, 5].

The proof of Theorem 1.1 follows the method of [27]. First, we construct
a geodesic ray h(t; k) = hoe ?*) with h(0;k) = ho(k) that “points in the
direction of T7”. Then we prove that

(1.4) /xm Q= 0ok,

where (), is associated to ¢(¢; k). This step relies on the ideas developed
in the recent work of Donaldson [16]. It also requires some estimates
on test configurations, which include the following very simple, but basic
estimate for the endomorphisms A;, on H°(Xy, LE) determined by a test
configuration,

(1.5) [ Ak lop = O(F).

Next, we use the methods of pluripotential theory to establish the conver-
gence of the ¢(t; k). In the case of geodesic rays, the annulus A is actually a
punctured disk, and the boundary behavior at the puncture has to be treated
carefully, by controlling the asymptotics for the ¢(¢; k) at the puncture.

For Theorem 1.2, we show that, when the test configuration is non-trivial,
the sup norm of ¢; goes to oo near the puncture. This implies that the
geodesic is non-trivial. A key ingredient is Donaldson’s formula [16] for the
leading coefficient of Tr(A?).
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Regarding Theorem 1.3, we apply the formula in [31] which relates the
metric of the CM line bundle Ly to the K-energy. We then use [22] which
relates the line bundle Aqy on the Hilbert scheme to Lo

We would like to add some references that have come to our attention since
the posting of the first version of this paper. In a paper [23] which appeared
shortly after ours, Paul and Tian present several results which include, in
particular, Theorem 1.3. In fact, they actually prove a stronger result, in
which the assumption on the injectivity of the Chern map is removed. As
should be clear from its proof and as we already noted above, Theorem 1.3
was in any case an immediate consequence of their earlier work. In the recent
paper [10], Chen shows that geodesic rays parallel to a given geodesic ray can
be constructed under a certain assumption of tame ambient geometry. We
would also like to note that constructions involving upper envelopes appear
frequently in pluripotential theory, notably in the work of Kolodziej [17]
(motivated, in part, by the work of Yau [32]).
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2. Test configurations: preliminaries

2.1. Definition. Let L — X be an ample line bundle over a compact com-
plex manifold. A test configuration, as defined by Donaldson [14], consists
of the following data:

(1) a scheme X with a C* action p,

(2) a C* equivariant line bundle £ — X which is ample on all fibers,

(3) a flat C* equivariant map 7: X — C where C* acts on C by multi-

plication,

satisfying the following. The fiber X is isomorphic to X and the pair (X, L")
is isomorphic to (X1, L1) where, for w € C, X,, = 7~ }(w) and L,, = L|x,, -
After raising £ and L to sufficiently high powers, we may assume that L
is very ample, that H°(X, L) generates @5, H(X, L), and that £ has
exponent one. Thus we set r = 1.

If 7 € C* and w € C, let py(1,w): HO( Xy, LE) — H*(X;4, LE,,) be the
isomorphism induced by p. If w = 0 we write pg(7,0) = pi(7). We also let
By, € End(V) be defined by

(2.1) pr(e') = et

for t € R, and Ay the traceless part of By. The eigenvalues of A are denoted

by )\((]k) < )\gk) < ..o < )\51\27 and the eigenvalues of Bj are denoted by

ny) < < <), Thus pr:C* = GL(Vi), where Vi, = H(Xo, LE).

Let dj, = dimVj, and w(k) = Tr(By), the weight of the induced action on
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det(V}). Then, as was observed in [14], there is an asymptotic expansion
w(k)
ey

The Donaldson—Futaki invariant F'(T"), or simply Futaki invariant, of T is
defined by the formula: F(T') = F.

(2.2) =R+ Rk +RE2+. ask — oo

2.2. Equivariant imbeddings of test configurations. The construction
of the Bergman geodesics associated to a test configuration T relies on the
existence of an equivariant, unitary imbedding of 7T into projective space,
whose existence was first established by Donaldson [16]. In this section, we
begin by recalling the statement of Donaldson’s result.

Let T be a test configuration of exponent r = 1 for the pair (X, L).
For k large, since L is very ample, we have canonical compatible imbed-
dings ¢ : X1 € P(HO(X1,LY)*) and ¢ : LY — O4(1), where O,(1) —
P(H"(X,, LF)*) is the hyperplane line bundle, where H%(X,,, L% )* is the
dual of H°(X,,, LF).

One can show that the bundle 7, £F — C has an equivariant trivialization
and thus the test configuration has an equivariant imbedding into projec-
tive space. To be precise, let © be an arbitrary vector space isomorphism
0:HO(Xo, LE) — HO(X1,L%), let X* = 771(C*) and let LX = L|yx.
Define an imbedding Ig : (£*)* < Op(1) x C* by the formula

(2.3) Lo(p(7)1) = [(p(T)O" (1 (1)), 7],

where 7 € C*, [ € L} and ©*:0;(1) — Op(1) is the isomorphism induced
by the dual vector space isomorphism ©*: HO( Xy, L¥)* — H (X, L§)*. We
similarly define the imbedding Ig : X* — P(H(X,, L)) x C*. Then we
say © : HO(Xo, LE) — HO(X1, L¥) is a “regular generator of T” if Ig extends
to an imbedding £* < Og(1) x C which restricts, over the central fiber, to
the canonical embedding L§ < Og(1).

Next let h be a fixed metric on L. It is shown in [16] that there exists
an regular generator © which respects h structure in the following sense.
The metric h defines a hermitian metric Hy on H°(X, L*) by the formula
(s,8") = [(s,8")prw™, where w is the curvature of h. If © is a regular
generator of T, then we can use the isomorphism © : Vi, — HO(X, L*) to
define a metric on Vi, which we call H(0). Let By be the endomophism
of Vi defined by: pi(et) = e!Br for t € R. We say O is a regular hermitian
generator if By is hermitian with respect to Hx(©). In other words, © is
regular hermitian if pg(7) : Vi — V4 is an isometry for |7| = 1.

In [16, Lemma 2|, the following is proved.

Lemma 2.1. Let T be a test configuration for (X,L) and h a positively
curved metric on L. Then there exists O, a reqular hermitian generator
for T. The metric Hy, = Hy(©) is independent of the choice of such a ©.
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Moreover, the map © : Vi, — HY(Xq, Llf) s unique up to an isometry of Vi
which commutes with By,.

There are actually several closely related other versions of this lemma,
namely Lemmas 2.3 and 2.7 below. See the remark after the statement
of Lemma 2.3 for the precise relationship between these versions and the
version appearing in [16].

For the sake of exposition and completeness, we shall provide a com-
plete proof of Lemma 2.1 (which is of course essentially the one which
appears in [16]).

Let E — C be an algebraic vector bundle of rank r. Then E(C), the space
of global sections of E, is a free C[t] module of rank N +1. A “trivialization
of E” is just a choice of ordered basis Sy, ..., Sy of the C[t] module E(C).

If Sp,..., Sy is a trivialization of E, and if ¢ € C then Sy(t),...,Sn(t)
is a basis of the fiber E;, and so we have a well defined isomorphism ¢y, , :
Ey, =~ E, for any pair t1,t; € C, which takes the basis S;(¢1) to the basis
Sj(t2). The collection {¢, s, } defines a regular cocycle, that is: ¢, 1, P, 1, =
G151, and for every e € Ey, the map t — ¢4, (e) is a global section of E.
Conversely, a regular cocycle ¢y, ;, defines a trivialization of E.

Now suppose EE — C is a vector bundle with a C* action, covering the
usual action of C* on C. This means that we are given an algebraic map
p: C* = Aut(E — C). Thus, if 7 € C* then p(7) : E — E is a function
with the following properties.

(1) The function p(7) maps the fiber E; into the fiber E.;, that is:

m(p(1)e) = p(7)m(e).

(2) The function p(7) : By — E.; is an isomorphism of vector spaces.

(3) If 7,70 € C*, then p(1172) = p(11)p(72).

(4) The map C* x E' — E given by (7,e) — p(7)e is algebraic.

Let Sp,..., Sy be a basis of global sections for F. If S : C — E is an
arbitrary global section, and if 7 € C*, then SP(7)(t) = p(7)~1S(rt) is also
a global section. Hence, there is a matrix A(7,t) € GL(N + 1,C[r,771,])
with the property:

(2.4) 577 = A(r,1)8,
where § is the column vector whose components are the S;. Note that
ST = p(rym1) ' S(rema) = p(m1) " Alre, Tit) S(m1)
= A(ro, m1t)A(71,t)S(x)
where, in the last equality, we are using the fact that p(r;)~! is linear on
the fibers. Hence:
(2.5) A(rory, t) = A(1e, T1t)A(T1, 1)
In particular, if A(7) = A(7,0) then A(7) : C* — GL(N + 1,C) is a one

parameter subgroup.
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With these preliminaries in place, we now show that if £ — C is an vector
bundle with C* action, then E has a C* equivariant trivialization.

Lemma 2.2. Let E — C be a vector bundle of rank r = N + 1 with a
C* action. Then there exists a basis of global sections Sy, ..., Sy such that
A(r,t) is independent of t, that is, A(T,t) = A(7,0) = A(7). In other words,
there exists a regqular cocycle {¢¢, 1, } satisfying

(2.6) P(T) bty p(T)™F = brtg ety

The basis So, ..., SN is unique up to change of basis matrices M(t) €
GL(N + 1, C[t]) with the property: M(tt) = A(T)M(t)A(7)~!.

Proof. Choose any Cl[t] basis Sp,...,Sy € E(C) and define A(r,t) €
GL(N + 1,C[r,771,#]) as in equation (2.4). Thus det(A(r,t)) = arP =
det(A(7)) for some integer p and some a € C*. Now consider the set

S=1{s/"":reC*0<j<N}

Let V C E(C) be the complex vector space generated by S. We claim that
V' is finite-dimensional and invariant under the action of C*. In fact, since
SP(T) = A(T,t)S, we see that the S;(T) are all linear combinations, with C
coefficients, of elements in the set {¢t"S;: 0 < j < N,0 < m < M}, where
M 1is chosen so that the entries of A(7,t), which are polynomials in ¢ with
coefficients in A[r,77!], all have degree at most M.

Choose a basis {T,,;0 < p < K} of V with the property Tﬁ(ﬂ = 7T,
for some integers [,,. Choose pj,0 < j < N such that T}, (0) are linearly
independent. This can certainly be done since the T}, span V', and V' contains
the S;. Let T be the column vector consisting of the 7),.. Then T'(t) =
C(t)S(t) for some (N + 1) x (N + 1) matrix C(t) with coefficeints in C[t],
for which C(0) is invertible. The existence of such a matrix is guaranteed
by the fact that the S; form a CJt] basis of E(C). Replacing S by C(0)S

does not change V' and allows us to assume C(0) = I. Now
T70(t) = p(r)"'T(rt) = p(r) ' C(r1)S(7t) = C(rt) A(, 1)S(t).

On the other hand, 777 (t) = U(r)L(t), where U(7) is diagonal with dia-
gonal entries of the form 7!. Hence

U(7)8(0) = U()T(0) = T"7(0) = 577 (0) = A(7)S(0)
so U(t) = A(7). Thus

C(rt) A, 0)S(t) = 777 () = A(T)L(t) = A(T)C(1)S(t)
which implies: A(7)C(t) = C(7t)A(7,t). Since det(A(7)) = det(A(r,t))
for all ¢, we have det(C(7t)) = det(C(t)) which means that det(C(t)) is

independent of ¢. Since C'(0) = I, we conclude that det(C(¢)) = 1 and this
implies that T is a C[t] basis of F(C). This now establishes Lemma 2.2.
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At this point, we can prove the existence of a regular generator for 7.
Let B = 7.(L*)* so that E; = H(X;, LF)*. Then we define ©* : E; — Ej
by the formula: ©* = ¢ where ¢y, +, satisfies (2.6), with p(7) replaced by
p*(1) = p(771)*. One easily checks that © is a regular generator of T

Lemma 2.3. Let Hy be a hermitian metric on E1. Then there is a unique
equivariant trivialization ¢, 1, such that p(T)_1(Z57-71 : E1 — FEy is an isometry
for all T € C* with |7| = 1.

Our formulation of Lemma 2.3 is somewhat different from that given in
[16, Lemma 2]. The precise relation is as follows. Lemma 2 in [16] says
that there is an equivariant trivialization F' : C x Ey — E which takes a
hermitian metric H; on the fiber at 7 = 1 to a hermitian metric on the
central fiber which is preserved by the action S ¢ C* on Ey. This is the
content of Lemma 2.3 above, which is stated in terms of the cocycle ¢y, 4,.
The precise relationship is

F(t,e) = ¢o+(e).

Proof of Lemma 2.3. Let {¢, +, } be any equivariant trivialization. Consider
the decomposition Ey = @V into eigenspaces for the action of C*. Let 7%
be the restriction of p(7) to the subspace V;. We may assume that w; <
wy < --- < wj. Thus 22‘:1 w;dim(V;) = N + 1 = dim(Ep). Let eg,...,en
of Ey be given by the union of the bases of the V; and define S;(t) = ¢¢0(e;)
and let W; = ¢¢ (Vi) C Eq. Then Sy, ..., Sy is a trivialization of £ — C.

Let A(7) be the diagonal matrix which represents the automorphism
p(T) : Ey — Ey with respect to the basis e;. Then A(7) also repre-
sents the automorphism p(T)*lqﬁTJ : F1 — FE; with respect to the basis
S;j(1). We want to modify the equivariant trivialization ¢y, s, in such a way
that this automorphism is an isometry. To do this, we must find a matrix
M(t) € GL(N + 1, C[t]) satisfying:

(1) M(rt)A(T)M(t)~! = A(7) for all ¢, T;

(2) M(1)S;(1) is orthonormal with respect to H.

The first condition says that M (t) is a block matrix with blocks t"i~ "7y,
where «;; is independent of t. Since M(t) € GL(N + 1, CJt]), this implies
that a;; = 0 if 4 < j. Thus M(t) is lower block triangular. On the other
hand, the usual Gram—Schmidt process allows us to choose an M (1) of this
form which satisfies condition (2). First choose an orthonormal basis of W.
Then choose an orthonormal basis of VVOl C Wy @ Wy, etc.

Finally we prove uniqueness. Let M (t) € GL(N + 1, C[t]) satisfy (1) and
(2) and assume furthermore that the e; are orthonormal and that M (0) = 1.
Then we must show that M (t) = I for all t. Since the e; are orthonormal,
the matrix M (1) is unitary. On the other hand, it is lower block triangular.
This implies it is block diagonal. Since the 4, j block is of the form ¢*~*J a;,
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and since «;; = 0 for ¢ # j, we see that M (t) is independent of t so M (t) =
M(0) = I. The lemma is proved.

Note that if ¢ is any equivariant trivialization, then p(7) 1¢,1 : C* —
GL(E1) is a homomorphism:

p(71)71¢71,1p(7—2)71¢72,1 = p(TlT2)71¢T1T2,T2¢TQ,1 = p(TlTQ)il(belTQ,l
where the first equality makes use of the equivariance property of ¢, and
the second follows from the cocycle property of ¢. Thus the theorem can
be restated as follows. There exists an equivariant trivialization ¢ such that
p(1) " Lpr1 : St — GL(E}) is a unitary representation.

To deduce Lemma 2.1 from Lemma 2.3, we again define ©* = ¢q .
Let 7 € C* be of unit length. Then to show pp(7)* : V' — V* is
an isometry is equivalent, by definition of the metric on Vi, to showing
(") L pp(7)*0* : H(X1, LF)* — H(X1, LF)* is an isometry. Thus we must
show ¢1,00k(T)* 0.1 = 1,005 (7)o, is an isometry. But (2.6) implies

$1005(1" o1 = p*(1) b0 = p*(1) b
which is an isometry by the result of Lemma 2.3. This proves Lemma 2.1.

3. Estimates for test configurations

3.1. Bounds for Aj. Let T be a test configuration, and define the endo-
morphisms A and By and their eigenvalues A&k) and n&k) as in § 2.1. The
following simple estimate for the operator norm ||Ag|lop of the endomor-
phisms A plays an important role in the subsequent bounds for the total

masses of the Monge—Ampere currents.

Lemma 3.1. There is a constant C' > 0 which is independent of k such that
\)\&k)\ < Ck for all k > 0 and all o such that 0 < a < N.

Proof. After applying Lemma 2.1 with £k = 1, we may assume that X C
P™ x C, m = N; + 1, and that p(7) is a diagonal matrix in GL(m + 1)
whose entries are 7°, ..., 7™ where g < --- < n,,, are integers. The scheme
Xo C P™ is defined by a homogenous ideal I C C[Xj, ..., X;,] and we write

C[Xo, ..., Xm]/T = P St/ Ix,
k>0

where S C C[Xo,...,X,,] is the space of polnomials which are homoge-
neous of degree k and I = Sx N I. Then, for k > 0, we have H°(Xy, LE) =
Si/Ix. The matrix p(7) defines an automorphism of C[Xy, ..., X,,], deter-
mined by the formula: X; ~— 77 X;. This automorphism leaves S} and
I}, invariant, and thus it induces an automorphism of Sy /I which is, by
definition, the map pg(7).

The monomials of degree k form a basis of S; which are eigenfunctions
of p(7). More precisely, if XP is a monomial, with p = (pg,...,pm) and
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po+- -+ pm =k, then we have p(7)- XP = 7P X“. Since the monomials of
degree k span Si/ I}, some subset form a basis of eigenvectors for that space.
Thus the eigenvalues of the By, form a subset of {p-n:py+ -+ pm = k}.
On the other hand, for such an p, we clearly have |p-n| < sup|n;| - k and
this proves that

(3.1) M| < Ck,

with C' = supg< <, [7j|- On the other hand,

TI‘(Bk)
(k) — (k) _ Z\ZR) (k)
(3.2) N =) =y =+ Olk).

This proves Lemma 3.1.

3.2. An alternative characterization of the Futaki invariant.

3.2.1. The FY functional. Let X be a compact complex manifold of
dimension n and w = wy a Kahler metric on X. Let H = H, be the
space of Kahler potentials:

(3.3) Hw:{¢€CW(X):w¢:w+\/2_T88¢>O}.

The functionals F0, v, : H — R play an important role in Kéhler geometry
and are defined as follows:

FY0) = -5 (Aw“)_ljé/)(¢wgw”—j,
- (/}(w")lew),
(3.4 wio) == ([ w")l / 1 [ éts = st ar

Here ¢, 0 <t < 1, is a smooth path in H,, joining the potential ¢y for wq
to ¢ = ¢1. Then a simple calculation shows
(3.5)

Bu(dr) = (n+ 1) /X ot and E(é) = (n+1) /X (G0 — 1064%) Wl

Thus E satisfies the cocycle property: E,(¢) + Eu,(¥) = Eu(¢ + ). Note
as well that if f : Y — X is a biholomorphic map, then

(3'6) Ef*w(¢ o f) = Ew(¢>
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3.2.2. The Chow weight and the Futaki invariant. Let V' be a finite-
dimensional vector space, Z C P(V) a smooth subvariety, and B € gl(V).
Then we wish to define the generalized Chow weight u(Z, B) € R. We start
by assuming the V = CV*! so that Bis a (N + 1) x (N + 1) matrix. Let
wrs be the Fubini-Study metric on PV. We shall also denote by wpg the
restriction of the Fubini-Study metric to Z. For ¢t € R, let o, € GL(N+1, C)
be the matrix o; = et and let Py e PN — R be the function

o2 |?
El.

(3.7) Yi(2) = log

Here we view z as an element in PV and, when there is no fear of confusion,
a column vector in CV+H1, B
Then 1 is a smooth path in H. In fact, ofwrs = wrs + —V2_1881/Jt. Define

(3.8) p(Z,B) = = lim_Euy (1) = —E(~00)

Note that the function E(t) = E,.s(¢:) : R — R is convex (see [24, 25]),
so the limit in (3.8) exists.
Next we compute the derivative of E(t):

d z*o} - (B+ B*) -0z , ,
s ) = (1) [ 28 ofull

z*ojoz
z*-(B+B*) -z
(3.9) = (n+ 1)/ BrB) 2 n
oi(Z) A4

where, for C' a matrix with complex entries, we write C* = *C. In particular,
(3.10) Euops (¥1)|i=0 = E(0) = (n+ 1)Tr((B + B*) - M)
where

Za?
(3.11) Mag = Map(Z) = | ﬁ whs.

Lemma 3.2. Let V be a finite-dimensional complex vector space, B € gl(V)
and Z C P(V) a smooth subvariety. Let § : V — CNT! be an isomorphism.
Then u(0(Z),0B071) is independent of 6.

Proof. We make use of the formula of Zhang [36] and Paul [21] (see also

[24, 26]): If Z C PY(C) is a subvariety of dimension n and degree d, let

Chow(Z) € P(H°(Gr(N —n,CN*1 0(d)))) be the Chow point of Z C PV.
2

If B€gl(N+1,C), 0y =B, and ¢, = logM then

EN

|o¢ - Chow(Z)]|? 1 |Chow (0. 2)||?

(3.12) EwFS|Z(¢crt> = log HChOW(Z)HQ Ogm

where || - || is the Chow norm defined on H°(Gr(N —n, CN*1 O(d))).
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Suppose M € GL(N + 1,C). Then

Mo, M~ - Chow(MZ)||?
|Chow (M Z)|2

(313) EwFs|1uZ (wMUtM_l) = log
Subtracting (3.12) from (3.13) we get
EWFSlMZ (¢M0'tM_1) - EwFs|Z(q/)Ut>
| Moy - Chow(Z)|? | M - Chow(Z)||?
= log — log
lo - Chow(Z) |2 |Chow(Z)]]?

which is a bounded function of ¢, and hence the limit of its first derivative
is zero. This proves Lemma 3.2.

Now let Z C P(V) and B € gl(V). Let § : V. — CN*! be an isomorphism
and define u(Z,B) = p(A(Z),0B6~1). The lemma guarantees that this
definition is unambiguous. Note that (3.12) shows that u(Z, B) is just the
usual Chow weight. (The Chow weight is normally defined only when B
is a traceless diagonalizable matrix with integer eigenvalues, but we find it
convenient to work with this somewhat more general notion.)

If 7 € GL(V) then
w(r(2), B) = (07(2),0B97") = u((67)(2), (07)7 " Br(9m) 7).
We conclude that
(3.14) w(t(Z), B) = w(Z, 71 Br).

In particular, if 7 commutes with B, then u(Z, B) = u(7(2), B).

If we replace the functional E by v, the K energy functional, we
may define a corresponding invariant ji(Z, B) for Z C PY(C) and B € gl
(N+1,C):

(3.15) i(Z,B) = tEl—noo fijs(wt)-

It will be convenient for us to introduce an alternative characterization of
the Futaki invariant. Fix, once and for all, an isomorphism x : (X, L") —
(X1, L1). We continue to assume that » = 1 (the case r > 1 can be treated
in a similar fashion). Then we have an induced isomorphism HY(X, L¥) =
HO(Xy, L¥).

Let © be an equivariant trivialization of m,£*. Then

Iolx, : X1 = P(H°(Xy, LY)).

Let Zy C P(H°(Xo,L)*) be the image of Ig|y, and Z,go) the image of
the canonical imbedding Xo C P(H®(Xy, L%)*). Note that Z; depends on
the choice of ©, but that if ©" is another choice, then ©' = U®© where
UAj = AU, and thus the value u(Zy, Ax) is independent of the choice of
equivariant ©.
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Lemma 3.3. We have

(3.16) F(T) = —c(X,w) - lim M2k A8

k—o0 kn ’

where ¢(X,w) = m Jxw"

Proof. Since this argument is implicit in Donaldson [14], we only briefly
sketch the proof (see as well Ross-Thomas [28]). If Z C PV and A : C* —
SL(N + 1,C) is a one parameter subgroup, let A € sl(N + 1) be such that
AMet) = e and Z©) = lim, o A(7)(Z) (the flat limit) so Z(O C PV is
a subscheme of PV with the same Hilbert polynomial as Z. Let My =
O(1)| 5. Then A\(7) defines an automorphism of H%(Z® M}) and we let
w(Z, A,p) be the weight of this action on det(H®(Xo, MF)). It is known
that w(p) is a polynomial in p for p large such that

Z, A
(3.17) w(Z,A,p) = Z”E‘f" 1))' p" 4 0@p") and @(Z@,1)=0

(see, for example, Mumford [20]). Now let T be a test configuration, let

r > 0 and consider Z, C P(H"(Xo,L5)*). Applying (3.17) to Z = Z,,

A =rN,A, and My = Lg, we get

:U’(er TN’I’A’I‘)
(n+1)!

On the other hand, since M§ = L{?, we get, with k = rp:

(3.19)  @(Z.,rN, A, p) = w(k)rN, — w(r)kNy, = ep(r)k" ™ + O(k™),

where e is a polynomial in r of degree at most n. If follows from the
definition of F/(T) that —F(T") is the leading coefficient of er(r). Comparing
with (3.18) we get

(3.18) W(Zyp, 7N Ay, p) = p"t 4 O(p™)

,U/(ZT‘7TNTAT‘)
r—oo rrntl(n 4 1)!

Since 7 "N, = L [w" 4+ O(r~!), Lemma 3.3 follows.

n!

= —F(T)

4. Completion of the proof of Theorem 1.2

4.1. The Tian—Yau—Zelditch expansion. Let L — X be an ample line
bundle over a compact complex manifold X. If h is a smooth hermitian
metric on L then the curvature of h is given by w = R(h) = —@85 log h.
Let H be the space of positively curved hermitian metrics on L. Then H
contains a canonical family of finite-dimensional negatively curved symmet-
ric spaces Hp, the space of Bergman metrics, which are defined as follows.
For k> 0 and for s = (sq,...,sy,) an ordered basis of H(X, L¥), let

Ls 2 X s PNk
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be the Kodaira imbedding given by x — (so(z),...,sn,(z)). Then we have
a canonical isomorphism ¢, : L¥F — 1;0(1) given by

(4.1) Ls(1) = [(3031”) — i] :

s S S

where | € L* and s is any locally trivializing section of LF.
Fix hg € H. Let hpg be the Fubini-study metric on O(1) — P"* and let

(4.2) hs = (Ghrs)V/* =

1k
N,
(0o lsal2,)

Note that the right-hand side of (4.2) is independent of the choice of hy € H.
In particular,

(4.3) > |say§g = 1.

Let
Hy. = {hs : s a basis of HO(X,LF)} C H.

Then Hy, = GL(Ni+1)/U (N +1) is a finite-dimensional negatively curved
symmetric space sitting inside of H. It is well known that the Hy are topo-
logically dense in ‘H. If h € H then there exists h(k) € Hj such that
h(k) — h in the C* topology. This follows from the Tian—Yau-Zelditch
theorem on the density of states (Tian [30], Yau [33], and Zelditch [35]; see
also Catlin [7] for corresponding results for the Bergman kernel). In fact,
if h € H, then there is a canonical choice of the approximating sequence
h(k). Let s be a basis of H(X, L*) which is orthonormal with respect to
the metrics h. In other words,

(4.4) (Sa,S3)n = / (Sa, $g)pe W = 0qp where w = R(h).
X

The basis s is unique up to an element of U(Ny + 1). Define pg(h) =
pe(w) = >, sal3r. Then [35, Theorem 1], which is the C°° version of the
C? approximation result first estsablished in [30], says that for h fixed, we
have a C'®° asymptotic expansion as k — co:

(4.5) pe(W) ~ K" 4 A (W)E" !+ Ag(w)k" T 4 - -

Here the Aj(w) are smooth functions on X defined locally by w which can
be computed in terms of the curvature of w by the work of Lu [18]. In
particular, it is shown there that

(4.6) Ar(w) = s(w),

where s(w) is the scalar curvature of w.
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Let 5§ = k~™/2s and h(k) = hz. Then (4.2) and (4.5) imply that

h(k) s(w) 1 1 B 1
h o o ‘kzw(m)’ wik) =w+0 (k;z>
A7) G(k)=+0 (,:2)
Here, as before, w = R(h), w(k) = R(h(k)), h = hoe~?, and h(k) = hoe (k).

In particular, wy + @&%b(k:) =w(k) = %L;WFS.
Lemma 2.1 can now be conveniently reformulated as follows.

Lemma 4.1. Let p : C* — Aut(L — X — C) be a test configuration T
of exponent one for the pair (X, L), where L — X is ample. Let ho be a
positively curved metric on L — X. Let k be an integer such that L* is very
ample. Then there is

(1) an orthonormal basis s = (so, ..., sn,) of HY(X, L¥) = H(Xy, L}),

(2) an imbedding I, : (LF — X — C) — (O(1) x C — P x C — C),
satisfying the following property: the imbedding Is restricts to vs on the fiber
L]f and Iy intertwines p(T) and Bx . More precisely, for every T € C* and
every l, € qu,

(4.8) Ii(p('r)lw) = (TBk Ay (lw) 77w> )

where TP is a diagonal matriz whose eigenvalues are the eigenvalues of
pr(T) : Vi = V.

The matrix By is uniquely determined, up to a permutation of the
diagnonal entries, by k and the test configuration T. Moreover, the basis
s is uniquely determined by ho and T, up to an element of U(Ny + 1) which
commutes with By. The image of X1 is Z,, C Pk,

This lemma can be illustrated by the following simple example:

Example. Let \g,...,Any be a sequence of integers, and, for 7 € C*, let
o(7) be the diagonal matrix whose entries are 7°,...,7*. Then o(7)
defines maps o(7) : PV — PV as well as o(7) : O(1) — O(1).

Let X C PY be a smooth projective variety and assume that for all
7 € C* we have o(7)(X) = X. Let L = O(1)|x so that o(7) : L — L and
let h be a hermitian metric on L which is invariant under the S' action:
o(r)*h = h for all 7 with |7| = 1.

Now define a test configuration 7" as follows: X = X x C and £ = n{L,
where m; : X — C and m : X — X are the projection maps. Here we let
p(7) : X = X be the map p(7)(x,t) = (o(7)x, 7t). We wish to spell out the
basis s and the imbedding I, from Lemma 4.1.

To do this we fix & > 1 and let 0, : C* — HO(X,L*) be the
action on H°(X, L*) induced by . To describe o} concretely, we define
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an action of C* on C[Xy,...,Xy]| by the formula: F7(Xp,...,Xn) =
F(™Xo,..., 7"V Xy). We let Ry C C[X), ..., Xn] be the space of polyno-
mials which are homogeneous of degree k£ and let Zp C Ry be the subspace
which vanishes on X. Then Rj and Z are invariant under the C* action,
and thus there is a well defined C* action o on H%(X, L*) = Ry/Z;.

Now we decompose the vector space HO(X,L¥) = U} @ --- @ U,, where
the U; are the eigenspaces of the matrix oy (7). This means that there are
distinct integers a; such that oy (7)(vj) = 7%w; for all v; € Vj. Since h is
invariant, we have (v;,v;) = 7% 7% (v;,v;) whenever || = 1. Thus V; and V
are orthogonal if j # [.

Fix an orthonormal basis B; of each V;, and let s be the basis of H°(X, L¥)
defined by s = (By,...,B;). Define Iy : (L* xC - X x C — C) —
(O(1) x C — PN x C — C) as follows: Iy(z,t) = (so(z),...,sn(x);t).

4.2. Growth bounds for the Bergman geodesic rays. We make precise
the notation which appears in Theorem 1.1. Let L — X be an ample line
bundle over a compact complex manifold, and H the space of positively
curved metrics on L. Let hg € H and let T be a test configuration for the
pair (X, L) of exponent 7. We wish to associate to the pair (hg,7") an infinite
geodesic ray in H whose initial point is hg. After replacing L by L" we may
assume, without loss of generality, that » = 1 and that L is very ample.
Let k£ be a large positive integer and choose s, an orthonormal basis of
HY(X,L*) as in Lemma 4.1. Define Ay to be the traceless part of By and
let )\ék) < )\gk) << )\5\2 be the diagonal entries of Ag. Set § = k2

so that hy = ho(k), where h; is defined as in (4.2). Now let 5(t; k)
(etr035g, ™3y, ..., eV 5y), and define

»

(4.9) h(ti k) = hggp) = hoe k) = ho(k)e~ (SR —e(k))

so that h(t; k) : (—o0,0] — Hj is a geodesic ray in Hy and h(0; k) = ho(k).
In particular, we have

Ny,
1 —-n
(4.10) o(t; k) = Z log (k‘ : Z 62'”\“|5a],21§)

a=0
1 Al
= % log (k_n : ZO 62t/\a |5a’i0(k)k) + (’b(k)
Let
—w(k) _F(T) 1

where w(k), dj, and Fy are defined as in (2.2). In particular, f(k) = O(%).
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Lemma 4.2. Let k,l be positive integers with k < l. Then there exists
Cr,y > 0 with the following property:

(412) =G <[t 1) +2t- F(D] = [B(t: )+ 2t - F(R)] < Cho.

Proof. If suffices to prove (4.12) in the case k = 1. Then, replacing [ by k,
we have

[6(t: k) +2¢ - F(k)] — [6(t: 1) + 2t - F(1)]
(ol e Zk)l/k

N 2tnD
(zgzo 201 |sﬁr,%o)
(k)

N, are the eigenvalues of the diagonal matrix By,

(4.13) = log

where n((]k) < n%k)

N = Np and sg = sg).

We now have

N N,

O 1 (k)|

(4.14) log g e*! salh, | = %log (g ?tna lsgk)]ig) + O(1),
£B=0 a=0

where the O(1) term is independent of ¢, and, for n € Z,

(50 P =y c {shr @@ € HOUX, LN 0> py =k,
B

(4.15) and Y panl) =1y,
5

is a maximally linearly independent subset. On the other hand, (s(()k), ey

35\12) and (§(Ok), . ,55\’2) are two bases of the same vector space which differ
by a lower block triangular matrix. This proves Lemma 4.2.

4.3. The volume formula. Let ¢; : [a,b] — H,, be a smooth path and let
Upp ={w e C*:e* < |w| < e’} Let M,y =X x U,y and Qp be the (1,1)
form on M, defined by pulling back wg. Define ®(z,w) : M, — R by

(4.16) O(z,w) = ¢(z) where t = log |w|.
Let Qg be the (1,1) form on M, defined by Qg = Q9 + ¥5L99®. Then

(4.17) Qutt = 1(g'z;t — |06 *)w, A <*/2jl

1 dw/\dz@) .
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In particular, we have the key observation of [12, 19, 29]:
Qg_‘—l =0 <— Qgt — |8¢5t|3¢t =0
(4.18) <= ¢ is a smooth geodesic in H.

We say that a function ¢;(x) on [a, b] x X is a weak geodesic if ® is bounded,
plurisubharmonic with respect to g, and if Qg“ =0.
Finally, we obtain, using (3.5), the following useful volume formula [27]:

(4.19) (n+1) /xw Qi = E,(0) — Eu(a),
where E,(t) = E,(¢¢).

4.4. Volume estimates for the Monge—Ampeére measure. We first
need a few lemmas. Let D* = {w € C: 0 < |w| < 1}. We associate to
¢(t; k) the function ®(k) on X x D* as in (4.16):

(4.20) O(k)(z,w) = ¢(t;k)(z) where ¢t = log |w|
and we let €2y be the pullback of wy to X x D* and we let Qg = Qo +
Y100 (k).

Lemma 4.3. We have limj_,o [, px Qg?kl) = 0. In fact,
n+1 -1
(4.21) /Xxm il = O,
Proof. According to (4.19),
n+l __ 0. n T o n
az) [ agp = [ 60k e — fim [ 9t @

Hence it suffices to show that each of the two terms in (4.21) is O(%)

Let 4(t; k) = k[¢(t; k) — (k)] + nlogk. Then o(t; k) = log “‘”fj , where

op = et Recall that wy + @88(;5( ) = wo(k) and wo(k) = g tywrs. Thus
v—1_x 14—
w(z,(t;k) = wo + T@ﬁgﬁ(t, k) = LU()(k) + %Taawt

1 v—1_=
= —u; | wrs + —=—00Yx |.
k= 2
Since we also have ¢(t; k) = %&(t; k) we conclude that

. 11 , -1, \"
(n+1) /X Pt k) wgppy = (n+1) - [T (e <wFS + C33¢t>

11 .
(4.23) =2 Bors (V).
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Thus
: oo 11 u(Zk, Ag)
(4.24) - Jim [ 968 @y = T
Now, according to Lemma 3.3, % has a finite limit as k tends to

infinity. In fact, the limit is equal to F'(T), the Futaki invariant. Thus the
second term in (4.22) is O(4).
In order to treat the first term, we require the following result from [16].

Lemma 4.4. Let L — X be an ample line bundle over a compact complex
manifold X and h a metric on L with posz’tive curvature w. Let s be an
orthonormal basis of H°(X,L¥) and let 15 : X — PN be the associated

Kodazm imbedding. Let Zj, be the image of ts. Define M(ﬁ) = Mug(Zi) as
in (3.11). Then

o h(k)\* wlk)"
M(k) — / “ Zﬂ :/ . 7 . -
B Zy, 2|2 s X<Sa7$ﬁ)hk h W™ w

_ n -1 e n L
B (m/x‘” >Nkf5aﬂ k /(Savsﬁ)hk[S(W) 5w+ O0(k™?)
k" Tal
w" ) <=0 —kl/ @B ls(w) — §] whs + O(k™2),
o) ot 22 5(w) - 3] s + (k)
where § € R is defined by: [y [s(w) — §Jw™ = 0. The proof of Lemma 4.4

follows from (4.7).
We return to the proof of Lemma 4.3: Applying (4.25) to (3.10) we obtain:

(4.25)

I
A~
S|

1 . 1 1 12
. n _ . . M (R
n+1 /X(b(o’ k) w¢)(0;k) - L kn WFS(wt) ktr(Ak )

(k)

—/Z Sas Sa)p [5( ) — 8w

(4.26) +O(k™2

11
— - Ao
g 2

where in the first equality we use the fact that A, = A} and in the last

equality we have made use of the fact that Ay is traceless.
If we apply Lemma 3.1 to equation (4.26) we obtain

(4.27) '/Xc.b(o;k) Wes(0:k)
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where C" = C'supy |s(w) — §|. The first term equals "+ M+l Since Mt

is bounded as a function of k, the first term is O(k~1). Similarly, the second
term is O(k~2).

4.5. The Monge-Ampeére equation on a punctured disk. We now
complete the proof of Theorem 1.1. As in the proof of [27, Theorem 3|, we
can choose a sequence of positive real numbers c; \, 0 in such a way that

(4.28) &(0;k) + e > d(0;k+ 1) + cggq-
Indeed, by the Tian—Yau-Zelditch theorem, supy|#(0; k) — ¢| < Ck~2, so
that the sequence ¢, = 2C Zjij_Q is such a choice. Choose also ¢, =
k~1/2 and make the replacement
(4.29) ot k) — ot k) + cp — ext.
Then it is still true that ¢(0; k) — ¢, and that ngJ(“,:) = O(3). Moreover,
the value of ¢y, as defined in (1.1) does not change under this replacement.
Next, we show that ¢, is continuous at ¢ = 0 and has the desired initial
value. As in [27], the essential ingredient is a uniform bound for |Y ¢(t; k)|
near the boundary S' x X, where Y = ;. In fact, differentiating the
expression for ¢(t; k) gives
. 25N \a]e2tre sy 2
|¢(t’k)’§k2a_](\)]‘ OéL)\ |2Oé’
2 a=0 € |al
2
(4.30) < %supa|)\a| +e, <C,
where in the last step, we made use of the bound ||A|lop < C'k provided by

Lemma 3.1. On the boundary X x S', the monotonicity of ¢(¢; k) guarantees
that, for any pair k,[ with k <,

(4.31) o(t; k) — o(t;1) > p(t; k) — d(t;k+1) > 6, on X x S,

where J; is a strictly positive constant independent of [. Since |<;3(t; m)| is
uniformly bounded in m, it follows that ¢(t; k) — ¢(¢;1) > 6), in a neigh-
borhood U}, of X x S! independent of {. Thus, we have for any £,

(4.32) [sup ¢(t;l)] = ¢(t; k)

>k
in an open neighborhood Uy of X x S!. Extend now the original potential
¢ on X as a function in a neighborhood of X x S', by making it constant
along the flow lines of Y. For any € > 0, choose k large enough so that
supx |¢(0; k) — ¢| < e. Then the above estimate for ¢(t; k) shows that we
have

(4.33) supy |6(t; k) — ¢ < 2¢
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for some neighborhood U of X x S' in X x D*, independent of k. This
implies that ¢; = limy_,o0[sup;>;@(¢; k)]* is continuous at X x S', and that
¢r=¢at t =0. B

On the other hand, for fixed [ > j > k > 0, Lemma 4.2 implies that

o(t;5) — ot k) < Cj +¢j — e+ 2tf (k) — 2t f(j) — (e — ;)¢

1
+1— S(ex — eny1)lt],

(4.34) < >

sup Ckm
k<m<l

for k sufficiently large. Thus, we can make sure that
(4.35) Gt k) > 1+ 6(t: )

for all j such that k < j <! and all ¢ such that

2 + SuPtem<iCkm

(4.36) It > 2
€ — €k+1

= —log .

Clearly, we have ry ;11 < 71, and, by choosing C}; in Lemma 4.2 large
enough, we can make sure that

(4.37) lim 71, = lim ;41 =0
l—o0 l—o0

for each k£ > 0. Thus, if we set

(4.38) ¢(t;k, 1) = sup [o(t;7)],

k<j<l
and let € ; be the (1,1) form on X x D* corresponding to ¢(t;k,1) via
(4.16), we have, for [ > k,

n+1 n+1 __ n+1
/ Q< / Q= / Q)
X><DTMCJrl X><Drk7l X><Drk7l

n C
XxDX*

where C is independent of k,[ and
D, ={weC:1>|w|>r}

In the middle equality above, we made use of the fact that the volume
integrals depend only on the values of the currents in a neighborhood of the
boundary of X x D, , (see, [27, Lemma 2]).

Now ¢(t; k,l) is an increasing sequence in the index [ which converges
pointwise, almost everywhere, to {(t; k) = sup,<;[¢(t;5)]*. Let Zx be the
(1,1) form on D* x M corresponding to £(¢;k). Then, by the Bedford—
Taylor monotonicity theorem [3] applied to the increasing sequence ¢(t; k, 1)
(see also Blocki [6] and Cegrell [8]), we have

C

(4.40) / ¢ = lim ot < —.
XxDpy poy 1900 JXXDry k
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Moreover, if [ > k,

(4.41) / Eptl < / < =
XXDry g q XXDry 14 ¢

Finally, since £(¢;1) is monotonically decreasing to ¢(t) (by definition of
¢(t)) we have, using the Bedford—Taylor monotonicity theorem again (but
this time for decreasing sequences):

(4.42) /X ot = lim =t =o0.

l—o00
XDry, o1 XXDry 41

Since this is true for all k, we obtain

(4.43) / ot =o.
XxDX
Thus Qgﬂ = 0, and this proves the theorem.

5. Proof of Theorem 1.2

In this section, we show that if the expression No(T')? defined below by (5.3)
is strictly positive, then ¢, is a non-trivial geodesic, i.e., ¢ is not a constant
function of ¢.

Let N1 +1 =dim(X, L) and set N = Nj. Let \g > A\ > --- > Ay be the
diagonal entries of A; and let Ny + 1 = dim H°(X,L). By Lemma 2.1 we
may assume that T is imbedded in PY and that the action p(7) is given by
the diagonal matrix whose diagonal entries are given by 720, ... 7N, As
usual, we denote by Xy C P the central fiber of T.

Define h : PY — R by

N 2
AO& «
(5.1) h(z) = Zago—"z?'
2 a=0%al
We next recall the formula in Donaldson [16]:
(5.2) Tr(A2) = No(T)? - k"2 + O(E™ 1),

where the coefficient No(T') is given by
Gx) Na(Tf = [ (=Pt
Xo

and h is determined by [ x,(h = ﬁ)wﬁs = 0. The test configuration 7T is
trivial if and only if No(T") = 0.
Now let A = Ay so that A < A, for all a. Denote by A > AlF) >

- > )\5\2 the eigenvalues of the endomorphism Ay (for convenience, the
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eigenvalues are ordered here in the opposite order than previously). Set
A® =2 Then A® = kA — TBs and AW £~ has a limit. Set

(k)
(5.4) A= Tim A,

If No(T') > 0 then (5.3) implies that the average absolute eigenvalue \A§k)|
has size at least k. On the other hand, since TrAg = 0, one easily sees that
IA*)| has size at least k and thus A > 0.

Next, recall that

1 N (k)
o(t;s k) = k10g<k_"'z 2o Is&k)!i;(;).

a=0

Observe that

Ny, .
/Z e2t)\a’8a‘i§w8 > e2|t)\( )|
a=0
SO
|AR)]| 1 IAXF)| logk
2t o—=|> tk) > 2| —— —
== +0 (1 _S;Pcb(,)_ [t —n—

(5.5) - %log ( /X wg)

so, letting k — oo,
(5.6) S;pét =2t[- |A]

Since |A| > 0, this already shows that ¢; is non-trivial if No(7") > 0. This
establishes Theorem 2.

Under the additional technical assumption (which we expect can be
removed) that for ko large enough, [supy>y, @(t; k)] = supgsg, ¢(t; k) for
|t| > tx, > 1, then the geodesic ¢; can be shown to be non-trivial in the
stronger sense that it defines a non-trivial ray in H/R.

To show strong non-triviality, we observe that No(7T") > 0 implies (and is
in fact, equivalent to) the following. There exist p € X such that s,(p) =0
for all @ such that A, = A. Fix such a p. Let v = inf{\, : Ay > A} and

7® = inf{AL 1 AL > AP}, Note that |y] < Al Again, v*) = ky — T8,

() -

and — has a limit as k — oo,

(5.7) D= lim L~

satisfying |I'| < |A|. Now, at the point p, we have for all k,

(k)
(5.8) ot b)) < 200 o <1> |

k k
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Fix € > 0 so small that |I'| + 2e < |A|. Then there exists ko so that
(5.9) o(t; k) (p) < 2(|T[ + €)[t|
for all [¢| > 1 and all £ > kg. We have then, for |¢| sufficiently large,

di(p) < [sup ¢(t;k‘)] ()

k>kg
(5.10) = sup ¢(t; k)(p) < 2(|T + €)[t[-
k>ko
In view of (5.6), this shows lim;, o o0scx,¢: = oo where oscx,¢r =

supy, ¢ — infx, ¢;. Thus ¢; is strongly non-trivial.

6. Proof of Theorem 1.3

The formula in Lemma 8.8 of Tian [31] implies that
(6.1) lim Dk = FCM(T)

t——o00
where Fey(T) is the CM-Futaki invariant (see [31] for the precise definition).
On the other hand, the recent work of Paul-Tian [22] shows that
Fem(T) = F(T) under the hypothesis of Theorem 1.3.
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