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THE GROUP OF HAMILTONIAN HOMEOMORPHISMS
AND C0-SYMPLECTIC TOPOLOGY

Yong-Geun Oh and Stefan Müller

The main purpose of this paper is to carry out some of the founda-
tional study of C0-Hamiltonian geometry and C0-symplectic topology.
We introduce the notion of Hamiltonian topology on the space of
Hamiltonian paths and on the group of Hamiltonian diffeomorphisms.
We then define the group, denoted by Hameo(M, ω), consisting of
Hamiltonian homeomorphisms such that

Ham(M, ω) � Hameo(M, ω) ⊂ Sympeo(M, ω),

where Sympeo(M, ω) is the group of symplectic homeomorphisms. We
prove Hameo(M, ω) is a normal subgroup of Sympeo(M, ω) and contains
all the time-one maps of Hamiltonian vector fields of C1,1-functions,
and Hameo(M, ω) is path-connected and so contained in the identity
component Sympeo0(M, ω) of Sympeo(M, ω).

We also prove that the mass flow of any Hamiltonian homeomor-
phism vanishes. In the case of a closed orientable surface, this implies
that Hameo(M, ω) is strictly smaller than the identity component of
the group of area-preserving homeomorphisms when M �= S2. For
M = S2, we conjecture that Hameo(S2, ω) is still a proper subgroup of
Sympeo0(S2, ω).

Dedicated to Dusa McDuff

1. Introduction

Let (M, ω) be a connected symplectic manifold. Unless explicit men-
tion is made to the contrary, M will be closed. See Section 6 for the
necessary changes in the non-compact case or in the case with bound-
ary. Denote by Symp(M, ω) the group of symplectic diffeomorphisms
i.e., the subgroup of Diff(M) consisting of diffeomorphisms φ : M → M
such that φ∗ω = ω. We equip Diff(M) with the C∞-topology. Then
Symp(M, ω) forms a closed topological subgroup. We call the induced
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topology on Symp(M, ω) the C∞-topology on Symp(M, ω). We denote by
Symp0(M, ω) the path-connected component of the identity in Symp(M, ω).
The celebrated C0-rigidity theorem by Eliashberg [3, 6] in symplectic
topology states

Theorem 1.1 (C 0-symplectic rigidity, [3]). The subgroup Symp(M, ω)
⊂ Diff(M) is closed in the C0-topology.

Therefore it is reasonable to define a symplectic homeomorphism as any
element of

Symp(M, ω) ⊂ Homeo(M),
where the closure is taken inside the group Homeo(M) of homeomorphisms
of M with respect to the C0-topology (or compact-open topology). This
closure forms a group and is a topological group with respect to the induced
C0-topology. We refer to Section 2 for the precise definition of the C0-
topology on Homeo(M).

Definition 1.2 (Symplectic homeomorphism group). We denote the
above closure equipped with the C0-topology by

Sympeo(M, ω) := Symp(M, ω),

and call this group the symplectic homeomorphism group.

We provide two justifications for this definition.
Firstly, it is easy to see that any symplectic homeomorphism preserves

the Liouville measure induced by the Liouville volume form

Ω =
1
n!

ωn,

which is an easy consequence of Fatou’s lemma in measure theory. In fact,
this measure-preserving property follows from a general fact that the set of
measure-preserving homeomorphisms is closed in the group of homeomor-
phisms under the compact-open topology. In particular in two dimensions,
Sympeo(M, ω) coincides with HomeoΩ(M), where HomeoΩ(M) is the group
of homeomorphisms that preserve the Liouville measure. This follows from
the fact that any area-preserving homeomorphism can be C0-approximated
by an area-preserving diffeomorphism in two dimensions (see Theorem 5.1).
Secondly, it is easy to see from Eliashberg’s rigidity that we have

(1.1) Sympeo(M, ω) � HomeoΩ(M)

when dimM ≥ 4. In this sense, the symplectic homeomorphism group is
a good high dimensional symplectic generalization of the group of area-
preserving homeomorphisms.

There is another smaller subgroup Ham(M, ω) ⊂ Symp0(M, ω), the Hamil-
tonian diffeomorphism group, which plays a prominent role in many prob-
lems in the development of symplectic topology, starting implicitly from
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Hamiltonian mechanics and more conspicuously from the Arnold conjecture.
One of the purposes of the present paper is to give a precise definition of
the C0-counterpart of Ham(M, ω). This requires some lengthy discussion
on the Hofer geometry of Hamiltonian diffeomorphisms.

The remarkable Hofer norm of Hamiltonian diffeomorphisms introduced
in [8, 9] is defined by

(1.2) ‖φ‖ = inf
H �→φ

‖H‖,

where H �→ φ means that φ = φ1
H is the time-one map of Hamilton’s

equation
ẋ = XH(t, x)

where t �→ φt
H is the flow of the Hamiltonian vector field XH associated to

the Hamiltonian function H : [0, 1] × M → R. The norm ‖H‖ is defined by

(1.3) ‖H‖ =
∫ 1

0
osc Ht dt =

∫ 1

0

(
max
x ∈ M

Ht(x) − min
x ∈ M

Ht(x)
)

dt.

This is a version of the L(1,∞)-norm on C∞([0, 1] × M, R).
Here (M, ω) is a general symplectic manifold, which may be open or

closed. We will always assume that XH is compactly supported in Int(M)
when M is open so that the flow exists for all time and is supported in
Int(M). For the closed case, we will always assume that the Hamiltonians
are normalized by ∫

M
Ht dμ = 0, for all t ∈ [0, 1],

where dμ is the Liouville measure. We call such Hamiltonian functions
normalized. In both cases, there is a one–one correspondence between H
and the path φH : t �→ φt

H . There is the L∞-version of the Hofer norm
originally adopted by Hofer [8] and defined by

‖H‖∞ := max
t ∈ [0,1]

osc Ht.

Although this L∞-norm would be easier to handle and enough for most of
the geometric purposes in the smooth category, we would like to empha-
size that it is important to use the L(1,∞)-norm (1.3) for the purpose of
working with the C0-dynamics: one essential point that distinguishes the
L(1,∞)-norm from the L∞-norm is that the important boundary flattening
procedure is L(1,∞)-continuous but not L∞-continuous. (See Section 3 and
Appendix 2 for more precise remarks.) Recall that this flattening proce-
dure is important for the various constructions involving concatenation in
symplectic geometry. Because of this, we adopt the L(1,∞)-norm in our
exposition from the beginning.

When we do not explicitly mention otherwise, we always assume that all
the functions and diffeomorphisms are smooth. In particular, Ham(M, ω)
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is a subgroup of Symp0(M, ω). Banyaga [1] proved that this group is a
simple group. Recently Ono [23] gave a proof of the C∞-Flux Conjecture
which implies that Ham(M, ω) is a closed subgroup of Symp0(M, ω) and
locally contractible in the C∞-topology. The question whether Ham(M, ω)
is C0-closed in Symp0(M, ω) is sometimes called the C0-Flux Conjecture.

The above norm ‖H‖ can be identified with the Finsler length

(1.4) leng(φH) =
∫ 1

0

(
max
x ∈ M

H(t, (φt
H)(x)) − min

x ∈ M
H(t, (φt

H)(x))
)

dt

of the path φH : t �→ φt
H , where the Banach norm on TidHam(M, ω) ∼=

C∞(M)/R is defined by

‖h‖ = osc(h) = max h − min h

for a normalized function h : M → R.

Definition 1.3. We call a continuous path λ : [0, 1] → Symp(M, ω)
a (smooth) Hamiltonian path if it is generated by the flow of ẋ = XH(t, x)
with respect to a smooth Hamiltonian H : [0, 1] × M → R (see also Defini-
tion A.1). We denote by Pham(Symp(M, ω)) the set of Hamiltonian paths
λ and by Pham(Symp(M, ω), id) the set of Hamiltonian paths λ that satisfy
λ(0) = id. We also denote by

(1.5) ev1 : Pham(Symp(M, ω), id) → Symp(M, ω)

the evaluation map ev1(λ) = λ(1) = φ1
H .

For readers’ convenience, we will give a precise description of the
C∞-topology on Pham(Symp(M, ω), id) in Appendix 1. By definition,
Ham(M, ω) is the set of images of ev1. We will be mainly interested in
the Hamiltonian paths lying in the identity component Symp0(M, ω) of
Symp(M, ω).

Definition 1.4 (Hofer topology). Consider the metric

dH : Pham(Symp(M, ω), id) → R≥0,

defined by

(1.6) dH(λ, μ) := leng(λ−1 ◦ μ),

where λ−1 ◦ μ is the Hamiltonian path t ∈ [0, 1] �→ λ(t)−1μ(t). We call the
induced topology on Pham(Symp(M, ω), id) the Hofer topology. We define
the Hofer topology on Ham(M, ω) to be the strongest topology for which
the evaluation map (1.5) is continuous.

It is easy to see that this definition of the Hofer topology on Ham(M, ω)
coincides with the usual one induced by (1.2), which also shows that the
Hofer topology is metrizable. Of course nontriviality of this topology is not
a trivial matter, which was proven by Hofer [8] for Cn, by Polterovich [25]
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for rational symplectic manifolds and by Lalonde and McDuff [11] in its
complete generality. It is also immediate to check that the Hofer topology
is locally path-connected.

The relation between the Hofer topology on Ham(M, ω) and the C∞-
topology or the C0-topology thereon is rather delicate. However, it is known
(see [25] and Example 4.2) that the Hofer norm function

φ∈ Ham(M, ω) → ‖φ‖
is not continuous with respect to the C0-topology in general. We refer to [9,
28] for some results for compactly supported Hamiltonian diffeomorphisms
on R2n in this direction.

The main purpose of this paper is to carry out a foundational study of C0-
Hamiltonian geometry. We first give the precise definition of a topology on
the space of Hamiltonian paths with respect to which the spectral invariants
for Hamiltonian paths constructed in [17–20] will all be continuous [20]. We
then define the notion of Hamiltonian homeomorphisms and denote the set
thereof by Hameo(M, ω). We provide many evidences for our thesis that
the Hamiltonian topology is the right topology for the study of topological
Hamiltonian geometry. In fact, the notion of Hamiltonian topology has been
vaguely present in the literature without much emphasis on its significance
([9, 10, 17, 31] for some theorems related to this topology). However,
all of the previous works fell short of constructing a “group” of continuous
Hamiltonian maps. A precise formulation of the topology will be essential
in our study of the continuity property of spectral invariants and also in our
construction of C0-symplectic analogs corresponding to various C∞-objects
or invariants. We refer readers to [20] for the details of this study.

The following is the C0-analog to the well-known fact that Ham(M, ω) is
a normal subgroup of Symp0(M, ω).

Theorem 1.5. Hameo(M, ω) forms a normal subgroup of Sympeo(M, ω).

We also prove

Theorem 1.6. Hameo(M, ω) is path-connected and contained in the identity
component of Sympeo(M, ω), i.e., we have

Hameo(M, ω) ⊂ Sympeo0(M, ω).

See Theorems 4.4 and 4.5, respectively. In Section 4, we also prove
that all Hamiltonian diffeomorphisms generated by C1,1-Hamiltonian func-
tions are contained in Hameo(M, ω) and give an example of a Hamiltonian
homeomorphism that is not even Lipschitz (see Theorem 4.1 and Example
4.2, respectively). We recall the notion of the mass flow homomorphism
[4, 27, 30], which is also called the mean rotation vector in the literature on
area-preserving maps.

We prove (see Theorems 5.2 and 5.5)
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Theorem 1.7. The values of the mass flow homomorphism with respect to
the Liouville measure of ω are zero on Hameo(M, ω).

As a corollary to Theorems 1.6–1.7, we prove that in dimension two
Hameo(M, ω) is strictly smaller than the identity component of the group
of area-preserving homeomorphisms if M �= S2. For the case of S2, we still
conjecture

Conjecture 1.8. Let M = S2 with the standard area form ω = Ω. Then
Hameo(S2, ω) is a proper subgroup of HomeoΩ

0 (S2).

It is known (see [22], [29] for a proof) that any area-preserving
homeomorphism can be approximated by smooth area-preserving diffeomor-
phisms. Combined with this smoothing theorem, one consequence of Con-
jecture 1.8, combined with normality (Theorem 1.5) and path-connectedness
(Theorem 1.6), would be the affirmative answer to the following conjecture.
The simpleness question of the group of area-preserving homeomorphisms
of S2 has remained open since the work of Fathi [4] appeared.

Conjecture 1.9. HomeoΩ
0 (S2), the identity component of the group of area-

preserving homeomorphisms of S2, is not a simple group.

We refer to Section 5 for further discussions on the relation between
Hameo(M, ω) and the simpleness question of the area-preserving homeo-
morphism group of S2.

In Section 6, we look at the open case and define the corresponding
Hamiltonian topology and the C0-version of compactly supported
Hamiltonian diffeomorphisms.

Finally we have two appendices. In Appendix 1, we provide precise
descriptions of the C∞-topology of Ham(M, ω) and that of its path space
Pham(Symp(M, ω), id). We also give the proof of the fact that C∞-continuity
of a Hamiltonian path implies the continuity with respect to the Hamiltonian
topology. In Appendix 2, we recall the proof of the L(1,∞)-approximation
lemma from [17] in a more precise form for the readers’ convenience.

The senior author is greatly indebted to the graduate students of Madi-
son attending his symplectic geometry course in the fall of 2003. He thanks
them for their patience listening to his lectures throughout the semester,
which were sometimes erratic in some foundational materials concerning
the Hamiltonian diffeomorphism group. The present paper partly grew out
of the course. He also thanks J. Franks, J. Mather and A. Fathi for a
useful communication concerning the smoothing of area-preserving homeo-
morphisms. Writing of the original version of this paper has been carried
out while the senior author was visiting the Korea Institute for Advanced
Study in the winter of 2003. He thanks KIAS for its financial support and
excellent research atmosphere.
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We thank A. Fathi for making numerous helpful comments on a previous
senior author’s version of the paper, which has led to corrections of many
erroneous statements and proofs and to streamlining the presentation of
the paper. We also thank the referee for carefully reading the previous
versions and pointing out many inaccuracies and for providing many helpful
suggestions on improving the presentation of the paper.

During the preparation of the revisions of the current paper, Viterbo
[32] answered affirmatively to Question 3.16 in the C0 context on closed
manifolds, and subsequently the senior author [22] refined Viterbo’s scheme
and proved the uniqueness of continuous Hamiltonians on open manifolds.

Notations

(1) Unless otherwise stated, H always denotes a normalized smooth
Hamiltonian function [0, 1] × M → R, and we always denote by ‖ · ‖
the L(1,∞)-norm

‖H‖ =
∫ 1

0

(
max
x ∈ M

H(t, x) − min
x ∈ M

H(t, x)
)

dt.

We denote by C∞
m ([0, 1] × M, R) the space of such functions H with

the norm ‖ ·‖ and by L
(1,∞)
m ([0, 1]×M, R) its completion with respect

to ‖ · ‖.
(2) Our convention is that φH always denotes a smooth Hamiltonian

path φH : t �→ φt
H , while φ or φt

H denotes a single diffeomorphism.
Unless otherwise stated, ‖φ‖ always denotes the Hofer norm (1.2) for
φ∈ Ham(M, ω).

(3) G0: the identity path-component of any topological group G.
(4) Homeo(M): the group of homeomorphisms of M with the C0-

topology. We will often abbreviate composition of maps by ψ◦φ = ψφ.
(5) P(G), P(G, id): the space of continuous paths λ : [0, 1] → G and the

space of continuous paths with λ(0) = id, respectively.
(6) HomeoΩ(M): the topological subgroup of Homeo(M) consisting of

measure (induced by the volume form Ω) preserving homeomorphisms
of M .

(7) Symp(M, ω): the group of symplectic diffeomorphisms with the C∞-
topology.

(8) Sympeo(M, ω): the C0-closure of Symp(M, ω) in Homeo(M).
(9) Pham(Symp(M, ω), id): the space of smooth Hamiltonian paths λ :

[0, 1] → Symp(M, ω) with λ(0) = id.
(10) Ham(M, ω) ⊂ Symp0(M, ω): the subgroup of Hamiltonian diffeomor-

phisms with the C∞-topology.
(11) Ham(M, ω): Ham(M, ω) with the (strong) Hamiltonian topology.
(12) ev1 : Pham(Symp(M, ω), id) → Ham(M, ω) the evaluation map.
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(13) Hameo(M, ω): the group of (strong) Hamiltonian homeomorphisms
with the C0-topology.

(14) Hameo(M, ω): Hameo(M, ω) with the (strong) Hamiltonian topology.

2. Symplectic homeomorphisms and the mass
flow homomorphism

Let (M, ω) be as in the introduction. We fix any Riemannian metric and
denote by d the induced Riemannian distance function on M . We denote by
Homeo0(M) the path-connected component of the identity in Homeo(M),
the group of homeomorphisms of M . Denote by P(Homeo(M), id) the set
of continuous paths λ : [0, 1] → Homeo(M) with λ(0) = id. We denote by
dC0 the standard C0-distance of maps defined by

dC0(φ, ψ) = max
x ∈ M

(d(φ(x), ψ(x))) .

Then for any two homeomorphisms φ, ψ ∈ Homeo(M), we define their C0-
distance

(2.1) d(φ, ψ) = max
{
dC0(φ, ψ), dC0(φ−1, ψ−1)

}
.

With respect to this, Homeo(M) becomes a complete metric space. We call
the topology induced by d the C0-topology on Homeo(M). It is easy to see
that this topology coincides with the compact-open topology. In particu-
lar, it does not depend on the choice of the particular Riemannian metric.
As defined in Definition 1.1 of the introduction, the symplectic homeomor-
phism group Sympeo(M, ω) is the closure of Symp(M, ω) in Homeo(M) with
respect to this topology.

Then for given continuous paths λ, μ : [0, 1] → Homeo0(M) with λ(0) =
μ(0) = id, we define their C0-distance by

(2.2) d(λ, μ) := max
t ∈ [0,1]

d(λ(t), μ(t)),

and call the induced metric topology, the C0-topology on P(Homeo(M), id).
If ψi is a Cauchy sequence in the C0-topology converging to a homeo-

morphism ψ ∈ Homeo(M), we will write limC0 ψi = ψ. It is easy to see that
limC0 ψ−1

i = ψ−1 and limC0 ψiφi = ψφ for two sequences limC0 ψi = ψ and
limC0 φi = φ. The same observations hold for the complete metric (2.2) for
continuous paths. More precisely, let λi and μi ∈ P(Homeo(M), id) be two
Cauchy sequences of continuous paths. Then there exist continuous paths
λ = limC0 λi ∈ P(Homeo(M), id), μ = limC0 μi ∈ P(Homeo(M), id), and we
have limC0 λiμi = λμ and limC0 λ−1

i = λ−1. Here λ−1 : [0, 1] → Homeo(M)
denotes the path t �→ (λ(t))−1. We will use this frequently in Sections 3
and 4.
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Recall that the symplectic form ω induces a measure on M by integrating
the volume form

Ω =
1
n!

ωn.

We will call the induced measure the Liouville measure on M . We denote
the Liouville measure by dμ = dμω.

The following is an immediate consequence of the well-known fact (see
[4, Corollary 1.6], for example) that for any given finite Borel measure dμ,
the group of measure-preserving homeomorphisms is closed in the above
compact-open topology.

Proposition 2.1. Any symplectic homeomorphism h ∈ Sympeo(M, ω)
preserves the Liouville measure. More precisely, Sympeo(M, ω) forms a
closed subgroup of HomeoΩ(M).

It is easy to derive from Eliashberg’s rigidity theorem the properness of
the subgroup Sympeo(M, ω) ⊂ HomeoΩ(M) when dimM ≥ 4.

Next we briefly review the construction from [4] of the mass flow homo-
morphism for measure-preserving homeomorphism. When considered on an
orientable surface, it coincides with the symplectic flux (up to Poincaré
duality), and it will be used in Section 5 to prove, when M �= S2,
that Sympeo0(M, ω) is strictly bigger than the group Hameo(M, ω) of
Hamiltonian homeomorphisms which we will introduce in the next section.

Let Ω be a volume form on M and denote by HomeoΩ
0 (M) the path-

connected component of the identity in the set of measure (induced by Ω)
preserving homeomorphisms with respect to the C0-topology (or compact-
open topology). By Proposition 2.1, we have the inclusion

Sympeo(M, ω) ⊂ HomeoΩ(M).

We will not be studying this inclusion carefully here except in two dimen-
sions.

For any G one of the above groups, we will denote by P(G) (respectively,
P(G, id)), the space of continuous path from [0, 1] into G (respectively with
c(0) = id) with the induced C0-topology. We denote by c = (ht) : [0, 1] → G
the corresponding path. Since HomeoΩ(M) is locally contractible [4], the
universal covering space of HomeoΩ

0 (M) is represented by homotopy classes
of paths c∈ P(HomeoΩ

0 (M), id) with fixed end points. We denote by

π : ˜HomeoΩ
0 (M) → HomeoΩ

0 (M)

the universal covering space and by [c] the corresponding elements. To define
the mass flow homomorphism

(2.3) θ̃ : ˜HomeoΩ
0 (M) → H1(M, R),
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we use the fact that H1(M, R) ∼= Hom([M, S1], R), where [M, S1] is the set
of homotopy classes of maps from M to S1.

Denote by C0(M, S1) the set of continuous maps M → S1 equipped with
the C0-topology. Note that C0(M, S1) naturally forms a group. Identifying
S1 with R/Z, write the group law on S1 additively. Given c = (ht) ∈
P(HomeoΩ

0 (M), id), we define a continuous group homomorphism

θ̃(c) : C0(M, S1) → R

in the following way: let f : M → S1 = R/Z be continuous. The homotopy
fht − f : M → S1 satisfies fh0 − f = 0, hence we can lift it to a homotopy
fht − f : M → R such that fh0 − f = 0. Then we define

θ̃(c)(f) =
∫

M
fh1 − f dμ,

where dμ is the given measure on M . This induces a homomorphism

(2.4) θ̃ : P(HomeoΩ
0 (M), id) → Hom(C0(M, S1), R).

One can check that for each given f ∈C0(M, S1), the assignment c �→ θ̃(c)(f)
is continuous, i.e., the map (2.4) is weakly continuous. Furthermore θ̃(c)(f)
depends only on the homotopy class of f , θ̃(c) is a homomorphism, θ̃(c)
depends only on the equivalence class of c, and θ̃ is a homomorphism [4].
Therefore, it induces a group homomorphism (2.3). The weak continuity of
(2.4) then implies the continuity of the map (2.3).

If we put

Γ = θ̃

(
ker

(
π : ˜HomeoΩ

0 (M) → HomeoΩ
0 (M)

))
,

we obtain by passing to the quotient a group homomorphism

(2.5) θ : HomeoΩ
0 (M) → H1(M, R)/Γ,

which is also called the mass flow homomorphism. The group Γ is shown to
be discrete because it is contained in H1(M, Z) (after normalizing Ω so that∫
M Ω = 1) [4, Proposition 5.1].
We summarize the above discussion and some fundamental results by

Fathi [4] restricted to the case where M is a (smooth) manifold. Note that
Fathi equips P(Homeo(M), id) with the compact-open topology, while we
use the C0-topology (2.2). It is easy to see that the C0-topology is stronger
than the compact-open topology on the path space P(Homeo(M), id), and
therefore, Fathi’s results also apply to our case.

Theorem 2.2 [4]. Suppose that M is a closed smooth manifold and Ω is a
volume form on M . Then

(1) HomeoΩ(M) is locally contractible;
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(2) the map θ̃ in (2.4) is weakly continuous and θ in (2.5) is continuous,
with respect to the C0-topology;

(3) the map θ̃ in (2.3) is surjective, and hence so is θ;
(4) ker θ = [ker θ, ker θ] is perfect, and ker θ is simple, if n ≥ 3.

The following still remains an open problem concerning the structure of
the area-preserving homeomorphism groups in two dimensions (note that
since H1(S2, R) = 0, we have ker θ = HomeoΩ

0 (S2)).

Question 2.3. Is ker θ simple when n = 2? In particular, is HomeoΩ
0 (S2) a

simple group?

3. Definition of Hamiltonian topology and the Hamiltonian
homeomorphism group

We start by recalling the following proposition proven by the senior author
[17] in relation to his study of the length minimizing property of geodesics in
Hofer’s Finsler geometry on Ham(M, ω). This result was the starting point
of the senior author’s research carried out in this paper.

Proposition 3.1 [17, Lemma 5.1]. Let φGi be a sequence of smooth
Hamiltonian paths and φG be another smooth Hamiltonian path such that

(1) each φGi is length minimizing in its homotopy class relative to the
end points;

(2) leng(φ−1
G φGi) → 0 as i → ∞;

(3) the sequence of Hamiltonian paths φGi converges to φG in the C0-
topology.

Then φG is length minimizing in its homotopy class relative to the end points.

In fact, an examination of the proof of Lemma 5.1 in [17] shows that the
same holds even without (3). This proposition can be translated into the
statement that the length minimizing property of Hamiltonian paths in its
homotopy class relative to the end points is closed under a certain topology
on the space of Hamiltonian paths. In this section, we will first introduce the
corresponding topology on the space of Hamiltonian paths. Then using this
topology, which we call Hamiltonian topology, we will construct the group
of Hamiltonian homeomorphisms.

We first recall the definition of (C∞-)Hamiltonian diffeomorphisms (see
also Section 1): a C∞-diffeomorphism φ of (M, ω) is C∞-Hamiltonian if
φ = φ1

H for a C∞-function H : [0, 1] × M → R. Here φ1
H is again the

time-one map of the Hamilton equation

ẋ = XH(t, x).
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We denote the set of Hamiltonian diffeomorphisms by Ham(M, ω), and recall
that Ham(M, ω) ⊂ Symp0(M, ω). We will always denote by φH the corre-
sponding Hamiltonian path φH : t �→ φt

H generated by the Hamiltonian H
and by H �→ φ when φ = φ1

H . In the latter case, we also say that the
diffeomorphism φ is generated by the Hamiltonian H.

We recall that for two Hamiltonian functions H and K, the product
Hamiltonian H#K is given by the formula

(3.1) (H#K)t = Ht + Kt ◦ (φt
H)−1,

and generates the path φHφK : t �→ φt
Hφt

K . And the inverse Hamiltonian H
corresponding to the inverse path (φH)−1 : t �→ (φt

H)−1 is defined by

(3.2) (H)t = −Ht ◦ φt
H .

We also recall that the pull-back Hamiltonian ψ∗H,

(3.3) (ψ∗H)t = Ht ◦ ψ,

generates the path ψ−1φHψ : t �→ ψ−1φt
Hψ for any ψ ∈ Symp(M, ω). In

particular, Ham(M, ω) is a normal subgroup of Symp(M, ω). We will be
mainly interested in paths of the form φ−1

H φK . By the above, this path is
generated by H#K, and

(3.4) (H#K)t = −Ht ◦ φt
H + Kt ◦ φt

H = (Kt − Ht) ◦ φt
H .

Furthermore from the definitions of ‖·‖ and leng (see (1.3) and (1.4), respec-
tively), we have ‖H‖ = leng (φH). In particular,

(3.5) leng(φ−1
H φK) =

∥∥H#K
∥∥ = ‖K − H‖.

The following simple lemma will be useful later for the calculus of the Hofer
length function. The proof of this lemma immediately follows from the
definitions and is omitted.

Lemma 3.2. Let H, K : [0, 1] × M → R be smooth. Then we have
(1) leng(φ−1

H φK) = leng(φ−1
K φH) or ‖H#K‖ = ‖K#H‖,

(2) leng(φHφK) ≤ leng(φH) + leng(φK) or ‖H#K‖ ≤ ‖H‖ + ‖K‖,
(3) leng(φH) = leng(φ−1

H ) or ‖H‖ = ‖H‖.

In relation to Floer homology and the spectral invariants, one often needs
to consider the periodic Hamiltonian functions H satisfying

H(t + 1, x) = H(t, x).

For example, the spectral invariants ρ(φH ; a) of the Hamiltonian path
φH : t �→ φt

H are defined in [18] first by reparameterizing the path so that
it becomes boundary flat (see Definition 3.3 below) and so time-periodic
in particular, by applying the Floer homology theory to the Hamiltonian
generating the reparameterized Hamiltonian path, and then by proving the
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resulting spectral invariants are independent of such reparameterization. For
this purpose, the senior author used the inequality∫ 1

0
− max(H − K) dt ≤ ρ(φH ; a) − ρ(φK ; a) ≤

∫ 1

0
− min(H − K) dt

in an essential way in [18, 19].
The following basic formula for the Hamiltonian generating a reparame-

terized Hamiltonian path follows immediately from the definition. It is used
for the above purpose and again later in this paper. For a given Hamiltonian
function H : R×M → R, not necessarily one-periodic, generating the Hamil-
tonian path λ = φH , the reparameterized path

t �→ φ
ζ(t)
H

is generated by the Hamiltonian function Hζ defined by

Hζ(t, x) := ζ ′(t)H(ζ(t), x)

for any smooth function ζ : R → R. Here ζ ′ denotes the derivative of the
function ζ. In relation to the reparameterization of Hamiltonian paths, the
following definition will be useful.

Definition 3.3. We call a path λ : [0, 1] → Symp(M, ω) boundary flat near
0 (near 1) if λ is constant near t = 0 (t = 1), and we call the path boundary
flat if it is constant near t = 0 and t = 1.

Of course this is the same as saying that any generating Hamiltonian H
of λ is constant near the end points. We would like to point out that the set
of boundary flat Hamiltonians is closed under the operations of the product
(H, K) �→ H#K and taking the inverse H �→ H (and similarly for paths
that are flat near t = 0 or t = 1).

We will see in the L(1,∞)-approximation lemma (Appendix 2) that by
choosing a suitable ζ so that ζ ′ ≡ 0 near t = 0, 1 any Hamiltonian path can
be approximated by a boundary flat one in the Hamiltonian topology which
we will introduce later. We would like to emphasize that this approximation
cannot be done in the L∞-norm and that there is no such approximation
procedure in the L∞-topology. This would obstruct the smoothing proce-
dure of concatenated Hamiltonian paths, which is the main reason why we
adopt the L(1,∞)-norm, in addition to its natural appearance in Floer theory.

Let λ : [0, 1] → Symp(M, ω) be a smooth path such that

λ(t) ∈ Ham(M, ω) ⊂ Symp(M, ω).

We know that by definition of Ham(M, ω), for each given s∈ [0, 1], there
exists a unique normalized Hamiltonian Hs = {Hs

t }0 ≤ t ≤ 1 such that Hs �→
λ(s). One very important property of a C∞-path (or C1 path in general)
λ : [0, 1] → Ham(M, ω) is the following result by Banyaga [1].
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Proposition 3.4 [1, Proposition II.3.3]. Let λ : [0, 1] → Symp(M, ω) be
a smooth path such that λ(t) ∈ Ham(M, ω) ⊂ Symp(M, ω). Define the vector
field λ̇ by

λ̇(s) :=
∂λ

∂s
◦ (λ(s))−1,

and consider the closed one-form λ̇�ω. Then this one-form is exact for all
s∈ [0, 1].

In other words, any smooth path in Symp(M, ω) whose image lies in
Ham(M, ω) is Hamiltonian in the sense of Definition 1.3. Note that this
statement does not make sense if the path is not at least C1 in s, i.e., when
we consider a continuous path in Homeo(M) whose image lies in Ham(M, ω).
As far as we know, it is not known whether one can always approximate a
continuous path λ : [0, 1] → Ham(M, ω) ⊂ Symp0(M, ω) ↪→ Homeo(M) by
a sequence of smooth Hamiltonian paths. More precisely, it is not known
in general whether there is a sequence of smooth Hamiltonian functions
Hj : [0, 1] × M → R such that the Hamiltonian paths t �→ φt

Hj
uniformly

converge to λ.
Not only for its definition but also for many results in the study

of the geometry of the Hamiltonian diffeomorphism group, a path being
Hamiltonian, not just lying in Ham(M, ω), is a crucial ingredient. For that
reason, it is reasonable to attempt to preserve this property as one develops
topological Hamiltonian geometry. Our definition of the Hamiltonian topo-
logy in the present paper is the outcome of this attempt.

Obviously there is a one–one correspondence between the set of Hamilton-
ian paths and that of generating (normalized) Hamiltonians in the smooth
category. However, this correspondence gets murkier as the regularity of the
Hamiltonian gets worse, say when the regularity is less than C1,1. Because
of this, we introduce the following terminology for our later discussions.

Definition 3.5. We recall that Pham(Symp(M, ω), id) denotes the set of
(smooth) Hamiltonian paths λ defined on [0, 1] satisfying λ(0) = id (see
Definitions 1.3 and A.1). Let H be the (unique normalized) Hamiltonian
generating a given Hamiltonian path λ. We define two maps

Tan, Dev : Pham(Symp(M, ω), id) → C∞
m ([0, 1] × M, R)

by the formulas

Tan(λ)(t, x) := H(t, (φt
H)(x)),

Dev(λ)(t, x) := H(t, x),

and call them the tangent map and the developing map. We call the image
of the tangent map Tan the rolled Hamiltonian of λ (or of H).
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The identity (3.2) implies the identity

(3.6) Tan(λ) = −Dev(λ−1)

for a general (smooth) Hamiltonian path λ.
The tangent map corresponds to the map of the tangent vectors of the

path. Assigning the usual generating Hamiltonian H to a Hamiltonian path
corresponds to the developing map in Lie group theory: one can “develop”
any differentiable path on a Lie group to a path in its Lie algebra using the
tangent map and then by right translation.1

We also consider the evaluation map

ev1 : Pham(Symp(M, ω), id) → Symp(M, ω), ev1(λ) = λ(1),

and the obvious composition of maps

ιham : Pham(Symp(M, ω), id) ↪→ P(Symp(M, ω), id) → P(Homeo(M), id).

We next state the following proposition. This proposition is a reformulation
of [10, Theorem 6, Chapter 5], in our general context, which Hofer and
Zehnder proved for compactly supported Hamiltonian diffeomorphisms on
R2n. In the presence of the general energy-capacity inequality [11], their
proof can be easily adapted to our general context. For readers’ convenience,
we give the details of the proof here.

Proposition 3.6. Let λi = φHi ∈ Pham(Symp(M, ω), id) be a sequence of
smooth Hamiltonian paths and λ = φH be another smooth path such that

(1)
∥∥H#Hi

∥∥ → 0, and
(2) ev1(λi) = φ1

Hi
→ ψ uniformly to a map ψ : M → M .

Then we must have ψ = φ1
H .

Proof. We first note that ψ must be continuous since it is a uniform limit of
continuous maps φ1

Hi
. Suppose the contrary that ψ �= φ1

H , i.e., (φ1
H)−1ψ �=

id. Then we can find a small closed ball B such that

B ∩
(
(φ1

H)−1ψ
)
(B) = ∅.

Since B and hence
(
(φ1

H)−1ψ
)
(B) is compact and φ1

Hi
→ ψ uniformly, we

have
B ∩

(
(φ1

H)−1φ1
Hi

)
(B) = ∅

for all sufficiently large i. By definition of the Hofer displacement energy
e (see [8] for the definition), we have e(B) ≤ ‖(φ1

H)−1φ1
Hi

‖. Now by the

1The senior author would like to take this opportunity to thank A. Weinstein for
making this remark almost 9 years ago right after he wrote his first papers [15, 16] on the
spectral invariants. Weinstein’s remark answered the questions about the group structure
(#, −) on the space of Hamiltonians and much helped the senior author’s understanding
of the group structure at that time.
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energy-capacity inequality from [11], we know e(B) > 0 and hence

0 < e(B) ≤
∥∥(φ1

H)−1φ1
Hi

∥∥
for all sufficiently large i. On the other hand, we have∥∥(φ1

H)−1φ1
Hi

∥∥ ≤
∥∥H#Hi

∥∥ → 0

by hypothesis (1). The last two inequalities certainly contradict each other.
That completes the proof. �

What this proposition indicates for the practical purpose is that simulta-
neously imposing both convergence

‖H#Hi‖ −→ 0 and

φ1
Hi

−→ φ1
H in the C0-topology

is consistent in that it gives rise to a nontrivial topology.
We remark that the evaluation map ev1 is not continuous if we equip

Pham(Symp(M, ω), id) with the Hofer topology (Definition 1.4) and Ham
(M, ω) with the C0-topology (and, therefore, Proposition 3.6 is not trivial).
If it were, for every sequence Hi such that ‖Hi‖ → 0, we would have φ1

Hi
→

id. But, for any pair (x, y) of points x, y ∈M , it is well-known that there
is such a sequence with φ1

Hi
(x) = y for all i: This is because the transport

energy of a point from one place to any other place is always zero, that is,

inf
H

{‖H‖ | φ1
H(x) = y} = 0.

We will now define the Hamiltonian topology. Its definition is directly
motivated by the above Propositions 3.1 and 3.6 (see the remarks after
these propositions).

Definition 3.7 (Hamiltonian topology).
(1) We define the Hamiltonian topology on the set Pham(Symp(M, ω), id)

of Hamiltonian paths by the one generated by the collection of subsets
defined by

(3.7)
U(φH , ε1, ε2) :={

φH′ ∈ Pham(Symp(M, ω), id)
∣∣∣‖H#H ′‖ < ε1, d(φH , φH′) < ε2

}

for each choice of ε1, ε2 > 0 and φH ∈ Pham(Symp(M, ω), id).
(2) We define the Hamiltonian topology on Ham(M, ω) to be the strongest

topology such that the evaluation map

ev1 : Pham(Symp(M, ω), id) → Ham(M)

is continuous. We denote the resulting topological space by
Ham(M, ω).

We will call continuous maps with respect to the Hamiltonian topology
Hamiltonian continuous.
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We refer readers to Section 6 for the corresponding definition of
Hamiltonian topology either for the non-compact case or the case of mani-
folds with boundary.

We should now make several remarks concerning our choice of the above
definition of the Hamiltonian topology. The combination of the Hofer
topology and the C0-topology in (3.7) will be essential in our study of
C0-analogs to various objects in Hamiltonian geometry and symplectic
topology in this paper and in [20]. Such a phenomenon was first indicated
by Eliashberg [3] and partly demonstrated by Viterbo [31] and Hofer [8, 9].

We have the following interpretation of the Hamiltonian topology, which
will be used later.

By definition, we have the natural continuous maps

ιham : Pham(Symp(M, ω), id) → P(Symp(M, ω), id) → P(Homeo(M), id),
(3.8)

Dev: Pham(Symp(M, ω), id) → C∞
m ([0, 1] × M, R) → L(1,∞)

m ([0, 1] × M, R).

We call the product map

(ιham, Dev) : Pham(Symp(M, ω), id)→ P(Symp(M, ω), id)×C∞
m ([0, 1]×M, R)

the unfolding map. The Hamiltonian topology on Pham(Symp(M, ω), id) is
nothing but the weakest topology for which this unfolding map is continuous.

Here are several other comments.

Remark 3.8.
(1) The way how we define a topology on Ham(M, ω) starting from one

on the path space Pham(Symp(M, ω), id) is natural since the group
Ham(M, ω) itself is defined that way. We will repeatedly use this
strategy in this paper.

(2) Note that the Hamiltonian topology on Ham(M, ω) is nothing but
the one induced by the evaluation map ev1.

(3) We also note that the collection of sets (3.7) is symmetric with respect
to H and H ′, i.e., φH′ ∈ U(φH , ε1, ε2) ⇐⇒ φH ∈ U(φH′ , ε1, ε2).

(4) It is easy to see that for fixed φH ∈ Pham(Symp(M, ω), id), the open
sets (3.7) form a neighborhood basis of the Hamiltonian topology
at φH .

(5) Because of the simple identity

(H#H ′)(t, x) = (H ′ − H)(t, φt
H(x)),

one can write the length in either of the following two ways:

leng(φ−1
H φH′) = ‖H#H ′‖ = ‖H ′ − H‖,

if H and H ′ are smooth (or more generally C1,1). In this paper, we
will mostly use the first one that manifests the group structure better.
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(6) Note that the above identity does not make sense in general even for
C1-functions because their Hamiltonian vector field would be only
C0 and so their flow φt

H may not exist. Understanding what is going
on in such a case touches the heart of C0-Hamiltonian geometry and
dynamics. We will pursue the dynamical issue in [20] and focus on
the geometry in this paper.

It turns out that Pham(Symp(M, ω), id) is metrizable. We now define
the following natural metric on Pham(Symp(M, ω), id) which combines the
Hofer metric and the C0-metric appropriately.

Definition 3.9. We define a metric on Pham(Symp(M, ω), id) by

dham(φH , φH′) = ‖H#H ′‖ + d(φH , φH′).

Proposition 3.10. The Hamiltonian topology on Pham(Symp(M, ω), id) is
equivalent to the metric topology induced by dham.

Proof. This is an exercise in using the definitions. Let U be open in the
Hamiltonian topology, and let φH ∈ U . By Remark 3.8(4), there are ε1, ε2 > 0
such that U(φH , ε1, ε2) ⊂ U . Define ε = min(ε1, ε2). Let

Uε(φH) = {φH′ ∈ Pham(Symp(M, ω), id) | dham(φH , φH′) < ε}
be the metric ball of radius ε centered at φH . By our choice for ε and by
Definitions 3.7(1) and 3.9, we have Uε(φH) ⊂ U(φH , ε1, ε2) ⊂ U . This holds
for any φH ∈ U , so U is open in the metric topology.

Conversely, suppose V is open in the metric topology, and φH ∈ V. Then
Uε(φH) ⊂ V for some ε > 0, and U(φH , ε

2 , ε
2) ⊂ Uε(φH) ⊂ V. So V is open in

the Hamiltonian topology. �

Proposition 3.11. The left translations of the group Pham(Symp(M, ω), id)
are continuous, i.e., for each λ ∈ Pham(Symp(M, ω), id), the bijection

Lλ : Pham(Symp(M, ω), id) → Pham(Symp(M, ω), id), Lλ(μ) = λμ,

is continuous, and, therefore, a homeomorphism, with respect to the Hamil-
tonian topology on Pham(Symp(M, ω), id). In particular, the sets of the form

(3.9) φH (U(id, ε1, ε2)) , ε1, ε2 > 0,

form a neighborhood basis at φH in Pham(Symp(M, ω), id).

Proof. Let λ = φH . We have to show that L−1
λ (U(φK , ε1, ε2)) is open for

any choice of μ = φK and ε1, ε2 > 0. Let φL ∈L−1
λ (U(φK , ε1, ε2)), i.e.,

(3.10) φHφL ∈ U(φK , ε1, ε2).

We need to find some ε′
1, ε′

2 > 0 such that

U(φL, ε′
1, ε

′
2) ⊂L−1

λ (U(φK , ε1, ε2)),
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or equivalently, such that

(3.11) Lλ(U(φL, ε′
1, ε

′
2)) = φH(U(φL, ε′

1, ε
′
2)) ⊂ U(φK , ε1, ε2).

For the part of d, we define

(3.12) ε̄2 = ε2 − d(φHφL, φK) > 0

by (3.10). By compactness of M , the smooth map [0, 1] × M → M, (t, x) �→
φt

H(x) is in particular uniformly continuous with respect to the standard
metric on [0, 1] and the metric d on M . Therefore, there exists 0 < ε′

2 < ε̄2
such that

d(x, y) < ε′
2 =⇒ d(φt

H(x), φt
H(y)) < ε̄2

for all x, y ∈M and all t ∈ [0, 1]. Hence if d(φL, φL′) < ε′
2, then

d(φHφL, φHφL′) = max{dC0(φHφL, φHφL′), dC0(φ−1
L φ−1

H , φ−1
L′ φ−1

H )}

= max
{

max
(t,x)

d
(
φt

Hφt
L(x), φt

Hφt
L′(x)

)
, dC0(φ−1

L , φ−1
L′ )

}

< max{ε̄2, ε
′
2} = ε̄2.

We now estimate

d(φHφL′ , φK) ≤ d(φHφL′ , φHφL) + d(φHφL, φK)

< ε̄2 + d(φHφL, φK) = ε2(3.13)

by (3.12), as long as d(φL, φL′) < ε′
2.

On the other hand for the part of ‖·‖, choose ε′
1 = ε1−‖H#L−K‖, which

again is positive by (3.10). It is immediate to check from the definitions that
‖H#L′ − H#L‖ = ‖L′ − L‖. Then whenever L′ satisfies ‖L′ − L‖ < ε′

1, we
have by the triangle inequality

‖H#L′−K‖ ≤ ‖H#L′−H#L‖+‖H#L−K‖ = ‖L′−L‖+‖H#L−K‖ < ε1.

That completes the proof of the first statement. Since the inverse of Lλ

is the left translation Lλ−1 , left translations are in fact homeomorphisms.
The last statement is obvious from this and Remark 3.8(4). This finishes
the proof. �

As we will see below, Pham(Symp(M, ω), id) in fact forms a topological
group. (Note that we have not yet proved multiplication is continuous in
the Hamiltonian topology.) This will follow as a corollary to the fact that
its completion Pham(Symp(M, ω), id) considered below forms a topological
group as well. But we prefer to give an elementary proof of Proposition
3.11 and the following corollaries using only the definitions, and then to
complete the discussion of Pham(Symp(M, ω), id) and Ham(M, ω), before
dealing with the more complicated arguments involved when considering
said completion.

Proposition 3.11 immediately gives rise to the following corollaries.
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Corollary 3.12. The map ev1 : Pham(Symp(M, ω), id) → Ham(M, ω) is
an open map with respect to the Hamiltonian topology on Ham(M, ω). In
particular, the following hold:

(1) For fixed φ∈ Ham(M, ω) and H �→ φ, the sets of the form

ev1

(
U(φH , ε1, ε2)

)
, ε1, ε2 > 0,

form a neighborhood basis at φ in the Hamiltonian topology.
(2) For fixed φ∈ Ham(M, ω) and H �→ φ, the sets of the form

φ
(
ev1

(
U(id, ε1, ε2)

))
= ev1

(
φH

(
U(id, ε1, ε2)

))
, ε1, ε2 > 0,

also form a neighborhood basis at φ in the Hamiltonian topology.

Proof. Let U ⊂ Pham(Symp(M, ω), id) be open in the Hamiltonian topology.
We have to show that ev1(U) ⊂ Ham(M, ω) is open with respect to the
Hamiltonian topology on Ham(M, ω). But by definition of the Hamiltonian
topology, ev1(U) is open if and only if

ev−1
1 (ev1(U)) =

⋃
λ

{λ(U) | λ ∈ Pham(Symp(M, ω), id), λ(0) = λ(1) = id}

is open. But the latter is the union of open sets by Proposition 3.11 and
hence itself open. That proves the first part.

Openness and continuity of ev1 with respect to the Hamiltonian topology
together with Remark 3.8(4) now implies (1).

For (2), note that since Ham(M, ω) is a group it also acts on itself
via left translations. The left translations of Pham(Symp(M, ω), id) and
Ham(M, ω) commute with ev1 in the sense that if φ∈ Ham(M, ω) and
H �→ φ is any Hamiltonian, then ev1(φHφH′) = φ(ev1(φH′)) for any
φH′ ∈ Pham(Symp(M, ω), id). This together with openness and continuity
of ev1 and the last statement of Proposition 3.11 implies (2). �

The following is one indication of good properties of the Hamiltonian
topology.

Theorem 3.13. Ham(M, ω) is path-connected and locally path-connected.

Proof. We first prove that Ham(M, ω) is locally path-connected at the iden-
tity. Consider the following open neighborhood of the identity element in
Ham(M, ω)

U = ev1

(
U(id, ε1, ε2)

)

for any ε1, ε2 > 0. Note that by Corollary 3.12, these sets form a neighbor-
hood basis at the identity. So it suffices to prove that U is path-connected.
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Let φ0 ∈ U . We will prove that φ0 can be connected by a continuous path
to the identity inside U . Since φ0 ∈ U there exists H �→ φ0 such that

‖H‖ < ε1, d(φH , id) = sup
t ∈ [0,1]

d(φt
H , id)< ε2.

Let Hs be the Hamiltonian generating t �→ φt
Hs = φst

H defined by Hs(t, x) =
sH(st, x). We have

d(φHs , id) = sup
t ∈ [0,1]

d(φt
Hs , id) = sup

t ∈ [0,s]
d(φt

H , id)≤ sup
t ∈ [0,1]

d(φt
H , id)< ε2.

Also note that by substituting τ = st, we get ‖Hs‖ ≤ ‖H‖. Combining
the two, we derive that φHs ∈ U(id, ε1, ε2) and hence φs

H = φ1
Hs ∈ U for all

s∈ [0, 1]. Hence the path λ = φH : t �→ φt
H has its image contained in U ,

and connects the identity and φ0. Continuity follows from Corollary A.3.
So U is path-connected.

Now let φ∈ Ham(M, ω). By Corollary 3.12, the sets φU , where U as
above, form a neighborhood basis at φ. That they are path-connected follows
from their definition and path-connectedness of U . This proves local path-
connectedness of Ham(M, ω). Path-connectedness of Ham(M, ω) follows
from its definition (see the remark after Definition A.1) and Corollary A.3.
That proves the theorem. �

One crucial advantage of the Hamiltonian topology over the Hofer topol-
ogy is that it enables one to extend the evaluation map

ev1 : Pham(Symp(M, ω), id) → Ham(M, ω)

to the completion of Pham(Symp(M, ω), id) with respect to the correspond-
ing metric topology. Recall that the evaluation map is not continuous if one
equips Pham(Symp(M, ω), id) with the Hofer topology and Ham(M, ω) with
the C0-topology (see the remark after Proposition 3.6). It is also an inter-
esting problem to understand the completion of Ham(M, ω) with respect
to the Hofer topology, but this is much harder to study, partly because a
general element in the completion would not be a continuous map.

We now define the notion of topological Hamiltonian path, topological
Hamiltonian function and Hamiltonian homeomorphism. Let (φi, λi, Hi)
be a sequence of triples, where φi ∈ Ham(M, ω) are Hamiltonian diffeomor-
phisms and Hi ∈C∞

m ([0, 1] × M, R) are normalized Hamiltonian functions,
such that Hi generates the Hamiltonian path λi = φHi : t �→ φt

Hi
and

φi = φ1
Hi

= λi(1). Suppose the sequence is Cauchy in the Hamiltonian
topology,

d
(
φHi , φHj

)
→ 0, as i, j → ∞,

and
‖Hi − Hj‖ → 0, as i, j → ∞.
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In particular, Hi converges to an L(1,∞)-function H ∈L
(1,∞)
m ([0, 1] × M, R),

and λi converges to a continuous path λ ∈ P(Homeo(M), id), with

λ(1) = lim
C0

φi =: h ∈ Homeo(M).

We call the continuous path λ a topological Hamiltonian path, the function
H a topological Hamiltonian function and the map h a Hamiltonian
homeomorphism.

More precisely, recall the unfolding map

(ιham, Dev) : Pham(Symp(M, ω), id)

→ P(Symp(M, ω), id) × C∞
m ([0, 1] × M, R)

→ P(Homeo(M), id) × L(1,∞)
m ([0, 1] × M, R),

which was defined by λ = φH �→ (λ, H). We denote by Q the image of
(ιham, Dev) equipped with the subspace topology. More precisely, the topol-
ogy on Q is induced by the product metric given by the C0-metric d on
P(Homeo(M), id) and the L(1,∞)-metric on L

(1,∞)
m ([0, 1] × M, R). We will

refer to this topology on Q also as the Hamiltonian topology. This will be
explained further in Remark 3.17(2) below.

Note that Definition 3.9 implies that both ιham and Dev are Lipschitz
continuous (with L≤ 1) with respect to dham on Pham(Symp(M, ω), id), and
the C0-metric d on P(Homeo(M), id) and the L(1,∞)-metric on L

(1,∞)
m ([0, 1]×

M, R), respectively. These maps induce natural (Lipschitz continuous) pro-
jections from Q onto the first and second factor, denoted by

(3.14)
ιQham : Q → P(Symp(M, ω), id) → P(Homeo(M), id),

DevQ : Q → C∞
m ([0, 1] × M, R) → L(1,∞)

m ([0, 1] × M, R).

The map ev1 is also seen to be Lipschitz continuous (also with L ≤ 1)
with respect to dham on Pham(Symp(M, ω), id) and the C0-topology on
Ham(M, ω) ⊂ Homeo(M), and hence induces the natural (Lipschitz contin-
uous) map

evQ
1 : Q → Ham(M, ω) ⊂ Homeo(M), (λ, H) �→ λ(1).

We denote by Q the closure of Q in P(Homeo(M), id) × L
(1,∞)
m ([0, 1] ×

M, R) with respect to the product metric. By Lipschitz continuity of the
above maps, all three maps naturally extend to continuous maps defined
on Q.

Definition 3.14 (Hamiltonian homeomorphisms). We denote by

(3.15) evQ
1 : Q → Homeo(M), (λ, H) �→ λ(1)

the natural continuous extension of the evaluation map evQ
1 . We denote by

Hameo(M, ω) ⊂ Homeo(M)
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the image of Q under the map evQ
1 and call any element thereof a Hamil-

tonian homeomorphism, i.e., h ∈ Hameo(M, ω) if and only if there exists
a Cauchy sequence (φHi , Hi) in Q in the Hamiltonian topology with h =
limC0 φ1

Hi
. We equip Hameo(M, ω) with the subspace topology induced from

Homeo(M), i.e., with the C0-topology. We define the Hamiltonian topology
on the set Hameo(M, ω) to be the strongest topology such that the map evQ

1
is continuous. We denote by Hameo(M, ω) the resulting topological space.
By definition the map

(3.16) evQ
1 : Q → Hameo(M, ω)

is surjective, continuous, and the following diagram commutes

(3.17)
Q −→ Ham(M, ω)
↓ ↓
Q −→ Hameo(M, ω),

where the vertical maps are the natural inclusions, and the horizontal maps
are the maps induced by the evaluation map.

Definition 3.15 (Topological Hamiltonian paths). We denote by

ιQham : Q → P(Homeo(M), id), (λ, H) �→ λ,

the natural continuous extension of ιQham. By definition of Sympeo(M, ω) it
follows that the map is factorized into

ιQham : Q → P(Sympeo(M, ω), id) ↪→ P(Homeo(M), id).

We denote by

Pham(Sympeo(M, ω), id)⊂ P(Sympeo(M, ω), id)

the image of the map ιQham equipped with the subspace topology, i.e., the
C0-topology. We call any element λ ∈ Pham(Sympeo(M, ω), id) a topological
Hamiltonian path.

More specifically, a continuous path λ ∈ P(Homeo(M), id) is a topological
Hamiltonian path if and only if there exists a Cauchy sequence (φHi , Hi) ∈ Q
in the Hamiltonian topology such that limC0 φHi = λ.

Now we ask the following uniqueness question on the “L(1,∞)-Hamiltonian”
concerning the one-oneness of the map ιQham.

Question 3.16. Consider the Cauchy sequences (φHi , Hi) and (φH′
i
, H ′

i) in
the Hamiltonian topology such that (φt

Hi
)−1(φt

H′
i
) → id as i → ∞ uniformly

over [0, 1] × M . Does this imply
∥∥H i#H ′

i

∥∥ → 0 as i → ∞?

The C0-(or L∞-)version of this question has been answered affirmatively
by Viterbo [32] on closed manifolds, and then subsequently by the senior
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author [22] on open manifolds during the preparation of the current revi-
sion of the paper. We refer readers to [20, 22] for the generalization of
this uniqueness result in the Lagrangian context and for several other con-
sequences of this uniqueness result.

Here are several remarks.

Remark 3.17.
(1) Similarly, we can define the continuous extension DevQ of DevQ. The

image of this map is by definition the set of topological Hamiltonian
functions. These will be studied in a sequel [20].

(2) Of course, as topological spaces Pham(Symp(M, ω), id) ∼= Q via the
unfolding map. But it is often more convenient to consider the com-
pletion of Q in P(Homeo(M), id)×L

(1,∞)
m ([0, 1]×M, R) rather than the

abstract completion Pham(Symp(M, ω), id) of Pham(Symp(M, ω), id),
and then dealing with equivalence classes of Cauchy sequences rep-
resenting elements in Pham(Symp(M, ω), id). As topological spaces,
Pham(Symp(M, ω), id) and Q are homeomorphic by the natural exten-
sion of the unfolding map. All statements about Q and Q can be
translated to Pham(Symp(M, ω), id) and Pham(Symp(M, ω), id) by
composing all maps with the unfolding map or its inverse, and vice
versa.

(3) The way how we define Hameo(M, ω) starting from the completion
of the path space Pham(Symp(M, ω), id) is natural since Ham(M, ω)
itself is defined in a similar way (recall Remark 3.8(1)).

Next recall Dev(φH)(t, x) = H(t, x) and Tan(φH)(t, x) = H(t, (φt
H)(x)).

For convenience, we will often write H ◦ φH to denote

(H ◦ φH)(t, x) = H(t, φt
H(x)) = Tan(φH)(t, x).

Note that from the definitions we immediately get the useful identity

(3.18) leng
(
φH(φH′)−1

)
= ‖H#H ′‖ = ‖ Tan(φH) − Tan(φH′)‖.

Continuity of the maps Dev and DevQ is obvious from their definition,
but not so that of Tan and TanQ. In this regard, we state the following
lemma.

Lemma 3.18. The map

Tan : Pham(Symp(M, ω), id) → C∞
m ([0, 1] × M, R)

is continuous with respect to the Hamiltonian topology on Pham(Symp(M, ω),
id) and the L(1,∞)-topology on C∞

m ([0, 1]×M, R). The same holds for the map

TanQ : Q → C∞
m ([0, 1] × M, R), (λ, H) �→ H ◦ λ.
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Proof. Let λ = φH be given. Consider another Hamiltonian path λ′ = φH′ .
We have

‖ Tan(φH′) − Tan(φH)‖ = ‖H ′ ◦ φH′ − H ◦ φH‖
≤ ‖H ′ ◦ φH′ − H ◦ φH′‖ + ‖H ◦ φH′ − H ◦ φH‖
≤ ‖H ′ − H‖ + 2LdC0(φH′ , φH),(3.19)

where L is a Lipschitz constant that depends only on the smooth func-
tion H. It follows from this inequality that Tan is continuous at every
λ ∈ Pham(Symp(M, ω), id) and hence the proof. The proof for TanQ is of
course the same. �

Since the constant L in (3.19) depends on the Hamiltonian function H,
the map Tan is unlikely to be uniformly continuous. The constant L cannot
be controlled in the Hamiltonian topology, e.g., when we consider a Cauchy
sequence (φHi , Hi) representing a topological Hamiltonian path. This was
the source of many erroneous statements and proofs in the previous senior
author’s own versions of the current paper, many of which are corrected by
the junior author in the current version. The crucial lemma to deal with
this difficulty is the Reparameterization Lemma 3.21 below.

Very often in the study of the geometry of Hamiltonian diffeomorphisms,
one needs to reparameterize a given Hamiltonian path in a way that the
reparameterization is close enough to the given parameterization, e.g., in
the smoothing process of the concatenation of two paths. We now provide
the correct topology describing the closeness of such parameterizations.

Definition 3.19. We call the norm

‖f‖ham := ‖f‖C0 + ‖f ′‖L1

of a (smooth) function f : [0, 1] → R the hamiltonian norm of the function
f . Here f ′ denotes the derivative of the function f . We say that two smooth
functions ζ1, ζ2 : [0, 1] → [0, 1] are hamiltonian-close to each other if the norm

‖ζ1 − ζ2‖ham := ‖ζ1 − ζ2‖C0 + ‖ζ ′
1 − ζ ′

2‖L1

= max
t ∈ [0,1]

|ζ1(t) − ζ2(t)| +
∫ 1

0
|ζ ′

1(t) − ζ ′
2(t)| dt

is small.

Recall that for a given Hamiltonian function H generating the Hamiltonian
path φH , the reparameterized path t �→ φ

ζ(t)
H is generated by the Hamiltonian

function Hζ defined by Hζ(t, x) = ζ ′(t)H(ζ(t), x), where ζ ′ again denotes
the derivative of the reparameterization function ζ : [0, 1] → [0, 1].

Lemma 3.20. Let H : [0, 1]×M → R be a normalized smooth Hamiltonian
function, and let ζ1, ζ2 : [0, 1] → [0, 1] be two smooth reparameterization
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functions. Then

(3.20) ‖Hζ1 − Hζ2‖ ≤ C‖ζ1 − ζ2‖ham,

where C ≤ 2 max(‖H‖C0 , L) is a constant that depends only on the C0-norm

‖H‖C0 = max
(t,x)

|H(t, x)|<∞

of H and a Lipschitz constant (in the time variable) L for H.

We refer to Appendix 2 for the proof of Lemma 3.20. But note that
Lemma 3.20 does not hold if we replace the hamiltonian norm by the C0-
norm of ζ1 − ζ2 in (3.20).

We now state the following useful lemma.

Lemma 3.21 (Reparameterization lemma). Suppose Hi : [0, 1]×M →
R is a Cauchy sequence of smooth functions in the L(1,∞)-topology, i.e.,

‖Hi − Hj‖ → 0 as i, j → ∞,

ζ1, ζ2 : [0, 1] → [0, 1] are smooth reparameterization functions on [0, 1] and
λ, μ∈ P(Homeo(M), id) are continuous paths. Let ε > 0 be given.

(1) Then there exist δ = δ({Hi}) > 0 and i0 = i0({Hi}) > 0 such that

‖Hζ1
i − Hζ2

i ‖ < ε

for all i ≥ i0, if ζ1, ζ2 satisfy

‖ζ1 − ζ2‖ham < δ.

(2) There exist δ′ = δ′({Hi}) > 0 and i′0 = i′0({Hi}) > 0 such that

‖Hi ◦ λ − Hi ◦ μ‖ < ε

for all i ≥ i′0, if λ, μ satisfy

dC0(λ, μ) < δ′.

Proof. (1) We can find i0 sufficiently large such that

‖Hi − Hi0‖ <
ε

3
for all i ≥ i0.

Choose 0 < δ < ε
3C , where C is as in Lemma 3.20 with H replaced by Hi0 .

Then
‖Hζ1

i0
− Hζ2

i0
‖ <

ε

3
when ‖ζ1 − ζ2‖ham < δ.

Therefore,

‖Hζ1
i − Hζ2

i ‖ ≤ ‖Hζ1
i − Hζ1

i0
‖ + ‖Hζ1

i0
− Hζ2

i0
‖ + ‖Hζ2

i0
− Hζ2

i ‖
= ‖Hi − Hi0‖ + ‖Hζ1

i0
− Hζ2

i0
‖ + ‖Hi0 − Hi‖

<
ε

3
+

ε

3
+

ε

3
= ε,

when ‖ζ1 − ζ2‖ham < δ, i ≥ i0. That proves (1).
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For (2), again choose i′0 = i0 sufficiently large such that

‖Hi − Hi0‖ <
ε

3
for all i ≥ i0.

By uniform continuity of Hi0 , there exists δ′ > 0 such that

‖Hi0 ◦ λ − Hi0 ◦ μ‖C0 <
ε

6
when dC0(λ, μ) < δ. This implies

‖Hi0 ◦ λ − Hi0 ◦ μ‖ <
ε

3
when dC0(λ, μ) < δ. Now apply the triangle inequality as above. �

Note that Hi converges to an L(1,∞)-function H, but that we cannot
replace Hi0 by H in the above proof since H is not even continuous in
general.

Proposition 3.22. There exist continuous maps TanQ and DevQ, which
we again call the tangent map and the developing map, respectively

(3.21) TanQ, DevQ : Q → L(1,∞)
m ([0, 1] × M),

such that the following diagram commutes

(3.22)
Q −→ C∞

m ([0, 1] × M, R)
↓ ↓
Q −→ L

(1,∞)
m ([0, 1] × M, R),

where the vertical maps are the natural inclusions, and the horizontal maps
are the tangent and developing maps.

Proof. Since DevQ has been already checked before, we will consider only
TanQ. For TanQ, recall that for any sequence Hi,

‖ Tan(φHi) − Tan(φHj )‖ = ‖Hi ◦ φHi − Hj ◦ φHj‖
≤ ‖Hi ◦ φHi − Hj ◦ φHi‖ + ‖Hj ◦ φHi − Hj ◦ φHj‖
= ‖Hi − Hj‖ + ‖Hj ◦ φHi − Hj ◦ φHj‖.

Now if (φHi , Hi) is a Cauchy sequence in the Hamiltonian topology, then
the first term converges to zero by definition, and the second term con-
verges to zero by Lemma 3.21(2). So Tan(φHi) converges to an element in
L

(1,∞)
m ([0, 1] × M, R).
If (λ, H) ∈Q, there exists such a Cauchy sequence (φHi , Hi) converging

to (λ, H) in the Hamiltonian topology. By definition, we set

TanQ(λ, H) = lim
i→∞

Tan(φHi).
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The above discussion shows that the right hand side does not depend on the
choice of Hi and so is well defined. It also coincides with the composition
H ◦ λ, which is already well defined as an L(1,∞)-function.

To prove continuity, suppose (λ, H) ∈Q is given, and let ε > 0 be given as
well. Let (λ′, H ′) ∈Q be another element. By definition there are sequences
(φHi , Hi) and (φH′

i
, H ′

i) converging to (λ, H) and (λ′, H ′), respectively. We
have

‖ Tan(φHi) − Tan(φH′
i
)‖ = ‖Hi ◦ φHi − H ′

i ◦ φH′
i
‖

≤ ‖Hi ◦ φHi − Hi ◦ φH′
i
‖ + ‖Hi ◦ φH′

i
− H ′

i ◦ φH′
i
‖

= ‖Hi ◦ φHi − Hi ◦ φH′
i
‖ + ‖Hi − H ′

i‖.

By Lemma 3.21, we can find 0 < δ < ε
2 and i0 only depending on the sequence

Hi such that if ‖Hi − H ′
i‖ < δ and dC0(φHi , φH′

i
) < δ for sufficiently large i,

say i ≥ N , then

‖ Tan(φHi) − Tan(φH′
i
)‖ ≤ ‖Hi ◦ φHi − Hi ◦ φH′

i
‖ + ‖Hi − H ′

i‖ <
ε

2
+

ε

2
= ε

for all i ≥ max{i0, N}. By taking the limit as i → ∞, this implies

‖TanQ(λ, H) − TanQ(λ′, H ′)‖ < ε when d(λ, μ) + ‖H − H ′‖ < δ,

proving that TanQ is continuous at (λ, H). �

The images of TanQ and DevQ contain C∞
m ([0, 1]×M, R). This is because

for any given F ∈C∞
m ([0, 1] × M, R), we have the formula

(3.23) F = Dev(φF ) = − Tan(φ−1
F )

by (3.6). In fact we will see in Theorem 4.1 that Im DevQ and Im TanQ both
contain C1,1([0, 1]×M, R). We do not know whether the images of the maps

TanQ, DevQ : Q → L(1,∞)
m ([0, 1] × M, R)

contain the whole C0
m([0, 1]×M, R). Some of these questions will be studied

in [20].
The power of our definition of the Hamiltonian topology using the sets

(3.7) manifests itself in the proof of the following theorem.

Theorem 3.23. The set Q forms a topological group.

Proof. We first have to show that composition and inverses on Q are defined.
The other group properties will follow immediately. We then show that
composition and inverse operation are continuous.

Let (λ, H) and (μ, F ) ∈Q. By definition, there are sequences (φHi , Hi)
and (φFi , Fi) converging to (λ, H) and (μ, F ), respectively in the Hamiltonian
topology. In particular,
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(1) both satisfy

(3.24) ‖H − Hi‖, ‖F − Fi‖ → 0 as i → ∞,

(2) and

(3.25) d(λ, φHi) → 0, d(μ, φFi) → 0 as i → ∞.

We know by our earlier remark about d that

(3.26) d(λμ, φHiφFi) → 0 as i → ∞.

Moreover, we recall

Hi#Fi = Hi + Fi ◦ (φHi)
−1,

and this Hamiltonian generates φHiφFi . By assumption, we have ‖Hi−H‖ →
0. On the other hand, we derive

‖Fi ◦ φ−1
Hi

− F ◦ λ−1‖ ≤ ‖Fi ◦ φ−1
Hi

− Fi ◦ λ−1‖ + ‖Fi ◦ λ−1 − F ◦ λ−1‖
= ‖Fi ◦ φ−1

Hi
− Fi ◦ λ−1‖ + ‖Fi − F‖.

Here the first term converges to zero by Lemma 3.21 and the second does
by assumption. We therefore have

(3.27) Hi#Fi → H + F ◦ λ−1

in the L(1,∞)-topology as i → ∞ under the assumptions (3.24) and (3.25).
Therefore, if we define the L(1,∞)-function H#F by

H#F := H + F ◦ λ−1,

(3.26) and (3.27) imply that the pair (λμ, H#F ) is the limit of the sequence

(φHi#Fi
, Hi#Fi),

and so lies in Q again. And the above proof also shows that this limit does
not depend on the choices of Hi, Fi but depends only on (λ, H) and (μ, F ).

Now we define the product of (λ, H) and (μ, F ) by

(3.28) (λ, H) ◦ (μ, F ) := (λμ, H#F ).

When restricted to Q, this obviously agrees with the usual definition of
composition.

For the inverse, let (λ, H) be as above. We know that

(3.29) d
(
λ−1, (φHi)

−1) → 0 as i → ∞.

Moreover, by the same proof as for the product, we see that

(3.30) lim
i→∞

Hi = −H ◦ λ.

(One can also prove this by recalling Hi = −TanQ(φHi) and then using the
continuity of TanQ from Proposition 3.22.) We now define

(3.31) H := −H ◦ λ,
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which also coincides with the limit (3.30) for any sequence Hi satisfying
‖H − Hi‖ → 0 and d(λ, φHi) → 0. Then we define the inverse by

(3.32) (λ, H)−1 := (λ−1, H).

When restricted to Q, this again agrees with the usual definition of the
inverse.

This proves that Q forms a group under ◦, and it is straightforward to
check that all group axioms are satisfied.

We now have to show that the group operations in Q are continuous, i.e.,
that the maps

Q × Q → Q, ((λ, H), (μ, F )) �→ (λμ, H#F ),
Q → Q, (λ, H) �→ (λ−1, H)

are continuous with respect to the metric d + ‖ · ‖.
For the composition, suppose we have two sequences (λi, H

′
i) and

(μi, F
′
i ) ∈Q converging to (λ, H) and (μ, F ) in the metric d + ‖ · ‖ on Q,

respectively. We have to show that

d(λμ, λiμi) → 0 as i → ∞,

and

‖H ′
i#F ′

i − H#F‖ → 0 as i → ∞.

The C0-convergence is again immediate. For the ‖ · ‖-convergence, we
compute

‖H ′
i#F ′

i − H#F‖ = ‖H ′
i + F ′

i ◦ λ−1
i − H − F ◦ λ−1‖

≤ ‖H ′
i − H‖ + ‖F ′

i ◦ λ−1
i − F ◦ λ−1‖

≤ ‖H ′
i − H‖ + ‖F ′

i ◦ λ−1
i − F ◦ λ−1

i ‖
+ ‖F ◦ λ−1

i − F ◦ λ−1‖
= ‖H ′

i − H‖ + ‖F ′
i − F‖ + ‖F ◦ λ−1

i − F ◦ λ−1‖.

The first two terms converge to zero by assumption. For the third term, we
derive, with Fi smooth Hamiltonians as above,

‖F ◦ λ−1
i − F ◦ λ−1‖ ≤ ‖F ◦ λ−1

i − Fi ◦ λ−1
i ‖ + ‖Fi ◦ λ−1

i − Fi ◦ λ−1‖
+ ‖Fi ◦ λ−1 − F ◦ λ−1‖

= ‖F − Fi‖ + ‖Fi ◦ λ−1
i − Fi ◦ λ−1‖ + ‖Fi − F‖.

The first and the third terms converge to zero by assumption and the
second term by assumption and Lemma 3.21. That proves continuity of
composition.
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For the inverse, d(λ−1, λ−1
i ) → 0. Moreover, it is immediate to check that

as in the smooth case (3.18) we have

‖Hi − H‖ = ‖TanQ(λ) − TanQ(λi)‖ → 0

by continuity of TanQ. This completes the proof. �
Corollary 3.24. The set Q ⊂Q forms a topological subgroup.

Proof. Q is a topological subspace of Q by definition of the latter, and the
proof of Theorem 3.23 implies that Q is a subgroup. �
Corollary 3.25. The evaluation map

evQ
1 : Q → Hameo(M, ω)

is an open map. The set Hameo(M, ω) forms a topological group under
composition. In particular, Hameo(M, ω) ⊂ Homeo(M) forms a topological
subgroup of Homeo(M).

Proof. Theorem 3.23 in particular implies that left multiplication by an
element in Q is a continuous map Q → Q. By definition, the topology on
Hameo(M, ω) is the strongest topology on the set Hameo(M, ω) such that
the above evaluation map evQ

1 is continuous. The proof of openness of evQ
1

is now the same as the one for ev1 in Corollary 3.12.
The surjective map

evQ
1 : Q → Hameo(M, ω)

induces a group structure on Hameo(M, ω) in the obvious way. In fact, com-
position in this group is just the usual composition of maps. The map evQ

1
becomes a homomorphism of (abstract) groups, which is open, continuous
and surjective. From this it is straightforward to check that Hameo(M, ω)
indeed forms a topological group.

Since as sets Hameo(M, ω) coincides with Hameo(M, ω), Hameo(M, ω)
forms a group as well. It is immediate that Hameo(M, ω) with this group
structure forms a topological subgroup of Homeo(M). �

We now define the notion of topological Hamiltonian fiber bundles.

Definition 3.26 (Topological Hamiltonian bundle). We call a topo-
logical fiber bundle P → B with fiber (M, ω) a topological Hamiltonian
bundle if its structure group can be reduced to the group Hameo(M, ω).
More precisely, P → B is a topological Hamiltonian bundle if it allows a
trivializing chart {(Uα, Φα)} such that its transition maps are contained in
Hameo(M, ω).

Recall that in the smooth case, this definition coincides with that of a
symplectic fiber bundle that carries a fiber-compatible closed 2-form when
either the fiber or the base is simply connected [7, 12, 13]. It seems to be
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a very interesting problem to formulate the corresponding C0-analog to the
latter. We hope to study this issue among others elsewhere.

Remark 3.27 (Weak Hamiltonian topology). We can define the notion
of weak Hamiltonian topology similarly to (strong) Hamiltonian topology.
In the sets (3.7), we just replace the C0-distance of the whole paths by
the C0-distance of the time-one maps only. So in the weak Hamiltonian
topology, we do not have any control over the C0-convergence of the whole
paths other than the time-one maps. Although this seems natural in light
of Proposition 3.6, it turns out that the weak Hamiltonian topology does
not behave as nicely as the strong Hamiltonian topology. For example,
it is unlikely that the map Tan is continuous with respect to the weak
Hamiltonian topology, and that the sets Qw and therefore Hameow(M, ω)
defined in the same way as in the strong case form groups. One can easily
verify that Remark 3.8, Proposition 3.10, Proposition 3.11, Corollary 3.12
and Theorem 4.1 still hold, respectively, in the weak case, while in Theorem
3.13 only path-connectedness, but not local path-connectedness, still holds.
It seems unlikely that the analog to Theorem 4.5 below holds as well. The
strong Hamiltonian topology is obviously stronger than the weak one, but
it is an open question whether they are indeed different in general.

4. Basic properties of the group of Hamiltonian
homeomorphisms

In this section, we extract some basic properties of the group Hameo(M, ω)
that immediately arise from its definition. We first note that

(4.1) Ham(M, ω) ⊂ Hameo(M, ω) ⊂ Sympeo(M, ω)

from their definitions. The following theorem proves that Hameo(M, ω)
contains all expected Ck-Hamiltonian diffeomorphisms with k ≥ 2.

Theorem 4.1. The group Hameo(M, ω) contains all C1,1-Hamiltonian dif-
feomorphisms. More precisely, if φ is the time-one map of Hamilton’s equa-
tion ẋ = XH(t, x) for a C1-function H : [0, 1] × M → R such that

(1) ‖Ht‖C1,1 ≤C, where C > 0 is independent of t ∈ [0, 1], and
(2) the map (t, x) �→ dHt(x), [0, 1] × M → T ∗M is continuous,

then φ∈ Hameo(M, ω).

Proof. Note that any such C1,1-function can be approximated by a sequence
of smooth functions Hi : [0, 1] × M → R so that

(4.2) ‖H − Hi‖ → 0,

where ‖·‖ denotes the L(1,∞)-norm as before. On the other hand, the vector
fields XHi(t, x) converge to XH(t, x) in C0,1(TM) uniformly over t ∈ [0, 1].
Therefore, the flow φt

Hi
→ φt

H and so φ1
Hi

→ φ1
H in the C0-topology by
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the standard existence and continuity theorem of ODE for Lipschitz vector
fields. In particular, this C0-convergence together with (4.2) implies that
the sequence (φHi , Hi) is a Cauchy sequence in Q with

(4.3) lim
C0

φ1
Hi

= φ1
H = φ.

Therefore, φ∈ Hameo(M, ω). �
The following provides an example of an area-preserving homeomorphism

on a surface that is not C1, but still a Hamiltonian homeomorphism. There-
fore, we have the following proper inclusion relation

Ham(M, ω) � Hameo(M, ω) ⊂ Sympeo(M, ω).

Example 4.2. We will construct an area-preserving homeomorphism on
the unit disc D2 that is the identity near the boundary ∂D2 and continuous
but not differentiable. By extending the homeomorphism by the identity on
Σ = D2 ∪ (Σ \ D2) to the outside of the disc, we can construct a similar
example on a general surface Σ (for example, by choosing D inside the
domain of a Darboux chart). Similarly one can construct such an example
in higher dimensions. Furthermore a slight modification of an example like
this combined with Polterovich’s theorem on S2 [25] provides a sequence
φi of Hamiltonian diffeomorphisms on S2 such that φi → id uniformly but
‖φi‖ → ∞, which demonstrates that the Hofer norm function φ �→ ‖φ‖ is
not continuous in the C0-topology on Ham(M, ω).

Let (r, θ) be polar coordinates on D2. Then the standard area form is
given by

Ω = r dr ∧ dθ.

Consider maps D2 → D2 of the form

φρ : (r, θ) �→ (r, θ + ρ(r)),

where ρ : (0, 1] → [0,∞) is a smooth function that satisfies for some small
ε > 0

(1) ρ′ < 0 on (0, 1 − ε), ρ ≡ 0 on [1 − ε, 1]; and
(2) limr→0+ rρ′(r) = −∞.
It follows that φρ is smooth except at the origin at which φρ is continuous

but not differentiable. Obviously the map φ−ρ is the inverse of φρ, which
shows that it is a homeomorphism. Furthermore, we have

φ∗
ρ(r dr ∧ dθ) = r dr ∧ dθ on D2 \ {0},

which implies that φρ is area-preserving.
Now it remains to show that if we choose ρ suitably, φρ becomes a Hamil-

tonian homeomorphism. We will in fact consider time-independent Hamil-
tonians for this purpose. Consider the isotopy

t ∈ [0, 1] �→ φtρ ∈ HomeoΩ(D2).
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A straightforward calculation shows that a corresponding Hamiltonian is
given by the time-independent function

Hρ(r, θ) = −
∫ r

1
sρ(s) ds.

The L(1,∞)-norm of Hρ becomes∫ 1

0
sρ(s) ds.

Choose any ρ so that the integral becomes finite, e.g., ρ(r) = 1√
r

near
r = 0. Now we choose any smoothing sequence ρn of ρ by regularizing
ρ at 0, and consider the corresponding Hamiltonians Hρn and their time
one-maps φρn . Then it follows that (φHρn

, Hρn) is a Cauchy sequence in
the Hamiltonian topology and φρn → φρ in the C0-topology. So φρ is a
Hamiltonian homeomorphism that is neither differentiable nor Lipschitz at 0.

The following question seems to be one of fundamental importance (See
Conjectures 5.3 and 5.4 later).

Question 4.3. In Example 4.2, consider ρ such that∫ 1

0+
sρ(s) ds = +∞.

Is the homeomorphism φρ still contained in Hameo(M, ω)?

The following theorem is the C0-version of the well-known fact that
Ham(M, ω) is a normal subgroup of Symp0(M, ω).

Theorem 4.4. Hameo(M, ω) is a normal subgroup of Sympeo(M, ω).

Proof. We have to show

ψhψ−1 ∈ Hameo(M, ω)

for any h ∈ Hameo(M, ω) and ψ ∈ Sympeo(M, ω). By definition, there are
Cauchy sequences (φHi , Hi) ∈ Q and ψi ∈ Symp(M, ω) such that

h = lim
C0

φ1
Hi

and lim
C0

ψi = ψ.

Let φi = φ1
Hi

. Recall from (3.3) that ψ−1
i φiψi is generated by Hi ◦ ψi for all

i. It, therefore, suffices to prove that (ψ−1
i φiψi, Hi◦ψi) is a Cauchy sequence

in Q and limC0 ψ−1
i φiψi = ψ−1hψ. The C0-convergence of the paths and

time-one maps is obvious. Hence it remains to prove that Hi◦ψi is a Cauchy
sequence in the L(1,∞)-topology,

(4.4) ‖Hi ◦ ψi − Hj ◦ ψj‖ → 0 as i, j → ∞.

But

‖Hi ◦ ψi − Hj ◦ ψj‖ ≤ ‖Hi ◦ ψi − Hj ◦ ψi‖ + ‖Hj ◦ ψi − Hj ◦ ψj‖ → 0.
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Here the first term goes to zero as ‖Hi ◦ ψi − Hj ◦ ψi‖ = ‖Hi − Hj‖ → 0
by assumption, and the second does by assumption and by Lemma 3.21(2)
(by viewing the ψi as constant paths). That finishes the proof. �

The following is an important property of Hameo(M, ω), which
demonstrates that it is the “correct” C0-counterpart of Ham(M, ω).

Theorem 4.5. Hameo(M, ω) is path-connected and locally path-connected.
Consequently, Hameo(M, ω) is path-connected and we have

Hameo(M, ω) ⊂ Sympeo0(M, ω) ⊂ Sympeo(M, ω) ∩ HomeoΩ
0 (M).

Proof. Let h ∈ Hameo(M, ω). For the path-connectedness of Hameo(M, ω),
it suffices to prove that h can be connected to the identity by a Hamiltonian
continuous path � : [0, 1] → Hameo(M, ω) such that �(0) = id and �(1) = h.

By definition, there exists a sequence (φHi , Hi) ∈ Q converging to an ele-
ment (λ, H) ∈Q, and h = evQ

1 (λ, H) = λ(1) = limC0 φ1
Hi

. As in Theo-
rem 3.13, consider the Hamiltonians Hs

i generating the Hamiltonian paths
t �→ φt

Hs
i

= φst
Hi

for all s∈ [0, 1] and all i. By the same arguments as in
Theorem 3.13, we have

d(φHs
i
, φHs

i′
) ≤ d(φHi , φHi′ ) → 0 as i, i′ → ∞,

and
‖Hs

i − Hs
i′‖ ≤ ‖Hi − Hi′‖ → 0 as i, i′ → ∞.

So (φHs
i
, Hs

i ) is a Cauchy sequence in the Hamiltonian topology. Denote by
(λs, Hs) ∈Q its limit, and note that λs is nothing but the path t �→ λ(st).
By the above, �(s) = evQ

1 (λs, Hs) = λ(s) ∈ Hameo(M, ω) for all s∈ [0, 1],
and �(0) = id, �(1) = h. It remains to show that � is continuous with
respect to the Hamiltonian topology on Hameo(M, ω).

Now � factors through

[0, 1] → Q → Hameo(M, ω), s �→ (λs, Hs) �→ evQ
1 (λs, Hs) = �(s).

By definition of the topology on Hameo(M, ω), it suffices to show that the
first map is continuous, that is, that s �→ (λs, Hs) is continuous with respect
to the standard metric on [0, 1] and the product metric d + ‖ · ‖ on Q. But

d
(
(λs, Hs), (λs′

, Hs′
)
)

= ‖Hs − Hs′‖ + d(λs, λs′
)

= lim
i→∞

‖Hs
i − Hs′

i ‖ + max
t ∈ [0,1]

d(λ(st), λ(s′t)).

Let ε > 0. Note that if we consider the functions ζ1(t) = ts and ζ2(t) = ts′,
we see that

‖ζ1 − ζ2‖ham = 2|s − s′|.
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Therefore, it follows from Lemma 3.21 that we can find δ > 0 and i0
sufficiently large such that

‖Hs
i − Hs′

i ‖ <
ε

2
,

when |s − s′|< δ and i ≥ i0, and therefore

lim
i→∞

‖Hs
i − Hs′

i ‖ <
ε

2
,

when |s − s′|< δ. For the second term, use continuity of λ and λ−1 to see
that by making δ smaller if necessary,

d(λ(st), λ(s′t)) <
ε

2
,

when |st−s′t| ≤ |s−s′|< δ. That proves continuity of �, and hence completes
the proof of path-connectedness of Hameo(M, ω).

For the proof of local path-connectedness, we can, using Corollary 3.25,
combine the above proof with the ideas in the proof of Theorem 3.13. Since
the proof is essentially the same, we leave the details to the reader.

Now as sets, Hameo(M, ω) coincides with Hameo(M, ω). Note that the
path � constructed above is a topological Hamiltonian path. Since a topo-
logical Hamiltonian path is in particular a continuous path with respect
to the C0-topology, this implies path-connectedness of Hameo(M, ω). The
other statements about Hameo(M, ω) follow from this immediately. That
completes the proof. �

It follows immediately from the L(1,∞)-approximation lemma (Appen-
dix 2) that given any Cauchy sequence in Q, we may assume that each path
in the sequence is boundary flat. This implies that the concatenation of two
topological Hamiltonian path is again a topological Hamiltonian path. So
in fact we have proved that Hameo(M, ω) is path-connected by topological
Hamiltonian path.

Question 4.6. Is Hameo(M, ω) locally path-connected?

Recall from (4.1) that we have Hameo(M, ω) ⊂ Sympeo(M, ω). But
note that a priori it is not clear whether Hameo(M, ω) is different from
Sympeo(M, ω). In fact, if one naively takes just the C0-closure of
Ham(M, ω), then it can end up becoming the whole Sympeo(M, ω). We
refer to [2] for a nice observation that this is really the case for Hamc(R2n).
We refer to Section 6 for further discussion on this phenomenon.

In the next section, we will study the case dim M = 2. Here we want to
state the following theorem which is an immediate application of Arnold’s
conjecture.

Theorem 4.7. Let (M, ω) be a closed symplectic manifold. Then any C0-
limit of Hamiltonian diffeomorphism has a fixed point. In particular, any
Hamiltonian homeomorphism has a fixed point.
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Proof. Let h = limC0 φi for a sequence φi ∈ Ham(M, ω). We prove the the-
orem by contradiction. Suppose h has no fixed point. Denote

dh
min := inf

x ∈ M
d(x, h(x)).

By compactness of M and since h has no fixed point, dh
min > 0. But each φi

must have a fixed point xi by the Arnold Conjecture, which was proven in
[5, 14, 26]. Hence

d(h, φi) ≥ d(h(xi), φi(xi)) = d(h(xi), xi) ≥ dh
min > 0

for all i. On the other hand, we have

lim
i→∞

d(h, φi) = 0,

which gives rise to a contradiction. �

Corollary 4.8. Suppose that (M, ω) carries a symplectic diffeomorphism
ψ ∈ Symp0(M, ω) (or equivalently, ψ ∈ Sympeo0(M, ω)) that has no fixed
point. Then ψ �∈ Hameo(M, ω), and in particular we have

Hameo(M, ω) � Sympeo0(M, ω).

An example of a symplectic manifold (M, ω) satisfying these hypotheses
is the torus T 2n with the standard symplectic form ω0. Recall that by
identifying α ∈T 2n with the rotation x �→ x + α, we can identify T 2n with a
subgroup of Symp0(T 2n, ω0),

T 2n ↪→ Symp0(T
2n, ω0).

By Theorem 4.7, we have

T 2n ∩ Hameo(T 2n, ω0) = {id}.

It follows that Hameo(T 2n, ω0) � Sympeo0(T 2n, ω0).

5. The two dimensional case

In this section, we will mainly study the case dimM = 2. The first question
would be what the relation between the group HomeoΩ(M) and its subgroup
Sympeo(M, ω) is. Similar question can be asked for their identity compo-
nents, HomeoΩ

0 (M) and Sympeo0(M, ω). By definition of Sympeo(M, ω),
this question boils down to approximability of area-preserving homeomor-
phisms by area-preserving diffeomorphisms in two dimensions. This smooth-
ing result seems to have been known in the dynamical systems community
(see [22] and [29] for a proof). Combined with this smoothing theorem, the
following is an immediate translation thereof.
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Theorem 5.1. Let M be a compact orientable surface without boundary
and ω = Ω be an area form on it. Then we have

Sympeo(M, ω) = HomeoΩ(M), Sympeo0(M, ω) = HomeoΩ
0 (M).

Next we study the relationship between Hameo(M, ω) and Sympeo0(M, ω).
We will prove that if M �= S2 Hameo(M, ω) is indeed a proper subgroup of
Sympeo0(M, ω). The proof will use the mass flow homomorphism for area-
preserving homeomorphisms on a surface, which we recalled in Section 2
in the general context of measure-preserving homeomorphisms. The mass
flow homomorphisms can be defined for any isotopy of measure-preserving
homeomorphisms preserving a good measure, e.g., the Liouville measure on
a symplectic manifold (M, ω). The mass flow homomorphism reduces to
the dual version of the flux homomorphism for volume-preserving diffeo-
morphisms on a smooth manifold [30]. Of course in two dimensions, the
flux homomorphism coincides with the symplectic flux homomorphism, and
so we can compare the mass flow homomorphism and the symplectic flux.
One crucial point of considering the mass flow homomorphism instead of
the flux homomorphism is that it is defined for an isotopy of area-preserving
homeomorphisms, not just for diffeomorphisms.

We first recall the definition of the symplectic flux homomorphism.
Denote by

P(Symp0(M, ω), id)

the space of smooth paths c : [0, 1] → Symp0(M, ω) with c(0) = id. This
naturally forms a group. For each given c∈ P(Symp0(M, ω), id), the flux of
c is defined by

(5.1) P(Symp0(M, ω), id) → H1(M, R), Flux(c) =
∫ 1

0
ċ �ω dt.

This depends only on the homotopy class, relative to the end points, of the
path c and therefore projects down to the universal covering space

(5.2) πω : S̃ymp0(M, ω) → Symp0(M, ω), [c] �→ c(1),

where

S̃ymp0(M, ω) := {[c] | c∈ P(Symp0(M), id)}.

Here [c] is the homotopy class of c relative to fixed end points. We recall
that Symp0(M, ω) is locally contractible [33] and so S̃ymp0(M, ω) is indeed
the universal covering space of Symp0(M, ω). If we put

Γω = Flux
(
ker

(
πω : S̃ymp0(M, ω) → Symp0(M, ω)

))
,
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we obtain by passing to the quotient the group homomorphism

(5.3) flux : Symp0(M, ω) → H1(M, R)
Γω

.

The maps (5.1) and (5.3) are also known to be surjective [1].
It is also shown in [4, Appendix A.5] that Flux(c) ∈H1(M, R) is the

Poincaré dual to the mass flow homomorphism θ̃(c) ∈H1(M, R) recalled in
Section 2 (after normalizing ω so that

∫
M ω = 1). Since it is also well known

[1] that

H̃am(M, ω) = ker Flux,

Ham(M, ω) = ker flux,

we derive

(5.4) Ham(M, ω) ⊂ ker θ ∩ Symp0(M, ω).

Theorem 5.2. Let (M, ω) be a closed orientable surface, where ω = Ω is a
symplectic (or area) form on M . Then we have

(5.5) Hameo(M, ω) ⊂ ker θ ∩ Sympeo0(M, ω).

In particular, if M �= S2, we have

(5.6) Hameo(M, ω) � Sympeo0(M, ω).

Proof. Recall (4.1) that Hameo(M, ω) ⊂ Sympeo0(M). On the other hand,
(5.4) implies θ|Ham(M,ω) ≡ 0. From continuity of θ (Theorem 2.2) and the
definition of Hameo(M, ω), we derive θ|Hameo(M,ω) ≡ 0. That proves (5.5).

By the surjectivity of the Flux, the map

θ|Sympeo0(M,ω) : Sympeo0(M, ω) → H1(M, R)
Γ

is surjective. So ker θ|Sympeo0(M,ω) � Sympeo0(M, ω) when H1(M, R) �= 0
(and therefore, H1(M, R)/Γ �= 0 since Γ is discrete), which is the case for
M �= S2. That proves the last statement. �

This theorem verifies that Hameo(M, ω) is a proper normal subgroup of
Sympeo0(M, ω), at least in two dimensions if M �= S2.

We now propose the following conjecture.

Conjecture 5.3. Hameo(M, ω) is a proper subgroup of ker θ in general.
In particular for M = S2 with Ω = ω, Hameo(S2, ω) is a proper normal
subgroup of Sympeo0(S2, ω)(= HomeoΩ

0 (S2)).

The affirmative answer to this conjecture will answer to Question 2.3
negatively and settle the simpleness question of HomeoΩ

0 (S2), which has
been open since Fathi’s paper [4] appeared. In fact, this conjecture is an
immediate corollary of the following more concrete conjecture.
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Conjecture 5.4. The answer to Question 4.3 on S2 is negative, at least for
a suitable choice of ρ.

The results of this section can be generalized to higher dimensions in
many cases. We first recall the flux homomorphism for volume-preserving
diffeomorphisms on a smooth manifold [30]. Let Ω be a volume form on M
and denote by

P(DiffΩ
0 (M), id),

the space of smooth paths c : [0, 1] → DiffΩ
0 (M), the group of diffeomor-

phisms preserving the volume form Ω, with c(0) = id. This also naturally
forms a group. For each given c∈ P(DiffΩ

0 (M), id), the Volume Flux of c is
defined by

P(DiffΩ
0 (M), id) → H2n−1(M, R), Ṽ (c) =

∫ 1

0
ċ �Ω dt.

This depends only on the homotopy class relative to the end points of the
path c and therefore projects down to the universal covering space

πΩ : ˜DiffΩ
0 (M) → DiffΩ

0 (M), [c] �→ c(1),

where
˜DiffΩ

0 (M) := { [c] | c∈ P(DiffΩ
0 (M), id)}.

Here [c] again denotes the homotopy class of c relative to fixed end points.

It is well-known that DiffΩ
0 (M) is locally contractible and so ˜DiffΩ

0 (M) is
indeed the universal covering space of DiffΩ

0 (M). If we put

ΓΩ = Ṽ

(
ker

(
πΩ : ˜DiffΩ

0 (M) → DiffΩ
0 (M)

))
,

we obtain by passing to the quotient the group homomorphism

V : DiffΩ
0 (M) → H2n−1(M, R)

ΓΩ
,

to which we also refer to as the (volume) flux homomorphism.
In fact, Ṽ (c) ∈H2n−1(M, R) is the Poincaré dual to the mass flow homo-

morphism θ̃(c) ∈H1(M, R) (after normalizing Ω so that
∫
M Ω = 1) [4].

Now let Ω = 1
n!ω

n be the Liouville volume form. An easy calculation [1]
shows that

(5.7) Ṽ (c) =
1

(n − 1)!

(
Flux(c)

)
∧ ωn−1.

So (5.4) holds in any dimension,

Ham(M, ω) ⊂ ker θ ∩ Symp0(M, ω).
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By reexamining the proof of Theorem 5.2, we see that (5.5) holds as well,
i.e.,

Hameo(M, ω) ⊂ ker θ ∩ Sympeo0(M, ω),

for any closed symplectic manifold (M, ω). We also see that

Hameo(M, ω) � Sympeo0(M, ω),

if θ|Sympeo0(M,ω) : Sympeo0(M, ω) → H1(M, R)/Γ is nontrivial. By (5.7) and
surjectivity of the Flux, we see that this condition is satisfied if

(5.8) ∧ωn−1 : H1(M, R) → H2n−1(M, R)

is nontrivial. The latter condition in particular holds if the map (5.8) is
an isomorphism and H1(M, R) �= 0 in which case M is said to be of Lef-
schetz type (for example, Kähler manifolds, or the case dimM = 2 above).
Nontriviality of the map (5.8) is equivalent to nontriviality of the pairing

H1(M, R) × H1(M, R) → R, (α, β) �→
∫

M
α ∧ β ∧ ωn−1

This holds for the torus T 2n and therefore gives another proof of Hameo(T 2n,
ω0) � Sympeo0(T 2n, ω0), which was also a consequence of Theorem 4.7. We
summarize these results in the following theorem.

Theorem 5.5. Let (M, ω) be a closed symplectic manifold. Then we have

Ham(M, ω) ⊂ ker θ ∩ Symp0(M, ω)

and

(5.9) Hameo(M, ω) ⊂ ker θ ∩ Sympeo0(M, ω).

If in addition the map (5.8) is nontrivial, then

Hameo(M, ω) � Sympeo0(M, ω) ⊂ HomeoΩ
0 (M).

6. The non-compact case and open problems

So far we have assumed that M is closed. In this section, we will indi-
cate the necessary changes to be made for the open case where M is either
noncompact or with boundary ∂M �= ∅.

There are two possible definitions of compactly supported Hamiltonian
diffeomorphisms in the literature. In this paper, we will treat the more
standard version, which we call compactly supported Hamiltonian diffeomor-
phisms.

Here is the definition of compactly supported Hamiltonian diffeomor-
phisms which is mostly used in the literature so far. We denote the
set of compactly supported symplectic diffeomorphisms by Sympc(M, ω) ⊂
Diffc(M, ω).
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Definition 6.1. We say that a smooth path λ : [0, 1] → Sympc(M, ω) is a
compactly supported Hamiltonian path if λ = φH for a Hamiltonian function
H : [0, 1] × M → R such that H is compactly supported in Int(M), where
supp(H) is defined by

supp(H) =
⋃

t ∈ [0,1]

supp(Ht).

We define
Pham(Sympc(M, ω), id)

to be the set of such λ with λ(0) = id. A compactly supported symplec-
tic diffeomorphism φ is a compactly supported Hamiltonian diffeomorphism
if φ = ev1(λ) for some λ ∈ Pham(Sympc(M, ω), id). We denote the set of
compactly supported Hamiltonian diffeomorphisms by

Hamc(M, ω) = ev1(Pham(Sympc(M, ω), id)).

We now give descriptions of the Hamiltonian topologies on the path space
Pham(Sympc(M, ω), id) and on the group Hamc(M, ω), respectively.

Let K ⊂ Int(M) be a compact subset. We denote by SympK(M, ω) the
set of ψ ∈ Sympc(M, ω) with suppψ ⊂K. By definition we have

Sympc(M, ω) =
⋃

K ⊂ Int M ;compact

SympK(M, ω).

We denote by
Pham(SympK(M, ω), id)

the set of λ ∈ Pham(Sympc(M, ω), id) with

supp(λ(t)) ⊂K for all t ∈ [0, 1].

The Hamiltonian topology on Pham(SympK(M, ω), id) defined just as in
the closed case is equivalent to the metric topology thereon induced by the
metric

(6.1) dham,K(λ0, λ1) = leng(λ−1
0 λ1) + d(λ0, λ1)

(see Proposition 3.10), where d is the C0-metric on P(Homeoc(M), id). By
definition,

Pham(Sympc(M, ω), id) =
⋃

K ⊂ Int M ;compact

Pham(SympK(M, ω), id).

We also define HamK(M, ω) to be the image

HamK(M, ω) = ev1(Pham(SympK(M, ω), id)).

Definition 6.2. Suppose M is either noncompact or with boundary
∂M �= ∅.
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(1) We define the (strong) Hamiltonian topology of Pham(Sympc(M, ω), id)
by the direct limit topology of the directed system

{Pham(SympK(M, ω), id) | K ⊂ Int M, compact}.

(2) We define the Hamiltonian topology of Hamc(M, ω) by the strongest
topology thereon such that the evaluation map

ev1 : Pham(Sympc(M, ω), id) → Hamc(M, ω).

is continuous. We denote the resulting topological space by
Hamc(M, ω).

Note that by definition we have

Hamc(M, ω) =
⋃

K ⊂ Int M ;compact

HamK(M, ω).

An easy exercise, using the commutative diagram

ev1 : Pham(SympK(M, ω), id) −→ HamK(M, ω)
↓ ↓

ev1 : Pham(Sympc(M, ω), id) −→ Hamc(M, ω),

shows that the Hamiltonian topology on Hamc(M, ω) is equivalent to the
direct limit topology on Hamc(M, ω) induced by the directed system

{HamK(M, ω) | K ⊂ IntM, compact}.

Now the developing map Dev has the form

Dev : Pham(Sympc(M, ω), id) → C∞
c ([0, 1] × M, R).

Here C∞
c ([0, 1] × M, R) is the set of smooth functions such that

⋃
t ∈ [0,1]

supp(Ht) ⊂ Int(M)

is compact.
We also consider the inclusion map

ιham : Pham(Sympc(M, ω), id) → P(Sympc(M, ω), id)

→ P(Homeoc(M), id).

The unfolding map (ιham, Dev) has the image

Q := Image(ιham, Dev) ⊂ P(Homeoc(M), id) × L(1,∞)
c ([0, 1] × M, R).

Similarly we define

QK := Image(ιham,K , DevK) ⊂ P(HomeoK(M), id) × L
(1,∞)
K ([0, 1] × M, R),
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equipped with the subspace topology induced by the metric topology on the
target. Now we equip Q with the direct limit topology of the system {QK}.
Then it follows that the unfolding map canonically extends to the union

Q :=
⋃

K ⊂ Int M ;compact

QK ,

in that we have the following continuous projections

ιQham : Q → P(Homeoc(M), id),(6.2)

DevQ : Q → L(1,∞)
c ([0, 1] × M, R),(6.3)

with respect to the direct limit topology on Q and the similar topology on
the targets. We would like to remark that Q is not the closure of Q in the
metric topology on P(Homeoc(M), id) × L

(1,∞)
c ([0, 1] × M, R) : the latter

product space is not a complete metric space.
By definition we have the extension of the evaluation map

ev1 : Pham(Sympc(M, ω), id) → Sympc(M, ω) → Homeoc(M)

to

(6.4) evQ
1 : Q → Homeoc(M), (λ, H) → λ(1).

Definition 6.3. We define the set

Pham(SympeoK(M, ω), id) := ιQham(QK) ⊂ P(HomeoK(M), id),

Pham(Sympeoc(M, ω), id) := ιQham(Q) ⊂ P(Homeoc(M), id),

and call any element of Pham(Sympeoc(M, ω), id) a compactly supported
topological Hamiltonian path. Again we equip the latter with the direct
limit topology of the metric topologies on Pham(SympeoK(M, ω), id). We
call this the Hamiltonian topology on Pham(Sympeoc(M, ω), id).

Then the set of compactly supported Hamiltonian homeomorphisms is
defined by

(6.5)
Hameoc(M, ω) = {h ∈ Homeo(M) | h = ev1(λ),

λ ∈ Pham(Sympeoc(M, ω), id)}.

As a topological space, we define it as

Definition 6.4. We define

HameoK(M, ω) = evQ
1 (QK),

and then

Hameoc(M, ω) =
⋃

K ⊂ Int M ;compact

HameoK(M, ω).

We call the direct limit topology of the metric topologies on HameoK(M, ω)
the Hamiltonian topology on Hameoc(M, ω).
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With these definitions, the analogs to all the results stated in Sections
2–5 still hold. For example, the following can be proved in the same way as
Theorems 4.4 and 4.5.

Theorem 6.5. The group Hameoc(M, ω) is a path-connected normal sub-
group of Sympeoc

0(M, ω).

We would like to point out that this theorem is a sharp contrast to the
following interesting observation by Bates [2]: if one takes just the C0-
closure of Hamc(R2n, ω0) instead, not with respect to the Hamiltonian topol-
ogy, the closure becomes the whole Sympeoc(R2n, ω0) even if Symp(R2n, ω0)
has many connected components. This is another evidence the Hamiltonian
topology is the right topology to take for the study of topological Hamilton-
ian geometry.

In relation to this definition, we would just like to mention one result by
Hofer [9] on R2n :

(6.6) ‖φ−1ψ‖ ≤C diam(supp(φ−1ψ))‖φ−1ψ‖C0 ,

where C is a constant with the bound C ≤ 128. This in particular implies
that the C0-topology is stronger than the Hofer topology on Hamc(R2n, ω0)
if supp(φ−1ψ) is controlled.

Finally we list the problems which arise immediately from the various def-
initions introduced in this paper, and seem to be interesting to investigate.
These will be subjects of future study.

Problems
(1) Describe the closed set of length minimizing paths in terms of the

geometry and dynamics of the Hamiltonian flows.
(2) Describe the images of TanQ, DevQ of Q in L

(1,∞)
m ([0, 1] × M, R).

(3) Study the structure of the flow of Hamiltonian homeomorphisms in
terms of the C0-Hamiltonian dynamical system or as the high dimen-
sional generalization of area-preserving homeomorphisms with van-
ishing mass flow or zero mean rotation vector.

(4) Does the identity [Sympeo0, Sympeo0] = Hameo hold? Is Hameo
simple?

(5) Further investigate the above Hofer’s inequality. For example, what
would be the optimal constant C in the inequality (6.6)?

7. Appendix 1. Smoothness implies Hamiltonian continuity

We first recall the precise definition of smooth Hamiltonian paths.

Definition A.1. (i) A C∞-diffeomorphism φ of (M, ω) is a Hamiltonian
diffeomorphism if φ = φ1

H is the time-one map of the Hamilton equation

ẋ = XH(t, x),
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for a C∞ function H : R × M → R such that

H(t + 1, x) = H(t, x)

for all (t, x) ∈ R × M . We denote by Ham(M, ω) the set of Hamiltonian
diffeomorphisms with the C∞-topology induced by the inclusion

Ham(M, ω) ⊂ Symp0(M, ω),

where Symp0(M, ω) carries the C∞-topology.
(ii) A (smooth) Hamiltonian path λ : [0, 1] → Ham(M, ω) is a smooth

map
Λ : [0, 1] × M → M ; Λ(t, ·) := λ(t)

such that

(1) its derivative λ̇(t) = ∂λ
∂t ◦ (λ(t))−1 is Hamiltonian, i.e., the one form

λ̇(t) �ω is exact for all t ∈ [0, 1]. We call a function H : R × M → R a
generating Hamiltonian of λ if it satisfies

λ(t) = φt
H ◦ λ(0), or equivalently, dHt = λ̇(t) �ω.

(2) λ(0) := Λ(0, ·) : M → M is a Hamiltonian diffeomorphism, and
therefore, λ(t) = Λ(t, ·) is for all t ∈ [0, 1].

We denote by Pham(Symp(M, ω)) the set of Hamiltonian paths λ : [0, 1] →
Ham(M, ω), and by Pham(Symp(M, ω), id) the set of such λ with λ(0) = id.
We equip Pham(Symp(M, ω)) and Pham(Symp(M, ω), id) with the obvi-
ous topology induced by the C∞-topology of the space C∞([0, 1] × M, M)
of the corresponding maps Λ above. We call this the C∞-topology of
Pham(Symp(M, ω)) and Pham(Symp(M, ω), id).

Note that if φ = φ1
H is a Hamiltonian diffeomorphism (in the sense of

Definition A.1.(i)), then t �→ λ(t) = φt
H is a smooth Hamiltonian path (in

the sense of Definition A.1(ii)) with λ(0) = id and λ(1) = φ. So each
φ∈ Ham(M, ω) can be connected to the identity by a smooth Hamiltonian
path as in A.1.(ii). In particular, Ham(M, ω) is the image of the evaluation
map ev1 (1.5). We also note that by Proposition 3.4, each smooth path
λ : [0, 1] → Symp(M, ω) that has its image contained in Ham(M, ω) is a
smooth Hamiltonian path in the sense of Definition A.1(ii).

In this appendix, we give the proof of the following basic lemma and prove
that any smooth path in Ham(M, ω) is Hamiltonian continuous. By abuse
of notation, we will just denote a smooth Hamiltonian path by

λ : I → Ham(M, ω),

or more generally, a smooth Hamiltonian map from a simplex Δ by

λ : Δ → Ham(M, ω).
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Lemma A.2. For any Hamiltonian path λ : I → Ham(M, ω) defined on an
interval I = [a, b] such that λ is flat near a, i.e., there exists a′ > a with

(A.1) λ(s) ≡ λ(a)

for all a≤ s≤ a′ ≤ b, we can find a smooth map

Λ : I × [0, 1] × M → M,

such that the following hold:
(1) For each s∈ I and t ∈ [0, 1], Λ(s,t) ∈ Ham(M, ω), where we denote

Λ(s,t)(x) := Λ(s, t, x).

(2) For each s∈ I, the path λs : [0, 1] → Ham(M, ω) is a Hamiltonian
path with λs(0) = id and λs(1) = λ(s), which is flat near 0, where we
denote

λs(t) := Λ(s,t).

Furthermore, a similar statement holds for a map Δ → Ham(M, ω) where
Δ is a k-simplex: in this case (A.1) is replaced by the condition that λ is
flat near the vertex 0 ∈ Δ.

Proof. We may assume I = [0, 1]. Let K : I×M → R be the (not necessarily
normalized) Hamiltonian generating λ such that

(A.2) λ(s) = φs
K ◦ λ(0), s∈ [0, 1],

and

(A.3) K(s, ·) ≡ 0 for all 0≤ s≤ a′.

Equation (A.3) is possible because of the assumption (A.1). Next we fix a
Hamiltonian H0 : [0, 1]×M → R with H0 �→ λ(0). After reparameterization,
we may assume that

(A.4) H0 ≡ 0 near t = 0, 1.

Now for each s∈ [0, 1], we define Hs : [0, 1] × M → R by the formula

(A.5) Hs(t, x) =

⎧⎨
⎩

1
1 − s

H0
(

t

1 − s
, x

)
for 0≤ t < 1 − s,

K(t − (1 − s), x) for 1 − s≤ t ≤ 1.

Obviously H : I × [0, 1] × M → R is smooth due to the above flatness
conditions (A.3) and (A.4) and satisfies

φ1
Hs = λ(s).

We then define Λ by Λ(s, t) = φt
Hs . It follows from the construction that Λ

satisfies all the properties in (1) and (2). The last statement can be proven
by a similar argument by considering the retraction of the k-simplex Δ to
its vertex 0. �
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Remark that if λ is flat also near t = 1, then we can assume that λs is
flat near t = 1 for all s∈ I. The proof goes through the same way.

Corollary A.3. Any smooth Hamiltonian path λ : [0, 1] → Ham(M, ω) is
Hamiltonian continuous.

Proof. Let λ = φH : [0, 1] −→ Ham(M, ω) be a smooth Hamiltonian
path (in the sense of Definition A.1(ii)). Here we assume without loss
of generality that λ(0) = id. We have to show that λ is continuous
with respect to the Hamiltonian topology on Ham(M, ω), i.e., as a map
λ : [0, 1] −→ Ham(M, ω). Note that λ factors through

[0, 1] → Pham(Symp(M, ω), id) → Ham(M, ω),

s �→ φHs �→ φ1
Hs = φs

H = λ(s),

where the second map is the evaluation map. By definition of the Hamil-
tonian topology on Ham(M, ω), it suffices to prove that the first map is
continuous. The topology on Pham(Symp(M, ω), id) is by Proposition 3.10
equivalent to the metric topology induced by dham. So we only have to show
that the map s �→ φHs is continuous with respect to the standard metric on
[0, 1] and dham on Pham(Symp(M, ω), id).

Let Hs be the Hamiltonian and Λ be the smooth map constructed in the
proof of Lemma A.2. By definition

(A.6) dham
(
φHs , φHs′

)
= ‖Hs − Hs′‖ + d

(
φHs , φHs′

)
.

If we define the smooth reparameterization functions ζ1, ζ2 : [0, 1] → [0, 1],
by ζ1(t) = st, ζ2(t) = s′t, then ‖ζ1−ζ2‖ham = 2|s−s′|. Hence by Lemma 3.20,
the first term in (A.6) is less than 2C|s − s′|, where C is the constant given
in (3.20) in Lemma 3.20. For the second term in (A.6), first note that Λ is
Lipschitz continuous since it is smooth and compactly supported. Therefore,

dC0
(
φHs , φHs′

)
= max

(t,x)
d
(
Λ(s, t, x), Λ(s′, t, x)

)
< L|s − s′|,

where L is a Lipschitz constant for Λ. Since s �→ (λ(s))−1 is also a smooth
Hamiltonian path, we can use Lemma A.2 to construct a corresponding map
Λ′(s, t) = (φt

Hs)−1, and then apply the same argument to obtain

dC0
(
(φHs)−1, (φHs′ )−1) < L′|s − s′|,

where L′ is another Lipschitz constant. This shows that the second term in
(A.6) is less than max(L, L′)|s − s′|. Altogether, with c = max(2C, L, L′),
we have

dham
(
φHs , φHs′

)
= ‖Hs − Hs′‖ + d(φHs , φHs′ ) < c|s − s′|,

which completes the proof. �



THE GROUP OF HAMILTONIAN HOMEOMORPHISMS 215

8. Appendix 2. The L(1,∞)-approximation lemma

In this appendix, we give the proof of the L(1,∞)-approximation lemma which
is a slight variation of [17, Lemma 5.2].

Lemma A.1 (L(1,∞)-approximation lemma). Let H : [0, 1] × M →
R be a smooth Hamiltonian and φ = φ1

H be its time-one map. Then we
can reparameterize φt

H in time so that the Hamiltonian H ′ generating the
reparameterized path satisfies the following properties:

(1) φ1
H′ = φ1

H ;
(2) H ′ ≡ 0 near t = 0, 1, and in particular H ′ can be extended to be

time-periodic on R × M ;
(3) the norm ‖H#H ′‖ can be made as small as we want;
(4) for the Hamiltonians H ′, H ′′ generating any two such reparameteri-

zations of φt
H , there is a canonical one–one correspondence between

Per(H ′) and Per(H ′′), and Crit AH′ and Crit AH′′ with their actions
fixed.

Furthermore this reparameterization is canonical in the sense that the
“smallness” in (3) can be chosen uniformly over H depending only on the
C0-norm and the modulus of continuity of H. In particular, this approx-
imation can be done with respect to the Hamiltonian topology. Moreover,
the closeness in the Hamiltonian topology can be made as small as we want
independent of H (only the time for which the reparameterized Hamiltonian
is flat depends on H).

Proof. We first reparameterize φt
H in the following way: we choose a smooth

function ζ : [0, 1] −→ [0, 1] such that for ε > 0

ζ(t) =

{
0 for 0≤ t ≤ ε,

1 for 1 − ε ≤ t ≤ 1,

and

ζ ′(t) ≥ 0 for all t ∈ [0, 1],

and consider the isotopy

ψt := φ
ζ(t)
H .
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It is easy to check that the Hamiltonian generating the isotopy {ψt}0 ≤ t ≤ 1
is H ′ = {H ′

t}0 ≤ t ≤ 1 with H ′
t = ζ ′(t)Hζ(t). By definition, it follows that H ′

satisfies (1) and (2). As always we assume that H is normalized, and then
so is H ′. In particular,

∫ 1
0 max

x
(H ′

t − Ht)dt ≥ 0. For (3), we compute

0 ≤
∫ 1

0
max

x
(H ′

t − Ht)dt

=
∫ 1

0
max

x
(ζ ′(t)Hζ(t) − Ht)dt

≤
∫ 1

0
max

x

(
ζ ′(t)(Hζ(t) − Ht)

)
dt +

∫ 1

0
max

x

(
(ζ ′(t) − 1)Ht

)
dt.

For the first term,
∫ 1

0
max

x

(
ζ ′(t)(Hζ(t) − Ht)

)
dt =

∫ 1

0
ζ ′(t) max

x
(Hζ(t) − Ht)dt

≤
∫ 1

0
ζ ′(t) max

x,t
|Hζ(t) − Ht|dt

= max
x,t

|Hζ(t)(x) − Ht(x)| ≤L‖ζ − id‖C0 ,

which can be made arbitrarily small by choosing ζ so that ‖ζ−id‖C0 becomes
sufficiently small. Here L is a Lipschitz constant for H in the time variable
t (it exists and is finite since H is smooth and supported on the compact
set [0, 1] × M). We refer to this constant as the modulus of continuity. For
the second term,

∫ 1

0
max

x

(
(ζ ′(t) − 1)Ht

)
dt ≤

∫ 1

0
|ζ ′(t) − 1|dt max

x,t
|H(x, t)|

= ‖H‖C0

∫ 1

0
|ζ ′(t) − 1|dt.

Again by appropriately choosing ζ (which can be done consistently with the
choice above), we can make

∫ 1

0
|ζ ′(t) − 1|dt

as small as we want. Combining these two, we have verified the integral∫ 1
0 max

x
(H ′

t − Ht) dt can be made as small as we want by making the
Hamiltonian norm

‖ζ − id‖ham = ‖ζ − id‖C0 + ‖ζ ′ − 1‖L1
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small. This can always be done by choosing ε sufficiently small. Similar
consideration applies to

∫ 1
0 − min(H ′ −H) dt and hence we have finished the

proof of (3).
Statement (4) follows from simple comparison of the corresponding

actions of periodic orbits. The statements in the last paragraph follow from
the construction. For the C0-closeness, note that similarly to the proof of
Corollary A.3, by continuity of the path t �→ φt

H , the distance d (φHζ , φH)
can be made arbitrarily small by choosing ζ so that ‖ζ − id‖C0 becomes
small. This finishes the proof. �

We would like to point out that the above modification does not approxi-
mate in the L∞-topology on [0, 1] × M because the derivative of the cut-off
function ζ could blow up in the above approximation. In fact, it is easy
to see that such an approximation can be done for a given Hamiltonian
function H in the L∞-norm if and only if H0, H1 ≡ constant. The proof is
essentially the same as above.

Proof of Lemma 3.20. Replace ζ by ζ1 and id by ζ2 in the proof of the L(1,∞)-
approximation lemma. �
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