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DETERMINING SYMPLECTIC FILLINGS FROM PLANAR
OPEN BOOKS

Stephan Schönenberger

We describe a strategy for classifying symplectic fillings of contact
structures supported by planar open books. We demonstrate the effi-
cacy of this strategy in certain cases.

Dedicated to Dusa McDuff

1. Introduction

The correspondence between contact structures and open books, devel-
oped by Giroux in 2000, created a new burst of work in contact topol-
ogy. Recently, Abbas et al. [1] proved the Weinstein conjecture for contact
3-manifolds that are supported by planar open books, i.e., open books whose
page is a punctured 2-sphere. That this does not solve the Weinstein conjec-
ture in generality was shown by Etnyre [7], who provided the first obstruc-
tions for fillable (and hence tight) contact structures to be supported by
planar open books. He did so by showing that such fillings can be compact-
ified to a blowup of a ruled symplectic manifold, which proves that, among
other things, the intersection form of a filling must have b+

2 = 0. Etnyre’s
proof uses a result by Eliashberg [5], a construction to cap off the boundary
of an open book by 2-handles in a symplectic way, thus giving rise to a
symplectic cobordism of the 3-manifold to a surface bundle over the circle.
Such surface bundles can then be capped off to yield a closed symplectic
manifold.

The problem to determine the diffeomorphism types of fillings for contact
3-manifolds is interesting and intriguing. It was first shown by Eliashberg [4]
that any Stein filling of the tight contact 3-sphere is diffeomorphic to the 4-
ball. McDuff [18] showed that for contact structures on Lens spaces L(p, 1)
that are quotients of a cyclic action on (the unique) tight contact structure
on S3, there is a unique (up to blowup) diffeomorphism type of fillings
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20 S. SCHÖNENBERGER

if p �= 4 and there are two in case p = 4. Her argument showed that such
fillings can be compactified to a ruled symplectic manifold and identified the
complement of a filling to be a neighborhood of a symplectic sphere with self-
intersection p > 0. Such configurations of symplectic spheres are unique up
to isotopy and this proves her result about the filling itself. Recently, Hind
[14] has shown that these fillings are unique up to Stein homotopy. This
result was proved for L(2, 1) 3 years earlier [13] using similar techniques.

Lisca [16] generalized McDuff’s result, using a similar line of argument,
to contact structures on all Lens spaces that arise as quotients of the tight
contact structure on S3. To do this, Lisca used a glueing result by McCarthy
and Wolfson to construct compactifications of symplectic fillings. Also Ohta
and Ono [19] studied diffeomorphism types of fillings for contact structures
from Milnor fibers in a similar way. Most of the examples above used a
compactification to a ruled surface. Using ad hoc methods to embedd Stein
fillings of T 3 into homotopy K3 surfaces, Stipsicz [22] showed that a Stein
filling of the 3-torus T 3 with its unique Stein fillable contact structure is
homeomorphic to T 2 × D2.

We follow McDuff’s strategy for solving this problem, but use Etnyre’s
construction to provide compactifications to a ruled surface. Doing this
carefully allows to determine the complement of a filling and classify fillings
up to diffeomorphism. Determining the complement of the filling is a difficult
task. We arrange to do so in certain cases when the contact structure is
supported by a planar open book with monodromy consisting of Dehn twists
about nonintersecting curves.

Each of the small Seifert fibered spaces

Yn = M

(
−3; − 2n

2n − 1
,− 2n

2n − 1
,− 2n

2n − 1

)
, n ≥ 1

admits two nonisotopic, but contactomorphic contact structures. The strat-
egy above is explained for the case n = 1 by proving the following theorem;
see Theorem 4.3.

Theorem 1.1. Each of the tight contact structures on the Seifert fiber space
M(−3; −2,−2,−2) admits a unique symplectic filling, up to blowup and dif-
feomorphism. In particular, there is a unique Stein filling, up to diffeomor-
phism.

The proof of this theorem can be extended to a proof of the general case
n ≥ 1; see Theorem 4.4.

Theorem 1.2. Each of the tight contact structures on the Seifert fiber space
Yn admits a unique symplectic filling, up to blowup and diffeomorphism. In
particular, there is a unique Stein filling, up to diffeomorphism.
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2. Contact structures and open books

For an introduction to open books and contact structures, the reader is
referred to [6, 20]. We assume familiarity with Kirby Calculus, see [12, 20].

All 3-manifolds compact, oriented, and all contact structures are positive
and cooriented. An open book (B, π) for a 3-manifold Y is given by an ori-
ented link B ⊂ Y together with a fibration π : Y \B → S1 of its complement
with fiber π−1(θ) = int(Fθ), the interior of a compact surface Fθ ⊂ M with
oriented boundary ∂Fθ = B. We call Fθ a page of the open book and B
the binding. Any vector field v transverse to the pages and meridional in a
neighborhood of B gives rise to a return map φv : F0 → F0, where F0 is a
page of the open book and φv is called the monodromy of the open book.

A contact structure ξ on Y is called compatible with an open book (F, φ)
if dα gives a volume form on the pages F and α|∂F > 0. We also say
such an open book decomposition of Y supports ξ. Already Thurston
and Winkelnkemper [23] showed that an open book decomposition of an
orientable 3-manifold gives rise to a compatible contact structure. Giroux
[10] and Torisu [24] observed that this contact structure is unique up
to isotopy. Giroux also proved the converse, which makes this relation-
ship most useful.

Theorem 2.1. Every open book decomposition of a 3-manifold supports a
contact structure, unique up to isotopy. Any contact structure is supported
by an open book.

Two open books (F, π) and (F ′, π′) of Y are called isomorphic if there
exists a diffeomorphism φ : Y → Y such that π = π′ ◦ f , i.e., φ takes pages
to pages and binding to binding. Notice that contact structures supported
by isomorphic open books are contactomorphic.

3. Constructing planar open books

A plumbing tree P is a tree where each vertex is endowed with an integer.
Replacing each vertex by an unknot such that two are linked exactly once if
and only if there is an edge between the corresponding vertices gives a link
L ⊂ S3. A 3-manifold Y is obtained from a plumbing tree by doing surgery
along L where the surgery coefficient on each component is the integer on
the corresponding vertex. A contact manifold is obtained by Legendrian
realizing the link and performing contact (−1)-surgery along this Legendrian
link such that, topologically, the surgery is as given by the coefficients. We
aim to prove the following.

Theorem 3.1. Suppose P is a plumbing tree such that each vertex is labeled
with a framing coefficient r satisfying r ≤ − min{−d, −2}, where d is the
valence of that vertex. Any Legendrian realization of the surgery diagram
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according to P gives rise to a Stein fillable contact structure that is supported
by a planar open book.

Remark 3.2. If there is a bad vertex, i.e., one not satisfying the inequal-
ity r ≤ −d, then there might be no planar open book for a Legendrian
realization of the plumbing. For example, the unique Stein fillable contact
structure of the Poincaré homology sphere is not supported by a planar open
book [7]. Etnyre and Ozbagci [8] extend the construction below to the case
where bad vertices are present and exhibit many minimal genus open books
for manifolds that arise from plumbings.

We will gradually build up the proof that constructs these open books
explicitly. First, the case of linear trees gives rise to Lens spaces. There, the
concept of rolling up is explained. Second, if there is one vertex with valence
three, a small Seifert fibered space is obtained and the idea of hooking in
a surgery diagram is most easily seen. Third, the two strategies “rolling
up” and “hooking in” are used to construct open books for plumbings as
in Theorem 3.1. Because these open books will have positive monodromy,
they support Stein fillable contact structures. Although not used explicitly,
the construction of such open books is inspired by the algorithm presented
in [3] that describes how to turn rational contact surgery into a sequence of
(±1)-contact surgeries.
3.1. Lens spaces. For coprime integers p > q ≥ 1, consider the continued
fraction expansion

−p

q
= a1 −

1
a2 − 1/(a3 − · · · − 1/ak)

= [a1, . . . , ak], ai ≤ −2, i = 1, . . . , k.

The Lens space L(p, q) is obtained from a linear plumbing tree with k vertices
and labels a1, . . . , ak. By performing a sequence of slam-dunks starting with
the rightmost component, one obtains the usual picture of L(p, q) as (−p/q)-
surgery along an unknot. Instead, we will perform handle slides. Starting
with the leftmost component K1, slide the right neighbor K2 over K1. Thus
K2 links K1 exactly t1 = (a1 + 1) times and has as surgery coefficient
b2 = a1 + a2 + 2. The string K3, . . . , Kk remains unchanged. Now we slide
K3 over K2. Afterwards, K3 links K1 exactly (a1 +1) times, K2 is linked an
additional (a2 +2) times and the surgery coefficient is b3 = a1 + a2 + a3 +4.
Continuing similarly, we obtain a new surgery diagram as shown in Figure 1.
A sequence of handle slides as just performed is called rolling up a linear
tree. For an explicit example, see Figure 2 below.

Theorem 3.3. Any tight contact structure on a Lens space L(p, q) is sup-
ported by a planar open book.

Proof. Suppose

−p

q
= [a1, . . . , ak], ai ≤ −2, i = 1, . . . , k
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Figure 1. Surgery diagrams for L(p, q): plumbing along a
linear tree, rational and integer surgery, and its rolled-up
version.
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Figure 2. Rolling up the surgery for L(16, 7).
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and K is the link in S3 obtained from the linear plumbing by rolling up as
above, see Figure 1.

There exists an open book of S3 such that each component Ki of K is
homological nontrivially contained in a page and so that the page framing
is ri + 1. Start with the open book given by the positive Hopf fibration
π+ of S3, which has an annulus as page and the monodromy consists of a
positive Dehn twist about its core. Next, we need to arrange for each Ki to
be contained in a page and that the page framing differs from the framing
at hand by 1. We can realize K1 by stabilizing (see Figure 12 in [6]) a
parallel copy of the core of a page of π+ |a1 +2| times. There is not a unique
way to do so. We choose one. Proceeding by induction, suppose we have
realized K1, . . . , Ki−1. To get Ki, pick a parallel copy of Ki−1 and stabilize
it |ai +2| times. Eventually, we obtain an open book for a contact structure
on L(p, q) by adding a positive Dehn twist along each Ki to the monodromy
of the open book of S3. Since every stabilization is done on a connected
component of the boundary of a page, starting with an annulus, the page of
the resulting open book is planar. By construction, the monodromy consists
solely of positive Dehn twists and thus the resulting open book supports a
Stein fillable contact structure on L(p, q).

The number of choices during this construction is exactly the number of
tight contact structures on L(p, q), provided through the classification of
such by Giroux [9] and Honda [15]. To show that different choices yield
different contact structures, notice that Legendrian realizing K gives in par-
ticular a Legendrian link in S3 such that contact (−1)-surgery yields the
contact structure supported by the open book constructed above. The con-
tact structures can then be distinguished by using a result of Lisca and
Matić [17]. �
Example 3.4. A rational surgery diagram for the Lens space L(16, 7) is
shown in Figure 2. Notice that

−16
7

= [−3,−2,−2,−3].

This gives the linear plumbing tree which we roll up to obtain the last
picture in Figure 2. We exhibit the open book for a contact structure on
the left in Figure 3. A Legendrian realization of the corresponding link K
is given on the right in Figure 3. Notice that this link is also obtained from
contact

(
−16

7 + 1
)
-surgery along a Legendrian unknot with tb = −1 by the

algorithm described in [3].

3.2. Small Seifert fibered spaces. A 3-manifold obtained by plumbing
along a tree as in Figure 4 is called a small Seifert fibered space and is
denoted by M(e0; r1, r2, r3), where r1 = [a1, . . . , ak1 ], r2 = [b1, . . . , bk2 ], r3 =
[c1, . . . , ck3 ]. The coefficient e0 = �r1	 + �r2	 + �r3	 is called the integral
Euler number; see [11] for facts on Seifert fibered spaces.
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Figure 3. Legendrian realization of the “rolled-up” diagram
in Figure 2 (right); a corresponding (abstract) planar open
book (left). The monodromy consists of one positive Dehn
twist along each curve.

ak1 ak1−1 a1 e0 c1 ck3−1 ck3

b1

bk2−1

bk2

Figure 4. Plumbing diagram for M(e0; r1, r2, r3).

Theorem 3.5. Any tight contact structure on M(e0; r1, r2, r3) with e0 ≤ −3
is supported by a planar open book.

Proof. Consider a small Seifert fibered space M(e0; r1, r2, r3) with e0 ≤ −3
and r1, r2, r3 < −1. Denote the continued fraction expansions of ri by
r1 = [a1, . . . , ak1 ], r2 = [b1, . . . , bk2 ] and r3 = [c1, . . . , ck3 ]. A plumbing
diagram for M(e0; r1, r2, r3) is shown in Figure 4.

As in the case of Lens spaces, first put the link corresponding to the
plumbing into a special position. Roll up the linear plumbing tree corre-
sponding to the Lens space L(p, q) with p, q such that

−p

q
= [ak1 , . . . , a1, e0, c1, . . . , ck3 ]

to obtain a sequence of knots as pushoffs of each other. Denote by Ai, Bi,
Ci and E the components corresponding to ai, bi, ci and e0, respectively.
The sequence of pushoffs starts with, say, Ak1 . In the process of rolling
up, observe that a meridian of E will become an unknot that links E and
its neighbors Ci to the right exactly once. By replacing a neighborhood
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of this unknot with the rolled-up surgery diagram for L(p′, q′) with −p′

q′ =
[b1, . . . , bk2 ], which is the Lens space obtained from the remaining vertical
chain, we hook in an additional branch of the tree. Using Kirby Calculus,
one can prove that the surgery thus obtained indeed gives M(e0; r1, r2, r3).

Realize this link on an open book of S3 as above: Starting with the
positive Hopf fibration for S3, construct an open book for L(p, q) via stabi-
lizations, as in the proof of Theorem 3.3. When arranging the component
E on a page of an open book, one has to stabilize at least once, due to the
condition r ≤ −d. The core curve of this stabilization is taken as a starting
point to construct an open book of L(p′, q′), so that also components Ci

are contained on pages of an open book. This is achieved as in Theorem
3.3. Eventually, we obtain a planar open book for a contact structure on
M(e0; r1, r2, r3), by adding a positive Dehn twist along each of the Ai, Bi,
Ci and E.

To prove that different choices during this construction give rise to differ-
ent contact structures and the number of such matches the number given by
the classification of tight contact structures provided by Wu [25], is proved
as in the proof of Theorem 3.3. �

Example 3.6. Take Y = M(−3; −3/2,−5/3,−5/3). This manifold has a
plumbing diagram as in Figure 5.

First consider the surgery diagram for the Lens space given by the hori-
zontal chain, which is L(45, 19); note −45

19 = [−3,−2,−3,−2,−3]. Pick an
unknot U linking the third component corresponding to the central −3 and
all the following ones once, and hook in a rolled-up surgery diagram of the
Lens space L(3, 2), corresponding to the remaining vertical chain. Figure 6
displays a Legendrian realization of this link.

Similar to the previous case, we can realize this link on pages of an open
book S3 with planar pages by starting with the Hopf fibration of S3 and
using stabilizations. The hooked-in link requires an additional stabilization
for the central component, which can be used as starting point to realize
it via stabilizations. We obtain an open book for Y with planar pages,
supporting a Stein fillable contact structure. Such an open book is displayed
in Figure 7.

−3 −2 −3 −2 −3

−2

−2

Figure 5. Plumbing diagram for M(−3; −3/2,−5/3,−5/3).
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Figure 6. Legendrian realization of the surgery for M .

Figure 7. Open book for supporting the contact structure
given in Figure 6. The monodromy consists of a positive
Dehn twist along each curve.

Proof of Theorem 3.1. Given a 3-manifold Y from a general plumbing tree
P , pick out a linear tree P1. If a branch is separating from a vertex v
contained in P1, choose another linear tree P2 starting at a vertex adjacent
to v. Inductively, P is split up into a sequence of linear trees Pi. Construct a
special surgery diagram as above. Roll up the diagram for P1 and inductively
hook in rolled-up diagrams of the remaining ones. Then construct an open
book of S3 such that each component is contained on a page as above.
Starting with the positive Hopf fibration of S3, arrange P1 to be contained
on pages of an open book of S3. Suppose a component V corresponding
to the vertex v of Pi, where a new branch Pi+1 is separating off, is to be
arranged. Use the additional stabilization available because of r ≤ −d as a
starting point to fit the new branch Pi+1 onto pages of an open book via
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stabilizations. Eventually, get to an open book for a Stein fillable contact
structure of Y by adding a positive Dehn twist to the monodromy along
each component of the link. �

Remark 3.7. Notice that, in general, one cannot prove that all tight contact
structures on a plumbing are supported by planar open books. For exam-
ple, Seifert fibered spaces containing an incompressible torus have infin-
itely many contactomorphism classes of tight contact structures, but the
construction above only gives finitely many. Also, in general, there is no
classification of tight contact structures for these spaces available yet.

Still it is possible to prove that different choices in the construction above
yield different contact structures, up to isotopy, as before.

4. Diffeomorphism types of fillings

This section shows how to use planarity of open books compatible with
symplectic fillable contact structures to collect information about the dif-
feomorphism types of fillings.

We follow Lisca [16], but use planarity of open books to produce embed-
dings into closed symplectic manifolds, as explained in [7]. The general
strategy is made explicit by means of a concrete example.

Consider the small Seifert fibered spaces

Yn = M

(
−3; − 2n

2n − 1
,− 2n

2n − 1
,− 2n

2n − 1

)
, n ≥ 1.

In particular, Y1 = M(−3; −2,−2,−2) is given by the plumbing diagram in
Figure 8.

From the classification of Wu [25], one concludes the following.

Proposition 4.1. There exist exactly two Stein fillable and hence tight con-
tact structures on Yn, n ≥ 1, up to isotopy. The two contact structures are
contactomorphic.

By Theorem 3.1 and its proof, one obtains immediately the following.

−2 −3 −2

−2

Figure 8. Plumbing picture and a corresponding planar
open book for the manifold Y1.
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Lemma 4.2. (Yn, ξ) is supported by the planar open book consisting of a
pair of pants with 2n positive Dehn twists about each boundary component,
where ξ is any of the two contact structures on Yn.

Figure 9(a) gives a picture of the 4-manifold W bounding Y = Y1,
obtained from the open book in Figure 8, using dotted circles for the
1-handles. By adding handle slides and canceling the 1-handles, one obtains
a manifold as shown in Figure 9(b). This verifies directly that Y = ∂W
is given by the plumbing in Figure 8. Also, Figure 9(c) gives a Legendrian
surgery for W inducing one of the contact structures on Y . To see the
other, simply rotate this picture 180◦, which also proves that these two con-
tact structures are contactomorphic. For the remainder, let ξ denote one of
the two contact structures on Y .

The aim of this section is to prove the following result.

Theorem 4.3. Any symplectic filling W ′ for (Y, ξ) is diffeomorphic to a
smooth blowup of W , obtained from the plumbing; see Figure 9(c). In par-
ticular, there is a unique Stein filling of (Y, ξ) up to diffeomorphism.

The proof takes two steps. In the first step, we compactify W ′ to a closed
symplectic manifold X and study its complement in X. In the second step we
show that the diffeomorphism type of the complement of such a configuration
in X is unique.

More generally, the following theorem is proved similarly with more nota-
tional effort.

all 2-handles
have framing −1

(a)

−2 −2 −2

−3

)c()b(

Figure 9. Kirby pictures for W .
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Theorem 4.4. Each of the tight contact structures on the Seifert fiber space
Yn, n ≥ 1, admits a unique symplectic filling, up to blowup and diffeomor-
phism. In particular, there is a unique Stein filling, up to diffeomorphism.

5. Compactification of fillings

First, toward a proof of Theorem 4.3, we study the compactification of a
filling to a closed symplectic manifold.

Theorem 5.1. Suppose W ′ is a symplectic filling for (Y, ξ). Then, for
some integer N ≥ 1, W ′ is diffeomorphic to the complement of a symplectic
configuration Γ = C0 ∪ C1 ∪ C2 ∪ C3 in XN = (S2 × S2#NCP

2
, ω), with ω

a blowup of a symplectic structure on S2 × S2.

Proof. From Lemma 4.2, the contact structure ξ on Y induced by W ′ is
supported by an open book with page F , a pair of pants, and monodromy φ
consisting of two positive Dehn twists about three curves, each parallel to one
of the boundary components, as shown in Figure 8. We attach Eliashberg
handles Hi, i = 1, 2, 3, one to each of the boundary components and extend
φ by the identity over the resulting 2-sphere, still calling it φ.

Further notice that φ is isotopic to the identity. Thus, by adding these
handles, we obtain W ′ ⊂ W ′′ with ∂W ′′ = S2 × S1.

We can symplectically cap off W ′′ with an S2×D2. Notice that the result-
ing closed symplectic manifold contains an embedded symplectic sphere
S0 = S2 × {p} ⊂ S2 × D2 with self-intersection 0. Thus, from McDuff’s
theorem, we conclude that (X, ω) is a blowup of a ruled surface.

Furthermore, the cocore of an E-handle Hi is a symplectic disk with a
neighborhood symplectomorphic to D2 × D2 ⊂ R

4 with its standard sym-
plectic structure. Thus, these cocores can be glued to {pt} × D2 in the final
cap to form a symplectic sphere Si. Each Si is disjoint from Sj for i �= j and
intersects S0 geometrically once. Thus, we obtain a symplectic configuration
as in Γ and we are left to verify the self-intersection of Si, i = 1, 2, 3.

To find these, we only need to find the self-intersections topologically,
which can be done via Kirby calculus: Start with the planar open book
for (Y, ξ), shown in Figure 8. Adding the E-handles amounts to attaching
2-handles with framing 0 with respect to a page of the open book. Then
switching to dotted circle notation gives Figure 10(a). Specify the boundary
curves of the cocores, which are denoted by dashed circles in Figure 10, and
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0 0 0
2 2 2

2 2 2
2

2 2

0 0 0 0 0 0

0
0 0

0

(a) all unlabeled 2-handles have framing − )b(1

(c) (d)

Figure 10. Calculating the self-intersections of Si.

endow them with labels 0. Now following through the Kirby moves to see
the S2 × S1 at hand, observe what the labels for the cocores become and
these correspond to the self-intersections of the Si. To do this, first slide
each pair of (−1)-framed 2-handles over the 0-framed 2-handles to which
they are parallel. Thus, these only link the dashed circle specified on that
0-framed 2-handle once and blowing them down rises label of each dashed
circle to 2, as in Figure 10(b). Now slide each 0-framed 2-handle over its
neighbors to the right, which gives Figure 10(c). Now we can cancel the
1-handles, obtaining Figure 10(d). From the labels of the dashed circles,
we read off the self-intersection number of each Si, which is −2. Notice the
change in sign that comes from the fact that we need to turn the handlebody
upside down to see the configuration for what it is.

Because the sphere S̃ in the homology class S1 +S0 has self-intersection 0
and intersects S0 exactly one time, the neighborhood of S0∪S̃ is a punctured
S2 × S2 and McDuff’s result implies that (X, ω) is symplectomorphic to
(S2 × S2#NCP

2
, ω), with ω a symplectic structure on S2 × S2 blown up.

Furthermore, McDuff tells us that we can choose this symplectomorphism
to map the sphere S0 to S2 × {pt}. �

6. Complements of the symplectic configuration

In this section, we study the complement of the symplectic configuration Γ
obtained in Theorem 5.1. We do this first on the homology level.



32 S. SCHÖNENBERGER

6.1. Homological properties of the configuration Γ. Recall that the
intersection form on H2(S2 × S2#NCP

2; Z) = Z ⊕ Z ⊕ ⊕N
i=1Z is[

0 1
1 0

]
⊕ (−IN ),

where (−IN ) denotes the negative identity N × N matrix. We fix a basis
s1 = [S2 × {pt}], s2 = [{pt} × S2] and fj , j = 1, . . . , N , for the homology
classes generated by the CP

2. Pick an almost complex structure J on XN

such that Γ consists of holomorphic spheres. Expressing the [Ci] in terms of
this basis

[C0] = s1,(6.1)

[Ci] = σ1
i s1 + σ2

i s2 +
N∑

j=1

φj
ifj , i = 1, . . . , 3(6.2)

we conclude first from [C0] · [Ci] = 1 that σ2
i = 1 for all i. Thus, for the

following, we write σi for σ1
i .

We find that, since [Ci]2 = −2,

(6.3) 2σi + 2 −
∑

j

(φj
i )

2 = 0.

From the adjunction formula 〈c1(XN ), [Ci]〉 = 2 + [Ci]2, we learn that

(6.4) 2σi + 2 +
∑

j

φj
i = 0.

Subtracting equation (6.3) from equation (6.4) gives

(6.5)
∑

j

φj
i + (φj

i )
2 = 0.

Furthermore, since for i �= k we have [Ci] · [Ck] = 0,

(6.6) σi + σk −
∑

j

φj
iφ

j
k = 0.

Now either equation (6.3) or (6.4) implies

(6.7) σi ≥ −1, i = 1, . . . , 3.

From equation (6.5), we conclude that

(6.8) φj
i ∈ {−1, 0}, i = 1, . . . , 3; j = 1, . . . , N.

Then, either equations (6.3) or (6.4) implies that for each i there exist

ji
1, . . . , j

i
2(σi+1) ∈ {1, . . . , N}

such that φj
i = −1 if and only if j = ji

l for some l = 1, . . . , 2(σi + 1).
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To meet equation (6.6), one first notices that σi + σk ≥ 0. Furthermore,
among the {ji

l}
2(σi+1)
l=1 and {jk

l }2(σk+1)
l=1 exactly σi +σk are equal. But for this

to be possible, one needs that σi + σk ≤ min{2(σi + 1), 2(σk + 1)}.
Without loss of generality, we can order the [Ci] such that σ1 ≤ σ2 ≤ σ3.

Then we summarize the calculations above in the following lemma.

Lemma 6.1. In the situation above, there are the following possibilities for
the homology classes of Γ = C0 ∪ C1 ∪ C2 ∪ C3 ⊂ XN .

Let σ1 = −1.

[C0] = s1,

[C1] = −s1 + s2,

[C2] = s1 + s2 −
4∑

l=1

fj2
l
,

[C3] = s1 + s2 −
4∑

l=1

fj3
l
.

Without loss of generality, we can assume that fj2
l

= fj3
l

if and only if
l = 1, 2. Notice that N ≥ 6.

Let σ1 = n with n ≥ 0. Then σ2 = n + s and σ3 = n + t, where we can
assume that s ≤ t with s, t ∈ {0, 1, 2}.

[C0] = s1,

[C1] = ns1 + s2 −
2(n+1)∑

l=1

fj1
l
,

[C2] = (n + s)s1 + s2 −
2(n+s+1)∑

l=1

fj2
l
,

[C3] = (n + t)s1 + s2 −
2(n+t+1)∑

l=1

fj3
l
.

Furthermore, note that∣∣∣{ji
l}

2(σi+1)
l=1 ∩ {jk

l }2(σk+1)
l=1

∣∣∣ = σi + σk, i �= k

and

max{0, 2n + s + t − 2} ≤
∣∣∣∣∣

3⋂
i=1

{ji
l}

2(σi+1)
l=1

∣∣∣∣∣ ≤ 2n + s.

Thus, there are 10 subcases for σ1 = n ≥ 1 and 7 in case σ1 = 0.
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6.2. Blowing down to a minimal model. We know from McDuff [18]
that one can always blow down symplectic spheres with square −1 and
hence obtain a minimal symplectic manifold. This is also possible relative
to a symplectic configuration. The following lemma generalizes verbatim
from [16, Lemma 4.5]. We provide the argument here for completeness.

Lemma 6.2. In the situation of Theorem 5.1, let J be an almost complex
structure tamed by ω such that Γ is holomorphic. Then, there exists a holo-
morphic sphere S ⊂ XN with square −1 and [S] · [C0] = 0. Furthermore,
there exists such an S disjoint from Γ if and only if there exists a symplectic
sphere S of square −1 such that [S] · [Ci] = 0 for i = 1, 2, 3.

Proof. Because XN is obtained from S2 × S2 by blowing up, there exists a
symplectic sphere S ⊂ XN of square −1 such that [S] · [C0] = 0. By [18,
Lemma 2.1], the homology class [S] is either represented by an embedded
sphere or a cusp-curve S1∪· · ·∪Sl, i.e., a union of (not necessarily embedded)
holomorphic spheres. In the first case, the first part of the lemma is proved.
In the second case, notice that

[S] · [C0] = ([S1] + · · · + [Sl]) · [C0] = 0

which, by positivity of intersection, implies that

[Si] · [C0] = 0 for i = 1, . . . , l.

Therefore,

[Si]2 ≤ −1 for i = 1, . . . , l.

But

1 = χ(S) + [S] · [S]

= 〈c1(XN ), [S]〉

=
l∑

i=1

〈c1(XN ), [Si]〉

=
l∑

i=1

χ(Si) + [Si] · [Si]

implies that [Si] · [Si] = −1 for at least one index i ∈ {1, . . . , l}. By the
adjunction formula [18], choosing S = Si is an embedded sphere.

If [S] is orthogonal to all the classes [Ci], then, by positivity of inter-
sections, S must be disjoint from Γ, which proves the second part of the
lemma. �

Thus, blowing down all the existing −1 spheres yields the following.
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Proposition 6.3. There exists a sequence of blowdowns (XN , Γ) to (S2 ×
S2, Γ′), where Γ′ is given as follows. (The boxes in the right-hand side of the
figure denote the appropriate number of intersections, as in Lemma 6.1.)

We like to argue that the symplectic configuration thus obtained is unique.
For the case where σ1 ≥ 0, this follows immediately from the following

Proposition 6.4. Suppose Si, i = 1, 2, are embedded symplectic 2-spheres in
(S2×S2, ω) for some symplectic structure ω, representing the same homology
class [Si] = ns1 + s2, such that [S1] · [S2] = 2n. Here denote by s1 and s2 the
homology classes [S2 × {pt}] and [{pt} × S2] in H2(S2 × S2; Z). Then the
two spheres are isotopic.

Proof. Choose an almost complex structure that makes the spheres holomor-
phic. If n < 0, then the two spheres coincide by positivity of intersections.
If n = 0, then again by positivity of intersections, the two spheres either
coincide or are disjoint. In the latter case, Si = {pi} × S2 for two distinct
points in the first factor. Any path on that sphere joining p1 and p2 pro-
vides an isotopy. In the case n > 0, notice that S1 and S2 intersect in 2n
points (counting multiplicity). The moduli space of spheres in this class is
a manifold of real dimension 2(c1([ns1 + s2]) − 1) = 2(2n + 1). Keeping
S1 ∩ S2 fixed, there exists a path γ : [0, 1] → S2 × S2 with γ(t) ∩ S1 = γ(0),
γ(t) ∩ S2 = γ(1) and such that for each t there is a holomorphic sphere St

through the 2n + 1 points S1 ∩ S2 ∪ γ(t). This provides an isotopy from S1
to S2. �

The case where σ1 = −1 is more difficult due to the presence of a symplec-
tic sphere of square −2. In this case, we can use a construction by Abreu [2]
who shows that this case is a symplectomorphic to a standard Hirzebruch
surface.

Proof of Theorem 4.3. Starting with one of these unique configurations in
S2 ×S2, we can blow up back to the situation in Theorem 5.1. Doing this in
all possible ways and proving, the complements of the configuration Γ thus
obtained are diffeomorphic is now possible by using Kirby Calculus.
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Figure 11. Blowing back up to Γ from the minimal model
in case σ1 = −1.

We show this process of blowing up in one situation; see Figure 11. All
other cases are obtained similarly; see Figures 12 and 13. Start with the
usual handle decompostion for S2 × S2, shown in the leftmost part of Fig-
ure 11. Add two canceling 2/3-handlepairs and slide the 2-handles over the
0-framed 2-handle. Thus, we find three unlinked 2-handles linking once an
unknot and all components have framing 0. Now pick one of these three
handles and subtract it from the unknot. When adding the other two 2-
handles to the unknot, we find the middle part of Figure 11. We can blow
up the crossings and then each component individually until each of the
three components has framing −2. This is shown in the rightmost part of
Figure 11. Theorem 4.3 follows from the following theorem. �

Theorem 6.5. Suppose W ′ is the complement of Γ ⊂ XN obtained by
blowing up a minimal model from Proposition 6.3. Then W ′ is diffeomorphic
to a smooth blowup of W as in Figure 9(a).

Proof. We begin by examining all possible ways to blow up a minimal model
as described by Proposition 6.3 to get back to the original configuration
Γ ⊂ XN . For the case σ1 = −1, there is only one way to do this, shown in
the rightmost part of Figure 11. The cases where σ1 = n ≥ 0 are shown in
Figures 12 and 13.

Immediately from Figures 11–13, one realizes that all the complements
are diffeomorphic up to blowup. Suppose there is a component, coming
from the blowup procedure, that links all three (−2)-framed 2-handles once.
We can slide such a component over the 0-framed 2-handle and free it from
the picture, without changing its framing from −1. Thus, such components
can be blown down. Then, by again sliding the components coming from
the blowup procedure about the 0-framed 2-handle, one can get one picture
from the other. Such handle slides do not change the diffeomorphism type
of the complement.
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(0, 2, 2)

Figure 12. Blowing back up to Γ from the minimal model
in case σ1 = 0. (All unlabeled 2-handles have framing −1.
The triple of numbers on top denotes (σ1, σ2, σ3).)

This shows that there is at most one filling up to diffeomorphism and
blowup. Since we already provided one, the theorem is proved.

We finish by explicitly showing, for one case, how to find the filling that
was described in Figure 9. To get a handle on W ′ = XN\nbhd(Γ), we
do the following. Put all the framings of 2-handles coming from Γ and the
blowup circles in brackets 〈·〉. Then specify cocores of the blowup circles and
label them 0. Now we can use Kirby calculus on the 〈·〉-framed handles to
simplify the picture. Eventually turning the handlebody upside down gives
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Figure 13. Blowing back up to Γ from the minimal model
in case σ1 ≥ 1. (All unlabeled 2-handles have framing −1.)

a picture of W ′; see [12]. This is explained in Figure 14. Starting with the
diagram on top, first blow down all the 〈−1〉-framed 2-handles. This gives
the second diagram. Then, sliding the 〈0〉-framed handles over its neighbors
to the right yields the third diagram. In there, the two rightmost 〈0〉-framed
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Figure 14. Recreating W .

handles bound canceling 3-handles. When turning this handlebody upside
down, those 3-handles become 1-handles and then erasing all the 〈·〉-framed
2-handles gives a diagram for W , see the last picture. This is exactly what
is shown already in Figure 9. �
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