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REDUCTION OF METRIC STRUCTURES ON COURANT
ALGEBROIDS

Gil R. Cavalcanti

We use the procedure of reduction of Courant algebroids introduced
in [H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri, Reduction
of Courant algebroids and generalized complex structures. Adv. Math.,
211, 2007] to reduce strong KT, hyper KT and generalized Kähler
structures on Courant algebroids. This allows us to recover results
from the literature as well as explain from a different angle some of the
features observed therein. As an example, we prove that the moduli
space of instantons of a bundle over an SKT/HKT/generalized Kähler
manifold is endowed with the same type of structure as the original
manifold.

1. Introduction

The idea of describing an infinitesimal group action on a manifold not only
by vector fields but also by 1-forms appeared in some instances in the liter-
ature. For example, in the context of gauging the Wess–Zumino term of a
sigma model [4] or, in a more geometric way, in the work of Grantcharov et
al. [5], where they study the reduction of strong KT and hyper KT struc-
tures. In those cases, at first, the 1-forms do not seem to influence the
group action, which is just the one generated by the vector fields. However,
the 1-form part of the action has some significance. For example, in the
reduction procedure in [5], the strong/hyper KT metric and corresponding
complex structures are not modeled on the orthogonal complement of the
G-orbits, but on a certain space transversal to the group directions which
is slanted away from the orthogonal complement by the 1-form part of the
action.

The feature that the model for the tangent space of the quotient is not
given by the orthogonal complement to the group directions appeared before
in contexts where the presence of a 1-form part of the action was otherwise
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unnoticed. For example, it appeared in the work of Lübke and Teleman [10],
where they show that the moduli space of instantons of a bundle over an
SKT manifold has an SKT structure. More recently, this trait resurfaced in
the work of Hitchin [7], in which he studies a generalized Kähler structure on
the moduli space of instantons, only there he has to consider two different
transversal spaces modeling different structures on the quotient.

In these examples, the need for 1-forms in the action emanates from the
presence of a background closed 3-form H — in [4] it is the NS-flux, while
in the SKT/HKT case it is dcω, where ω = g(I·, ·) is the Kähler form. The
presence of this closed 3-form suggests that the phenomena above are related
to Courant algebroids.

In this paper, we explain the idiosyncrasies pointed out above in terms
of extended actions and reduction of Courant algebroids, a procedure intro-
duced in [1] which makes rigorous the idea of an action by vectors and forms
and shows how the 1-form part of the action enters as a main ingredient when
constructing the reduced Courant algebroid. In doing so, we also provide a
description of the generalized Kähler structure on the moduli space of insta-
tons found by Hitchin in terms of a generalized Kähler reduction, answering
a question he posed in [7] (this generalized Kähler reduction is studied in
detail in [2]).

One of the basic ideas behind this reduction procedure is that one
phrases the concept of an infinitesimal G-action not only in terms of vec-
tor fields, but in terms of an extended action on the Courant algebroid
TM ⊕T ∗M generated by vector fields and 1-forms. The vector fields
and 1-forms generating the action on the Courant algebroid are required
to be compatible with the underlying infinitesimal action of the vector
fields on M .

One advancement of this approach is that one can consider the action
of a 1-form ξ by itself, without an accompanying vector part. In that
case, the compatibility condition implies that ξ is closed and the reduc-
tion procedure consists of taking a maximal leaf M red of the distribution
Ann(ξ) and just restrict the Courant algebroid TM ⊕T ∗M to M red, obtain-
ing TM red ⊕T ∗M red. In the general case, an extended action is given par-
tially by the action of closed forms and partially by a group action, so the
effect of the reduction procedure is to take the quotient of a submanifold of
M by the action of the group, much in the spirit of symplectic reduction.

In the particular case when the part of the extended action determined
by forms alone is given by dμ, with μ : M −→ h∗ an equivariant function
with values on a g-module h∗, we say that μ is a moment map for the action.
In this case, reduced manifolds are given by quotients of inverse images of
G-orbits in h∗ by the action of G on M . Of course, the basic motivation for
this definition comes from symplectic geometry, as their moment maps are
also moment maps in our setting, but our definition is considerably more
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general. Particular features of our moment map are that it is independent of
any geometry on TM ⊕T ∗M or on the underlying manifold and also, unlike
symplectic moment maps, it is not determined by the group action on the
manifold, but it is just part of the extended action. Also, it can have values
in any g-module.

The purpose of this paper is two-fold. First, we show that our procedure
can be used to reduce SKT and HTK structures, recovering results from [5]
and [10] from a different perspective. From our angle, the reduced structures
are always modeled on the orthogonal complement of the group orbits on
the Courant algebroid. Then, we explain the need to look at different spaces,
transversal but not orthogonal to the G-orbit on the manifold, from the fact
that the projection TM ⊕T ∗M −→ TM is not orthogonal.

The second aim of the paper is to provide a concrete example where many
of the features of our reduction procedure are present and, when set up
properly, simplify and unify results previously found. We start by studying
reduction of the strong KT structures on the space of metric connections
of a bundle over an SKT manifold. We write down an explicit action on
the space of connections, which is related to the gauge action, but which
involves the action of vectors and forms and has a moment map with values
on a g-module bigger than g∗, namely, μ(A) = F+

A , the self dual part of
the curvature of the connection A. Then we show that the SKT structure
can be reduced by this action endowing μ−1(0)/G, i.e., the moduli space of
instantons, with an SKT structure.

Although we focus initially on strong KT reduction, the unifying property
of this construction manifests itself on the fact that the computation we do
here, in a single sweep, proves that the moduli space of instantons has a
strong KT/hyper KT/generalized Kähler structure as long as the starting
4-manifold has the same structure (see also [3] for more details on the gen-
eralized Kähler reduction). There is no need to change the action or the
moment map to deal with the different structures.

This paper is organized as follows. In Section 2, we introduce exact
Courant algebroids. In Section 3, we review the results from [1] on reduction
of Courant algebroids. In Section 4, we introduce the generalized metric,
strong KT, hyper KT and generalized Kähler structures on Courant alge-
broids. In Section 5, we study how to reduce generalized metrics, strong
KT and hyper KT, and generalized Kähler structures in the presence of
an extended action. There we also give an interpretation of the reduction
procedure in terms of the geometry of the tangent bundle, showing that our
methods agree with and explain some features of other reduction procedures
found in the literature. In Section 6, we work out in detail how to obtain
the SKT structure on the moduli space of instantons over an SKT manifold.
We then show how that the same method can be used to perform/HKT and
generalized Kähler reduction.
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2. Exact Courant algebroids

A Courant algebroid over a manifold M is a vector bundle E → M equipped
with a fiberwise non-degenerate symmetric bilinear form 〈·, ·〉, a bilinear
bracket [[·, ·]] on the smooth sections Γ(E), and a bundle map π : E → TM ,
such that for all e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M):
C1) [[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]],
C2) π([[e1, e2]]) = [π(e1), π(e2)],
C3) [[e1, fe2]] = f [[e1, e2]] + (π(e1)f)e2,
C4) π(e1)〈e2, e3〉 = 〈[[e1, e2]], e3〉 + 〈e2, [[e1, e3]]〉,
C5) [[e1, e1]] = D〈e1, e1〉,

where, using 〈·, ·〉 to identify E with E∗, we obtain a bundle map π∗ :
T ∗M −→ E dual to π and then define D = 1

2π∗ ◦ d : C∞(M) −→ Γ(E).
Note that C2) and C4) imply that π ◦ π∗ = 0, while C5) implies that the

bracket is not skew-symmetric, but rather satisfies

[[e1, e2]] = −[[e2, e1]] + 2D〈e1, e2〉.
Since the left adjoint action is a derivation of the bracket (axiom C1)), the
pair (Γ(E), [[·, ·]]) is a Leibniz algebra [9].

Definition 2.1. A Courant algebroid is exact if the sequence

(1) 0 −→ T ∗M
π∗

−→ E π−→ TM −→ 0

is exact.

Given an exact Courant algebroid, we may always choose a right splitting
∇ : TM → E which is isotropic, i.e., whose image in E is isotropic with
respect to 〈·, ·〉. Such a splitting has a curvature: a closed 3-form H defined
by

(2) H(X, Y, Z) = 〈[[∇(X),∇(Y )]],∇(Z)〉 for X, Y, Z ∈ Γ(TM)

Using the bundle isomorphism ∇ + 1
2π∗ : TM ⊕T ∗M → E , we transport

the Courant algebroid structure onto TM ⊕T ∗M . Given X + ξ, Y + η ∈
Γ(TM ⊕TM∗), we obtain for the bilinear pairing

(3) 〈X + ξ, Y + η〉 =
1
2
(η(X) + ξ(Y )),

and the bracket becomes

(4) [[X + ξ, Y + η]]H = [X, Y ] + LXη − iY dξ + iY iXH,

called the H-Courant bracket on TM ⊕T ∗M [11] or just the Courant bracket
when the 3-form H is clear from the context. The bundle map π is the
projection

(5) π : TM ⊕T ∗M → TM.



REDUCTION OF METRIC STRUCTURES ON COURANT ALGEBROIDS 321

As observed by Ševera, the choice of a different isotropic splitting of (1)
modifies H by an exact 3-form, so the cohomology class [H] ∈ H3(M, R)
is independent of the splitting and determines the exact Courant algebroid
structure on E completely. We call [H] the characteristic class of the Courant
algebroid.

3. Reduction of Courant algebroids

In this section, we review the theory from [1] on extended actions and reduc-
tion of Courant algebroids. We also go through some of the examples of
Courant algebras and extended actions given in that paper which will be
useful in the next sections.

As we mentioned in Section 2, the adjoint action is a symmetry of the
bracket and of the pairing and hence represents the natural concept of Lie
derivative on an exact Courant algebroid E . This allows us to regard a
section e of E as an element of the algebra c of infinitesimal symmetries of E
therefore giving a map ad : Γ(E) −→ c. This map preserves brackets but it
is neither injective nor surjective, for example, it is clear from equation (4)
that ker(Ψ) = Ω1

cl(M), the space of closed 1-forms on M .
Similarly to the case of a Lie group action, an infinitesimal action on

an exact Courant algebroid is described in terms of sections of E , using
the argument above to identify them with symmetries. However, since the
Courant bracket in Γ(E) is not a Lie bracket, the action is not given by a Lie
algebra homomorphism, but by a map of Courant algebras (see definition
below), an algebraic structure designed to capture the information regarding
the Courant bracket and the pairing on E .

Definition 3.1. A Courant algebra over the Lie algebra g is a vector space
a equipped with a bilinear bracket [[·, ·]] : a × a −→ a and a map π : a −→ g,
which satisfy the following conditions for all α1, α2, α3 ∈ a:

c1) [[α1, [[α2, α3]]]] = [[[[α1, α2]], α3]] + [[α2, [[α1, α3]]]],
c2) π([[α1, α2]]) = [π(α1), π(α2)].

In other words, a is a Leibniz algebra with a homomorphism to g.
A Courant algebra is exact if π is surjective and [[λ1, λ2]] = 0 for all

λi ∈ ker(π).

Of course, these definitions work out so that if E is a Courant algebroid,
then Γ(E) −→ Γ(TM) is a Courant algebra. Also, E is an exact Courant
algebroid if and only if Γ(E) −→ Γ(TM) is an exact Courant algebra.

If a −→ g is an exact Courant algebra, then we automatically obtain that
h = ker(π) is a g-module: we define the action by

γ · λ = [[γ̃, λ]],

where γ̃ is any element of a such that π(γ̃) = γ. Since the bracket vanishes
on h, we see that this is a well defined map g × h −→ h and one can easily
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check that this is indeed an action. A partial converse to this fact is given by
the following example.

Example 3.2 (Hemisemidirect product [1,8]). Given a g-module, h, we can
endow a = g ⊕ h with the structure of an exact Courant algebra over g by
taking π : g ⊕ h −→ g to be the natural projection and defining

[[(γ1, λ1), (γ2, λ2)]] = ([γ1, γ2], γ1 · λ2).

This Courant algebra first appeared in [8], where it was studied in the con-
text of Leibniz algebras.

A Courant algebra morphism between a
π−→ g and a′ π′

−→ g′ is a commu-
tative diagram formed by bracket preserving maps

a
π ��

Ψ
��

g

ψ
��

a′ π′
�� g′

.

For exact Courant algebras a and a′, the map Ψ determines the whole dia-
gram. In this case, we say that Ψ is a morphism of Courant algebras.

Now, let a be an exact Courant algebra and E an exact Courant algebroid
over a manifold M . Given morphism of Courant algebras Ψ : a −→ Γ(E),
we can compose it with ad: Γ(E) −→ c to obtain a subalgebra of the algebra
of infinitesimal symmetries of E . Also, projecting Ψ onto Γ(TM), we obtain
a subalgebra of infinitesimal symmetries of M .

a
Ψ ��

π

��

Γ(E) ad ��

π

��

c

π

��
g

ψ �� Γ(TM)
∼= �� dif(M)

Since the map π : c −→ dif(M) has a kernel, the algebra of infinitesimal
symmetries generated by Ψ(a) is, in general, bigger than the corresponding
algebra ψ(g). These two will be the same only if Ψ(h) acts trivially, i.e.,
Ψ(h) ∈ Ω1

cl(M), where h is the kernel of the projection a −→ g. If this is
the case, it may still happen that the group of symmetries of E generated
by Ψ(a), G̃, is bigger than the group of symmetries of M generated by ψ(g),
G, as G̃ may be just a cover of G.

Definition 3.3. An extended action is a Courant algebra map Ψ : a −→
Γ(E) which generates the same group of symmetries on E and on M . This
means that Ψ(h) ∈ Ω1

cl(M) and the infinitesimal actions of ad◦Ψ(a/h) and
ψ(g) integrate to an action of the same group.
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A practical way to check whether a map of Courant algebras is an
extended action is to choose an isotropic splitting for E making it isomor-
phic to (TM ⊕T ∗M, 〈·, ·〉, [[·, ·]]H) and then requiring that this splitting is
preserved, i.e.,

[[Ψ(α), Γ(TM)]] ⊂ Γ(TM), for all α ∈ a.

Letting Ψ(α) = Xα + ξα, this is equivalent to the condition

(6) iXαH = dξα, for all α ∈ a.

If this is the case, then the group action on TM ⊕T ∗M is the one induced by
its action on TM and T ∗M determined by the underlying diffeomorphisms.
Reciprocally, if an extended action induces the action of a compact group on
E , then there is an isotropic splitting preserved by the extended action [1].

One of the upshots from our point of view is that the concept of moment
map appears as an integral part of the action and is independent of any
geometry on the underlying manifold or on the Courant algebroid. Indeed,
if a −→ g is an exact Courant algebra and Ψ : a −→ Γ(E) is an extended
action then h is a g-module and Ψ(λ) ⊂ Ω1

cl(M) for all λ ∈ h. Letting G
be the group whose infinitesimal action is determined by Ψ, we see that the
g-action on h integrates to a G action.

Definition 3.4. An extended action Ψ has a moment map if there is a
G-equivariant map μ : M −→ h∗ such that for λ ∈ h,

Ψ(λ) = d〈μ, λ〉.

Given an extended action, we have three distributions on E associated to
it: K = Ψ(a), K⊥, and K + K⊥ and from these we get three distributions
on M : Δb = π(K+K⊥), Δs = π(K⊥), and π(K), which gives the directions
of the group action on M . The distribution Δs can also be described as

Δs = Ann(Ψ(h)),

and hence, as the annihilator of a space generated by closed forms, it is
locally integrable around the points where Ψ(h) has constant rank. Then
the leafs of Δb are just the G-orbits of the leafs of Δs. If the action admits
a moment map μ, then leaves of Δs are level sets of μ while the leaves of Δb

are inverse images of the G-orbits.
If we pick a leaf P of Δb where the group acts freely and properly and

over which Ψ(h) has constant rank, the reduction procedure can be described
using the following facts:

1) The Courant bracket on E induces a bracket on Γ(K⊥|P )G, the space
of G-invariant sections of the restriction of K⊥ to P , which is well
defined modulo Γ(K ∩ K⊥|P )G,
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2) Using the bracket above in Γ(K⊥|P )G, we have that Γ(K ∩ K⊥|P )G is
an ideal, so this bracket induces a well defined bracket on

Ered =
K⊥|P

(K ∩ K⊥)|P

/
G over M red— = P/G.

This means that given two sections e1, e2 ∈ Γ(Ered), their bracket is defined
by choosing G-invariant lifts ẽ1, ẽ2 ∈ Γ(E)|P , then extending these lifts arbi-
trarily to sections of e1, e2 ∈ Γ(E) and then letting [[e1, e2]] be section of

K⊥|P
(K∩K⊥)|P

/
G
, which has [[e1, e2]]|P ∈ Γ(K⊥|P )G as a representative.

[[e1, e2]] := [[e1, e2]]|P + K ∩ K⊥|P ⊂ K⊥

K ∩ K⊥

∣∣∣∣
P

,

According to (1) and (2) above, this bracket is independent of the choices
made. We call M red a reduced manifold and Ered the reduced Courant alge-
broid over it. The argument above is the main ingredient in the proof of the
following theorem.

Theorem 3.5. (Burzstyn–Cavalcanti–Gualtieri [1]) Given an extended
action Ψ, let P be a smooth leaf of the distribution Δb where Ψ(h) has
constant rank and on which G acts freely and properly. Then the vector
bundle Ered defined above is a Courant algebroid over M red = P/G. Ered is
exact if and only if

π(K) ∩ π(K⊥) = π(K ∩ K⊥) over P.

In particular Ered is exact if K is isotropic over P .

We outlined the proof of this theorem because it shows how to con-
cretely obtain the reduced manifold M red and the reduced Courant algebroid
(Ered, 〈·, ·〉, [[·, ·]]). As we will see later, the condition that K is isotropic over
P is an analogue of saying that P is the inverse image of 0 by the moment
map.

There are two basic examples one should keep in mind.

Example 3.6. Let G act freely and properly on M with infinitesimal action
ψ : g −→ Γ(TM) and let H be a basic 3-form. Then ψ gives rise to an
extended action of the Courant algebra a = g on the split Courant algebroid
(TM ⊕T ∗M, 〈·, ·〉, [[·, ·]]H): Ψ(α) = ψ(α).

In this case K⊥ = TM ⊕ Ann(ψ(g)) and hence Δb = π(K⊥ + K) = TM
has only one leaf: M . Therefore the only reduced manifold is M red = M/G
and the reduced algebroid is

Ered =
K⊥/G

K/G
= TM/ψ(g) ⊕ Ann(ψ(g)) ∼= TM red ⊕T ∗M red.

Finally, the basic form H is the curvature of the reduced algebroid for
this splitting.
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Example 3.7. Consider the extended action ρ : R −→ Γ(E) on an exact
Courant algebroid E over M given by ρ(1) = ξ where ξ is a closed 1-form,
where R −→ {0} is a Courant algebra over the trivial Lie algebra. Then
K⊥ = {v ∈ E : π(v) ∈ Ann(ξ)} induces the distribution Δb = Ann(ξ) ⊂ TM ,
which is integrable wherever ξ is nonzero. Since the group action is trivial,
a reduced manifold is simply a choice of integral submanifold ι : P ↪→ M
for ξ and the reduced Courant algebroid is just the pullback exact Courant
algebroid. The characteristic class of Ered in this case is the pullback to P
of the class of E .

The next example combines the features of the previous two examples
and is the basic model for all the concrete examples we will encounter later
in this paper.

Example 3.8. Given a Lie algebra g, we can always think of g as a Courant
algebra over itself, with the projection given by the identity and the Courant
bracket given by the Lie bracket. If G acts on a manifold M with infinites-
imal action ψ : g −→ Γ(TM) and E is an exact Courant algebroid over M ,
we can always try and lift this action to an extended action on E :

g
Id ��

Ψ̃
��

g

ψ
��

Γ(E) π �� Γ(TM).

We call such Ψ̃ a lifted or a trivially extended action. In order for the reduced
algebroid to be exact K = Ψ̃(g) must be isotropic, so we will impose that
condition on lifted actions.

If we are also given an equivariant map μ : M −→ h∗, where h is a G-
module, then we can extend the action Ψ̃ : g −→ Γ(E) to an action of a =
g⊕ h, endowed with the hemisemidirect product structure from Example
3.2, by defining

Ψ(γ, λ) = Ψ̃(γ) + d〈μ, λ〉.
The equivariance of μ implies that this is an extended action and K = Ψ(a)
is isotropic over μ−1(0). The reduced manifolds are μ−1(Oϕ)/G, where Oϕ

is the G-orbit of ϕ ∈ h∗.
In order to describe the reduced algebroid over μ−1(0), we observe that

the reduction can be described in two steps. The first is just restriction to
the level set P = μ−1(0). Then the extended action on M gives rise to an
isotropic trivially extended action on P and the second step is to perform
the reduction by this action.

If we have an invariant splitting E = TM ⊕T ∗M with the H-bracket, i.e.,
equation (6) holds for this splitting, then the first step gives as intermediate
Courant algebroid TP ⊕T ∗P with the ι∗H-bracket, where ι : P ↪→ M is the
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inclusion map and we have an extended action g −→ Γ(TP ⊕T ∗P )

γ �→ Xγ + ξγ .

satisfying:

(6) iXγH|P = dξγ .

In particular, projecting onto T ∗P , we obtain ξ ∈ Ω1(P ; g∗). According
to our general assumptions, G acts freely and properly on P , making it
a principal G-bundle. Let θ ∈ Ω1(P ; g) be a connection for this bundle
and consider the change of splitting TP ⊕T ∗P determined by the 2-form
B = 〈θ, ξ〉, where 〈·, ·〉 denotes the pairing between g and g∗ together with
the wedge product of forms. In this new splitting, the action is given by

γ �→ Xγ + ξγ − iXγ 〈θ, ξ〉 = Xγ .

Further, according to (6) we can write the invariant form ι∗H as

ι∗H = 〈θ, dξ〉 + h,

with h ∈ Ω3(P/G) a basic form. Hence, the curvature of the new splitting
is given by

Hred = ι∗H + dB = 〈θ, dξ〉 + h + 〈dθ, ξ〉 − 〈θ, dξ〉 = 〈dθ, ξ〉 + h.

Observe that Hred is basic, and therefore, according to Example 3.6, is the
curvature of the reduced algebroid over P/G.

From this example, we see that the requirement that K is isotropic over
P is an analogue of “P is the inverse image of 0 by the moment map”.
In the same way, symplectic reduction does not rely on taking a particular
level set or even the existence of moment maps, the theory we develop in
the next sections can be adapted to the case when K is not isotropic over P
using the techniques from [1]. However, K will be isotropic over P for the
applications we have in mind (c.f. Theorems 5.3 and 5.6 and Examples 6.3
and 6.7).

We finish this section with an inoffensive remark. If an action has a
moment map μ : M −→ h∗ and h decomposes as a sum of g modules,
h = h1 ⊕ h2, then we can decompose μ into coordinates μi : M −→ h∗

i . The
reduction procedure to μ−1(0)/G can then be performed in two steps. The
first consisting of just restricting the Courant algebroid and the action to,
say, μ−1

1 (0), where we still have an action of h2 −→ a/h1 −→ g and then
carrying out a final reduction of μ−1

1 (0) by this action. If h can be decom-
posed in a different way as a sum of g-modules, the final reduced algebroid
and reduced manifold do not depend on the particular decomposition used.
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4. Metric structures on Courant algebroids

In this section, we introduce the generalized metric and the concept of strong
KT, hyper KT, and generalized Kähler structures on an exact Courant alge-
broid. We start with the generalized metric as introduced by Gualtieri [6]
and Witt [12].

Definition 4.1. A generalized metric on an exact Courant algebroid E2n

is an orthogonal, self adjoint operator G : E → E such that 〈Ge, e〉 > 0 for
e ∈ E\{0}.

Since G is orthogonal and self adjoint, we see that

G2 = GGt = GG−1 = Id.

So G splits E into its ±1-eigenspaces, which are maximal subbundles where
the pairing is ±-definite.

The 1-eigenspace, V+, of G determines the generalized metric completely
as its orthogonal complement with respect to the symmetric pairing is V−,
the −1-eigenspace of G. Since the natural pairing is definite on V+ and null
on T ∗M the projection π : V+ −→ TM is an isomorphism and hence induces
a metric on TM :

g(π(e), π(e)) = 〈e, e〉, e ∈ V+.

Further, if E is split as TM ⊕T ∗M , any such space V+ can be described
as the graph over TM of a 2-tensor g + b, where g is the metric above and
b is a 2-form. Conversely, the graph of g + b, where g is a metric and b a
2-form is a maximal subspace where the pairing is positive and hence g and
b determine a generalized metric.

Definition 4.2. Given a generalized metric G on an exact Courant algebroid
E , the metric splitting of E is G(T ∗M) ⊕T ∗M . The curvature of the metric
splitting is the curvature 3-form of this splitting.

The metric splitting can be characterized by the fact that the generalized
metric is the graph of the induced metric g and b = 0.

There are two metric structures we want to consider on an exact Courant
algebroid: strong KT structures and generalized Kähler structures. To
define the first, recall that a strong KT structure on a manifold M is an inte-
grable complex structure, I, with a hermitian metric, g, for which ddcω = 0,
where ω(X, Y ) = g(IX, Y ) and dc = i(∂ − ∂). The correspondent definition
in the context of exact Courant algebroids is:

Definition 4.3. A strong KT structure on an exact Courant algebroid E
is a generalized metric G together with a complex structure I on its +1-
eigenspace orthogonal with respect to the symmetric pairing and whose +i-
eigenspace is closed with respect to the bracket.
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Remark: One should observe that the definitions above for strong KT
structures on manifolds and Courant algebroids allow the torsion H (or
dcω) to be zero, hence for us Kähler manifolds are also strong KT.

Since π: V+ −→ TM is an isomorphism which preserves brackets, we can
use I to define an almost complex structure I on M and the integrability
of I implies that I is integrable. It is also clear that I is hermitian with
respect to the metric g induced on M . We claim that (g, I) is a strong KT
structure on M for which [dcω] = −[H], where [H] is the characteristic class
of the Courant algebroid.

Before we prove this claim, we need a lemma. The methods used below fol-
low very closely Gualtieri’s argument relating generalized Kähler and biher-
mitian structures [6].

Lemma 4.4. Let D ⊂ TCM be a distribution, c a complex 2-form and H
be a real closed 3-form. The subbundle of (TCM +T ∗

C
M, 〈·, ·〉, [[·, ·]]H) defined

by
F = {X + c(X) : X ∈ D},

is integrable if and only if the subbundle D is Lie integrable and

iXiY (dc − H) = 0 ∀X, Y ∈ D.

Proof. Choose two sections X + c(X) and Y + c(Y ) and compute their
bracket:

[[X + c(X), Y + c(Y )]] = [X, Y ] + LXc(Y ) − LY c(X) − d(iXiY c) + iXiY H.

If this is to be a section of F , we need [X, Y ] ∈ D, and hence D is Lie
integrable, and

c([X, Y ]) = LXc(Y ) − LY c(X) − d(iXiY c) + iXiY H

which is only the case if iXiY (dc − H) = 0. �
Proposition 4.5. The following hold:

1) Given a strong KT structure (G, I) on an exact Courant algebroid E
over M , the induced metric and complex structure make M a strong
KT manifold and [dcω] = −[H].

2) Reciprocally, if (M, g, I) is a strong KT structure, the exact Courant
algebroid with characteristic class [−dcω] admits a strong KT structure
on it.

Proof. To prove the first claim, choose a splitting of E so that it is isomorphic
to (TM +T ∗M, 〈·, ·〉, [[·, ·]]H). As we saw, the strong KT structure on E gives
rise to complex structure I, a Hermitian metric g, and a 2-form b on M .
Then, the +i eigenspace of I is the graph of b−iω over T 1,0M , hence Lemma
4.4 implies that

iXiY (db − idω + H) = 0 ∀X, Y ∈ Γ(T 1,0M).
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Using the (p, q) decomposition of forms, the equation above is equivalent to

−i∂ω = −∂b1,1 − ∂b2,0 − H2,1 ∂b2,0 = H3,0

which once added to its complex conjugate gives us

dcω = −db − H,

proving the first claim.
To prove the second claim, we let H = −dcω and consider the exact

Courant algebroid (TM ⊕T ∗M, 〈·, ·〉, [[·, ·]]H). Let G be the generalized met-
ric determined by the maximal positive definite space V+ = {X + g(X) :
X ∈ TM} and consider the complex structure I on V+ induced by the com-
plex structure I on M via the isomorphism π : V+ −→ TM . Since T 1,0M
is Lie integrable, according to Lemma 4.4 to prove the integrability of I
we only have to check that iXiY (idω − H) = 0 for X, Y in T 1,0M . But
according to the computations in the first part of the theorem this amounts
to dcω = −H. �
Corollary 4.6. If a Courant algebroid has a strong KT structure, then the
curvature of the metric splitting is given by −dcω.

Another structure related to strong KT structures are the so called hyper
KT structures, i.e., three complex structures I, J , and K, with IJ = −K
all hermitian with respect to a fixed metric g and satisfying

dc
IωI = dc

JωJ = dc
KωK = −H ∈ Ω3

cl(M),

where ωA and dc
A are the Kähler form and the dc operator with respect to

the complex structure A.
Clearly the same arguments from Proposition 4.5 show that the following

is an equivalent definition of a hyper KT structure.

Definition 4.7. A hyper KT structure on an exact Courant algebroid E is
a generalized metric G together with three complex structures I,J , and K
on its +1-eigenspace which are orthogonal with respect to the symmetric
pairing, whose +i-eigenspaces are closed with respect to the bracket and
which satisfy IJ = K.

We finish our study of strong KT structures with a remark. We could
have defined a strong KT structure on a Courant algebroid as an integrable
orthogonal complex structure on V−, instead of V+. Similar to the original
case, such a structure on a Courant algebroid also induces a strong KT
structure on the underlying manifold. The only change in Proposition 4.5 is
that, since V− is the graph of b − g, the torsion of the strong KT structure
will be the curvature of the Courant algebroid,

dcω = db + H.

The last structure we want to introduce is related to generalized complex
structures.
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Definition 4.8. A generalized complex structure on an exact Courant alge-
broid E is a complex structure J on E orthogonal with respect to the pairing
and whose +i-eigenspace is closed under the bracket.

Definition 4.9. A generalized Kähler structure on an exact Courant alge-
broid E is a pair of commuting generalized complex structures J 1 and J 2
such that G = −J 1J 2 is a generalized metric.

If (J 1,J 2) is a generalized Kähler structure on E and G = −J 1J 2, then
the generalized complex structures J i also commute with G, since

J iG = −J iJ 1J 2 = −J 1J 2J i = GJ i.

Therefore J i preserves V+ and the +i-eigenspace of J i|V+ is L1 ∩ L2, the
intersection of the +i-eigenspaces of J 1 and J 2, which is closed under the
bracket. Therefore, every generalized Kähler structure on E furnishes a
strong KT structure on E , which can be translated into a strong KT struc-
ture (g, I+) on M , according to Proposition 4.5.

The same argument used above also shows that J 1 gives a complex struc-
ture to V− and hence a second strong KT structure (g, I−) on M with the
same metric. These two structures are related by

(7) dc
−ω− = −dc

+ω+ = H + db,

where H is curvature of E for some splitting, b is the 2-form associated
to the generalized metric for that splitting and dc

± are the usual operators
−i(∂ − ∂) computed, respectively, using the complex structures I± on M .
Conversely, Gualtieri [6] showed in his thesis that the data above, i.e., a
pair of complex structures I±, a bihermitian metric g, a 2-form b and a
closed 3-form H satisfying equation (7), determine a generalized Kähler on
(TM ⊕T ∗M, 〈·, ·〉, [[·, ·]]H).

5. Reduction of metric structures

In this section, we use the techniques from [1] introduced in Section 3 to
reduce metrics and strong KT structures invariant by an extended action.

Throughout this section, we let Ψ : a −→ Γ(E) be an extended action,
K be the distribution generated by Ψ(a), P be a leaf of the distribution Δb

on which G acts freely and properly, and Ered be the reduced algebroid over
M red = P/G. We will assume that K is isotropic over P and hence Ered is
exact and given by the quotient

Ered =
K⊥G

KG

∣∣∣∣
P/G

.

We let p : K⊥G −→ Ered and q : P −→ M red be the natural projections.
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5.1. Reducing the generalized metric. A metric G on E is invariant
under the extended action if and only if its 1-eigenspace V+ is preserved by
the action. In this case, as the pairing on Ered is induced by the pairing on
K⊥G, the spaces

V red
± = p(V G

± ∩ K⊥G)

are orthogonal subspaces of Ered and the restriction of the pairing to V red
±

is ±-definite. They will define a metric as long as they are maximal, i.e.,

V red
+ ⊕V red

− = Ered.

Proposition 5.1. If the extended action Ψ preserves G and K is isotropic
over P , then G reduces.

Proof. According to the definition of V red
+ and V red

− , V red
+ ⊕V red

− = Ered if
and only if

(8) V+ ∩ K⊥ + V− ∩ K⊥ + K = K⊥.

One can easily see that the sum of the first two spaces is KG = K⊥ ∩ GK⊥,
i.e., the orthogonal complement of K in K⊥. Hence (8) holds. �

The proof of the theorem also furnishes a pictorial description of the
reduced metric. Gred on Ered. Let p : K⊥G −→ Ered be the natural projection
and KG = K⊥ ∩ GK⊥ be the metric orthogonal complement of K in K⊥.
Then KG is G invariant and p : KG −→ Ered is an isomorphism. The reduced
metric is nothing but the image of G under this isomorphism. If one thinks
of K as being the ‘group directions’ on E , then the reduced metric is modeled
in the orthogonal complement of the group directions in K⊥ (see Figure 1).

Figure 1. The generalized metric on the reduced algebroid
is modeled on the orthogonal complement of K inside K⊥.

5.2. Metric reduction as seen from TM . We have seen that a general-
ized metric G on an exact algebroid over M gives rise to an actual metric g
on M . Hence, if an extended action preserves a generalized metric, we can
form the reduced metric Gred on the reduced Courant algebroid Ered and
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obtain a metric gred on the reduced manifold M red.

(E ,G)
// ��������

π

��

(Ered,Gred)

π

��
(M, g)

// �������� (M red, gred)

As we set out to describe gred in terms of g and the action, we see that
there is a price to be paid when one tries to describe generalized objects in
terms of the tangent bundle alone. Here we will see that instead of describing
gred in terms of the space orthogonal to the G-orbits, one has to consider an
appropriate space transversal to the G-orbits, but slanted according to the
action and the 2-form b making up the metric.

In order to describe the metric gred, we fix an invariant splitting E =
TM ⊕T ∗M , so that the generalized metric is determined by the metric g
and a 2-form b. Since G is preserved by the action, one can always find such
a splitting, for example, the metric splitting has the properties above. Since
we are assuming that K is isotropic over P , a leaf of the distribution Δb,
the extended action on E gives rise to an isotropic trivially extended action
on the restricted Courant algebroid over P , E|P , similar to Example 3.8.
Therefore, the action over P is determined by a map g −→ Γ(TP ⊕T ∗P ),
with γ �→ Xγ + ξγ .

Recall that gred is just the pushforward via π of the natural pairing on
V red

+ , the +1-eigenspace of Gred, to TM red. But according to the description
of Ered from the previous section, we see that V red

+ = V+ ∩ KG = V+ ∩ K⊥ ∩
GK⊥, i.e.,

V red
+ = {Y +(g+b)(Y ) ∈ TP ⊕T ∗P : g(Y, Xγ)+b(Y, Xγ)+ξγ(Y ) = 0, ∀γ ∈ g}.

This expression shows that gred corresponds to the metric g restricted to
a subspace τ ⊂ TP transversal to the G-orbits which is slanted from the
orthogonal complement of the G-orbits by b and ξγ given by (see Figure 2)

(9) τ = {Y ∈ TP : g(Y, Xγ) + b(Y, Xγ) + ξγ(Y ) = 0, ∀γ ∈ g}
This feature that the Riemannian model for the reduced manifold is

not given by the orthogonal complement of the orbits, but by a differ-
ent transversal space was observed before by Lübke and Teleman [10],
Grantcharov et al. [5], and Hitchin [7]. Our approach shows that this puz-
zling behaviour is nothing but a manifestation on the tangent bundle level
of a simpler behaviour of actions on Courant algebroids.

We finish this section on reduction of generalized metrics computing the
curvature of the metric splitting of Ered. In what follows, we use the metric
splitting E ∼= GT ∗M ⊕T ∗M to describe the extended action over P as a
map γ �→ Xγ + ξγ , therefore determining a 1-form ξ ∈ Ω1(M, g∗). We also
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Figure 2. The metric induced on TM red is modeled on a
space transversal to the G-orbits but not necessarily orthog-
onal to them.

use the metric g induced on P ⊂ M to form a connection θ ∈ Ω1(P, g) on P ,
seen as a principal G-bundle over M red = P/G, i.e., θ(X) = 0 if and only if
X is orthogonal to the G-orbit.

Proposition 5.2. If an extended action Ψ preserves a generalized metric
G, K is isotropic over P and the curvature of the metric splitting of E over
P is H = 〈θ, dξ〉 + h, where ξ ∈ Ω1(M, g∗) is the 1-form part of the action,
then the curvature of the metric splitting of Ered is

Hred = 〈dθ, ξ〉 + h

where θ ∈ Ω1(P, g) is the connection on P for which the horizontal spaces
are g-orthogonal to the group orbits.

Proof. We saw that fiberwise Ered ∼= (K⊥ ∩ GK⊥|P )/G and the metric on
Ered is determined by the metric on K⊥ ∩ GK⊥|P . With this identification
we have

Ered ∼= {Y + η : g(Y, Xγ)

+ g(η, ξγ) = 0 and ξγ(Y ) + η(Xγ) = 0 ∀γ ∈ g}.

And T ∗M red = ker(π : Ered −→ TM red), i.e.,

T ∗M red ∼= {Y + η : g(Y, Xγ) + g(η, ξγ) = 0; ξγ(Y )

+ η(Xγ) = 0 and Y ∈ ψ(g), ∀γ ∈ g}.

And hence, with these identifications, the metric splitting of Ered is given by
TM red = G(T ∗M red):

TM red ∼= {Y + η : g(Y, Xγ) + g(η, ξγ) = 0; ξγ(Y )

+ η(Xγ) = 0 and g−1η ∈ ψ(g), ∀γ ∈ g}.

We claim that if Y ∈ TP/G is orthogonal to the G-orbit, then Y +
〈θ, ξ〉(Y ) ∈ GT ∗M red and therefore the metric splitting on Ered is obtained
by the image of the B-field transform of ψ(g)g and is integrable with respect
to the 3-form H + dB = 〈dθ, ξ〉 + h, as we want.
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To prove the claim we check
1) g(Y, Xγ) + g(η, ξγ) = g(Y, Xγ) + g(−〈θ, ξ(Y )〉, ξγ) = 0,

since Y is orthogonal to the g-orbit and θ is the metric connection,
2) ξγ(Y ) + η(Xγ) = ξγ(Y ) − 〈θ, ξ(Y )〉(Xγ) = 0, tautologically, and
3) For any Z orthogonal to the G-orbit,

g(g−1(η), Z) = −〈θ, ξ(Y )〉(Z) = 0,

since θ is a metric connection.
Therefore, we proved that Y + 〈θ, ξ〉(Y ) ∈ GT ∗M red, for Y ∈ TP/G orthog-
onal to the G-orbit. �

5.3. Reduction of strong KT structures. Assume that an extended
action Ψ : a −→ Γ(E) preserves a strong KT structure (G, I) on E . Let
P be a leaf of the distribution Δb over which K is isotropic. According
to Proposition 5.1, we can reduce the metric. Now we study under which
conditions I reduces so that (Gred, Ired) is a strong KT structure on the
reduced algebroid.

Since the metric reduces, we can try and define a reduced complex struc-
ture Ired on V red

+ by giving its +i-eigenspace:

(10) Lred = p(L ∩ K⊥
C ),

where L ⊂ V+ ⊗ C is the +i-eigenspace of I, K⊥
C

= K⊥ ⊗ C, and
p : K⊥ −→ Ered the natural projection. Then Lred determines an almost
complex structure on V red

+ if and only if

(11) Lred + Lred = V red
+ ,

in which case Lred ∩ Lred = {0} holds trivially, since (11) makes Lred a
maximal isotropic subspace of V red

+ ⊗ C.

Theorem 5.3. Let Ψ : a −→ Γ(E) be an extended action preserving a strong
KT structure (G, I) on E and let P be a leaf of the distribution Δb over which
K is isotropic. Then the strong KT structure on E reduces to a strong KT
structure on Ered if and only if

I(K⊥ ∩ V+) = K⊥ ∩ V+ over P.

Proof. First we prove that I reduces to an almost complex structure on
V red

+ , i.e,

Lred ⊕Lred = V red
+ ,

holds if and only if K⊥ ∩ V+ is invariant under I. Spelling out, the above is
equivalent to

L ∩ K⊥ + K

K
+

L ∩ K⊥ + K

K
=

V+ ∩ K⊥ + K

K
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which is equivalent to

L ∩ K⊥ + L ∩ K⊥ + K = V+ ∩ K⊥ + K.

Taking intersection with V+, we see that the above is equivalent to

L ∩ K⊥ + L ∩ K⊥ = V+ ∩ K⊥.

But the space on the left hand side is just I(V+ ∩ K⊥) ∩ V+ ∩ K⊥, hence
the above is equivalent to

I(V+ ∩ K⊥) ∩ (V+ ∩ K⊥) = V+ ∩ K⊥,

which is the case if and only if I(V+ ∩ K⊥) = V+ ∩ K⊥.
So, to finish the proof, we only have to show that the almost complex

structure Ired defined above is integrable, i.e., Lred is closed under the
bracket. This follows immediately from the integrability of L, since the
bracket on Ered is determined by the bracket on E . Indeed, given two sec-
tions e1, e2 ∈ Γ(Lred), let ẽ1 and ẽ2 be G-invariant lifts of these sections to
Γ(L ∩ K⊥|P ). Then we can extend ẽ1 and ẽ2 to e1, e2 ∈ Γ(L), therefore
[[e1, e2]] ∈ Γ(L) and hence [[e1, e2]] = p([[e1, e2]]|P ) ∈ Lred.

�
Corollary 5.4. Let Ψ : a −→ Γ(E) be an extended action preserving a hyper
KT structure (G, I,J ,K) on E and let P be a leaf of the distribution Δb

over which K is isotropic. Then the hyper KT structure on E reduces to a
hyper KT structure on Ered if and only if

I(K⊥ ∩ V+) = J (K⊥ ∩ V+) = K(K⊥ ∩ V+) = K⊥ ∩ V+ over P.
5.4. Strong KT reduction as seen from TM . We just saw that the
metric model for TM red is given by g restricted to the subspace τ ⊂ TP
defined in (9) as τ = π(K⊥ ∩ V+). Also, the complex structure on TM
determined by the strong KT structure on the Courant algebroid is nothing
but the push forward of I : V+ −→ V+ to TM . These two facts together
allow us to rephrase Theorem 5.3 as follows.

Corollary 5.5. Let E, Ψ, and P be as in Theorem 5.3. A strong KT struc-
ture (g, I) on M preserved by Ψ reduces if and only if τ defined in (9) is
invariant under I.

So, in this case, not only does τ furnish a Riemannian model for TM red,
but also the complex structure making it a strong KT manifold. Observe,
however, that from this point of view, the integrability of the complex struc-
ture on M red is no longer obvious.

We finish remarking that if instead of using V+ to define the strong KT
structure on a Courant algebroid, we had used V−, all the results in this
section would still hold with small adjustments. Most notably, the space τ
modeling the Hermitian structure on TM red would be given by

τ− = {Y ∈ TP : g(Y, Xγ) − b(Y, Xγ) − ξγ(Y ) = 0, ∀γ ∈ g}
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5.5. Reduction of generalized Kähler structures. Reduction of gen-
eralized Kähler structures was studied in [1, 3] using the point of view of
reduction of generalized complex structures. Their proof of the theorem on
generalized Kähler reduction amounts to proving the following result.

Theorem 5.6. (Generalized Kähler reduction [1, 3]). Let E, Ψ, and P be
as in Theorem 5.3, with ρ(a) = K isotropic along P . If the action preserves
a generalized Kähler structure (J 1,J 2) and J iK

G = KG along P , where
KG = K⊥ ∩GK⊥ is the G-orthogonal complement of K in K⊥, then J 1 and
J 2 reduce to a generalized Kähler structure on Ered.

The proof of the theorem relies on the fact that KG furnishes a model for
the reduced Courant algebroid and since KG is invariant under J 1 and J 2
both of these structures give rise to generalized complex structures on Ered.
All the pointwise conditions such as J red

1 J red
2 = J red

2 J red
1 and the fact that

−J red
1 J red

2 is a metric follow from the same properties of J i, which still hold
restricted to KG . The integrability of the reduced structures follows from
the fact that the bracket on Ered is induced by the bracket on E and the J i

are integrable. In short, Figure 1 is still accurate, as (KG ,J 1|KG ,J 2|KG )
gives a model for the generalized Kähler structure on Ered.

5.6. Generalized Kähler reduction as seen from TM . From the point
of view of the tangent bundle, a generalized Kähler structure is a bihermitian
structure satisfying condition (7). So, if an extended action preserves g, b, I±,
and H, we can try and perform the strong KT reduction of each of the
strong KT structures separately, one using V+ and other using V−. So, in
this setting, the condition for reduction is that the spaces τ± defined by

(12) τ± = {Y ∈ TP : g(Y, Xγ) ± (b(Y, Xγ) + ξγ(Y )) = 0}

are invariant by I±, respectively (Figure 3).
Due to Theorem 5.6, the reduced strong KT structures pair up to form a

generalized Kähler structure. This can also be seen from the fact that the
reduced SKT structures are both compatible with the reduced metric, but
one is defined on V red

+ and the other on V red
− , hence, according to Corol-

lary 4.6

dc
−ω− = −dc

+ω+ = Hred,

where Hred is the curvature of the metric splitting and ω± are the Kähler
forms of the reduced SKT structures.

Corollary 5.7. Let E, Ψ, and P be as in Theorem 5.3 with K = Ψ(a)
isotropic over P . If a generalized Kähler structure (g, b, I±, H) is preserved
by the action and the spaces τ± defined by (12) are invariant under I±,
respectively, then the generalized Kähler structure reduces.
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Figure 3. For the generalized Kähler quotient, there are two
Riemannian models for TM red given by spaces τ± transversal
to the G-orbit. Each of τ± induces a complex structure on
TM red making it into a bihermitian manifold.

6. Examples

Now we consider how to use Theorem 5.3 in a sequence of down-to-earth
examples.

Example 6.1. Let (M, g, I) be a strong KT manifold and consider the
split Courant algebroid E = (TM ⊕T ∗M, 〈·, ·〉, [[·, ·]]H), where H = −dcω.
According to Proposition 4.5, (g, I) induces a strong KT structure (G, I)
on E , where the 1-eigenspace of G is the graph of g. Assume we have an
extended action Ψ : a −→ Γ(TM ⊕T ∗M) preserving G, I, and the splitting,
i.e., if Ψ(α) = Xα + ξα then for all α ∈ a

(13) LXαg = 0 LXαI = 0 iXαH = dξα.

And also assume that K is isotropic over P , so the metric reduces to a
metric in the reduced algebroid.

For α ∈ a, define

ξ̃α = ξα + g(Xα).

Since V+ = {X + g(X)|X ∈ TM}, we have

K⊥ ∩ V+ = {X + g(X)|ξ̃α(X) = 0 ∀α ∈ a}

Therefore, the strong KT structure reduces if and only if Ann{ξ̃α} is closed
under I or equivalently

(14) span{ξ̃α} is closed under I.

Sumarizing, if an extended action satisfies (13), K is isotropic and (14) holds
over a leaf P of the distribution Δb, then the strong KT structure reduces.
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Example 6.2. A particular case of this example was treated by Grantcharov
et al. in [5], where they start with an isotropic trivially extended action

g
Id ��

Ψ̃
��

g

ψ
��

Γ(E) π �� Γ(TM)

given by
Ψ̃(γ) = Xγ − g(Xγ) + dc〈μ, γ〉,

where μ : M −→ g∗ is an equivariant map and such that the action satisfies
(13). Then they use μ as a moment map for this action, creating in fact an
action of the Courant algebra a = g ⊕ g with the hemisemidirect product
structure (c.f. Example 3.2) and Ψ : a −→ E , as in Example 3.8, given by

(15) Ψ(γ, λ) = Xγ − g(Xγ) + dc〈μ, γ〉 + d〈μ, λ〉.

With these choices, the ξ̃α in Example 6.1 are nothing but dcμ and dμ, hence
they annihilate a space invariant under I. Also, according to Example 3.8,
K is isotropic over μ−1(0). Therefore, the quotient of μ−1(0) by the group
action has a strong KT structure.

In the next example, we recover the result of Lübke and Teleman stating
that the moduli space of instantons over an SKT manifold has an SKT
structure on its smooth points [10]. From our perspective, this example
is particularly interesting as it illustrates in a concrete case many different
features of the reduction procedure: the extended action is given by vectors
and forms together, the moment map is not determined by the geometry on
M (but just by the conformal class of the metric g) and further, the moment
map does not have values on g∗, but in a g-module.

Example 6.3 (SKT structure on the moduli space of instantons). Let A be
the space of metric connections on a vector bundle E over M and consider
the action of the gauge group on A. The Lie algebra of the gauge group is
given by g ∼= Ω0(M, End(E)), the tangent space to A at a connection A is
given by TAA ∼= Ω1(M, End(E)) and the infinitesimal action of the gauge
group is given by the map

ψ : g −→ Γ(TA); γ
ψ�→ dAγ ∈ TAA.

Our assumption that the action is free and proper and that ψ is an injection
means that dA has no kernel for any connection A. These assumptions only
hold if the gauge group is simple and no connection renders the bundle E
decomposable as a sum of bundles of lower rank with connections.

The strong KT structure on M induces a strong KT structure on A (it
is actually a Kähler structure) given by following complex structure and
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Hermitian metric

(16)
IX = −I∗X,

G(X, Y ) =
∫

M
tr(X ∧ �Y ) = −

∫
M

tr(X ∧ I∗Y ) ∧ ω,

where X, Y ∈ Ω1(M, End(E)), � is the Hodge operator, ω = g(I·, ·) the
Kähler form associated to (g, I). We identify T ∗

AA with Ω3(M, End(E)),
using the integral over M and trace operator. Then we let Ψ̃ : g −→
Γ(TA ⊕ T ∗A) be the trivial extension of the gauge action given by

Ψ̃(γ) = dAγ − Hγ.

A simple integration by parts shows that this action is isotropic:

〈Ψ̃(γ), Ψ̃(γ)〉|A =
∫

M
tr((dAγ)γ) ∧ H

= 1
2

∫
M

d(tr(γ)2) ∧ H = 0

Now, as in Example 3.8, we extend this action using the following equi-
variant map as a moment map

μ : A −→ Ω2
+(M, End(E)) := h

∗; μ(A) = F+
A ,

i.e., μ(A) is the self dual part of the curvature of the connetion A. There-
fore, we obtain an extended action of the hemisemidirect product g ⊕ h on
TA ⊕ T ∗A.

In the presence of the complex structure I, the g-module h∗ = Ω2
+(M,

End(E)) decomposes as a sum h1 ⊕ h2, with h∗
1 = Ω2,0+0,2(M, End(E))

and h∗
2 = ω ∧ Ω0(M, End(E)), so we can perform the reduction in two

steps. First, we restrict to A1,1 = μ−1
1 (0), i.e., the space of connections

with curvature of type (1, 1) and then perform a further reduction by the
action

Ψ : g⊕ h2 −→ Γ(TA1,1 ⊕T ∗A1,1), Ψ(γ, λ) = dAγ − Hγ + d〈μ2, λ〉.

As it is, A1,1 is a complex submanifold of (A, I) and inherits a strong
KT structure from A. So, the final reduced manifold and Courant alge-
broids are just the reduction of the strong KT structure on A1,1 by the
action Ψ.

We claim that this extended action fits precisely in the setting of Example
6.2, so that the reduction by the action of g ⊕ g gives an SKT structure to
the quotient of μ−1(0). In order to prove our claim, we observe that by
wedging with ω we get the following identification of g-modules

h
∗
2

∼= ω2 ∧ Ω0(M, End(E)) ∼= g
∗
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So, in order to show that we are in same conditions of Example 6.2, we only
need to check that

dctr(μ2 ∧ γ) − G(dAγ) = −Hγ.

To prove this we pick an arbitrary X ∈ Ω1(M, End(E)) and show that∫
M

dctr(μ2γ)(X) − G(dAγ, X) =
∫

M
tr(Xγ)H.

We start expanding the left hand side:∫
M

dctr(μ2γ)(X) − G(dAγ, X)

= L−I∗X

∫
M

tr(FAγ)ω +
∫

M
tr(dAγ ∧ I∗X) ∧ ω

=
∫

M
−tr(dAI∗Xγ)ω − tr(I∗X ∧ dAγ) ∧ ω

=
∫

M
tr(I∗X ∧ dAγ)ω + tr(I∗Xγ)dω − tr(I∗X ∧ dAγ) ∧ ω

=
∫

M
tr(Xγ) ∧ (−I∗dω)

=
∫

M
tr(Xγ) ∧ H,

where in the first equality we used that dc = I
∗ d and the alternative expres-

sion for the metric in (16), in the second equality we took the Lie derivative
of the first term. The third equality follows by integration by parts of the
first term, the fourth from the implicit assumption that M is oriented with
the orientation induced by I, and the last from H = −dcω.

Therefore, we have shown that μ−1(0)/G, the moduli space of instantons,
has a strong KT structure.

We can further compute dcω for this SKT structure using Corollary 4.6
and Proposition 5.2. Since TA ⊕ T ∗A in endowed with the standard Courant
bracket, the curvature of the metric splitting of the reduced algebroid is
given by

−dcω = Hred = 〈θ, ξ〉,
where θ is the metric connection on the space of instantons seen as a principal
G-bundle. If the original structure was Kähler, i.e., H = 0, then ξ = 0 and
the reduced SKT structure obtained above is also Kähler.

Example 6.4 (HKT structure on the moduli space of instantons). The same
argument used above, with the same action and moment map μ shows that
if (M, g, I, J, K) is a hyper KT manifold, then (g, I, J, K) induces a hyper
KT structure on the moduli space of instantons. The only fact one has to
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use is that the final reduced structures are independent of the particular way
we decompose the g-module h and hence the moment map as μ = μ1 + μ2.
If one follows the argument of Example 6.3, each of I, J , and K gives a
different decomposition of h for which it is obvious the corresponding strong
KT structure reduces and hence, according to Corollary 5.4, they induce an
HKT structure on the moduli space of instantons. If H = 0, and hence M is
hyper-Kähler, the same argument from Example 6.3 shows that the reduced
HKT structure has vanishing torsion and therefore is also hyper-Kähler.

Example 6.5 (HKT reduction with moment maps). The standard way to
reduce HKT structures found in the literature mimics hyper-Kähler reduc-
tion and involves a G-action together with a moment map with values on
g∗ ⊕ g∗ ⊕ g∗, μ = (μI , μJ , μK) such that

1) dc
IμI = dc

JμJ = dc
KμK

2) The map Ψ̃ : g −→ Γ(TM ⊕T ∗M) given by

Ψ̃(γ) = ψ(γ) − g(ψ(γ)) + dc
IμI

is an isotropic trivially extended action preserving the splitting
TM ⊕T ∗M and the HKT structure.

If these conditions hold, we can extend Ψ̃ to an extended action Ψ with
moment map μ, as in Example 3.8. In this case, one can easily see that
each strong KT structure reduces, using Example 6.1. For instance, to
check that (g, I) reduces, we have to check that the space annihilated by
{dc

IμI , dμI , dμJ , dμK} is I-invariant, but

IdμJ = −IJJdμJ = −Kdc
JμJ = −Kdc

KμK = dμK ,

showing that {dc
IμI , dμI , dμJ , dμK} is I-invariant.

Example 6.4 can be seen in the light of an HKT reduction using a moment
map with values in g∗ ⊕ g∗ ⊕ g∗, as done in this example, however, by phras-
ing it this way one might be led to think that the moment map is determined
by the full HKT structure, which is not the case, so in this particular case,
this approach obscures the picture.

Example 6.6. Now we repeat Example 6.1, for the case when M is endowed
with a generalized Kähler structure, (I±, g). As before, we let Ψ : a −→
Γ(TM ⊕T ∗M) be an extended action preserving the generalized Kähler
structure and the splitting, i.e., if Ψ(α) = Xα + ξα then

(17) LXαg = 0 LXαI± = 0 iXαH = dξα,

where H = −ddc
+ω+

If K is isotropic over a leaf P of the distribution Δb, and we let ξ̃α
±

=
ξα±g(Xα) then Corollary 5.7 translates to: the generalized Kähler structure
reduces if and only if

(18) span{ξ̃α
±} is invariant under I±.
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Therefore, the generalized Kähler structure reduces as long as (17) and (18)
hold and K is isotropic over P .

Example 6.7 (Generalized Kähler structure on the moduli space of instan-
tons). Using the bihermitian point of view, Hitchin proved that the moduli
space of instantons over a generalized Kähler manifold for which I± deter-
mine the same orientation has a generalized Kähler structure [7]. His argu-
ment essentially involved two SKT reductions one for each structure, as
pictured in Figure 3 and some work afterwards to prove integrability of the
reduced structures.

From our point of view, we can prove this by introducing the following
generalized Kähler structure on the space of connections A on the bundle E

(19)

I+X = −I∗
+X,

I−X = I∗
−X,

G(X, Y ) =
∫

M
tr(X ∧ �Y ) = −

∫
M

tr(X ∧ I∗
±Y ) ∧ ω±,

for X, Y ∈ Ω1(M, End(E)). So that the extended action from Example 6.3 is
such that the strong KT structure (G, I+) reduces and similar computations
also show that (G, I−) reduces giving rise to a generalized Kähler pair on
μ−1(0)/G.

It is interesting to observe that, similar to the case of reduction of HKT
structures, the decomposition of the moment map μ(A) = F+

A in two compo-
nents used in the argument is different for I±, however, the actual reduction
is independent of the choice of intermediate steps.

A direct proof that the generalized Kähler structure on A reduces using
Theorem 5.6 is given in [2].
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