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SYMPLECTIC DEFORMATIONS OF KÄHLER
MANIFOLDS

Paolo de Bartolomeis

Given a compact symplectic manifold (M, κ), H2(M, R) repre-
sents, in a natural sense, the tangent space of the moduli space of germs
of deformations of the symplectic structure. In the case (M, κ, J) is a
compact Kähler manifold, the author provides a complete description of
the subset of H2(M, R) corresponding to Kähler deformations, includ-
ing the non-generic case, where (at least locally) some hyperkähler
manifold factors out from M . Several examples are also discussed.

1. Introduction

The näıf deformation theory of symplectic manifolds is quite simple: let
(M, κ) be a compact symplectic manifold and let α ∈ ∧2(M, R), dα = 0:
then

κt := κ + tα

is a (germ of) curve of symplectic structures having tangent α at 0;
moreover, Moser’s lemma (cf. [2]) ensures that κt = φ∗

t (κ) for a path of
diffeomorphisms with φ0 = idM ⇐⇒ α = dβ and so H2(M, R) is the
tangent space of the moduli space of germs of deformations of symplectic
structures and the theory is totally unobstructed (for a non-näıf version,
see [1]).

Let (M, κ, J) be a compact Kähler manifold: therefore, J is a κ-
calibrated holomorphic structure and so g = gJ := κ(J ·, ·) is a positive
definite Hermitian metric; we want to investigate the subset of H2(M, R)
corresponding to Kähler deformations of κ.
We have the following

Theorem 1.1. Let (M, κ, J) be a compact Kähler manifold; let K be the
subset of H2(M, R) corresponding to Kähler deformations of κ; i.e., [α] ∈ K
if and only if there exists a curve of Kähler structures (κt, Jt) with κt =
κ + tα + o(t), J0 = J ;
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then :
K = P2,0+0,2 ⊕ H1,1(M, R)

where
P2,0+0,2(M) := {a ∈ H2,0+0,2(M, R) | ∇Mh(a) = 0}

and h(a) is the g-harmonic representative of a.

Note that, clearly, P2,0+0,2(M) is generically reduced to {0} and, if it is
not the case, then (at least locally) some hyperkähler manifold factors out
from M .

The author is pleased to thank the referee for valuable remarks and sug-
gestions for a better presentation of the results.

2. Reduction to the (2,0 + 0,2)-case

We have first the following

Lemma 2.1. Let (M, κ, J) be a compact Kähler manifold;
then :

K + H1,1(M, R) = K
i.e., for every a ∈ K, every c ∈ H1,1(M, R), we have a + c ∈ K.

Proof. Let α ∈ ∧2(M, R), dα = 0, such that [α] ∈ K.
Given c ∈ H1,1(M, R), let γ ∈ ∧1,1

J (M) be its harmonic representative;
by assumption, there is a curve of Kähler structures (κt, Jt) with
κt = κ + tα + o(t); by Kodaira–Spencer theory, the projection

Pt: ∧1,1
Jt

(M) −→ H1,1
gJt

(M)

(where, of course, H1,1
gJt

(M) is the space of gJt-harmonic (1, 1)-forms on M)
is smooth in t (see e.g., [3], p. 184).
Let

κ̌t := κt +
1
2
t(γ + Jtγ),

i.e.,

κ̌(X, Y ) = κt(X, Y ) +
1
2
t(γ(X, Y ) + γ(JtX, JtY ))

and

κ̃t := Pt(κ̌t) = κt +
1
2
tPt(γ + Jtγ).

Clearly (κ̃t, Jt) is a curve of Kähler structures (note: the same Jt’s ! ) and

dκ̃t

d t |t=0
= α +

1
2
P0(γ + Jγ) = α + γ.

�
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3. The main result

Let us first recall the basic linear algebraic frame: let (T, J, g) be a
Hermitian vector space, i.e., a real vector space T equipped with J ∈ End(T )
satisfying J2 = −I and a positive definite scalar product g on T satisfying
g(JX, JY ) = g(X, Y );
then

T C = T 1,0 ⊕ T 0,1

and

ν: T −→ T 1,0, ν(X) :=
1
2
(X − iJX)

is a linear isomorphism such that ν(JX) = iν(X).
Let V ∈ End(T ) with V J + JV = 0;
then, we obtain

V : T 0,1 −→ T 1,0
C − linear

simply setting
V (X + iJX) = V (X) − iJV (X)

(i.e., V acts now as ν ◦ V ◦ ν̄−1 ); this identifies canonically (T ∗)0,1 ⊗ T 1,0

with {V ∈ End(T ) |V J + JV = 0}.
If, moreover, V = −tV , then, setting

α(X, Y ) := g(V (X), Y ),

we obtain α ∈ ∧2,0+0,2T ∗ and

α2,0(X, Y ) =
1
2
(α(X, Y ) − iα(JX, Y )),

i.e., in terms of the complexified space,

α = γ + γ̄,

with
γ ∈ ∧2,0T ∗ γ(Z, W ) = g(V (Z̄), W̄ ).

Let (M, κ, J) be a compact Kähler manifold and let (A, [ , ], ∂̄J) be the
DGLA governing the holomorphic deformation theory of (M, J):

A =
⊕

p∈Z

Ap

where

Ap =

⎧
⎪⎨

⎪⎩

∧0,p
J (M) ⊗ T 1,0M, if 0 ≤ p ≤ n

0, otherwise

and [ , ] is the (complex) Schouten–Nijenhuis bracket (see e.g., [3], p. 152);
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in particular, if U, V ∈ A1 and, in terms of local holomorphic coordinates
z1, . . . , zn,

U =
n∑

j,k=1

aj,k̄dz̄k ⊗ ∂

∂zj
=

n∑

j=1

a(j) ∂

∂zj

V =
n∑

j,k=1

bj,k̄dz̄k ⊗ ∂

∂zj
=

n∑

j=1

b(j) ∂

∂zj
,

with:

a(j) =
n∑

k=1

ajk̄dz̄k, 1 ≤ j ≤ n

b(j) =
n∑

k=1

bjk̄dz̄k, 1 ≤ j ≤ n,

then:

[U, V ] =
n∑

j,k=1

(
a(j) ∧ ∂b(k)

∂zj
+ b(j) ∧ ∂a(k)

∂zj

)
∂

∂zk

=
n∑

j,k=1

∑

r<s

(
ajr̄

∂bks̄

∂zj
− bjs̄

∂akr̄

∂zj

)
dz̄r ∧ dz̄s ⊗ ∂

∂zk

and so

(1) [U, V ]
(

∂

∂z̄r
,

∂

∂z̄s

)
=

[
U

(
∂

∂z̄r

)
, V

(
∂

∂z̄s

)]
.

(Of course, for general vector fields X, Y , [U, V ](X, Y ) �= [U(X), V (Y )]!).
Note that, via ν, we can put the theory in a completely real setting, where:
Ap = ∧0,p

J (M) ⊗ TM = {R ∈ ∧p(M) ⊗ TM |R(X1, . . . , JXh, . . . , Xp) =
−JR(X1, . . . , Xh, . . . , Xp), 1 ≤ h ≤ p} and, with a slight abuse of nota-
tion,

[R ∗ S] = ν−1[ν(R), ν(S)];
e.g., for p = 0:

[X ∗ Y ] =
1
2
([X, Y ] − [JX, JY ]).

We shall confine to the complex form of the theory.
Let

� := ∂̄J ∂̄∗
J + ∂̄∗

J ∂̄J : A −→ A
and let

∇TM = ∇′ + ∇′′: End(TM) −→ ∧1(M) ⊗ End(TM)

∇M : ∧∗ (M) −→ ∧1(M) ⊗ ∧∗(M)
be the exterior covariant differential operators with respect to the
Levi–Civita connection (which coincides, in the Kähler case, with the
Hermitian canonical connection).
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Let V ∈ End(TM) such that JV + V J = 0 and so, in particular

V ∈ ∧0,1(M) ⊗ T 1,0M ;

let α = γ + γ̄ ∈ ∧2,0+0,2(M, R) be defined by:

α(X, Y ) =
1
2
g((V − tV )X, Y );

therefore, in terms of normal local holomorphic coordinates z1, . . . , zn, we
have

V =
n∑

j,k=1

bjk̄dz̄k ⊗ ∂

∂ zj

tV =
n∑

j,k=1

pjk̄dz̄k ⊗ ∂

∂ zj

with

pjk̄ =
n∑

r,s

grj̄bsr̄gsk̄

and

γ =
∑

j<k

cjkdzj ∧ dzk

with

1
2
(bjk̄ − pjk̄) =

n∑

r=1

gr̄jckr.

Therefore, if B = (bjk̄), P = (pjk̄), G = (gjk̄), C = (cjk), then:

(2) P = Ḡ−1tBG

(3) pjk̄ = bkj̄ + o(|z|)

(4) ckj =
1
2
(b̄jk̄ − b̄kj̄) + o(|z|)
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Note first that, performing the computation at the origin 0 of the system
of normal holomorphic coordinates,

∂̄JV = 0 ⇐⇒
∂bjk̄

∂z̄r
=

∂bjr̄

∂z̄k
, 1 ≤ j, k, r ≤ n

⇐⇒
∂bjk̄

∂zr
=

∂bjr̄

∂zk
, 1 ≤ j, k, r ≤ n

=⇒ 2
∂ckj

∂zr
+ 2

∂cjr

∂zk
+ 2

∂crk

∂zj
= (by(4))

∂bjk̄

∂zr
−

∂bkj̄

∂zr
+

∂brj̄

∂zk
− ∂bjr̄

∂zk
+

∂bkr̄

∂zj
− ∂brk̄

∂zj
= 0

1 ≤ j, k, r ≤ n

⇐⇒ ∂Jγ = 0.

We have now the following.

Lemma 3.1. Let (M, κ, J) be a compact Kähler manifold; let
α ∈ ∧2,0+0,2(M, R), α = γ + γ̄ = g(V ·, ·) (and so, in particular,
V ∈ End(TM) with JV + V J = 0 and V = −tV );
then :

(1) �V = 0 ⇐⇒ ∇TMV = 0
(2) ∇Mγ = 0 ⇐⇒ ∇TMV = 0
(3) ∇TMV = 0 =⇒ [V, V ] = 0

Proof. 1: we have

�V = 0 ⇐⇒
{

∂̄JV = 0
∂̄∗

JV = 0;

now, in terms of previous notations, and so, once more at 0 of our system
of normal local holomorphic coordinates:

bjk̄ =
n∑

r=1

gr̄jckr

with:

(5)
∂bjk̄

∂z̄r
=

∂bjr̄

∂z̄k
, 1 ≤ j, k, r ≤ n

and the extra condition

(6) bkj̄ = −bjk̄ + o(|z|)
and so, setting

Ar
jk :=

∂bjk̄

∂z̄r
,
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we obtain, by (5) and (6) :

Ar
jk = −Ar

kj = Ak
jr = −Aj

kr = Aj
rk = Ak

rj = −Ak
jr = −Ar

jk = 0,

i.e.,
∂̄JV = 0 & V = −tV =⇒ ∇′′V = 0;

also,

∂̄∗
JV = 0 ⇐⇒

n∑

k=1

∂bjk̄

∂zk
= 0 ⇐⇒ ∂∗

Jγ = 0, 1 ≤ j ≤ n;

consequently,
�V = 0 =⇒ �Mγ = 0 ⇐⇒ ∆γ = 0;

finally,

∂̄γ = 0 ⇐⇒ ∂cjk

∂z̄r
= 0 ⇐⇒

∂bjk̄

∂zr
= 0 ⇐⇒ ∇′V = 0

clearly ∇TMV = 0 =⇒ �V = 0 and so all the arrows can be reversed;
2: it’s a general Riemannian fact that

(∇Xα)(Y, Z) = g((∇XV )Y, Z)

3: we have (cf. (1)):

[V, V ]
(

∂

∂ z̄j
,

∂

∂ z̄k

)
=

[
V

(
∂

∂ z̄j

)
, V

(
∂

∂ z̄k

)]

=
n∑

r,s=1

[
brj̄

∂

∂zr
, bsk̄

∂

∂zs

]

=
n∑

r,s=1

(
brj̄

∂bsk̄

∂zs
− bsk̄

∂brj̄

∂zs

)
= 0

�

We have now the following

Lemma 3.2. Let (M, κ, J) be a Kähler manifold; given L∈∧0,1(M)⊗T 1,0M,
we have:

�tL = t(�L)

Proof. Let z1, . . . , zn be local normal holomorphic coordinates; then at 0
the curvature tensor of g is given by :

Rab̄jk̄ =
∂2gab̄

∂zj ∂z̄k

and
Rab̄jk̄ = Rjb̄ak̄ = Rjk̄ab̄ = Rak̄jb̄
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moreover, the Ricci tensor is given by

Rjk̄ = −
n∑

r=1

Rjk̄rr̄,

i.e., setting R = (Rjk̄), we have :

R =
1
2
∆MG.

Let now

L =
n∑

j,k=1

ljk̄dz̄k ⊗ ∂

∂zj
=

n∑

j=1

λ(j) ⊗ ∂

∂zj

with, clearly, λ(j) =
∑n

k=1 ljk̄dz̄k, 1 ≤ j ≤ n;
then we have (cf. e.g., [3], pp. 101–102):

∂̄∗L =
n∑

j=1

⎛

⎝− ∗ ∂ ∗ λ(j) −
n∑

r,s=1

gs̄j ∗ (∂grs̄ ∧ ∗λ(r))

⎞

⎠ ∂

∂zj

and so, at 0:

∂̄ ∂̄∗L =
n∑

j=1

(
−∂̄(∗∂∗)λ(j) −

n∑

r=1

∂̄ ∗ (∂gr̄j ∧ ∗λ(r))

)
⊗ ∂

∂zj
,

while

∂̄∗∂̄L =
n∑

j=1

(
− ∗ ∂ ∗ ∂̄λ(j)

)
⊗ ∂

∂zj
;

therefore,

�L =
n∑

j=1

(
1
2
∆λ(j) −

n∑

r=1

∂̄ ∗ (∂gr̄j ∧ ∗λ(r))

)
⊗ ∂

∂zj
;

now:

1
2
∆λ(j) =

(
1
2
∆ljk̄ −

n∑

r=1

Rrk̄ljr̄

)
dz̄k

and

∂̄ ∗ (∂grj̄ ∧ ∗λ(r)) =
n∑

k,p=1

Rrj̄pk̄lrp̄dz̄k;
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consequently:

�L =
n∑

j,k=1

1
2
∆M ljk̄dz̄k ⊗ ∂

∂zj

−
n∑

j,k=1

(
n∑

r=1

Rrk̄ljr̄

)
dz̄k ⊗ ∂

∂zj

−
n∑

j,k=1

⎛

⎝
n∑

r,s=1

Rr̄jsk̄lrs̄

⎞

⎠ dz̄k ⊗ ∂

∂zj

1
2
∆MA − AR − C(A)

where A := (ljk̄);
now:

tL =
n∑

j,k=1

pjk̄dz̄k ⊗ ∂

∂zj

with

pjk̄ =
n∑

r,s=1

gr̄jlsr̄gsk̄.

Set B := (pjk̄); then:

B = Ḡ−1tAG and B(0) = tA(0);

now (always at 0 ):

∆MB = (∆M Ḡ−1)A + ∆M
tA + A∆MG = ∆M

tA + 2tAR − 2R̄A;

consequently:

�tL =
1
2
∆M

tA + tAR − R̄tA − tAR − C(tA)

=
1
2
∆M

tA − R̄tA − C(tA).

Finally, from
• tR = R̄,
• C(tA) = C(A) = tC(A),

we obtain the result. �
Corollary 3.3. If L ∈ ∧0,1(M)⊗T 1,0M is �-harmonic, so are 1/2(L− tL)
and 1/2(L + tL).

We are now in position to prove our main result, i.e., Theorem (1.1);

Proof. (a): let α ∈ P2,0+0,2; write α = g(V ·, ·);
therefore, by Lemma 3.1, V satisfies

• ∇TMV = 0
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• [V, V ] = 0
and clearly this is also the case for L := 1

2V J ;
in fact:

t(V J) = JV = −V J

and
∇TMV J = (∇TMV )J + V (∇TMJ) = 0 :

then apply Lemma 3.1 (3).
Consequently, we have

∂̄J tL +
1
2
t2[L, L] = 0

and so
Jt := (idM + tL)J(idM + tL)−1

is a holomorphic structure satisfying ∇TMJt = 0;
consequently,

κt :=
1
2
(κ + Jtκ)

is parallel, thus it is closed, and κt = κ + tα + o(t);
therefore, α is tangent to the curve of Kähler structures (κt, Jt);

(b): let (κt, Jt) be a curve of Kähler structures with

κt = κ + tα + o(t), α ∈ ∧2,0+0,2(M);

by the basic features of holomorphic deformation theory, we can choose
the �-harmonic representative of the class corresponding to the tangent
endomorphism to the curve Jt;
i.e., up to diffeomorphisms, we can assume

Jt := (idM + tL + o(t))J(idM + tL + o(t))−1,

with �L = 0 and LJ + JL = 0;
it follows from Lemma 3.2 that, if V = 2J(L − tL), then �V = 0 and thus,
by Lemma 3.1, ∇TMV = 0 and finally, ∇Mα = 0. �

4. Further Remarks

As we have already remarked, deformation theory of holomorphic struc-
tures ensures that, up to diffeomorphisms, the general (germ of) curve of
holomorphic structures on a Hermitian manifold (M, J, g) is of the form

Jt := (idM + tL + o(t))J(idM + tL + o(t))−1

for L ∈ End(TM) satisfying JL + LJ = 0, �L = 0;
but, in general, not every such an L gives rise to an actual deformation; in
other words, in general, the deformation theory is obstructed.
Let M be the subset of Ker � of elements providing actual deformations.
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In the Kähler case, the situation looks somehow neater;
in fact:

1) by Corollary 3.3, Ker� splits as

Ker � = A ⊕ S

where, clearly:

A = {L ∈ Ker � |L = −tL}
S = {L ∈ Ker � |L = tL} :

2) A ⊂ M
and to every L ∈ A, we can associate a canonical curve of holomorphic
structures:

Jt := (idM + tL)J(idM + tL)−1;
3) note that, in general, for a curve of almost symplectic structures,

κt = κ + tα + o(t)

and a curve of κt-calibrated complex structures,

Jt := (idM + tL + o(t))J(idM + tL + o(t))−1, (LJ + JL = 0),

from
κt − Jtκt = 0,

by taking the t-derivative at 0, we obtain

α2,0+0,2 = g((JL + tLJ) ·, ·);
therefore, if L ∈ S ∩ M, and

Jt := (idM + tL + o(t))J(idM + tL + o(t))−1

is a curve of holomorphic structures, then any curve

κt = κ + tα + o(t)

of Jt-Kähler structures satisfies α ∈ ∧1,1
J (M);

consequently, by Lemma 2.1, it is possible to choose κt of the form

κt = κ + o(t)

therefore, the map

λ: M −→ H2(M, R) L �→ [g((2J(L − tL) ·, ·)]
is a linear surjection over K/H1,1(M, R), which is one-to-one when
restricted to A.
Note that, generically,

Ker � = {0},

but, within the exceptional range dimC Ker � > 0, then, generically,

A = {0},
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i.e., non-trivial L′s ∈ ∧0,1(M) ⊗ T 1,0M satisfying �L = 0 are generi-
cally symmetric: this is a sort of Ayers Rock snow flake principle.

Let us now give a closer look to the case P2,0+0,2(M) �= {0};
first of all recall that, if (M, κ, J) is a compact Kähler manifold with
Ric ≥ 0, then any holomorphic form on M is parallel and thus so are
harmonic forms in H2,0+0,2(M, R); consequently, for such manifolds

K = H2(M, R)

(recall also that Ric > 0 at some point =⇒ H2,0+0,2(M, R) = 0 ).
Moreover, if on a Kähler manifold (H, J, κ) there exists
α ∈ ∧2.0+0,2(H, R), non-degenerate, satisfying ∇Hα = 0, then H is
hyperkähler, i.e., there exists K ∈ Cκ(H), satisfying KJ + JK = 0,
∇HK = 0 (K is nothing but the orthogonal factor of the polar decom-
position of the endomorphism representing α with respect to the given
Kähler metric).
Given α ∈ ∧2,0+0,2(H, R), with ∇Mα = 0, write once more
α = g(V ·, ·), with V = −tV, JV + V J = 0, and ∇TMV = 0; then
set:

E(α) := KerV, F (α) := (E(α))⊥ = Im V ;

then:
X ∈ TM, Y ∈ E(α) =⇒ ∇M

X Y ∈ E(α)

X ∈ TM, Y ∈ F (α) =⇒ ∇M
X Y ∈ F (α).

Therefore, the distributions E(α) and F (α) are integrable, J-invariant,
parallel, and totally geodesic; moreover, if W ∈ End(TM) satisfies
∇TMW = 0, then

WE(α) :=

{
W on E(α)
0 on F (α)

satisfies ∇TMWE(α) = 0;
consequently, if α = h(a) has maximal rank for a ∈ P2,0+0,2(M), then
all elements of h(P2,0+0,2(M)) vanish on E(α) and so E = E(α) is
unique;
thus, passing to the universal covering M̃ , we easily obtain that, from
the Kählerian viewpoint

M̃ = N × H

where H is hyperkähler (and corresponds to F ) and so:

M = N × H

Γ

where Γ is a discrete group of holomorphic isometries of M̃ ;
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summarizing:

P2,0+0,2(M)

{
= {0} =⇒ K = H1,1(M, R)
�= {0} =⇒ M = N × H

Γ .

Note finally that both A and P2,0+0,2 are complex vector spaces:
• JAL := JL;
• more in general, if α ∈ ∧2,0+0,2(M), define

(J α)(X, Y ) := α(JX, Y ) = α(X, JY );

then set, for a ∈ P2,0+0,2:

J a = [J h(a)];

from ∇J = 0, it follows that P2,0+0,2 is a J -complex space;
it is clear that λ ◦ JA = J ◦ λ.

5. Examples

1. Let M = T
2n be the complex n-dimensional torus equipped with the

standard Kähler structure (κ, J):
in particular, we have the standard global frame

{
∂

∂ x1
, . . . ,

∂

∂ xn
,

∂

∂ y1
, . . . ,

∂

∂ yn

}

with ⎧
⎪⎪⎨

⎪⎪⎩

J
(

∂
∂ xj

)
= ∂

∂ yj

1 ≤ j ≤ n

J
(

∂
∂ yj

)
= − ∂

∂ xj

and standard coframe

{dx1, . . . , dxn, dy1, . . . , dyn};

thus

κ =
n∑

h=1

dyh ∧ dxh;

therefore, if α = dxj ∧ dxk, then

α = γ + γ̄ + β

with
γ =

1
4
dzj ∧ dzk ∈ ∧2,0(T2n, C)

and
β =

1
4
(dzj ∧ dz̄k + dz̄j ∧ dzk) ∈ ∧1,1(T2n, R).

Note also that
α2,0+0,2 =

1
2
(dxj ∧ dxk − dyj ∧ dyk)
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(similar formulas for dyj ∧ dyk, dxj ∧ dyk );
thus

γ = g(V ·, ·)
for

V =
1
4

(
dz̄j ⊗ ∂

∂ zk
− dz̄k ⊗ ∂

∂ zj

)
;

or, in real terms,

V =
1
2

(
dxj ⊗ ∂

∂ xk
− dyj ⊗ ∂

∂ yk
− dxk ⊗ ∂

∂ xj
+ dyk ⊗ ∂

∂ yj

)
;

consider e.g., n = 2, α = 4dx1 ∧ dx2;
then:

V = 2

⎛

⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠

and so:

L =
1
2
V J =

⎛

⎜⎜⎝

0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎞

⎟⎟⎠ ;

therefore,

Jt = (I + tL)J(I + tL)−1 =
1

1 + t2

⎛

⎜⎜⎝

0 2t t2 − 1 0
−2t 0 0 t2 − 1

1 − t2 0 0 −2t
0 1 − t2 2t 0

⎞

⎟⎟⎠

and

κt =
1
2
(κ + Jtκ) = κ + t

1 − t2

1 + t2
α2,0+0,2 +

1
2
t2(t2 − 6)κ.

2. First recall that, if B := {z ∈ C | |z| < 1}, then there are no non-trivial
parallel (1, 0)-forms on

(
B,

2
(1 − |z|2)2 dz ∧ dz̄

)
;

in fact, given γ = a dz, we have:

∇ ∂
∂z̄

γ = 0 ⇐⇒ ∂a

∂z̄
= 0

∇ ∂
∂z

γ = 0 ⇐⇒ ∂a

∂z
− 2z̄

1 − |z|2 a = 0 ⇐⇒ a = 0;
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consequently, if Σ is a Riemann surface covered by B and equipped with the
constant −1 curvature Kähler metric, then there are no non-trivial parallel
(1, 0)-forms on Σ.
Let now Σgk

, k = 1, 2, be compact Riemann surfaces equipped with the
constant −1 curvature Kähler metric (and so gk ≥ 2 ); let M = Σg1 × Σg2 ;
then:

•
H1(M, Θ) = H1(Σg1 , Θ) ⊕ H1(Σg2 , Θ)

and, although H2(M, Θ) �= 0, the holomorphic deformation theory of
M is unobstructed and reduces to the deformations of Σg1 and Σg2 :

• from the previous remarks, it follows quite easily that there are no
non-trivial parallel forms in ∧2,0+0,2(M, R);

therefore, in M , we have

Ker � = S and K = H1,1(M, R).

References

[1] P. de Bartolomeis, Z2 and Z-Deformation Theory for Holomorphic and Symplectic
Manifolds, Complex, Contact, and Symmetric manifolds, Progress in Mathematics,
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