SYMPLECTIC DEFORMATIONS OF KÄHLER MANIFOLDS

PAOLO DE BARTOLOMEIS

Given a compact symplectic manifold (M, κ) , $H^2(M, \mathbb{R})$ represents, in a natural sense, the tangent space of the moduli space of germs of deformations of the symplectic structure. In the case (M, κ, J) is a compact Kähler manifold, the author provides a complete description of the subset of $H^2(M, \mathbb{R})$ corresponding to Kähler deformations, including the non-generic case, where (at least locally) some hyperkähler manifold factors out from M. Several examples are also discussed.

1. Introduction

The naïf deformation theory of symplectic manifolds is quite simple: let (M, κ) be a compact symplectic manifold and let $\alpha \in \wedge^2(M, \mathbb{R})$, $d\alpha = 0$: then

$$\kappa_t := \kappa + t\alpha$$

is a (germ of) curve of symplectic structures having tangent α at 0; moreover, Moser's lemma (cf. [2]) ensures that $\kappa_t = \phi_t^*(\kappa)$ for a path of diffeomorphisms with $\phi_0 = id_M \iff \alpha = d\beta$ and so $H^2(M, \mathbb{R})$ is the tangent space of the moduli space of germs of deformations of symplectic structures and the theory is totally unobstructed (for a non-naïf version, see [1]).

Let (M, κ, J) be a compact Kähler manifold: therefore, J is a κ -calibrated holomorphic structure and so $g = g_J := \kappa(J \cdot, \cdot)$ is a positive definite Hermitian metric; we want to investigate the subset of $H^2(M, \mathbb{R})$ corresponding to Kähler deformations of κ .

We have the following

Theorem 1.1. Let (M, κ, J) be a compact Kähler manifold; let K be the subset of $H^2(M, \mathbb{R})$ corresponding to Kähler deformations of κ ; i.e., $[\alpha] \in K$ if and only if there exists a curve of Kähler structures (κ_t, J_t) with $\kappa_t = \kappa + t\alpha + o(t)$, $J_0 = J$;

342

then:

$$\mathcal{K} = \mathcal{P}^{2,0+0,2} \oplus H^{1,1}(M,\mathbb{R})$$

where

$$\mathcal{P}^{2,0+0,2}(M) := \{ a \in H^{2,0+0,2}(M, \mathbb{R}) \mid \nabla^M h(a) = 0 \}$$

and h(a) is the g-harmonic representative of a.

Note that, clearly, $\mathcal{P}^{2,0+0,2}(M)$ is generically reduced to $\{0\}$ and, if it is not the case, then (at least locally) some hyperkähler manifold factors out from M.

The author is pleased to thank the referee for valuable remarks and suggestions for a better presentation of the results.

2. Reduction to the (2, 0+0, 2)-case

We have first the following

Lemma 2.1. Let (M, κ, J) be a compact Kähler manifold; then:

$$\mathcal{K} + H^{1,1}(M, \mathbb{R}) = \mathcal{K}$$

i.e., for every $a \in \mathcal{K}$, every $c \in H^{1,1}(M, \mathbb{R})$, we have $a + c \in \mathcal{K}$.

Proof. Let $\alpha \in \wedge^2(M, \mathbb{R})$, $d\alpha = 0$, such that $[\alpha] \in \mathcal{K}$.

Given $c \in H^{1,1}(M, \mathbb{R})$, let $\gamma \in \wedge_J^{1,1}(M)$ be its harmonic representative; by assumption, there is a curve of Kähler structures (κ_t, J_t) with $\kappa_t = \kappa + t\alpha + o(t)$; by Kodaira–Spencer theory, the projection

$$P_t: \wedge_{J_t}^{1,1}(M) \longrightarrow \mathcal{H}_{g_{J_t}}^{1,1}(M)$$

(where, of course, $\mathcal{H}_{g_{J_t}}^{1,1}(M)$ is the space of g_{J_t} -harmonic (1, 1)-forms on M) is smooth in t (see e.g., [3], p. 184).

$$\check{\kappa}_t := \kappa_t + \frac{1}{2}t(\gamma + J_t\gamma),$$

i.e.,

$$\check{\kappa}(X, Y) = \kappa_t(X, Y) + \frac{1}{2}t(\gamma(X, Y) + \gamma(J_tX, J_tY))$$

and

$$\tilde{\kappa}_t := P_t(\check{\kappa}_t) = \kappa_t + \frac{1}{2}tP_t(\gamma + J_t\gamma).$$

Clearly $(\tilde{\kappa}_t, J_t)$ is a curve of Kähler structures (note: the same J_t 's!) and

$$\frac{d\tilde{\kappa}_t}{dt}_{\mid t=0} = \alpha + \frac{1}{2}P_0(\gamma + J\gamma) = \alpha + \gamma.$$

3. The main result

Let us first recall the basic linear algebraic frame: let (T,J,g) be a Hermitian vector space, i.e., a real vector space T equipped with $J \in \operatorname{End}(T)$ satisfying $J^2 = -I$ and a positive definite scalar product g on T satisfying g(JX,JY) = g(X,Y); then

$$T^{\mathbb{C}} = T^{1,0} \oplus T^{0,1}$$

and

$$\nu{:}T\,\longrightarrow\,T^{1,0},\quad \nu(X):=\frac{1}{2}(X-iJX)$$

is a linear isomorphism such that $\nu(JX) = i\nu(X)$. Let $V \in \text{End}(T)$ with VJ + JV = 0;

then, we obtain

$$V: T^{0,1} \longrightarrow T^{1,0} \quad \mathbb{C} - \text{linear}$$

simply setting

$$V(X + iJX) = V(X) - iJV(X)$$

(i.e., V acts now as $\nu \circ V \circ \bar{\nu}^{-1}$); this identifies canonically $(T^*)^{0,1} \otimes T^{1,0}$ with $\{V \in \operatorname{End}(T) \mid VJ + JV = 0\}$.

If, moreover, $V = -{}^{t}V$, then, setting

$$\alpha(X, Y) := g(V(X), Y),$$

we obtain $\alpha \in \wedge^{2,0+0,2}T^*$ and

$$\alpha^{2,0}(X, Y) = \frac{1}{2}(\alpha(X, Y) - i\alpha(JX, Y)),$$

i.e., in terms of the complexified space,

$$\alpha = \gamma + \bar{\gamma}$$

with

$$\gamma \in \wedge^{2,0} T^* \quad \gamma(Z, W) = \overline{q(V(\overline{Z}), \overline{W})}.$$

Let (M, κ, J) be a compact Kähler manifold and let $(\mathcal{A}, [,], \bar{\partial}_J)$ be the DGLA governing the holomorphic deformation theory of (M, J):

$$\mathcal{A} = \bigoplus_{p \in \mathbb{Z}} \mathcal{A}_p$$

where

$$\mathcal{A}_p = \begin{cases} \wedge_J^{0,p}(M) \otimes T^{1,0}M, & \text{if } 0 \le p \le n \\ 0, & \text{otherwise} \end{cases}$$

and [,] is the (complex) Schouten–Nijenhuis bracket (see e.g., [3], p. 152);

in particular, if $U, V \in \mathcal{A}_1$ and, in terms of local holomorphic coordinates z_1, \ldots, z_n ,

$$U = \sum_{j,k=1}^{n} a_{j,\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}} = \sum_{j=1}^{n} a^{(j)} \frac{\partial}{\partial z_{j}}$$
$$V = \sum_{j,k=1}^{n} b_{j,\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}} = \sum_{j=1}^{n} b^{(j)} \frac{\partial}{\partial z_{j}},$$

with:

$$a^{(j)} = \sum_{k=1}^{n} a_{j\bar{k}} d\bar{z}_{k}, \quad 1 \le j \le n$$
$$b^{(j)} = \sum_{k=1}^{n} b_{j\bar{k}} d\bar{z}_{k}, \quad 1 \le j \le n,$$

then:

$$[U, V] = \sum_{j,k=1}^{n} \left(a^{(j)} \wedge \frac{\partial b^{(k)}}{\partial z_j} + b^{(j)} \wedge \frac{\partial a^{(k)}}{\partial z_j} \right) \frac{\partial}{\partial z_k}$$
$$= \sum_{j,k=1}^{n} \sum_{r < s} \left(a_{j\bar{r}} \frac{\partial b_{k\bar{s}}}{\partial z_j} - b_{j\bar{s}} \frac{\partial a_{k\bar{r}}}{\partial z_j} \right) d\bar{z}_r \wedge d\bar{z}_s \otimes \frac{\partial}{\partial z_k}$$

and so

$$[U, V] \left(\frac{\partial}{\partial \bar{z}_r}, \frac{\partial}{\partial \bar{z}_s} \right) = \left[U \left(\frac{\partial}{\partial \bar{z}_r} \right), V \left(\frac{\partial}{\partial \bar{z}_s} \right) \right].$$

(Of course, for general vector fields $X, Y, [U, V](X, Y) \neq [U(X), V(Y)]!$). Note that, via ν , we can put the theory in a completely real setting, where: $\mathcal{A}_p = \wedge_J^{0,p}(M) \otimes TM = \{R \in \wedge^p(M) \otimes TM \mid R(X_1, \ldots, JX_h, \ldots, X_p) = -JR(X_1, \ldots, X_h, \ldots, X_p), \quad 1 \leq h \leq p\}$ and, with a slight abuse of notation,

$$[R * S] = \nu^{-1}[\nu(R), \nu(S)];$$

e.g., for p=0:

$$[X * Y] = \frac{1}{2}([X, Y] - [JX, JY]).$$

We shall confine to the complex form of the theory. Let

$$\Box := \bar{\partial}_J \, \bar{\partial}_J^* + \bar{\partial}_J^* \, \bar{\partial}_J : \mathcal{A} \, \longrightarrow \, \mathcal{A}$$

and let

$$\nabla^{TM} = \nabla' + \nabla'' \colon \operatorname{End}(TM) \longrightarrow \wedge^{1}(M) \otimes \operatorname{End}(TM)$$
$$\nabla^{M} \colon \wedge^{*}(M) \longrightarrow \wedge^{1}(M) \otimes \wedge^{*}(M)$$

be the exterior covariant differential operators with respect to the Levi–Civita connection (which coincides, in the Kähler case, with the Hermitian canonical connection).

Let $V \in \text{End}(TM)$ such that JV + VJ = 0 and so, in particular

$$V \in \wedge^{0,1}(M) \otimes T^{1,0}M;$$

let $\alpha = \gamma + \bar{\gamma} \in \wedge^{2,0+0,2}(M, \mathbb{R})$ be defined by:

$$\alpha(X, Y) = \frac{1}{2}g((V - {}^{t}V)X, Y);$$

therefore, in terms of normal local holomorphic coordinates z_1, \ldots, z_n , we have

$$V = \sum_{j,k=1}^{n} b_{j\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}}$$

$${}^{t}V = \sum_{i,k=1}^{n} p_{j\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}}$$

with

$$p_{j\bar{k}} = \sum_{r,c}^{n} g^{r\bar{j}} b_{s\bar{r}} g_{s\bar{k}}$$

and

$$\gamma = \sum_{j < k} c_{jk} dz_j \wedge dz_k$$

with

$$\frac{1}{2}(b_{j\bar{k}} - p_{j\bar{k}}) = \sum_{r=1}^{n} g^{r\bar{\jmath}} \overline{c_{kr}}.$$

Therefore, if $B=(b_{j\bar{k}}),\,P=(p_{j\bar{k}}),\,G=(g_{j\bar{k}}),\,C=(c_{jk}),$ then:

$$(2) P = \bar{G}^{-1t}BG$$

$$(3) p_{j\bar{k}} = b_{k\bar{j}} + o(|z|)$$

(4)
$$c_{kj} = \frac{1}{2}(\bar{b}_{j\bar{k}} - \bar{b}_{k\bar{j}}) + o(|z|)$$

Note first that, performing the computation at the origin 0 of the system of normal holomorphic coordinates,

$$\bar{\partial}_{J}V = 0 \iff \frac{\partial b_{j\bar{k}}}{\partial \bar{z}_{r}} = \frac{\partial b_{j\bar{r}}}{\partial \bar{z}_{k}}, \quad 1 \leq j, \, k, \, r \leq n$$

$$\iff \frac{\partial \overline{b_{j\bar{k}}}}{\partial z_{r}} = \frac{\partial \overline{b_{j\bar{r}}}}{\partial z_{k}}, \quad 1 \leq j, \, k, \, r \leq n$$

$$\iff 2\frac{\partial c_{kj}}{\partial z_{r}} + 2\frac{\partial c_{jr}}{\partial z_{k}} + 2\frac{\partial c_{rk}}{\partial z_{j}} = (\text{by}(4))$$

$$\frac{\partial \overline{b_{j\bar{k}}}}{\partial z_{r}} - \frac{\partial \overline{b_{k\bar{j}}}}{\partial z_{r}} + \frac{\partial \overline{b_{r\bar{j}}}}{\partial z_{k}} - \frac{\partial \overline{b_{j\bar{r}}}}{\partial z_{k}} + \frac{\partial \overline{b_{k\bar{r}}}}{\partial z_{j}} - \frac{\partial \overline{b_{r\bar{k}}}}{\partial z_{j}} = 0$$

$$1 \leq j, \, k, \, r \leq n$$

$$\iff \partial_{J}\gamma = 0.$$

We have now the following.

Lemma 3.1. Let (M, κ, J) be a compact Kähler manifold; $\alpha \in \wedge^{2,0+0,2}(M,\mathbb{R}), \quad \alpha = \gamma + \bar{\gamma} = g(V\cdot,\cdot) \quad (and so, in particular,$ $V \in \operatorname{End}(TM)$ with JV + VJ = 0 and $V = -{}^{t}V$); then:

- (1) $\Box V = 0 \iff \nabla^{TM}V = 0$ (2) $\nabla^{M}\gamma = 0 \iff \nabla^{TM}V = 0$ (3) $\nabla^{TM}V = 0 \implies [V, V] = 0$

Proof. 1: we have

$$\Box V = 0 \iff \begin{cases} \bar{\partial}_J V = 0\\ \bar{\partial}_J^* V = 0; \end{cases}$$

now, in terms of previous notations, and so, once more at 0 of our system of normal local holomorphic coordinates:

$$b_{j\bar{k}} = \sum_{r=1}^{n} g^{r\bar{\mathbf{j}}} \overline{c_{kr}}$$

with:

(5)
$$\frac{\partial b_{j\bar{k}}}{\partial \bar{z}_r} = \frac{\partial b_{j\bar{r}}}{\partial \bar{z}_k}, \quad 1 \le j, \, k, \, r \le n$$

and the extra condition

$$(6) b_{k\bar{j}} = -b_{j\bar{k}} + o(|z|)$$

and so, setting

$$A_{jk}^r := \frac{\partial b_{j\bar{k}}}{\partial \bar{z}_r},$$

we obtain, by (5) and (6):

$$A_{jk}^r = -A_{kj}^r = A_{jr}^k = -A_{kr}^j = A_{rk}^j = A_{rj}^k = -A_{jr}^k = -A_{jk}^r = 0,$$

i.e.,

$$\bar{\partial}_I V = 0 \& V = -{}^t V \implies \nabla'' V = 0;$$

also,

$$\bar{\partial}_{J}^{*}V = 0 \iff \sum_{k=1}^{n} \frac{\partial b_{j\bar{k}}}{\partial z_{k}} = 0 \iff \partial_{J}^{*}\gamma = 0, \quad 1 \leq j \leq n;$$

consequently,

$$\Box V = 0 \Longrightarrow \overline{\Box}_M \gamma = 0 \Longleftrightarrow \Delta \gamma = 0;$$

finally,

$$\bar{\partial}\gamma = 0 \iff \frac{\partial c_{jk}}{\partial \bar{z}_r} = 0 \iff \frac{\partial b_{j\bar{k}}}{\partial z_r} = 0 \iff \nabla'V = 0$$

clearly $\nabla^{TM}V = 0 \Longrightarrow \Box V = 0$ and so all the arrows can be reversed;

2: it's a general Riemannian fact that

$$(\nabla_X \alpha)(Y, Z) = g((\nabla_X V)Y, Z)$$

3: we have (cf. (1)):

$$\begin{split} [V,\,V] \left(\frac{\partial}{\partial \, \bar{z_j}},\, \frac{\partial}{\partial \, \bar{z_k}} \right) &= \left[V \left(\frac{\partial}{\partial \, \bar{z_j}} \right),\, V \left(\frac{\partial}{\partial \, \bar{z_k}} \right) \right] \\ &= \sum_{r,s=1}^n \left[b_{r\bar{j}} \frac{\partial}{\partial z_r},\, b_{s\bar{k}} \frac{\partial}{\partial z_s} \right] \\ &= \sum_{r,s=1}^n \left(b_{r\bar{j}} \frac{\partial b_{s\bar{k}}}{\partial z_s} - b_{s\bar{k}} \frac{\partial b_{r\bar{j}}}{\partial z_s} \right) = 0 \end{split}$$

We have now the following

Lemma 3.2. Let (M, κ, J) be a Kähler manifold; given $L \in \wedge^{0,1}(M) \otimes T^{1,0}M$, we have:

$$\Box^t L = {}^t \! (\Box L)$$

Proof. Let z_1, \ldots, z_n be local normal holomorphic coordinates; then at 0 the curvature tensor of g is given by:

$$R_{a\bar{b}j\bar{k}} = \frac{\partial^2 g_{a\bar{b}}}{\partial z_j \, \partial \bar{z}_k}$$

and

$$R_{a\bar{b}j\bar{k}} = R_{j\bar{b}a\bar{k}} = R_{j\bar{k}a\bar{b}} = R_{a\bar{k}j\bar{b}}$$

moreover, the Ricci tensor is given by

$$R_{j\bar{k}} = -\sum_{r=1}^{n} R_{j\bar{k}r\bar{r}},$$

i.e., setting $R = (R_{j\bar{k}})$, we have:

$$R = \frac{1}{2} \Delta_M G.$$

Let now

$$L = \sum_{j,k=1}^{n} l_{j\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}} = \sum_{j=1}^{n} \lambda^{(j)} \otimes \frac{\partial}{\partial z_{j}}$$

with, clearly, $\lambda^{(j)} = \sum_{k=1}^{n} l_{j\bar{k}} d\bar{z}_{k}, \ 1 \leq j \leq n;$ then we have (cf. e.g., [3], pp. 101–102):

$$\bar{\partial}^* L = \sum_{j=1}^n \left(-*\partial * \lambda^{(j)} - \sum_{r,s=1}^n g^{\bar{s}j} * (\partial g_{r\bar{s}} \wedge * \lambda^{(r)}) \right) \frac{\partial}{\partial z_j}$$

and so, at 0:

$$\bar{\partial}\,\bar{\partial}^*L = \sum_{j=1}^n \left(-\bar{\partial}(*\partial *)\lambda^{(j)} - \sum_{r=1}^n \bar{\partial} * (\partial g_{r\bar{\jmath}} \wedge *\lambda^{(r)})\right) \otimes \frac{\partial}{\partial z_j},$$

while

$$\bar{\partial}^* \bar{\partial} L = \sum_{j=1}^n \left(- * \partial * \bar{\partial} \lambda^{(j)} \right) \otimes \frac{\partial}{\partial z_j};$$

therefore,

$$\Box L = \sum_{j=1}^{n} \left(\frac{1}{2} \Delta \lambda^{(j)} - \sum_{r=1}^{n} \bar{\partial} * (\partial g_{r\bar{\mathbf{j}}} \wedge * \lambda^{(r)}) \right) \otimes \frac{\partial}{\partial z_{j}};$$

now:

$$\frac{1}{2}\Delta\lambda^{(j)} = \left(\frac{1}{2}\Delta l_{j\bar{k}} - \sum_{r=1}^{n} R_{r\bar{k}} l_{j\bar{r}}\right) d\bar{z}_{k}$$

and

$$\bar{\partial} * (\partial g_{r\bar{j}} \wedge *\lambda^{(r)}) = \sum_{k,p=1}^{n} R_{r\bar{j}p\bar{k}} l_{r\bar{p}} d\bar{z}_{k};$$

consequently:

$$\Box L = \sum_{j,k=1}^{n} \frac{1}{2} \Delta_{M} l_{j\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}}$$

$$- \sum_{j,k=1}^{n} \left(\sum_{r=1}^{n} R_{r\bar{k}} l_{j\bar{r}} \right) d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}}$$

$$- \sum_{j,k=1}^{n} \left(\sum_{r,s=1}^{n} R_{r\bar{j}s\bar{k}} l_{r\bar{s}} \right) d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}}$$

$$\frac{1}{2} \Delta_{M} A - AR - C(A)$$

where $A := (l_{j\bar{k}});$ now:

$${}^{t}L = \sum_{j,k=1}^{n} p_{j\bar{k}} d\bar{z}_{k} \otimes \frac{\partial}{\partial z_{j}}$$

with

$$p_{j\bar{k}} = \sum_{r,s=1}^{n} g^{r\bar{\jmath}} l_{s\bar{r}} g_{s\bar{k}}.$$

Set $B := (p_{i\bar{k}})$; then:

$$B = \bar{G}^{-1}AG$$
 and $B(0) = {}^{t}A(0);$

now (always at 0):

$$\Delta_M B = (\Delta_M \bar{G}^{-1}) A + \Delta_M{}^t A + A \Delta_M G = \Delta_M{}^t A + 2^t A R - 2\bar{R}A;$$
 consequently:

$$\Box^{t}L = \frac{1}{2}\Delta_{M}{}^{t}A + {}^{t}AR - \bar{R}^{t}A - {}^{t}AR - C({}^{t}A)$$
$$= \frac{1}{2}\Delta_{M}{}^{t}A - \bar{R}^{t}A - C({}^{t}A).$$

Finally, from

 \bullet ${}^tR = \bar{R},$

•
$$C({}^{t}A) = C(A) = {}^{t}C(A),$$

we obtain the result.

Corollary 3.3. If $L \in \wedge^{0,1}(M) \otimes T^{1,0}M$ is \square -harmonic, so are $1/2(L-{}^t\!L)$ and $1/2(L+{}^t\!L)$.

We are now in position to prove our main result, i.e., Theorem (1.1);

Proof. (a): let $\alpha \in \mathcal{P}^{2,0+0,2}$; write $\alpha = g(V \cdot, \cdot)$; therefore, by Lemma 3.1, V satisfies

•
$$\nabla^{TM}V = 0$$

•
$$[V, V] = 0$$

and clearly this is also the case for $L := \frac{1}{2}VJ$; in fact:

$${}^{t}(VJ) = JV = -VJ$$

and

$$\nabla^{TM}VJ = (\nabla^{TM}V)J + V(\nabla^{TM}J) = 0:$$

then apply Lemma 3.1 (3). Consequently, we have

$$\bar{\partial}_J tL + \frac{1}{2}t^2[L, L] = 0$$

and so

$$J_t := (id_M + tL)J(id_M + tL)^{-1}$$

is a holomorphic structure satisfying $\nabla^{TM} J_t = 0$; consequently,

$$\kappa_t := \frac{1}{2}(\kappa + J_t \kappa)$$

is parallel, thus it is closed, and $\kappa_t = \kappa + t\alpha + o(t)$;

therefore, α is tangent to the curve of Kähler structures (κ_t, J_t) ;

(b): let (κ_t, J_t) be a curve of Kähler structures with

$$\kappa_t = \kappa + t\alpha + o(t), \quad \alpha \in \wedge^{2,0+0,2}(M);$$

by the basic features of holomorphic deformation theory, we can choose the \Box -harmonic representative of the class corresponding to the tangent endomorphism to the curve J_t ;

i.e., up to diffeomorphisms, we can assume

$$J_t := (id_M + tL + o(t))J(id_M + tL + o(t))^{-1},$$

with $\Box L = 0$ and LJ + JL = 0;

it follows from Lemma 3.2 that, if $V = 2J(L - {}^t\!L)$, then $\Box V = 0$ and thus, by Lemma 3.1, $\nabla^{TM}V = 0$ and finally, $\nabla^M\alpha = 0$.

4. Further Remarks

As we have already remarked, deformation theory of holomorphic structures ensures that, up to diffeomorphisms, the general (germ of) curve of holomorphic structures on a Hermitian manifold (M, J, g) is of the form

$$J_t := (id_M + tL + o(t))J(id_M + tL + o(t))^{-1}$$

for $L \in \text{End}(TM)$ satisfying JL + LJ = 0, $\Box L = 0$;

but, in general, not every such an L gives rise to an actual deformation; in other words, in general, the deformation theory is obstructed.

Let \mathcal{M} be the subset of Ker \square of elements providing actual deformations.

In the Kähler case, the situation looks somehow neater; in fact:

1) by Corollary 3.3, Ker \square splits as

$$\operatorname{Ker} \square = \mathfrak{A} \oplus \mathfrak{S}$$

where, clearly:

$$\mathfrak{A} = \{ L \in \operatorname{Ker} \square \, | \, L = -{}^t L \}$$

$$\mathfrak{S} = \{ L \in \operatorname{Ker} \square \, | \, L = {}^{t}L \} :$$

2) $\mathfrak{A} \subset \mathcal{M}$

and to every $L \in \mathfrak{A}$, we can associate a canonical curve of holomorphic structures:

$$J_t := (id_M + tL)J(id_M + tL)^{-1};$$

3) note that, in general, for a curve of almost symplectic structures,

$$\kappa_t = \kappa + t\alpha + o(t)$$

and a curve of κ_t -calibrated complex structures,

$$J_t := (id_M + tL + o(t))J(id_M + tL + o(t))^{-1}, \quad (LJ + JL = 0),$$

from

$$\kappa_t - J_t \kappa_t = 0,$$

by taking the t-derivative at 0, we obtain

$$\alpha^{2,0+0,2} = q((JL + {}^{t}LJ) \cdot, \cdot);$$

therefore, if $L \in \mathfrak{S} \cap \mathcal{M}$, and

$$J_t := (id_M + tL + o(t))J(id_M + tL + o(t))^{-1}$$

is a curve of holomorphic structures, then any curve

$$\kappa_t = \kappa + t\alpha + o(t)$$

of J_t -Kähler structures satisfies $\alpha \in \wedge_J^{1,1}(M)$; consequently, by Lemma 2.1, it is possible to choose κ_t of the form

$$\kappa_t = \kappa + o(t)$$

therefore, the map

$$\lambda \colon \mathcal{M} \longrightarrow H^2(M, \mathbb{R}) \quad L \mapsto [g((2J(L-{}^tL)\cdot, \cdot))]$$

is a linear surjection over $\mathcal{K}/H^{1,1}(M,\mathbb{R})$, which is one-to-one when restricted to \mathfrak{A} .

Note that, generically,

$$\operatorname{Ker} \Box = \{0\},\$$

but, within the exceptional range $\dim_{\mathbb{C}} \operatorname{Ker} \square > 0$, then, generically,

$$\mathfrak{A} = \{0\},\$$

i.e., non-trivial $L's \in \wedge^{0,1}(M) \otimes T^{1,0}M$ satisfying $\Box L = 0$ are generically symmetric: this is a sort of Ayers Rock snow flake principle.

Let us now give a closer look to the case $\mathcal{P}^{2,0+0,2}(M) \neq \{0\}$; first of all recall that, if (M, κ, J) is a compact Kähler manifold with $\text{Ric} \geq 0$, then any holomorphic form on M is parallel and thus so are harmonic forms in $H^{2,0+0,2}(M, \mathbb{R})$; consequently, for such manifolds

$$\mathcal{K} = H^2(M, \mathbb{R})$$

(recall also that Ric > 0 at some point $\Longrightarrow H^{2,0+0,2}(M,\mathbb{R})=0$). Moreover, if on a Kähler manifold (H,J,κ) there exists $\alpha \in \wedge^{2.0+0,2}(H,\mathbb{R})$, non-degenerate, satisfying $\nabla^H \alpha = 0$, then H is hyperkähler, i.e., there exists $K \in \mathfrak{C}_{\kappa}(H)$, satisfying KJ + JK = 0, $\nabla^H K = 0$ (K is nothing but the orthogonal factor of the polar decomposition of the endomorphism representing α with respect to the given Kähler metric).

Given $\alpha \in \wedge^{2,0+0,2}(H,\mathbb{R})$, with $\nabla^M \alpha = 0$, write once more $\alpha = g(V \cdot, \cdot)$, with $V = -{}^tV$, JV + VJ = 0, and $\nabla^{TM}V = 0$; then set:

$$E(\alpha) := \operatorname{Ker} V, \quad F(\alpha) := (E(\alpha))^{\perp} = \operatorname{Im} V;$$

then:

$$X \in TM, \quad Y \in E(\alpha) \Longrightarrow \nabla_X^M Y \in E(\alpha)$$

 $X \in TM, \quad Y \in F(\alpha) \Longrightarrow \nabla_X^M Y \in F(\alpha).$

Therefore, the distributions $E(\alpha)$ and $F(\alpha)$ are integrable, *J*-invariant, parallel, and totally geodesic; moreover, if $W \in \operatorname{End}(TM)$ satisfies $\nabla^{TM}W = 0$, then

$$W_{E(\alpha)} := \begin{cases} W & \text{on } E(\alpha) \\ 0 & \text{on } F(\alpha) \end{cases}$$

satisfies $\nabla^{TM}W_{E(\alpha)} = 0;$

consequently, if $\alpha = h(a)$ has maximal rank for $a \in \mathcal{P}^{2,0+0,2}(M)$, then all elements of $h(\mathcal{P}^{2,0+0,2}(M))$ vanish on $E(\alpha)$ and so $E = E(\alpha)$ is unique;

thus, passing to the universal covering \tilde{M} , we easily obtain that, from the Kählerian viewpoint

$$\tilde{M} = N \times H$$

where H is hyperkähler (and corresponds to F) and so:

$$M = N \times \frac{H}{\Gamma}$$

where Γ is a discrete group of holomorphic isometries of \tilde{M} ;

summarizing:

$$\mathcal{P}^{2,0+0,2}(M) \begin{cases} = \{0\} \implies \mathcal{K} = H^{1,1}(M, \mathbb{R}) \\ \neq \{0\} \implies M = N \times \frac{H}{\Gamma}. \end{cases}$$

Note finally that both $\mathfrak A$ and $\mathcal P^{2,0+0,2}$ are complex vector spaces:

- $\mathcal{J}_{\mathfrak{A}}L:=JL;$ more in general, if $\alpha\in\wedge^{2,0+0,2}(M)$, define

$$(\mathcal{J}\alpha)(X, Y) := \alpha(JX, Y) = \alpha(X, JY);$$

then set, for $a \in \mathcal{P}^{2,0+0,2}$:

$$\mathcal{J}a = [\mathcal{J}h(a)];$$

from $\nabla J = 0$, it follows that $\mathcal{P}^{2,0+0,2}$ is a \mathcal{J} -complex space; it is clear that $\lambda \circ \mathcal{J}_{\mathfrak{A}} = \mathcal{J} \circ \lambda$.

5. Examples

1. Let $M = \mathbb{T}^{2n}$ be the complex n-dimensional torus equipped with the standard Kähler structure (κ, J) : in particular, we have the standard global frame

$$\left\{ \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_1}, \dots, \frac{\partial}{\partial y_n} \right\}$$

with

$$\begin{cases} J\left(\frac{\partial}{\partial x_j}\right) = \frac{\partial}{\partial y_j} \\ J\left(\frac{\partial}{\partial y_j}\right) = -\frac{\partial}{\partial x_j} \end{cases}$$
 $1 \le j \le n$

and standard coframe

$$\{dx_1,\ldots,dx_n,\,dy_1,\ldots,dy_n\};$$

thus

$$\kappa = \sum_{h=1}^{n} dy_h \wedge dx_h;$$

therefore, if $\alpha = dx_i \wedge dx_k$, then

$$\alpha = \gamma + \bar{\gamma} + \beta$$

with

$$\gamma = \frac{1}{4} dz_j \wedge dz_k \in \wedge^{2,0}(\mathbb{T}^{2n}, \mathbb{C})$$

and

$$\beta = \frac{1}{4} (dz_j \wedge d\bar{z}_k + d\bar{z}_j \wedge dz_k) \in \wedge^{1,1}(\mathbb{T}^{2n}, \mathbb{R}).$$

Note also that

$$\alpha^{2,0+0,2} = \frac{1}{2} (dx_j \wedge dx_k - dy_j \wedge dy_k)$$

(similar formulas for $dy_j \wedge dy_k$, $dx_j \wedge dy_k$);

$$\gamma = g(V \cdot, \cdot)$$

for

$$V = \frac{1}{4} \left(d\bar{z}_j \otimes \frac{\partial}{\partial z_k} - d\bar{z}_k \otimes \frac{\partial}{\partial z_j} \right);$$

or, in real terms,

$$V = \frac{1}{2} \left(dx_j \otimes \frac{\partial}{\partial x_k} - dy_j \otimes \frac{\partial}{\partial y_k} - dx_k \otimes \frac{\partial}{\partial x_j} + dy_k \otimes \frac{\partial}{\partial y_j} \right);$$

consider e.g., n = 2, $\alpha = 4dx_1 \wedge dx_2$; then:

$$V = 2 \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

and so:

$$L = \frac{1}{2}VJ = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\\ 0 & 1 & 0 & 0\\ -1 & 0 & 0 & 0 \end{pmatrix};$$

therefore,

$$J_t = (I+tL)J(I+tL)^{-1} = \frac{1}{1+t^2} \begin{pmatrix} 0 & 2t & t^2-1 & 0\\ -2t & 0 & 0 & t^2-1\\ 1-t^2 & 0 & 0 & -2t\\ 0 & 1-t^2 & 2t & 0 \end{pmatrix}$$

and

$$\kappa_t = \frac{1}{2}(\kappa + J_t \kappa) = \kappa + t \frac{1 - t^2}{1 + t^2} \alpha^{2,0+0,2} + \frac{1}{2} t^2 (t^2 - 6) \kappa.$$

2. First recall that, if $\mathbb{B}:=\{z\in\mathbb{C}\,|\,|z|<1\}$, then there are no non-trivial parallel (1, 0)-forms on

$$\left(\mathbb{B}, \frac{2}{(1-|z|^2)^2} dz \wedge d\bar{z}\right);$$

in fact, given $\gamma = a dz$, we have:

$$\begin{split} \nabla_{\frac{\partial}{\partial \bar{z}}} \gamma &= 0 &\iff \frac{\partial a}{\partial \bar{z}} = 0 \\ \nabla_{\frac{\partial}{\partial z}} \gamma &= 0 &\iff \frac{\partial a}{\partial z} - \frac{2\bar{z}}{1 - |z|^2} a = 0 &\iff a = 0; \end{split}$$

consequently, if Σ is a Riemann surface covered by \mathbb{B} and equipped with the constant -1 curvature Kähler metric, then there are no non-trivial parallel (1, 0)-forms on Σ .

Let now Σ_{g_k} , k=1, 2, be compact Riemann surfaces equipped with the constant -1 curvature Kähler metric (and so $g_k \geq 2$); let $M = \Sigma_{g_1} \times \Sigma_{g_2}$; then:

•

$$H^1(M, \Theta) = H^1(\Sigma_{q_1}, \Theta) \oplus H^1(\Sigma_{q_2}, \Theta)$$

and, although $H^2(M, \Theta) \neq 0$, the holomorphic deformation theory of M is unobstructed and reduces to the deformations of Σ_{g_1} and Σ_{g_2} :

• from the previous remarks, it follows quite easily that there are no non-trivial parallel forms in $\wedge^{2,0+0,2}(M,\mathbb{R})$;

therefore, in M, we have

$$\operatorname{Ker} \square = \mathfrak{S}$$
 and $\mathcal{K} = H^{1,1}(M, \mathbb{R})$.

References

- [1] P. de Bartolomeis, \mathbb{Z}_2 and \mathbb{Z} -Deformation Theory for Holomorphic and Symplectic Manifolds, Complex, Contact, and Symmetric manifolds, Progress in Mathematics, **234**, Birkhäuser, 2005, 75–104.
- [2] D. McDuff and D. Salamon, Introduction to Symplectic Topology, Clarendon Press, Oxford, 1995.
- [3] J. Morrow and K. Kodaira, Complex Manifolds, Holt, Rinehart and Wiston, Inc., New York, 1971.

DIPARTIMENTO DI MATEMATICA APPLICATA G. SANSONE

Università di Firenze

VIA S. MARTA 3

50139 Firenze

ITALY

E-mail address: paolo.debartolomeis@unifi.it

Received Fall 2003, Accepted 10/21/2005. This work was supported by the Project M.I.U.R. "Geometric Properties of Real and Complex Manifolds" and by G.N.S.A.G.A. of I.N.d.A.M.