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SYMPLECTIC DEFORMATIONS OF KAHLER
MANIFOLDS

PAOLO DE BARTOLOMEIS

Given a compact symplectic manifold (M, k), H?(M, R) repre-
sents, in a natural sense, the tangent space of the moduli space of germs
of deformations of the symplectic structure. In the case (M, &, J) is a
compact Kéhler manifold, the author provides a complete description of
the subset of H2(M, R) corresponding to Kéhler deformations, includ-
ing the non-generic case, where (at least locally) some hyperkéhler
manifold factors out from M. Several examples are also discussed.

1. Introduction

The naif deformation theory of symplectic manifolds is quite simple: let
(M, k) be a compact symplectic manifold and let o € A%2(M, R), da = 0:
then
Kt := Kk + ta

is a (germ of) curve of symplectic structures having tangent « at 0;
moreover, Moser’s lemma (cf. [2]) ensures that x; = ¢; (k) for a path of
diffeomorphisms with ¢g = idy; <= a = dfB and so H?(M, R) is the
tangent space of the moduli space of germs of deformations of symplectic
structures and the theory is totally unobstructed (for a non-naif version,

see [1]).
Let (M, k, J) be a compact Kéhler manifold: therefore, J is a k-
calibrated holomorphic structure and so g = g5 := k(J-, ) is a positive

definite Hermitian metric; we want to investigate the subset of H?(M, R)
corresponding to Kahler deformations of k.
We have the following

Theorem 1.1. Let (M, k, J) be a compact Kdihler manifold; let K be the
subset of H*(M, R) corresponding to Kihler deformations of k; i.e., [a] € K
if and only if there exists a curve of Kahler structures (K¢, Jp) with Ky =
K+ ta+o(t), Jo=J;
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then:
K = p2o+02 o4 Hl,l(]\/[7 R)
where
PPOTO2(M) = {a € HO2(M, R) | VM h(a) = 0}

and h(a) is the g-harmonic representative of a.

Note that, clearly, P%0T0:2(M) is generically reduced to {0} and, if it is
not the case, then (at least locally) some hyperkahler manifold factors out
from M.

The author is pleased to thank the referee for valuable remarks and sug-
gestions for a better presentation of the results.

2. Reduction to the (2,0 + 0, 2)-case
We have first the following

Lemma 2.1. Let (M, k, J) be a compact Kdhler manifold;
then:

K+ HY (M, R)=K
i.e., for every a € K, every c € HY (M, R), we have a + c € K.

Proof. Let a € A2(M, R), da = 0, such that [a] € K.

Given ¢ € HMY(M, R), let v € /\(1]’1(M) be its harmonic representative;

by assumption, there is a curve of Kahler structures (s, J;) with
Kt = K+ ta + o(t); by Kodaira—Spencer theory, the projection

P Ayt (M) — Hy)! (M)

(where, of course, H;jjlt (M) is the space of gj,-harmonic (1, 1)-forms on M)
is smooth in ¢ (see e.g., [3], p. 184).

Let
Rt = K + %t(’}’ + Jiv),
ie.,
KX, Y) = mi(X, Y) + S0 Y) + 7R X, JiY))
and

- ~ 1
Rt = Pt(fit) = Kt + itpt(fy + Jt’}/).
Clearly (R¢, J;) is a curve of Kéhler structures (note: the same Jy’s!) and
dFy

1
bl = P, Jv) = ,
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3. The main result

Let us first recall the basic linear algebraic frame: let (7, J, g) be a
Hermitian vector space, i.e., a real vector space T' equipped with J € End(T)
satisfying J? = —I and a positive definite scalar product g on T’ satisfying
g(JX, JY) = g(X, Y);
then

T(C — T].,O o TO,].
and

v:T — TYW y(X):= (X —iJX)

| =

is a linear isomorphism such that v(JX) = iv(X).
Let V € End(T) with VJ + JV = 0;
then, we obtain
V:1% — 70 C —linear

simply setting

VX +iJX)=V(X)—-iJV(X)
(i.e., V acts now as v o V o ~1); this identifies canonically (7*)%! @ 719
with {V € End(T) |V J + JV = 0}.
If, moreover, V = —, then, setting

O‘(Xa Y) = g(V(X)> Y)a

we obtain o € A20+027* and
1

i(a(X, Y)—ia(JX,Y)),

i.e., in terms of the complexified space,

(X, Y) =

a=v+7,
with
v ENIT* (2, W) =g(V(Z), W).

Let (M, x, J) be a compact Kihler manifold and let (A, [, ], ;) be the
DGLA governing the holomorphic deformation theory of (M, J):

A=PA,
pEZL

where
ANP(M) @ TVOM, if0<p<n
A, =
0, otherwise

and [, | is the (complex) Schouten—Nijenhuis bracket (see e.g., [3], p. 152);
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in particular, if U, V € A; and, in terms of local holomorphic coordinates

Rl 2n,
- 0 <= () 0
_ _d5 @ . — ) 2
v= Z @Rtk & 0z Zaj 0z;
Ji,k=1 7j=1
- 0 N0
_ —dE @ . — (2
V= Z bj 2k ® 5 — _Zbﬂ 5
Gk=1 7 =1 J
with: .
al¥) = Zaﬂ;dék, 1<j5<n
k=1
b9 = "bpdz, 1<j<n,
k=1
then:

and so

0 ()l () ()

(Of course, for general vector fields X, Y, [U, V](X, Y) # [U(X), V(Y)]!).
Note that, via v, we can put the theory in a completely real setting, where:
Ay = NPP(M) @ TM = {R € NP(M) @ TM |R(X1,...,JXp,..., Xp) =
—JR(X1,...,Xp,...,Xp), 1< h <p}and, with a slight abuse of nota-
tion,

[R+S]=v" [v(R), v(5)];

e.g., for p=0:
X +Y] = %([X, Y] - [JX, JY]).
We shall confine to the complex form of the theory.
Let o o
.= 8J8§+6;8J: A— A
and let
VM = ' + V" End(TM) — AYM) @ End(TM)
VM A (M) — AN (M) @ A* (M)

be the exterior covariant differential operators with respect to the

Levi-Civita connection (which coincides, in the Ké&hler case, with the
Hermitian canonical connection).
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Let V € End(TM) such that JV 4+ VJ =0 and so, in particular
Ve AYY (M) @ T1OM:;
let a = +7 € A20H02(M R) be defined by:
a(X, ¥) = Jgl(V = V)X, V)

therefore, in terms of normal local holomorphic coordinates z1,...,z,, we
have

= )
tV — Z pj’-gdzk ® —

k=1 92
with
n —
Pk =) 9" bsrd
r,S
and
v = Z cikdzj N\ dzy,
i<k
with

1 nooo
5 (jk = pj) = > 9%
r=1

Therefore, if B = (b)), P = (p;i), G = (9;5), C = (¢jx), then:

(2) P=G""BG
(3) pjk = bi; +o(lz])

(4) crj = 5 (bjg — byz) + o(|2])

N
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Note first that, performing the computation at the origin 0 of the system
of normal holomorphic coordinates,

_ ob .- b~
aJVZO@%k:%a lgjakargn
0z, 0z,
b, dbr
ik T .
= 1<j. k,r<
0z, 0z’ =0 Eren
Ocy; T T
99 9 O¢ir | o0k _ gy

0z, 0z, 0z
Tp b by Oy | O b _
0z, 0z, 0zy, 0zy, 0z; 0z;
1<y, k,r<n

<~ Jyv=0.

0

We have now the following.

Lemma 3.1. Let (M, r,J) be a compact Kdihler manifold; let
a € ANBOITO2(MR), o = v+ 75 = g(V-,-) (and so, in particular,
V € End(TM) with JV +VJ=0 and V = -'V);

then:

(1) OV =0 +— VIMy =90

(2) VMy =0 <= VIMy =90

(3) VIMy =0 = [V, V] =0

Proof. 1: we have

2,V =0

oHV =0

now, in terms of previous notations, and so, once more at 0 of our system
of normal local holomorphic coordinates:

n
bir = E 9" Cr
r=1

DV:0<:>{

with:
Ob;z.  Objr
ik ' .
= 1<,k r<
(5) 0z, aik ’ =hEHT=n
and the extra condition
(6) bi; = —bj +o(]z])

and so, setting
T abﬂz

kT 9z,
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we obtain, by (5) and (6) :

k= 71;]‘:Agr:_Air:Aik:Avlfj:_A?r: — A%, =0,
i.e.,
WV =0&V=-VY = V'V=0
also,
- " Objy; . ‘
IV =0 — Za—zkzo = Py=0, 1<j<n;
consequently,
OV =0=0Oyy=0 < Ay=0;
finally,
By =0 9% = T _§ = vV =0
0z, 82,«

clearly VIMV = (0 = OV =0 and so all the arrows can be reversed;
2: it’s a general Riemannian fact that

(Vxa)(Y, Z) = g(Vx V)Y, Z)
3: we have (cf. (1)):

()= () ()]

0
_Z |:r]a ’ skazs:|

r,s=1

- R
Z i (9 sk 825 -

r,s=1

We have now the following

Lemma 3.2. Let (M, k, J) be a Kihler manifold; given L€ A% (M)QTOM,
we have:

0L = 40L)

Proof. Let z1,...,z, be local normal holomorphic coordinates; then at 0
the curvature tensor of ¢ is given by:

Ral;j]% - sz 0z,

and
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moreover, the Ricci tensor is given by
n
- E :RjETF7
r=1

i.e., setting R = (R;;), we have:

1
R= EAMG'

with, clearly, A¥) = z;g:l Lipdze, 1< j <m
then we have (cf. e.g., [3], pp. 101-102):

_ n A L B
0*L = —x0x A0 — T % (Ogrs N A | =—
j; g;g (99 )| 52

and so, at O:

__ 0
_ ) (r)
DO*L _Z::< (x0%)A0) — Z:: (Dgry A *A )) p
while
_ n _ . b
*OL = — (4) Y.
59 ;( « 0 % O\ )@(%j,
therefore,
OL = n Lar® —ié (8gry A *AT) 9
- ] aZj
7=1 r=1
now:
1 n
im(ﬁ = (Al]k -3 Rrklﬂ> dzy
r=1
and
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consequently:

1 _ 0
J,k=1

-3 (Z RN;%) dzy, ® 88
jh=1 \r=1 %

- [ D Rl | dme @ 88
k=1 \rs=1 %

1
§AMA — AR - C(A)
where A := (I;3);

now:
- 0
'L = Z pj];dzk & 92
j.k=1 J
with .
pii =Y 99
r,s=1
Set B := (pj,;); then:
B =G "AG and B(0) ="A(0);
now (always at 0):
AyB = (AuG™HA+ AytA + AA LG = Ay'A + 2'AR — 2RA,;

consequently:
D%:%AM%+%R—R%—%R—CWD

= %AMtA — R'A —C(A).

Finally, from

e 'R =R,

o C('A)=C(A) ='C(A),
we obtain the result. O
Corollary 3.3. If L € AYY(M)@T1OM is O-harmonic, so are 1/2(L —'L)
and 1/2(L +'L).

We are now in position to prove our main result, i.e., Theorem (1.1);

Proof. (a): let a € P20T02: write o = g(V-, -);
therefore, by Lemma 3.1, V' satisfies

o VMY — ¢
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o [V, V]=0
and clearly this is also the case for L := %VJ ;
in fact:
W) =JV=-VJ
and

vy g = (VI™My) g+ v(vIM ) =0
then apply Lemma 3.1 (3).
Consequently, we have

= 1
OytL + 5th[L, L] =0

and so
Jy = (idpr + tL)J(idpy +tL) !
is a holomorphic structure satisfying V'™ J, = 0;
consequently,
1
Ky 1= 5(/1 + JiK)
is parallel, thus it is closed, and k; = Kk + ta + o(t);
therefore, o is tangent to the curve of Kéahler structures (k¢, Ji);
(b): let (k¢, J¢) be a curve of Kahler structures with

ke =K +ta+o(t), acAPITO2(A;

by the basic features of holomorphic deformation theory, we can choose
the [-harmonic representative of the class corresponding to the tangent
endomorphism to the curve Jg;

i.e., up to diffeomorphisms, we can assume

Ji := (idas + tL + o(t))J (idas + tL + o)) ™Y,

with OL =0 and LJ + JL = 0;
it follows from Lemma 3.2 that, if V = 2J(L — L), then OV = 0 and thus,
by Lemma 3.1, VMV = 0 and finally, VMa = 0. O

4. Further Remarks

As we have already remarked, deformation theory of holomorphic struc-
tures ensures that, up to diffeomorphisms, the general (germ of) curve of
holomorphic structures on a Hermitian manifold (M, J, g) is of the form

Jy = (idps 4+ tL + o(t))J (idas + tL + o(t)) ™

for L € End(T M) satisfying JL + LJ =0, OL = 0;

but, in general, not every such an L gives rise to an actual deformation; in
other words, in general, the deformation theory is obstructed.

Let M be the subset of Ker[J of elements providing actual deformations.
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In the Kahler case, the situation looks somehow neater;
in fact:

1)

by Corollary 3.3, Ker O splits as
KerO=2A66

where, clearly:

A={LecKerO|L=-'L}

G={LecKerO|L="L}:
AC M
and to every L € 2, we can associate a canonical curve of holomorphic
structures:

Jy = (idpr +tL)J(idpy +tL) ™1
note that, in general, for a curve of almost symplectic structures,
ke = Kk +ta+ o(t)
and a curve of x;-calibrated complex structures,
Ji = (idpyy +tL+ o())J (idpr +tL+0(t)) ™Y, (LJ + JL =0),
from
Kkt — Jere = 0,

by taking the t-derivative at 0, we obtain

a?02 = g((JL+'LJ)-, -);
therefore, if L € & N M, and

Jy = (idpr +tL + o(t))J (idpr +tL + o(t)) ™
is a curve of holomorphic structures, then any curve
ke =k +to+o(t)

of Ji-Kéhler structures satisfies o € Ab’l(M )
consequently, by Lemma 2.1, it is possible to choose x; of the form

Kt = K+ o(t)
therefore, the map
XM — HX(M,R) L+ [g((2J(L-"L)-, )]

is a linear surjection over K/H!(M, R), which is one-to-one when
restricted to 2.
Note that, generically,

Kerd = {0},
but, within the exceptional range dim¢ Ker [ > 0, then, generically,
A= {0}7
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i.e., non-trivial L's € A%Y (M) @ THOM satisfying (L = 0 are generi-

cally symmetric: this is a sort of Ayers Rock snow flake principle.
Let us now give a closer look to the case P20+92(0f) £ {0};

first of all recall that, if (M, k, J) is a compact Kéhler manifold with

Ric > 0, then any holomorphic form on M is parallel and thus so are

harmonic forms in H%%t%2(M, R); consequently, for such manifolds

K = H*(M, R)

(recall also that Ric > 0 at some point = H?%*02(M R) =0).
Moreover, if on a Kéhler manifold (H, J, k) there exists
a € A20T02([ R), non-degenerate, satisfying VZa = 0, then H is
hyperkéhler, i.e., there exists K € €,(H), satisfying KJ + JK =0,
VHK = 0(K is nothing but the orthogonal factor of the polar decom-
position of the endomorphism representing a with respect to the given
Kéhler metric).
Given a € A?0t02(f R), with VMa = 0, write once more
a=g(V. ), with V. = =V, JV +VJ =0, and VIMV = 0; then
set:

E(a):=KerV, F(a):=(E(a))*=InV;
then:

XeTM, Y cE() = V¥Y € E(a)

XeTM, Y e€F(a) = V¥Y € F(a).

Therefore, the distributions E(«) and F(«) are integrable, J-invariant,
parallel, and totally geodesic; moreover, if W € End(T'M) satisfies
VIMW =0, then

W on E(«)
W =
Bl) {0 on F(«)

satisfies VTMWE(Q) = 0;

consequently, if & = h(a) has maximal rank for a € P?9+%2(M), then
all elements of h(P>0t02(M)) vanish on E(a) and so E = E(a) is
unique;

thus, passing to the universal covering M, we easily obtain that, from
the Kéhlerian viewpoint

M=NxH
where H is hyperkédhler (and corresponds to F') and so:

it
M=Nx =
“T

where I' is a discrete group of holomorphic isometries of M;
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summarizing:
P20+02( 3 ) ={0} = K=H"" (M, R)
#{0} = M=Nx£Z
Note finally that both 2 and P?°t%2 are complex vector spaces:
[ ] jQ[L = JL,
e more in general, if a € A20T02(M), define
(Ja)(X, Y) = a(JX, ¥) = a(X, JY);
then set, for a € P201+0:2;
Ja = [Th(a));

from V.J = 0, it follows that P?9%02 is a J-complex space;
it is clear that Ao Jy = J o \.

5. Examples

1. Let M = T?" be the complex n-dimensional torus equipped with the
standard Kéhler structure (k, J):
in particular, we have the standard global frame

B o 0 9
a1’ Bz Oyi’ Dy

with

and standard coframe
{dz1,...,dxy, dy1,...,dyn};

thus .
K= Z dyp N dxp;
h=1
therefore, if a = dx; A dxy, then
a=v+5+p
with 1
v =442 Adz € AZ(T?" ()
and

1
B = (dzj Nz + dz; A dzg) € AVHT™, R).
Note also that 1
020402 _ 5 (dzj A day — dy; A dyg)
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(similar formulas for dy; A dyg, dx; A dyy, );
thus

for

or, in real terms,

1 3} d 0 0
— de: -2 —dus 0 2 Y Y.
174 2<$j®8xk dy]®ayk dxk®amj+dyk®ayj>,

consider e.g., n = 2, a = 4dx1 A dxo;

then:
0 -1 0 0
1 0 0 0
V=2 0 0 0 1
0 0 -1 0
and so:
0 0 0 1
1 0 0 -1 0
L= §VJ_ 0O 1 0 0o}’
-1 0 0 0
therefore,
0 2t 21 0
_ 1 —9t 0 0 t2-1
_ 1 _
0 1—t* 2t 0

and

Kt = 1(/i + Jik) = Kk + tl;tQaQ’OJFO’2 + 1t2(t2 —6)k
L7 ¢ 1412 2 '

2. First recall that, if B := {z € C||z| < 1}, then there are no non-trivial
parallel (1, 0)-forms on

2
B < 2.
( ’<1—rz\2>2d“dz)’

in fact, given v = a dz, we have:

V§7:0 — —=0

vngo —



SYMPLECTIC DEFORMATIONS OF KAHLER MANIFOLDS 355

consequently, if 3 is a Riemann surface covered by B and equipped with the
constant —1 curvature Kahler metric, then there are no non-trivial parallel
(1, 0)-forms on X.
Let now Y4, , k = 1, 2, be compact Riemann surfaces equipped with the
constant —1 curvature Kéhler metric (and so g > 2); let M = X, X 3g,;
then:
[ ]
Hl(Mv 0) = Hl(zgu 9) @Hl(zgw @)
and, although H?(M, ©) # 0, the holomorphic deformation theory of
M is unobstructed and reduces to the deformations of ¥, and X,:
e from the previous remarks, it follows quite easily that there are no
non-trivial parallel forms in A%0t%2(M1, R);
therefore, in M, we have

KerO=6 and K= H"Y(M,R).
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