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EXISTENCE OF PERFECT MORSE
FUNCTIONS ON SPACES WITH
SEMI-FREE CIRCLE ACTION.

MIKHAIL KOGAN

Let M be a compact oriented simply-connected man-
ifold of dimension at least 8. Assume M is equipped
with a torsion-free semi-free circle action with isolated
fixed points. We prove M has a perfect invariant Morse-
Smale function. The major ingredient in the proof is a
new cancellation theorem for invariant Morse theory.

1. Introduction.

It is well known that the classical results of Morse theory [8, 9] do
not directly generalize to the invariant case. In particular, a com-
pact manifold with a compact group action does not necessarily have
an invariant Morse-Smale function. (We say that an invariant func-
tion is an invariant Morse function if every connected component of
the set of critical points is a nondegenerate group orbit and we call it
Morse-Bott if every connected components of the set of critical points is
nondegenerate, but does not necessarily contain only one group orbit.
An invariant Morse (or Morse-Bott) function is Morse-Smale (respec-
tively Morse-Bott-Smale) if the stable and unstable manifolds intersect
transversely.) As a result, in the presence of a group action there is no
guarantee of existence of perfect invariant Morse functions for which
the invariant Morse inequalities become equalities making the invari-
ant Morse polynomial of the function equal to the invariant Poincare
polynomial of the manifold.
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At the same time, there are plenty of examples, many of which ap-
pear in symplectic geometry, of manifolds with groups actions which
carry nonconstant perfect invariant Morse-Bott functions. As shown by
Atiyah and Bott [1, 2] all compact symplectic manifolds with Hamil-
tonian torus action are equipped with perfect invariant Morse-Bott
functions which arise as components of moment maps.

The existence of perfect Morse-Bott functions is one of the many
topological properties of Hamiltonian spaces for which it is natural
to ask about a generalization to non-Hamiltonian actions. Some of
these properties, the Kirwan surjectivity theorem [6] and the Jeffrey-
Kirwan localization formula [5], have been studied by the author [7]
for non-Hamiltonian actions. It was shown that the Jeffrey-Kirwan
localization formula can be extended to the case of equivariantly formal
torus actions, while the Kirwan surjectivity theorem does not generalize
to this case.

This paper, an attempt to generalize the existence of perfect in-
variant Morse-Bott functions to non-Hamiltonian actions, was moti-
vated by the recent results of Hattori [4] and Tolman-Weitsman [10]
on semi-free circle actions on symplectic manifolds. Tolman and Weits-
man showed that every semi-free symplectic circle action on a com-
pact symplectic manifold with finite nonempty fixed point set must be
Hamiltonian and hence has a moment map, a perfect invariant Morse
function.

Our main theorem generalizes this result to spaces with semi-free
action whose equivariant cohomology is Z-torsion-free. For the defini-
tions of all the terms used in the statement of the theorem see Section
2.

Theorem 1.1. Let M be a compact oriented simply-connected man-
ifold with torsion-free semi-free circle action which has finitely many
fixed points. Assume dim M > 8. Then there exists a perfect invariant
Morse-Smale function on M.

While the original motivation for this result comes from symplectic
geometry, the methods of proof are borrowed from classical Morse the-
ory, namely the ideas used in the proof of the h-cobordism theorem
in [8]. The major ingredient in the proof is a new invariant cancella-
tion theorem (Theorem 2.2) which resembles the cancellation theorem
in Morse theory. The same way the cancellation theorem in Morse
theory supplies the tools for eliminating extra critical points of Morse
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functions, the invariant cancellation theorem helps to eliminate extra
critical circles of invariant Morse functions.

The essential idea behind this cancellation theorem is illustrated in
Figure 1, where a critical circle of index 1 is cancelled by increasing
the index of a critical point from 0 to 2. The action of the circle on
both pictures in Figure 1 is given by a rotation around the vertical
axis, while the Morse function is given by projection onto the same
axis. In the first picture there are a critical point p of index 0 and a
critical circle s of index 1, while in the second picture s is eliminated
by increasing the index of p to 2.

- S

Figure 1: Critical circle s is cancelled by increasing the index of critical
point p from 0 to 2.

The paper is organized as follows. In Section 2 we provide basic def-
initions and notations, and state the main results of the paper. Section
3 contains the proof of existence of Morse-Smale functions on spaces
with semi-free circle actions (Theorem 2.1). Section 4 provides the
proof of the cancellation theorem (Theorem 2.2). The connections be-
tween invariant Morse theory and equivariant cohomology are discussed
in Section 5. Finally, the last section is concerned with the proof of
Theorem 1.1, which boils down to eliminating critical circles using the
cancellation theorem.
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A word of warning to our readers: Since Morse theory is a vast
subject, we have not cited all relevant sources for the results we will
use below. For the most part we’ve quoted these results as described
in the book of Milnor [8]. Also to shorten the presentation we have
not included all details of the proofs of the equivariant analogues of
standard Morse theory results but have simply indicated in outline
how to adapt these results, as described in [8], to the equivariant case.

2. Definitions and Main Results.

A smooth action of a circle S* on a manifold M is called semi-free if
the action is free outside the set of fixed points MS'. In this paper we
always assume that the action of S' on M is semi-free and there are
finitely many fixed points of the action.

An important property of semi-free actions is that around every iso-
lated fixed point p, there exists an open neighborhood U of p and an
invariant diffeomorphism ¢ between U and an invariant open subset of
C", where S' acts on C" with weight (1,...,1). We call (U, ¢) a stan-
dard chart at p. We will use both complex coordinates (z1, ..., z,) and
real coordinates (21, Y1, - -, ZTn, Yn) on C* = R?" with z; = x; + /—1y;.

Let f : M®™ — R be a smooth invariant function. Denote by Crit(f)
the set of critical points of f. Let Crit.(f) be the set of connected
components of Crit(f). Notice that all isolated fixed points of the
action must be critical points of f.

A fixed point p € M5 is nondegenerate if the Hessian of f at p is
nondegenerate. An invariant version of the Morse lemma says that for
every nondegenerate fixed point there exists a standard chart (U, ¢) at
p, so that on U

f=¢"(f) = laal” = =l + o + - + |zl

The chart (U, ¢) is called a standard chart of f at p, and the index o(p)
of p is defined to be 2\.

A circle orbit s C Crit(f) will be called a critical circle of f. Choose
an invariant neighborhood U of s on which S' acts freely and let 7 be
the map U — U/S'. Then s is nondegenerate if the Hessian of m, (f) is
nondegenerate at s/S'. The Morse lemma states that there exists an

invariant neighborhood U € U of s and coordinates (%1, ..., Top_1) ON
U/S', such that

f:ﬂ*(f(p)—x?—---—x§\+x?\+1+---+x§n71).
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We say that U together with the coordinates xy, ..., %2, 1 is a standard
chart of f at s. The index o(s) of s is defined to be A.

Define f to be an invariant Morse function if each connected compo-
nent of C'rit(f) is either a nondegenerate fixed point or a nondegenerate
critical circle.

Assume f is an invariant Morse function on M. An invariant vector
field £ on M is a gradient-like vector field if

1) £(f) <0 on M — Crit(f),
2) for every nondegenerate critical point p, there exists a standard
chart (U, ¢) of f at p, such that £ on U has coordinates

(xlayla s TN YNy TN TYNFL - - T T, _yn)

3) for every nondegenerate critical circle s there exists a standard
chart of f at s, such that the pushforward vector field 7, (£) on
U/S" has coordinates

(:Ul, R /5 N Rt 2 W PP —$2n,1).

A gradient-like vector field £ defines a smooth flow ¢¢(t) on M. For
q € Crit.(f) define

Wy ={z € M| lim ¢¢(t) € ¢}

The manifold VV;r is the stable manifold of q, and W is the unstable
manifold of q. The pair (f,&) is called an invariant Morse-Smale func-
tion on M if every stable manifold intersects every unstable manifolds
transversely.

Theorem 2.1. Every semi-free circle action on a compact manifold
with isolated fixed points has an invariant Morse-Smale function.

The key step in the proof of our main result is a new cancellation
theorem. To state it, let us introduce some notation. For a subset [
of R and a submanifold N of M, define N;(f) = f~'(I) N N. When
the context is clear, we will drop f from the notation and set N; =
Ni(f). For example, for a € R, W, = W,Fn f~'(a), W, =W, N
[~ ((=o00,al), or for a < b, Mgy = f~"([a,b]). -

Assume V is an oriented manifold with a free S! action and that N
and N’ are two submanifolds of V' which intersect transversely with
dim N +dim N' = dimV + 1. Also assume N and the normal bundle
v(N') are oriented. In Section 4 we define the intersection number
N - N' by counting the number of circles in N N N’ with appropriate
signs. Orientations on N and v(N) are compatible with respect to an
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orientation on V, if at any point of N a positively oriented frame on
N followed by a positively oriented frame on v(N) gives a positively
oriented frame on V. If the orientation on N and v(N) as well as on N’
and v(N') are compatible to an orientation on V', then N-N' = £ N'-N.

Theorem 2.2. (The cancellation theorem.) Assume a circle action on
a compact manifold M is semi-free and (f,&) is an invariant Morse-
Smale function on M. Assumea < b and M, contains one fived point
p of index A and one critical circle s of index A\+1. Let f(p) < ¢ < f(s).
Suppose V- = M, is oriented and N = W5, v(N) as well as N' = W,
v(N') are equipped with compatible orientations and N - N' = +1.
Further assume that either dim M > 8, M,/S"' is simply-connected,
and M, is connected; or A =0; or A =dim M — 2.

Then there exist a new invariant Morse function " and a new gradient-
like vector field £ identical to (f,&) outside Mqp) such that M) con-

tains no critical circles of f' and the index of the fized point p is A+ 2.

A circle action is  torsion-free  if the equivariant  cohomology
H: (M) = H (M, Z) is torsion-free as a Z module. For a torsion-free
S action define its Poincare polynomial by

Psr(M) = > dim(HE (M)t
kGZZO
For a fixed point p define M(p) = f_(:;, and for a critical circle s
set M(s) = t°®). Define the Morse polynomial of an invariant Morse
function f by

Ma(M, f) = > M)

qgeCrite(f)

An invariant Morse function is perfect if the Poincare and Morse poly-
nomials are the same: Pg1(M) = Mg (M, f). We have given all the
definitions needed to state Theorem 1.1.

3. Existence of invariant Morse-Smale functions

We believe many results of this section are known to the experts in
the field (see [3] for further references). We provide the proofs of these
results for completeness.

Theorem 3.1. Every semi-free circle action on a compact manifold
with isolated fized points has an invariant Morse function.
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Proof. Let M5 = {p1,--.,pm}- Around every fixed point p; there
exists a standard coordinate chart (U;, ¢;). Without loss of generality,
we can assume each U; is diffeomorphic to a unit ball B; inside of C”
and that U;’s are pairwise disjoint.

Define f = ¢7(]2]?) on every U;. We want to extend f to M — U
, where U = U;U;. The manifold X = (M — U)/S' is compact and
0X = (0U)/S'. By [8, Theorem 2.5] there exists a Morse function
h: (X,0X) — ([1,00),1). Denote by 7 the projection M — U — X.
Define f = 7*(h) on M — U. Then f is smooth outside of 9U.

To finish the proof use the following smoothing argument. Choose an
invariant tubular neighborhood V' of U and identify it with (—&,¢) x
OU. Let f~, f be two smooth functions on V, such that f~(¢,z) =
f(t,x) for (t,x) € (—¢,0) x OU and f*(t,x) = f(t,x) for (t,z) €
(0,£) x OU. Without loss of generality, we can assume %—;(t,x) > 0
and 27 (t,x) > 0 on V and f*(t,x) > f(t,x) for [t| > £/2. Let
1(t) be a smooth positive nondecreasing function, with pu(t) = 0, for
t < —&; p(t) =1 for t > ¢; and p(t) = 5 for |f| < /2. Change f to
pfT+(1—p)f~ on V. Then f is smooth on M. An easy computation
shows that % > 0 on V' which implies that this construction does not
create new critical points of f. ([l

Every invariant Morse function together with an invariant gradient-
like vector field on a manifold with isolated fixed points defines a partial
order on Crit.(f) as follows. If q1, g2 € Crit.(f), set 1 < gz if ¢1 is in
the closure of W . Complete this relation to satisfy transitivity and
hence define a partial order on Crit.(f). A map c: Crit.(f) — R is
said to be order preserving if q; < g implies ¢(q1) < ¢(g2)-

Theorem 3.2. Assume a circle action on M is semi-free and has iso-
lated fized points. Let f be an invariant Morse function and & be its
gradient-like vector field on M, then every order preserving map on
Crit.(f) can be extended to an invariant Morse function.

Proof. Throughout the proof £ and the partial order < are fixed. Notice
that for every q € Crit.(f) there exists an invariant Morse function g,
such that g = f outside a small invariant neighborhood U of ¢, ¢g(¢) =
f(q) + € for a small enough ¢, and £ is an invariant gradient-like vector
field for g. The function g can be defined by g = f + p, where p is an
invariant “bump” function, such that p = 0 outside of U, p = ¢ on a
compact set K C U and |{(p)| < [£(f)|on U — K.
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Hence the theorem follows from the following statement. Let f have
two critical values in the interval (a,b), such that one critical level
contains {qi,...,qx} C Crit.(f) and the other contains {ry,...,r,} C
Crit.(f). Moreover, assume non of the ¢;’s are compatible with the r;’s
in the partial order <, that is stable and unstable manifolds of ¢;’s
and r;’s never intersect. Then for any aj,as € (a,b), there exists an
invariant Morse function g, such that & is an invariant gradient-like
vector field of g, f = g outside My, the set of critical points of g is
the same as the set of critical points of f, and g(¢;) = a1, g(r;) = as.

Without the word “invariant” the above statement is [8, Theorem 4.2].
This allows to give a proof of this statement by making a few minor
changes in the proof of [8, Theorem 4.2], mainly by inserting the word
“invariant” where necessary. ([l

Let S! act on two manifolds M and N. An invariant isotopy between
two invariant diffeomorphisms hg, h; : M — N is a smooth map h :
M x [0,1] — N, such that hy(x) = h(x,0), hy(z) = h(z,1) and every
hi(x) = h(z,t) is an invariant diffecomorphism. We say that h is an
wsotopy of identity if M = N and hg is an identity map.

Lemma 3.3. Assume we are given an invariant Morse function f on
M with an invariant gradient-like vector field &, a non-critical level
M, = f~Y(a), and a diffeomorphism hy : M, — M, that is invariantly
isotopic to the identity. If for a < b the interval [a,b] contains no
critical values, then it is possible to construct a gradient-like vector field
£, such that € = & outside Mgy and @ = hyop, where ¢ and ¢ are the
diffeomorphisms My, — M, determined by following the trajectories of
€ and & respectively.

Proof. This lemma is the invariant version of [8, Lemma 4.7] whose
proof can be modified (mostly by inserting the word “invariant”) to
provide a proof of the lemma. O

Proof of Theorem 2.1. Using Theorem 3.1 choose an invariant Morse
function f on M. Pick any invariant riemmannian metric on M, let
v = —grad(f). On canonical charts U; of f at every fixed point or
critical circle define a vector field x4 which is a gradient-like vector field
on UU;. Pick a nonnegative function p which is zero outside of UU;
and one in a neighborhood of Crit(f). Then £ = pu+ (1 — p)v is a
gradient-like vector field.

By Theorem 3.2, we can assume that every critical level of f contains
exactly one fixed point or one critical circle. Let ¢; < --- < ¢, be the
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critical values of f and ¢,...,qx € Crit.(f) with f(¢;) = ¢. By
induction on ¢ we will prove that there exists an invariant gradient-like
vector field £ of f, such that every Wq; intersects transversely with
every stable manifold for any j < 1.

The base of the induction is trivial for 7 = 1. Assume our induc-
tion statement holds for ¢ — 1. To prove the theorem it is enough to
perturb & on the preimage of (¢; 1, ¢;) to guarantee that W, intersects
transversely with all the stable manifolds.

Choose a number a between ¢;_; and ¢;. There exists an invariant
tubular neighborhood U of W, inside M, which is diffeomorphic to
an R¥ vector bundle 7 : V — W, . If g is a critical circle, then
V' can be chosen to be an S'-trivial bundle, that is U is invariantly
diffeomorphic to W , x R*, with S! acting only on the first component.
Let P : U — R* be the natural projection. Let Y; be the set of critical
values of P restricted to W;;,a NU and set Y = U;Y;. By Sard’s

theorem Y has measure zero inside RF. Choose v € R¥ — Y. There
exists an invariant isotopy of identity hy on U = W =, X R*, such that
(W, . x0) =W, , xvand h is the identity outside some compact
neighborhood K C U of W ,. Extend this isotopy to M, by setting
it to be identity outside of U. Then apply Lemma 3.3 to perturb the
gradient-vector field £ to guarantee that the induction assumption is
satisfied.

If g; is a fixed point, then 7 : V. — W is no longer Sl-trivial.
But W, . can be covered by finitely many compact invariant sets
{K,}}_, such that each K, is inside an open invariant set W, which
invariantly contracts to a circle. Without loss of generality we may
assume that W,’s are invariantly diffeomorphic to B} x S' (where B is
an open ball of radius 1 and S acts only on the second factor) and K’s
are By x St inside Wy. Set V; = 7w 1(WW,), then the bundle V, — W, can
be trivializes and, in particular, each V} is invariantly diffeomorphic to
W, x R¥ with S acting only on the first factor.

Let P, be the natural projection from V; to Rf. Assume v; is a
regular value for every restriction of P, to W;; o Then construct an
isotopy of identity h} on M, which is identity outside V; and such that
hi takes Ki x 0 onto Ky x v;. This will guarantee that hi(W,,) is
transverse to every W' on Kj.

To construct an isotopy of identity ~h?, choose a trivialization
hi(Vy) = hl(Wy) x R let P, be the natural projection onto the second
factor, and choose vy which is a regular value for every restriction
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of P, to W' ,. Choose A7, such that it is identity outside of h;(V5)
and h? takes hi(K;) x 0 onto h}(K5,) X vy. Since K, is compact and
transversality is an open condition we can choose v, to be small enough
so that hi(hi (W, ,)) is transverse to W', on K; Then hi(h;(W,,))
is transverse to all W;;,a on K; UK.

This process can be continued to construct invariant isotopies of
identity h}", such that A7"(...(hj(W;,))...) is transverse to every
Wit o on Uf K. Eventually we will construct hy,...,hJ such that
hi(...(hi(W, ,))-..) is transverse to every W' .- Repeatedly apply
Lemma 3.3 to perturb £ to a new gradient-like vector field to guaran-
tee W~ intersects all stable manifolds transversely. 0

Minor modifications of the above argument provide a slightly stronger
result.

Theorem 3.4. Assume a circle action on a compact manifold M is
semi-free and has isolated fized points. Then for every Morse function
[ there ezists a gradient-like vector field & such that (f,&) is Morse-
Smale.

Remark 3.5. As mentioned in the introduction, it is not true that any
compact manifold with a circle action has an invariant Morse-Smale
function.

4. Cancellation Theorems.

The following example is an illustration to the cancellation theorems.

Example 4.1. Let S' act on R? = C with weight 1. Consider a
function f(z) = v(|z|) where v(r) is a real valued function which is
equal to 72 near zero, strictly increases as r increases from 0 to 1,
equals to 2r — 72 near 1, and strictly decreases as r goes from 1 to
infinity. Then f is an invariant Morse function with a fixed point at
the origin of index 0 and a critical circle at the unit circle of index 1.
An invariant gradient-like vector field is given by (zp(|z]),yp(|z])) at
the point 2 = z + /—1y, where p(r) = —1 near 0, p(r) < 0 when
0<T<1,p>0whenr>1,andp:¥nearl.

Changing f to 2 — |2|? and the gradient-like vector field to (z,)
cancels the critical circle and increases the index of the origin to 2. See
Figure 1. 0

Theorem 4.2. (The preliminary cancellation theorem) Assume f is
an invariant Morse function on a compact manifold M with semi-free
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circle action and £ is a gradient-like vector field on M. Assume a < b
and Mqp) contains a single fized point p of index X and a single critical
circle s of index A+ 1. Let T = VVPJr NW, be a single disc. Then there
exists an invariant Morse function f'" identical to f outside My, such
that M,y contains no critical circles of f' and the index of the fived
point p is A + 2.

Proof. Let S' act on C* with weight (1,...,1). Define

h(z1, ..y 2p) =
F)+ (f(s) = FP)v(]) = |2l = -+ = |2 + [aagal” + - + |2,

where v is the function from Example 4.1. Moreover, let 1 be the vector
field given by

(xlp(|zl|)7 ?JIP(|ZI|), T2y Y2y oo s TAHL, YA+1, —TX42, —YX42, -+ -y —Tp, _yn))a

where p is the function from Example 4.1. Denote by p the origin of
C™ and by s the unit circle inside C x 0 x --- x 0.

Claim 4.3. There exists an invariant diffeomorphism ¢ which maps
an invariant neighborhood V' of the disc D = {(z1,0,...,0);|2z| < 1}
onto an invariant neighborhood U of T with ¢*(f) = h and g¢.(n) = &.

Proof of Claim 4.3. There exist diffeomorphisms g, and g, from neigh-
borhoods V; of p and V; of 5 onto neighborhoods U, of p and U; of s
which take D onto T'. Let ¢ be small enough so that f(p)+ec < f(s)—e¢.
Then set g equal to g, and to g, outside M[s(,) 4 r(s)—<]- By following
the trajectories of & and 1 the map g extends to D.

Let Ly = V; f(p)+- (recall our conventions V 4 = VN AT (f(p) +
e)) and L; = V; f(5)—. Set D = DN h *(f(p) +¢) and D; = DN
h='(f(s) — €). By following the trajectories of n we can define an
invariant diffeomorphism j; from a neighborhood Wj; of Dj; inside Lj
onto a neighborhood Wj; of Dj; inside L;. At the same time, if we
apply gs, then follow the trajectories of £ and then apply g[jl we get
another diffeomorphism j, from a neighborhood W/ of D; inside L;
onto a neighborhood W of Dj inside Lj.

The invariant diffeomorphisms j; and j, define diffecomorphisms j;
and j, of Ws/S* to W;/S* and of W}/S* to Wj/S'. Using [8, The-
orem 5.6] we can construct an isotopy of identity v; of a neighbor-
hood W/S! of D;/S" inside L;/S* which intertwines j; and jo, that is
¥1(j1) = Jo. Since we can assume W/S' is contractible, there exists an
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identification W = S' x W/S* and hence a lift of 1; to an invariant iso-
topy ¢, which intertwines 7; and j, on W. Since ¢ is identity outside
some compact set the isotopy g,(¢;) extends to the whole M) ..
Use Lemma 3.3 to perturb & on Msy1c f(s)—s] to guarantee that
j1 = Jo for the newly constructed gradient-vector field. The claim is
proved, since g extends to an open neighborhood of D by following the
trajectories of & and 7. O

The next step in the proof of Theorem 4.2 is to change £ to £ inside
U to guarantee that there is only one critical point of ¢ inside Mg ).

By an argument identical to the proof of Assertion 1 in the proof of
[8, Theorem 5.4], there exists an invariant neighborhood U" of T inside
an invariant neighborhood U’ of T such that U’ C U and no trajectory
of £ enters U"” then exits U’ and then returns to U”.

Change £ to &', such that & = & outside of U"”, while inside U"

6, - 9*(7)1(1'17 7_)7 U2(y17 7_)7 T2,Yay - 7:U/\+17 y)\+17 —.'L'/\+2, _y)\+27 sy —Tn, _yn))7

where 7 = |2 + -+ + |2,[%, vi(21,0) = 21, v2(y1,0) = y;. Moreover,
vy and vy are chosen such that £ = £ outside a compact neighborhood
of T inside U”. Clearly, & has only one critical point, which is p.

Let us show that there is no trajectory (¢, z) of £ through x which
lies completely inside U’. Let © = g(x%,y,...,z5,y.). If one of the
coordinates x3,ys, ..., x;, Yy, is not zero, then this coordinate of 1 (¢, x)
must increase or decrease exponentially and hence this trajectory even-
tually exits U’ either as ¢ increases or decreases. Otherwise, if only z;
or y; are not zero, then again the trajectory will exit U’ as ¢ increases,
since &'(z1,¥1,0,...,0) = ¢(x1,41,0,...,0) for some positive c.

We now show &' has no periodic trajectories and any trajectory is
inside W or W, or connects M, to M, (at this point we forget about
&, so that I/VpJr and W, are the stable and unstable manifolds of p of
¢'). Indeed, if a trajectory of £ does not intersect U", it connects M,
to M,, since it coincides with a trajectory of £&. If, on the other hand,
a trajectory ¢ (t,x) of £ through a point z inside U” intersects U’ and
is not inside W or Wp+, then there should be two nonzero coordinates
of x of indices i,j with i < A+ 1 < j. Such a trajectory must exit U’
as t increases and as t decreases and never return to U’. Hence this
trajectory connects M, to M. This finishes the construction of £'.

It remains to construct an invariant Morse function for which £’ is a
gradient-like vector field. To do this we will define an invariant Morse
function f’ on M,y with only one critical point p and with f'(M,) = a,
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f'(My) =band f(p) = cfora < c <b. Thenset f' = f outside of M,y
and, by the smoothing procedure described in the proof of Theorem
3.1, smoothen f’ in a neighborhood of M, and M,.

Let V' be an invariant neighborhood of p inside a canonical chart
of £'. Choose ¢ with a < ¢ — ¢ and ¢+ ¢ < b. We can clearly define f’
on Vv[cfa,c+5}-

Choose invariant neighborhoods V*, V= of W F, W~ which are pre-
served by the flow of £&. Then f’ can be define on V[:ngyb] and Vi, . .
Using again the smoothing argument f’ can be defined on a certain
neighborhood W of VVPJr U W, . Since there are no critical points on
Mgy — (W, U W), there exists an invariant function g on M, —
(W, u W) with £'(g) < 0, g(M,) = a and g(M,) = b.

Let p be an invariant function on M, which is equal to 0 outside
M, NV~ and equal to 1 in a neighborhood of M, N W. By following
the trajectories of & we get a map M5 — (W, UW ) — M, — W .
Pull back z1 to a function v on Mgy — (W, UW,), extend it to My
by setting v = 1 on W,F UW,". Then the function vf'+4 (1 —v)g is the
invariant Morse function on M, we are looking for. 0

Let S' act freely on a manifold V. Assume two invariant subman-
ifolds NV and N’ of dimensions r + 1 and s + 1 intersect transversely
and r + s = dimV — 1. Then N and N' intersect along some circles
S$1,-..,8. Assume N and the normal bundle v(N') are oriented. At
a point x; € s; choose a positively oriented frame &g, ..., & on N such
that & is the restriction to x; of the infinitesimal vector field associ-
ated to the circle action on s;. Since N and N’ intersect transversely,
&1,. .., & form a basis of the normal bundle to N' at x;. The inter-
section number of N and N’ at s; is defined to be +1 if &,...,&, is
a positively oriented basis and —1 otherwise. This definition does not
depend on the choice of the point z; inside of s;. The intersection num-
ber N - N of N and N’ is the sum of all the intersection numbers at
the circles s;.

If V' is oriented, then we say that orientations on N and on v(N)
are compatible with respect to the orientation on V' if at any point on
N a positively oriented frame on N followed by a positively oriented
frame on v(N) gives a positively oriented frame on V. If compatible
orientation on N and v(N) as well as on N’ and v(N') are used to
define N - N" and N'- N then N-N' = +N'- N depending on parity
of rs.
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Before we can prove the cancellation theorem we need two prelimi-
nary results:

Theorem 4.4. Let N and N' be smooth closed invariant transversely
intersecting submanifolds of dimensions r+1 and s+1 in the (r+s+1)-
manifold V' on which S* acts freely. Suppose N and the normal bundle
to N' are oriented. Assume r +s > 5, s > 3 and, in case r = 2,
suppose the inclusion map m ((V — N')/SY) — w1 (V/S) is injective.

Let s1,89 € N N N' be circles with opposite intersection numbers.
Assume there exist two invariant embeddings of S* x [0,1] into N and
into N’ which connect s; to sy, such that both embeddings miss N N

— {s1,82}. The composition of two embeddings provides a map of
St x St into V. Assume S' x S' is invariantly contractible to a circle
inside V.

With these assumptions there exists an invariant isotopy of identity
hy on' V', such that hy is identity near NONN'—{sy, s2} and hy(N)NN' =
NN N’ - {81, 82}.

Proof. We deliberately stated this theorem in the form very similar
to [8, Theorem 6.6]. Actually, [8, Theorem 6.6], applied to manifolds
V/S', N/S', and N'/S" provides an isotopy h; of VV/S" which is identity
near N/S'NN'/S'—{s1/S*, s5/S'} and such that h, (N/S*)NN'/S* =
N/s' N N'/S* — {s1/S",55/S'}. So, it is enough to show that h, can
be lifted to an invariant isotopy h; on V.

In the proof of [8, Theorem 6.6] the constructed isotopy hy is identity
outside some contractible open set U in V. (If D is the disc in V/S?,
whose boundary consists of two arcs connecting s;/S* to so/S', then
U is a neighborhood of D.) Set h; to be equal to identity outside of
771 (U) (where 7 : V — V/S'). Choosing an invariant trivialization
7Y U) = U x S" allows us to lift 7, to hy on U. O

Lemma 4.5. Given a semi-free circle action on a compact connected
manifold M, let f be an invariant Morse function on M and & a
gradient-like vector field. For reqular values a < b of f, suppose Mgy
contains exactly one critical point p and M, is connected then

T (Ma/S") = m(Mp/S") = mi (Mo =W, ,)/S") = mi((My — W,1)/SY).

Proof. Since p is of even index, My, M, — W, , and M, — VVJr are
connected and it makes sense to talk about the1r fundamental groups.
The trajectories of § provide an invariant diffeomorphism of M, — W,

and M,—W,',, in particular, m, ((M,—W,,)/S") = m (My—W, )/51)

Db
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Let U be an invariant tubular neighborhood of W, inside M,.
Then m (U/S,) = m(W,,/S") = 1, since W, ,/S* is homeomorphic
to a complex projective space. Moreover, m (U — Wp_,a/S’l) =1, since
U—-W,. /St is homotopy equivalent to an even sphere bundle over
a complex projective space. Hence, van Kampen’s theorem applied
to the covering of M,/S* by (M, — W, ,)/S" and U/S" immediately
leads to my(M,/S") = m((My — W,,)/S"). Analogously, we can prove
w1 (My/51) = m (M — W)/, 0

Proof of Theorem 2.2. Taking into account that A is even, there are
five different cases:

Case 1: A =0. Then N’ is two copies of a circle and N - N' = +1
implies N N N’ is just one circle. Hence Theorem 4.2 applies.

Case 2: A =dim M — 2. Then N is a circle and Theorem 4.2 applies
again.

Case 3: dimM —4 > \ >4, dim M > 8, M,/S" is simply-connected,
M, is connected. Set r +1 = dim N = dimM — A —1and s+ 1 =
dimN'" = A+ 1. Then r+s = dimM —2 > 5, s = A > 3, and
r=dimM — X\ —2 > 3. Lemma 4.5 implies m(M,./S') = 1, hence
Theorem 4.4 applies to this situation. Repeatedly apply Theorem 4.4
to find an invariant homotopy h; of M, to guarantee hi(N) N N' is
a single circle. Then we can apply Lemma 3.3 to find new (f’,¢)
for which W;r intersect W along a single disc. Finally we apply the
preliminary cancellation theorem to finish this case.

Case 4: A =dim M — 4, dim M > 8, M,/S" is simply-connected,

M, is connected. Define r +1 =dim N =dimM —A—-1=3, s+ 1=
dim N' = A+1, so that r =2, s > 3 while r + s = dim M — 2 > 5. So,
to apply Theorem 4.4 and then Theorem 4.2 as in Case 3, it is enough
to show m((M,—N")/S') = m(M,./S*) = 1. Notice m(M,./S') =1 by
Lemma 4.5. To show m ((M. — N')/S") = 1, identify N'/S" with the
sphere of dimension dim M — 3 and then use an argument analogues
to the proof of Lemma 4.5.

Case 5: A = 2,dim M > 8, M,/S" is simply-connected , M, is connected.

Here we interchange the roles of N and N’ in Theorem 4.4. Namely,
set r+1=dimN' =3 and s+1=dim N =dim M — 3. Then r = 2,
r4+s>>5and s > 3, so to apply Theorem 4.4 and the preliminary can-
cellation theorem as in Case 3, it is enough to check m ((M.—N)/S') =
m(M,./S"), which immediately follows from Lemma 4.5. O
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5. Equivariant Cohomology and Morse Theory.

This section discusses properties of equivariant cohomology and its
connections to Morse theory. Let ES! be a contractible space with
a free S action. (For example, ES' can be the infinite dimensional
sphere S%.) The equivariant cohomology is defined by

(M, Z) = H*(M x ESY)/S",Z).

We only use cohomology with integer coefficients and write Hg, (M) =
Hz (M, 7).

If a circle action on M is free then H, (M) = H*(M/S").

The equivariant cohomology of a point with a trivial circle action is
equal to the cohomology of the space BS' = ES'/S'. (If ES' = §*,
then BS! is the infinite dimensional projective space CP>* = §%/S'))
It is known that HY, (pt) = H*(BS") is the ring of polynomials in one
variable Z[u] where the generator u has degree 2.

The map M — pt produces the pullback map in equivariant coho-
mology Hi(pt) — H%, (M) which equips the equivariant cohomology
ring with a Z[u]-module structure.

A natural inclusion of M into (M x ES')/S' gives a map from
the equivariant cohomology to the regular cohomology  : Hg, (M) —
H*(M).

Given an invariant Morse function f on M and a < b, the exact
sequence of the tuple (M<,, M<yp) is
(5.1)
= HE (M) = Hj, (Mey) 5 H5H (May, M<g) — HEP (M) — ...
To understand this exact sequence (especially the map J) better, let
us describe the cohomology Hj (M<y, M<,) in the case when Mg

contains a single critical point p of index A. By the classical results in
invariant Morse theory (see [1]) we know that

Hgl(MSb’ Mga) = g'l(W_ Wp_,a) = EI(D/\, 5)‘_1)7

p,>a

where D* is the unit disc inside C3 on which S acts with weight
(1,...,1) and S*!' = 9D*. By Thom isomorphism H}, (D*, S*!) =
HiM(pt). Choosing a generator 7, of Hy (DA, S*71) we get a Z[ul-
module identification

H;l (Mgb, Mga) = TpHgl (pt)

We call 7, a Thom class of p. Notice that choosing 7, is equivalent to
picking an orientation on W".
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Similarly, if M, has a single critical circle s of index A then
Hg (Mey, M<o) = 75Hgi (S') = 7.H" (pt)
and 7, € HY (M<y, M<,) is a Thom class of s.
Lemma 5.1. Assume an action of S* on a compact oriented manifold
M is semi-free and (f,&) is an invariant Morse-Smale function on M.
Assume a < b and My contains a critical point p of index A and a

critical circle s of index A + 1. Let f(p) <c < f(s). Suppose M, is
oriented and N = Wt v(N) as well as N' =W, v(N') are equipped

p,c? s,¢7
with compatible orientations.

Consider the boundary map of the exact sequence of the triple
(Mgba MSC) Mga)

0 : Hgi (Mco, M<y) — HgH (Mcp, M<.).

This map takes Hy (M<., M<,) = 1,7 to HQTI(MS(),MSC) ~ 7. If
d(7p) = e then N - N' = £e.

Proof. Use excision to identify
51 (M<e, M<o) = Hgi (Miq,q, M)
and
;1 (MgbaMgc) - ;1 (M[c,b]aMc)-
The map
K H;q (M[a’c}, Ma) — H*(M[a’c}, Ma)
is an isomorphism in degree \. Moreover, by Poincare duality
H)\(M[a,c}a Ma) = Hdimez\(M[a,c]a Mc)
Since S acts freely on M., we have
(Mo, M) = H* (Mo /S", M./SY).
By Poincare duality
H/\+1(M[c,b]/sla MC/SI) = HdimM—)\—Q(M[c,b}/Sla Mb/Sl)
Thus, we view J as the map
6+ Haimni—x(Miaqs Me) = Heaimvr—r—2(Miep /S, My/SY).

This map has a geometric interpretation. The generator of Hgim s a
(Mia,q, M.) is given by the cycle Wp+[a o> then d sends it to the cycle
(OW,5,.g)/ St =W, /St = N/S" inside the tuple (M4/S", My/S").
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Apply [8, Lemma 7.2] to our situation. It states that the homology
class of N/S' is a generator of Hgim pr—x—2(Miep)/S*, M,/ S') multiplied
by N - N’ which proves the lemma. O

Theorem 5.2. Assume an action of S* on a compact oriented manifold
M is semi-free and (f,€) is an invariant Morse-Smale function. For
a < b suppose M,y is connected. Assume the set of critical points
in Mqp) consists of critical points p1,...,py of the same index X with
2< A< dimM —2 (or critical circles si,...,s, of the same index A
with 3 <X < dimM —2). Gien a basis 7v,...,7, of Hy (M<y, M<,)
there exists an invariant Morse-Smale function (f', &) which coincides
with (f,€) outside Miap), has the same set of critical points as (f,§)
and after choosing the proper orientations on W,  the Thom class of
each p; is 7; (or the Thom class of each s; is ;).

Proof. Consider the case when M, ;) contains only critical points py, .. ., px.
Forget for a moment about the circle acting on our manifold and try

to prove the theorem for the regular cohomology groups. Then using
excision and Poincare duality we can identify

HM( My, M<,) = Hy, (Mg, My).

Moreover, the Thom classes of the fixed point p; are given by the cy-
cles Wpt[a’b}. Translating our theorem into a statement about a basis in
homology leads to a statement identical to [8, Theorem 7.6]. In partic-
ular, there exists a Morse-Smale function (f, f) on M which coincides
with (f, &) outside M, and the Thom classes (in regular cohomology)
of p;’s are exactly k(7;)’s

Notice that the map r identifies Hg, (M<p, M<,) with H* (M, M<,).
So, if we show (f’, &) can be chosen invariantly with respect to the circle
action, the theorem is proved.

Without loss of generality we may assume (f, ) coincides with (f,€)
in a neighborhood of every fixed point, this follows from an examination
of the proof of [8, Theorem 7.6].

Let us average (f,€) with respect to the circle action to produce
invariant function f’ and invariant vector field £’. Then (f',&') is iden-
tical to (f, ) outside of M, and in neighborhoods of the fixed points
{p1,...,pr}. Moreover, it is obvious that &'(f’) < 0 on M — MS.
Hence f' is an invariant Morse function and &' is its invariant gradient-
like vector field. Moreover k(7,,) are the same as for (f, ). Hence the
Thom classes 7,, form the required basis.
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Finally, to make (f’,¢’) into an invariant Morse-Smale function we
need to apply Theorem 2.1 and perturb & without changing the Thom
classes 7,.

Let us now outline the proof in the case when M, contains only
critical circles. Since the circle acts freely on M, we can make an
analogous statement on Mp,;/S* and then use Poincare duality to
translate it into a statement in homology. This statement will follow
from [8, Theorem 7.6], which is proved by constructing a series of
isotopies of identity on M, and then changing the vector field according
to these isotopies. Inspection of the proof of [8, Theorem 7.6] shows
that each of these isotopies is identity outside a contractible set and
hence can be lifted to Mp, ;). This adopts the proof of [8, Theorem 7.6]
to give a proof of our theorem in the case of critical circles. OJ

6. Proof of the main theorem.

Lemma 6.1. Assume a circle action on a compact manifold M 1is
torsion-free and has isolated fixed points pi,--- , pm. Choose invariant
neighborhoods U; of p; diffeomorphic to unit balls and set U = U;U;.
Then the homology groups H,((M — U)/S',U/S") are Z-torsion-free.

Proof. By Poincare duality

H.((M —U)/S', 0U/S") = HI™M=1=((M —U)/SY).
Since

H*((M = U)/S") = H5: (M = U) = Hy (M — M),

it is enough to show that cohomology groups H¢, (M—MSI) are torsion-
free.
Consider the Mayer-Vietoris sequence for M = U U (M — M5"):

o= H (M) — Hi (U)@HsS (M—=MS") — HL (UN(M—=M5")) — ...

An easy computation in equivariant cohomology implies the surjectivity
of the map

S H % (p;) = Hi(U) = Ha(UN (M — M5Y)) = H*(0U/SY).

Hence the Mayer-Vietoris sequence breaks up into short exact sequences.
Since H, (M) and HE, (UN(M —M5")) are torsion-free, the same holds
for H%, (M — MS). O
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An invariant Morse function f is self-indezing if f(q) = o(q) for
every ¢ € Crit.(f), in particular, the critical values of f are be-
tween zero and dim M. For an integer £, define My = M, 1. Then

HY (My, Mi—y) is generated as a Z[u] module by the Thom classes of
critical points and circles of index k. Then, by definition, f is perfect
on My, if Psi(My) = Mgi(My, f). The exact sequence of the triple
(M1, My, My._1) defines the map

O« Hi (My—1, My_o) — HE (M, My_1)

Proof of Theorem 1.1. The proof will use induction on %k to construct
a self-indexing invariant Morse-Smale function (f, &) on M, such that

1) f is perfect on My,
2) 0,(75) = 0 for every critical circle s of index m — 1.

Basis of induction for £ = 0. Use the notations from Lemma 6.1.
Since M is simply-connected, it is easy to see using van Kampen theo-
rem that (M — U)/S?! is simply-connected as well. This together with
Lemma 6.1 allow to use [9, Theorem 6.5] which implies that there exists
a perfect Morse function

f((M=0)/8",(0U)/S") = ([1,00),1).

Lift f to f on M — U. As in the proof of Theorem 3.1 extend f to M
by setting f = ¢#(]z|>) on U; and smoothing it along OU.

By Theorem 3.4 there exists an invariant gradient-like vector field &,
such that (f, &) is an invariant Morse-Smale function. By Theorem 3.2
we can assume f is self-indexing. Conditions (1) and (2) are satisfied
by f, since f is a perfect Morse function.

Induction step for £ = 1. Assume f satisfies conditions (1) and (2)
for k = 0. Let p be a fixed point of index 0 such that ¢;(7,) # 0. Then
it is easy to see that there exists a critical circle s of index 1 such that
the closure of the intersection W, N VV];r is a single disc. By Theorem
4.2 we can cancel the critical circle s by increasing the index of p by 2.
We can continue this process until the map d; is nontrivial. After this
(f, &) will satisfy (1) and (2) for £ = 1.

Induction step for even k > 2. If k is even and (f,&) satisfies
conditions (1) and (2) for £ — 1, then (f,&) satisfies (1) and (2) for
k as well. Indeed, the second condition does not depend on k. At
the same time, the map J is trivial, by condition (2) and the fact
that Mj;_; — Mjy_5 contains no fixed points. This implies that the
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exact sequence of the pair (My, My 1) splits into short exact sequences
proving the perfectness of f on Mj.

Induction step for odd k > 1. Assume (f,&) satisfies (1) and (2)
for £ — 1. Since the map ¢y vanishes on all the Thom classes of critical
circles we can assume without loss of generality that there are no critical

circles of index k—1. Assume p;,, ..., p;, are all the fixed point of index
k—1of f.
Choose a basis 7q,...,7, of the kernel of the map ¢; restricted to

H*Y(Mj_y, My_5). Complete it to a basis of H* Y(My_y, My_5) by
adding 7,41, ..., 7. By Theorem 5.2 we can perturb (f,&) on My_; —
Mj,_o such that 7,, = 7; after the perturbation.

Assume sq,...,s, are the critical circles of f of index k, then their
Thom classes form a basis of H*(Mj, My_1). The elements 7; = 6y, (7,1;)
of H¥(M,, My_;) span the image of 6;. Complete 7,...7, , to a ba-
sis of H*(My, My,_1) by adding 7y_y41, ..., 7. By Theorem 5.2 we can
alter (f,&) on My — My_, to guarantee 7,, = 7;. Apply Lemma 5.1
together with Theorem 2.2 to cancel the critical circles sq,...s,_, by
increasing the index of each p,y; by 2. This produces a new invariant
Morse-Smale function which satisfies (1) and (2) for k.

The above argument works as long as the assumptions of Theo-
rems 2.2 are satisfied. Checking these assumptions boils down to mak-
ing sure that if f is perfect on M, for k > 1, then (f~'(a))/S" for any
regular a < k+ % is simply-connected. It is enough to prove that if the
interval [a, b] contains exactly one critical value then 7 (f~"(a)/S") =
7 (f1(b)/S"). This follows from Theorem 3.2, Lemma 4.5 and an
analogue of Lemma 4.5 for critical circle instead of fixed point with an
almost identical proof. O

Remark 6.2. The dimension restriction, which appears in this theo-
rem comes from the dimension restrictions in classical Morse theory.
In particular, if dim M is either 4 or 6 then [9, Theorem 6.5] used in
the basis of induction fails.
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