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A h-principle for open relations invariant under
foliated isotopies

MELANIE BERTELSON'

This paper presents a natural extension to foliated spaces of the
following result due to Gromov: the h-principle for open, invariant
differential relations is valid on open manifolds. The definition of
openness for foliated spaces adopted here involves a certain type
of Morse functions. Consequences concerning the problem of exis-
tence of regular Poisson structures, the original motivation for this
work, are presented.

0. Introduction.

Gromov proved in [9] the following theorem.

Theorem 0.1. On an open manifold, the parametric h-principle for open,
invariant differential relations is valid.

Heuristically, a differential relation on a manifold M is a differential
constraint on the sections of a certain bundle 7 : E — M. More precisely,
it is a subset  of some jet bundle J*(E) of local sections of E. A section
of E whose k-jet extension is entirely contained in the relation satisfies the
constraint; it is called a solution of the differential relation Q. A relation
is said to be open (respectively invariant) when € is an open subset of J*(E)
(respectively when isotopies of M can be lifted to isotopies of J*(E) that
preserve ). Letting Sol(2) (respectively I'(£2)) denote the set of solutions
(respectively sections) of 2, endowed with the weak C* (respectively C°)
topology, the relation 2 is said to satisfy the parametric h-principle if the
k-jet extension map

7F: Sol(Q) = T(Q) : f— jFf

1This work has been supported by an Alfred P. Sloan Dissertation Fellowship.
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is a weak homotopy equivalence. This means that the map j* induces a
bijection inbetween arcwise connected components of Sol(€2) and I'(Q2), and
isomorphisms of the homotopy groups for the various components.

Theorem 0.1 has a lot of important corollaries concerning the existence
and classification problems of various types of objects in differential topology
and geometry (cf. [10]). For instance, applying Theorem 0.1 to the relation
Q% = {jla(z) € JYT*M);da(z) is nondegenerate } yields the following
result.

Corollary 0.2. Let M be an open manifold. The inclusion of the space of
exact symplectic forms on M into the space of nondegenerate 2-forms is a
weak homotopy equivalence.

In particular, on an open manifold, existence of a symplectic structure
depends only on existence of a nondegenerate 2-form, a problem that belongs
to obstruction theory.

The hypothesis that M is open is crucial. Indeed, already for the sym-
plectic relation Q°, the h-principle is far from being valid on a closed man-
ifold. In addition to a nondegenerate 2-form, a closed symplectic manifold
admits a de Rham class in H?(M) whose top exterior power does not vanish.
More subtle conditions, involving Seiberg—Witten invariants, have been dis-
covered by Taubes (cf. [20]). Furthermore, even when the manifold admits
a symplectic structure, not any nondegenerate 2-form may be deformed into
a symplectic form. In general, if every open, invariant differential relation
defined on a manifold M satisfies the h-principle, then M must be open, as
such a relation can be constructed that admits sections and whose solutions
are functions without local maxima.

Motivated by the problem of existence of leafwise symplectic structures
on foliated spaces (cf. [1, 2]), we searched for a generalization of Theorem 0.1
to foliated invariant differential relations, that is, differential relations that
are invariant under isotopies that preserve a certain foliation on the mani-
fold. This requires finding a good notion of “openness” for foliated spaces.
It is important to observe that one may not, in general, impose on the so-
lutions constructed in the proof of Theorem 0.1 to be nicely behaved at
infinity. In contrast, a solution of a differential relation (a symplectic struc-
ture for instance) on a nonclosed leaf of a foliation that is the restriction of
a global solution (a leafwise symplectic structure) is most likely very con-
strained at infinity, partly due to recurrence phenomena, partly due to the
influence of neighboring leaves. The foliated case lies, in some sense, midway
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between the open case and the closed case. Examples of foliations have been
exhibited in [1, 2] that carry leafwise nondegenerate 2-forms, and in some
case display no identifiable closedness feature, but do not carry any leafwise
symplectic form.

On the other hand, open manifolds are characterized by the existence of
a positive, proper Morse function, without any local maximum. The proof of
Theorem 0.1 suggests to base a definition of openness for foliated manifolds
on that characterization. This justifies the following definition.

Definition 0.3. A foliated manifold (M, F) is said to be uniformely open
if there exists a smooth function f : M — [0,00) that has the following
properties:

a) f is proper,
b) f has no leafwise local maxima,
c) fis F-generic (cf. Definition 3.22 below).

With this definition of openness, the following result holds:

Theorem 0.4. On a uniformely open foliated manifold, any open, foliated
invariant differential relation satisfies the parametric h-principle.

Corollary 0.5. Let (M,F) be a uniformely open foliated manifold. Any
leafwise nondegenerate 2-form is homotopic, in the class of leafwise nonde-
generate 2-forms, to a leafwise symplectic form.

The leaves of a uniformely open foliation are necessarily open manifolds,
but this condition is not sufficient. It can be checked directly (i.e. without
quoting Corollary 0.5) that the foliated manifolds introduced in [1, 2] do not
support any function f satisfying a) and b).

The proof of Theorem 0.4 involves consideration of the trajectories of a
leafwise gradient vector field for f, as did the proof of Theorem 0.1. There
are new difficulties. First, the leafwise critical points of f are not isolated but
come in families. Thus they cannot be handled one at a time (as they are in
the nonfoliated case). Secondly, leafwise critical points may be degenerate,
even generically. The set of trajectories converging to a degenerate critical
point is not in general well understood. To overcome the latter difficulty one
needs to carry out a careful construction of a Riemannian metric for which
the trajectories of the associated leafwise gradient vector field are somewhat
controlled near the singular locus.
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This paper is organized as follows. Section 1 is a brief introduction to the
theory of h-principles (see [10]). Section 2 presents an outline of the proof
of Theorem 0.4, and should serve as a reading-guide for the remainder of
the text. Section 3 is devoted to making precise the term F-generic referred
to in Definition 0.3, and to introducing the notion of strong F-genericity
needed later. Section 4 exhibits some properties of leafwise gradient vector
fields (Definition 4.1) of strongly F-generic functions. Section 5 describes
the construction of a nice Riemannian metric associated to a strongly F-
generic function. The proof of Theorem 0.4 is completed in Section 6. Some
examples of uniformely open foliated manifolds are presented in Section 7.
Finally, Section 8 is concerned with Corollary 0.5.

Acknowledgements. I wish to thank Emmanuel Giroux, who suggested
to generalize Gromov’s result, Alan Weinstein, whose insightful advice has
helped this work reach its final shape, and Yasha Eliashberg for many very
stimulating conversations. I would like to aknowledge the hospitality of
the Max-Planck-Institut fir Mathematik (Bonn), where the redaction of
this text was carried out. I am grateful to the referee for his relevant and
interesting suggestions.

1. H-principles.

We state here the definitions and results of the theory of h-principles (cf. [10])
that will be needed in the remainder of the text. We have followed Emmanuel
Giroux’s beautiful (as yet unpublished) lecture notes [7]. The proofs are
reproduced in [1].

1.1. Differential relations and h-principles.

Consider a locally trivial fibration 7 : £ — M with fiber a manifold F'. Let
EF* denote the set of k-jets of local sectionsof 7 : E - M. If f:UC M — E
is a local section defined on an open subset U of M, the k-jet of f at x € U
is denoted by j*¥f(x). The set E*, endowed with the natural projection
EF — M : j*f(x) ~ x, is a locally trivial fibration. For k < r < oo, a
C" local section f of E, defined on an open subset U, induces a C"~* local
section j¥f : U — E* : z +— j* f(x) of E¥, called the k-jet extension of f.

Definition 1.1. A subset Q of E* is called a differential relation of order
k. Tt is said to be open if it is an open subset. A section of EF whose values
are in (2 is called a section of Q. A C* section of E whose k-jet extension is
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a section of  is called a solution of Q. A section of EF that coincides with
the k-jet extension of some section of F is said to be holonomic.

Observe that solutions of 2 and holonomic sections of €2 are in one to
one correspondence.

Let €2 be a differential relation on the manifold M. We will be considering
families of sections of ) parameterized by cubes S = [0,1]P, p > 1. Those
are defined to be continuous maps f : M x S — E*, such that for each
s in S, the partial map f, : M — E* (obtained by restricting the map f
to M x {s}) is a section of Q. A homotopy of sections of Q is a family
parameterized by S = [0,1]. Concerning local sections of €2, we need to
introduce some terminology. Let (A, A’) denote a nested pair of compact
subsets of M. The word “nested” indicates that A’ C A.

A family of sections of Q0 defined near A is a family defined on U x S
for some neighborhood U of A.

- Two families of sections fs and g, are said to coincide near A if there
exists a neighborhood U of A on which both fs; and gs are defined,
and for which fs|y = gs|v for all s in S.

- A family of sections gs defined near A is said to extend another family
fs defined near A’ if g5 and f; coincide near A'.

- Two families of sections fs and gs; defined near A are said to be ho-
motopic if there exists a third family h,; defined near A with (s,t) in
S x [0,1], such that hso coincides with fs; near A and hs; coincides
with gs; near A.

- A homotopy h,; is said to be stationary near A for s in S'" C S if
there exists a neighborhood U of A for which hs; = hso on U, for ¢ in
[0,1], and for s in S'.

Similar definitions apply to sections of £ and to solutions of 2, with one
restriction : families f : M x S — E of C* sections of E are required to be
C*-continuous, that is, their k-jet extension j*f : M x S — E* is required
to be a continuous map. To obtain solutions that are of smoothness class
C", with k < r < 00, one should everywhere consider C” sections of E and
C*=" sections of EF only. Also, when the relation considered is open, any
(continuous) family of C" sections of E can be approximated by a smooth
family of C" sections, that is a smooth map M x S — E.
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In the sequel, S’ will always denote a subset of S = [0, 1]? consisting of
the union of some of its faces.

Definition 1.2 (The parametric h-principle). The relation Q C E* is
said to satisfy the parametric h-principle on M (near a subset A of M) if
any family of sections of Q (defined near A) is homotopic, among families
of sections of 2 (defined near A), to a family of holonomic sections of Q. If
the sections are already holonomic on M (or near A) for s in S’, we may
assume them to remain holonomic during the homotopy. (Equivalently, the
homotopy may be assumed to be stationary for s in S').

Remark 1.3. Observe that if a differential relation {2 satisfies the paramet-
ric h-principle, then its solutions satisfy some kind of uniqueness property.
Indeed, let fo and fi; be two solutions of 2 whose k-jet extensions are ho-
motopic among sections of . Let f! be such a homotopy. Then the family
f} is homotopic to a family f; of holonomic sections of Q via a homotopy
that is stationary for ¢ € {0,1}. In particular, the two solutions fp and f;
are homotopic among solutions of (2.

Remark 1.4. The relation €2 satisfies the parametric h-principle on M if
and only if the map j* : Sol(Q) — T'(Q) is a weak homotopy equivalence,
where Sol(€2) is the set of global solutions of 2 and where I'(Q) is the set of
global sections of Q (cf. [10] (C) p. 16).

1.2. Invariant relations.

Definition 1.5. An isotopy of the manifold M is a family ¢, ¢ in [0, 1], of
diffeomorphisms of M such that the map ¢ : M x [0,1] - M : (z,t) —
@¢(z) is smooth and ¢p = Id ps. Consider a foliation F on M. A foliated
isotopy of (M,F) is an isotopy ¢; of M that preserves the foliation F,
that is, (¢)«(TF) = TF for all ¢ in [0,1]. Finally, two sets A and A’,
with A" C A are said to be isotopic (respectively foliated isotopic) if for
every neighborhood U of A’, there exists an isotopy (respectively a foliated
isotopy) ¢ of M such that

- ¢V is stationary near A’
- oY (A) C A for all ¢,

- $f(A) cU.
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Definition 1.6. Let m : E — M be a locally trivial fibration. An isotopy
¢ of M is said to operate on local sections of E if we are given an isotopy
@, of E covering ¢; (i.e. m 0o, = ¢ o ) satisfying the following property:

if ¢; coincides with ¢, on an open subset U for all ¢ > ¢y, then ¥,
coincides with @, on 7 !(U) for all ¢ > to.

In this situation, if f : U — E|y is a local section of E defined on some
open subset U of M, then ¢;- f = @;1 o foy is a local section of E defined
on @, L(U). This operation on local sections induces an operation on E* as

follows : ¢y - (jkf(-’v)) = jk(% : f)(%pfl(x))-

Definition 1.7 (Invariant relations). The differential relation Q C E* is
said to be invariant under the isotopy ¢ if p; operates on local sections of
E, and if Q is invariant under the induced operation on E¥ (i.e. p;-Q = Q).
The relation 2 is said to be invariant (respectively foliated invariant) if it
is invariant under all isotopies of M (respectively all foliated isotopies of
(M, F)).

1.3. Local h-principle, h-principle for extensions.

Definition 1.8 (The local parametric h-principle). A differential re-
lation is said to satisfy the local parametric h-principle if it satisfies the
parametric h-principle near any point.

Proposition 1.9 ([10] Bz, p. 37). Any open differential relation satisfies
the local parametric h-principle.

Definition 1.10 (The parametric h-principle for extensions). Let
(A, A’) be a nested pair of compact subsets of M. A differential relation
Q defined on M is said to satisfy the parametric h-principle for extensions
of solutions form A' to A, or on the pair (A, A’), if any family f, of sections
of Q defined near A and holonomic near A’ is homotopic to a family of holo-
nomic sections, through a homotopy that is stationary near A’. Moreover, if
the sections fs are already holonomic near A for s in S’, then the homotopy
may be chosen to be stationary near A for s in S’.

Lemma 1.11 ([10]). Let Q be a differential relation on the manifold M,
and let (A, A") be a nested pair of isotopic compact subsets of M. If Q is
invariant under all isotopies @Y, where U runs through the set of neigh-

borhoods of A’, then the parametric h-principle for extensions holds on the
pair (A, A).
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Proposition 1.12 ([10] (4'), p. 40). Let Q be a differential relation on
M, and let M = U;>0K; be an exhaustion of M by compact subsets (i.e.,
K; C Kiy1 and M = U;>0K;). Suppose that Q satisfies the parametric h-
principle on Ky, as well as the parametric h-principle for extensions on all
pairs (K;+1, K;). Then Q satisfies the parametric h-principle on M.

Consider an open differential relation {2 on a manifold M endowed with
a foliation F.

Theorem 1.13 ([10] (By), p. 41; (C1), p. 425 (C3), p. 43). Let (A, A")
be a nested pair of compact subsets of M such that the compact C = A — A’
is contained in an embedded submanifold My of M, of codimension at least
one. If the relation Q is invariant, then it satisfies the parametric h-principle
for extensions on (A, A"). If the relation Q is only foliated invariant, but the
submanifold My intersects the foliation F transversely, then  satisfies the
parametric h-principle for extensions on (A, A") as well.

Remark 1.14. The hypothesis of the previous theorem can be weakened
(without affecting the conclusion) as follows : C' consists of a finite union of
compact sets, each contained in an embedded submanifold of codimension
at least one (transverse to F) (cf. [10] (4’), p. 40).

2. Outline of the proof.

We begin this section with a rough outline of the proof of Theorem 0.1. Let
Q C E* be an open, invariant differential relation on a manifold M. Fixing
a section (8 of €2, the procedure to deform [ into a holonomic section of €2
is sketched below (the case of a family of sections is treated similarly). The
hypotheses on 2 imply the following two facts.

(1) Since the relation 2 is open, it satisfies the local h-principle (cf. Propo-
sition 1.9). Thus, for any given point x in M, the section S can be
deformed into a holonomic sections on a sufficiently small neighbor-
hood of =z.

(2) Since  is invariant, it satisfies the h-principle for extensions on any
pair (A, A") of isotopic compact subsets (cf. Lemma 1.11). Thus, if
B can be deformed into a holonomic section near A’, it can also be
deformed into a holonomic section near A.

Starting from a holonomic section w of €2 defined on a neighborhood U
of a point x and homotopic to S|y, one tries to extend w as far as possible.
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It can certainly be extended to any “large” open ball containing z (cf. (2)).
But when trying to go further, one has to understand how to deal with the
topology of M. A good grasp on the latter is provided by a proper, positive
Morse function on M, that is, a proper map f : M — [0,00) whose singular
points are nondegenerate and lie on distinct levels. The term properindicates
that for any pair a < b of real numbers, the set f !([a,b]) is compact.

Let a < b be two noncritical values of f, and let w be a holonomic section
of 2, defined on a neighborhood of f~1([0, a]) and homotopic to 3. Provided
[a,b] does not contain a critical value of f, the set f 1([0,b]) is isotopic to
f7([0,a]) ([17]). The holonomic section w can therefore be extended to
a neighborhood of f71([0,b]) (cf. (2)). If [a,b] contains a critical value of
f corresponding to a critical point z, the set f~1([0,b]) is obtained from
f71([0,a]) by gluing a closed disk D* along its boundary, in the sense that
£71([0,b]) is isotopic to f1([0,a]) Uspr D* ([17]). The dimension k of the
disk coincides with the number of negative eigenvalues of the Hessian of f at
x. Thus, to extend w through x, one needs to be able to extend a holonomic
section of €2, homotopic to 3, defined on a neighborhood of the boundary of
an embedded disk D, to a holonomic section of , homotopic to 8, defined
on a neighborhood of the entire disk. (In other words, one needs the relation
Q to satisfy the h-principle for extensions on the pair (D*,dD)). This can
be done as long as k < dim M (cf. Theorem 1.13), and constitutes the key
step of the proof of Theorem 0.1.

The restriction £ < dim M explains the dichotomy between closed and
open manifolds. Indeed, if M is open, we may assume that f has no local
maxima, or equivalently, that the disks we glue are never of maximal di-
mension. Beginning with a holonomic section w of © defined near f~1(0)
and homotopic to 3, we can therefore extend it to f 1([0,b]) for larger
and larger values of b, eventually obtaining a global holonomic section of 2
(cf. Proposition 1.12).

Introducing the gradient V f of f with respect to some Riemannian met-
ric, one observes that its flow yields an isotopy between f~1([0,b]) and
£71([0,a]) U gpr D*, where D* is now the set of points in f~([a,b]) lying on
trajectories 6(t) “converging” to x, in the sense that limy 4o 0(t) = . It
is useful to adopt this point of view when dealing with foliated manifolds.

Consider now the corresponding problem in the foliated case. Let €2
be an open, foliated invariant differential relation defined on a uniformely
open foliated manifold (M, F). Let f: M — [0,00) satisfy the hypotheses
a), b) and c) of Definition 0.3. We may take advantage of what is already
known. In particular, the facts (1) and (2) are still true here, provided we
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restrict ourselves to foliated isotopies. The key step is also valid in this
context, provided the embedded disk D¥, does not only have codimension
at least one, but intersects F transversely as well (cf. Theorem 1.13). The
extra difficulties one faces come from the restriction to foliated isotopies.
Indeed, up to foliated isotopies, the passage from f~1([0,a]) to f~1([0,b])
does not correspond anymore to gluing some disk (nor even some family of
disks). It corresponds instead to gluing the “skeleton” consisting of the set
of bounded trajectories of the leafwise gradient vector field of f associated to
some Riemannian metric g (cf. Definition 4.1 and Lemma 4.5). The skeleton
can be very complicated due to two phenomena:

i) the leafwise critical points of f (Definition 3.2) can be leafwise degen-
erate (Remark 3.5),

ii) the leafwise critical points of f are not isolated in M (Remark 3.3).

Problem i) makes it hard to describe the topological structure of the
skeleton already locally, near the foliated singular locus X ¢ (Definition 3.2).
Fortunately, to apply the key step, we do not need to know the exact topo-
logical type of the skeleton, it suffices to know that it is contained in a
finite union of compact subsets of submanifolds of codimension at least one,
intersecting F transversely (cf. Remark 1.14). When the latter holds in a
neighborhood of Xy, the metric g is said to be nice. The construction of
a nice metric is detailed in Section 5. As it requires the foliated singular
locus of f to be stratified according to Thom—Boardman (Subsection 3.1),
the function f will be assumed to be strongly F-generic (Definition 3.23).
As noticed in Remark 3.24, this extra assumption is not restrictive. The
construction of the metric is done by successive extensions from a neighbor-
hood of one stratum to the next (with respect to some natural order on the
set of strata).

Problem ii), on the other hand, makes it hard to have a grasp on the
global structure of the skeleton due to the presence of trajectories 6(t) for
which both lim; ;e 6(t) and lim;, o 6(t) are in f~!([a,b]). For such a
trajectory, the structure of the skeleton near lim; , o, (¢) is quite compli-
cated, more so that the stable and unstable manifolds of distinct critical
points may not be assumed to intersect transversely. Fortunately, this dif-
ficulty vanishes if we approximate f by a function whose leafwise critical
points are isolated with respect to the leaf topology (cf. Proposition 3.21),
as it allows one to “slice” M sufficiently finely to (more or less) avoid having
trajectories 0(t) for which both lim; 4 6(¢) and lim; , o, 6(¢) lie in the
same slice (cf. Section 6).
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3. Genericity.

This section is organized as follows. The first subsection shows how to adapt
Boardman’s construction of a natural stratification of the singular locus of
a smooth map ([3]) to the foliated case. We use Mather’s description of
the Thom—Boardman stratification [14]. The second subsection shows that
generically, the leafwise critical points of a real-valued function are isolated
with respect to the leaf topology. This is a consequence of a result mentioned
in [13] (6.1 p. 29) and proved along a scheme that appears in [12]. The third
subsection defines (strongly) F-generic functions and exhibits some of their
properties. We begin with recalling the statement of Thom'’s transversality
theorem which plays a crucial role throughout this section, defining the
terms (nondegenerate) leafwise critical point and foliated singular locus used
in the previous section, and briefly recalling from [6] the codimension one
case.

Given two manifolds M and N, the set C°°(M, N) is endowed hereafter
with the fine (or Whitney) C'* topology. A subset of a topological space is
residual if it is a countable intersection of dense open subsets. It is a classical
result (e.g. [8]) that a residual subset of C*°(M, N) is dense. Notice that a
countable intersection of residual sets is still residual (while an intersection
of dense sets is not dense in general). A condition on smooth functions f in
C*°(M, N) is said to be generic if it is satisfied by all functions in a residual
subset of C*°(M, N). Recall that a smooth map f : M — P intersects an
embedded submanifold W of P transversely at a point x in M if and only if
either f(z) ¢ W, or f(x) € W and

(1) fesTeM + Ty )W = Ty P,

and that f intersects W transversely if (1) holds for all z in f~1(W). In
that situation, the set f~!(W) is an embedded submanifold of M. If the
map f is the inclusion of a submanifold W', we say that the submanifolds

W and W' intersect transversely. Finally, the set of k-jets of local maps
U C M — N is denoted by J*(M, N).

Theorem 3.1 (Thom Transversality Theorem). Let W be an embed-
ded submanifold of J¥(M, N). The set of smooth maps f whose k-jet exten-
sion

*f M — J¥(M,N)

is transverse to W is residual in C*°(M, N).
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A proof of the previous theorem can be found in [8].

Definition 3.2. Let (M, F) be a foliated manifold, and let f : M — R be
a smooth function.

- A point z at which d(f|r,) vanishes is called a leafwise critical point

of f.

- A point = at which d(f|r,) vanishes and d?(f|g,) : ToF x T, F — R
has maximal rank is called a nondegenerate leafwise critical point of f.

- The foliated singular locus of f (with respect to the foliation F) is the
set of leafwise critical points of f, it is denoted by X .

Remarks 3.3.

- An ordinary critical point of f is of course a leafwise critical point as
well, but leafwise critical points persist in nearby leaves, so that they
typically come in g-parameter families, where ¢ is the codimension
of F (cf. the codimension one case below).

- An ordinary critical point of f can very well be nondegenerate as
ordinary critical point and degenerate as leafwise critical point. A
critical point of f that is nondegenerate as leafwise critical point is
called a leafwise nondegenerate critical point of f.

Example 3.4. Ferry and Wasserman describe in [6] normal forms for
generic real-valued functions on a manifold endowed with a codimension
one foliation. Part of their findings is that generically X is a closed one-
dimensional submanifold that intersects the foliation F transversely except
along a discrete set of points. Transverse intersection points are nondegen-
erate leafwise critical points, while tangency points are degenerate leafwise
critical points of birth type, a typical example of which is the point (0,0)
for the map
R? 5 R : (z,y) — =3 — 3zy,

defined on the manifold R? endowed with the foliation by lines R x {y}.

Remark 3.5. A foliated manifold does not generally admit functions with
no degenerate leafwise critical points. Indeed, for codimension one foliations,
the foliated singular locus of such a function is a (not necessarily connected)
closed transversal intersecting every compact leaf. The Reeb foliation on
S3, for example (cf. [4] p. 93), has no closed transversals intersecting the
torus leaf (cf. [4] p. 147).
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3.1. The Thom-Boardman stratification.

Let £, denote the set of germs of smooth maps R® — R at the origin. The
set &, is a local ring, whose maximal ideal, denoted by m,, is the set of
germs vanishing at 0. Given an ideal Z of the ring &,,, we use the notation
Z* for the product Z-...-T of k copies of Z. Finally, the symbol D; stands
for the derivation 8%1-’ where x1,...,xz, are the standard coordinates on R™.

Definition 3.6. Let Z be a finitely generated ideal of &,.

i) The rank of Z, denoted by rk(Z), is the dimension of (Z +m2)/m2 as
real vector space.

ii) The ideal generated by Z and the set I'.(Z) of r x r minors of the
Jacobian matrix (D;f;)i<i<n,1<j<a, Where fi,..., f, is a set of gener-
ators for Z, is denoted by A,(Z) and called a Jacobian extension of I.
Notice that the ideal A, (Z) (unlike the set I';(Z)) does not depend on
the choice of generators for Z.

iii) The ideal A,11(Z) with r = rk(Z) is denoted by §(Z). Notice that
when Z is proper, the ideal §(Z) is proper as well.

iv) The Boardman symbol of T is the infinite sequence I(Z) = (n—ry,n —
T9,...,m —1yg,...), where 1, = rk(6"1(T)).

Let J*(n,p) denote the set of k-jets of maps (R"?,0) — (RP,0) at the
origin. Given a jet z = 5¥f(0) in J*(n,p), represented by a map f, consider
the ideal

I(z) & (f) +mE,

where (f) denotes the ideal generated by the germs of the components
fi,..., fp of f at 0. The Boardman symbol of the jet z, denoted by I(z), is
defined to be the Boardman symbol of the ideal Z(z) truncated at order k
(notice that I(Z(z)) is of the type (i1,...,0,0,...,0,...)). Given a sequence
I of k nonnegative integers, let £/ C J¥(n, p) denote the set of k-jets whose
Boardman symbol is I.

Proposition 3.7 ([3]). Let I = (i1,...,i). The set X! is nonempty if and
only if n > i1 > i9 > ... > i, and either i1 > n —p, oriy =n —p and
i1 = iy = ... = i. Moreover X! is an embedded submanifold of J*(n,p)
whose codimension is given by the formula

(2) cod ZI = (p —n+ il),uj — (’il — ig)usl — .. — (ik—l — ’ik)usk—ll,
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where s7I denotes the sequence (441, ---,ik), and where K(iy,....ig) 1S the num-
ber of sequences (j1,j2,---,je) of integers satisfying

S R P I T
-4y > Jp >0 for all v, and j; > 0.
Given two manifolds N and P, of respective dimensions n and p, let

J®(N, P) denote the manifold of k-jets of local functions on N with values
in P. The manifold J¥(N, P) is a bundle over N x P whose fibers are diffeo-

morphic to J¥(n,p), and whose structure group is the product of the group
of invertible jets in J¥(n,n) with the group of invertible jets in J*(p, p). For

any sequence I = (iy,...,i;) of nonnegative integers, let ¥/ c J*¥(N, P)
denote the subset
I_ I
= Y =L,
(z,y)EN X P

where Zi,y corresponds to © under the identification of the fiber of J*(N, P)
at (z,y) with the manifold J*(n,p). Since =1 C J¥(n,p) is invariant under
the action of the structure group of the bundle 7 : J¥(N, P) — N x P, the
set X! C J¥(N, P) is well-defined. Clearly %! is an embedded submanifold
of J¥(N, P) whose codimension is given by formula (2). Given a smooth
function f : N — P whose k-jet extension intersects ¥/ nontrivially and
transversely at x,, let

def. . ,—
=S R Eh.

ch is a submanifold of IV in a neighborhood of z,, and the following holds.
Proposition 3.8 ([3], Theorem (6.2)).

Let M be an m-dimensional manifold endowed with a foliation F of
dimension n and codimension ¢q. The inclusion of a leaf F' into M gives rise
to a submersion

3)  rp:m Y (F xR) C JYM,R) = J¥ER) : 55 f(z) = 5*(f|F)(2).

For every sequence I = (n =1y, ...,1) of integers, let

S )
Fe{leaves of F}
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The set 25_- is an embedded submanifold of J*¥(M,R) whose codimension
coincides with that of %! in J¥(n,1). Indeed, given a foliated chart (U, ()
centered at a point z, we have 771 (U x R) N X% ~ U x R x r~1(Z'), where
r is the submersion J*(m, 1) — J¥(n,1) : j*£(0) = 5*(f|rn x{03)(0)-

Definition 3.9. In C*°(M) endowed with the fine C* topology, let A de-
note the set of functions whose k-jet extension is transverse to Eg_- for all
I=(i1,...,ix) andall k =1,2,....

By Thom'’s Transversality Theorem, this set is residual. Now given f
in A and any sequence I of length k, the set Eé,f = (G*)71(ZL) is an
embedded submanifold whose codimension equals that of Zlf in J*(M,R);
it is called a Boardman stratum. There are only finitely many nonempty
Boardman strata, provided we ignore sequences ending with more than one
zero. The last assertion follows from the observation that if 7541 > 0, the
codimension of X(#+1) in Jk+1(n, p) is strictly larger than that of X! in
JE(n,p) (cf. [3] p. 47).

The following result is a consequence of Proposition 3.8.

Proposition 3.10. Let f be an element of A and let x, be a point in

Egﬁl}""ik). Then

(4) dim (TmofﬁTmoE.(;T},lk)> —/ — jk+1f(xo) c E‘(}i_l,...,ik,Z)

Proof. Since the problem is local, we may assume that M is diffeomorphic
to a product F' x V, with FF = R*, V = R?, and where F corresponds
to the “horizontal” foliation of F' x V (whose leaves are the F' x {v}’s).
Let ui,...,u, and vy,...,v, denote the standard coordinates in F' and V'
respectively. To the smooth function f : M — R, we associate a smooth
map f : M — R x V by setting f(z) = (f(z),p(x)), where p denotes the
natural projection FF x V. — V. The proof of Proposition 3.10 relies on
the following three statements. Let x be any point in M, and let k be any
positive integer, then

a) j*f(z) € XL C J*(M,R) if and only if 5% f(z) € ©I C J¥(M,R x V);

b) j*f intersects Zé transversely at x if and only if j%f intersects £/
transversely at x;

c) if z belongs to E%f, then T, F N TIE%f = Ker d(f|EIF f)(x)
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Assuming these statements proved, we conclude the proof of Proposition 3.10
as follows. Statements a) and b), combined with Proposition 3.8 imply that

(5)  dimKerd(flyy )(zo) =¢ <= P (20) € B,

Statement c¢) implies that (5) is equivalent to (4). O

Proof of a). Consider the map

JEMR x V) PER JR(M,R) x JF(M,V)
ifgx)  —  (§Fou(x), 5 g2(a)) |
where g is a map M — R x V, whose components are g; : M — R and

g2: M — V. Let P C JF(M, V) be the image of the jet extension j*p, and
let P = py '(P). It is sufficient to prove that in J*(M,R x V),

(6) Pnxl =Pnprt(sh).

Let z = (21, 2) = (7% f(z), j*p(x)) = j*f(x) be an element in P. We assume
for convenience that x = 0. Let Z; denote jk(f|FX{0})(a:). We will prove,
by induction on 0 < £ < k, that in &,,,

(7) 04(Z(2)) = (v) + 6°(Z(21)),

where (v) denotes the ideal generated by the germs of the functions
v1, .. .,vq, and where 6°(Z(21)) is thought of as being an ideal of £,,. This
will imply that rk 6*(Z(2)) = ¢ + rk 6*(Z(%1)) for all 0 < £ < k, hence that
z1 lies in X2 if and only if z lies in £/, which is the content of (6).

Observe that (7) clearly holds when ¢ = 0. Indeed, in a neighborhood of
0 in M, the function f can be written as

f(u,v) = f(u,0) + Zvihi(u,v)

for some smooth functions h;. Then suppose that (7) holds for some ¢ > 0.
The ideal 6°t1(Z(2)) is generated by 6%(Z(z)) and the set I',,16%(Z(2)) of
(r 4+ 1) x (r + 1) minors of the Jacobian matrix (D;f;)i1<i<m,i1<j<a, Where
r = rk 0*(Z(2)), and where fi, ..., f, is a set of generators for 6/(Z(z)). Since
we may assume that f1 = v1,..., f; = vg and that f,11,..., f, are generators
of 6°(Z(%1)), the set I',, 16(Z(2)) is also the set of (r—g-+1)x (r—g-+1) minors
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of (D; fj)i1<i<ng+1<j<a- Since the latter set coincides with Fr,q+155(1(21)),
we have

SUI(2)) = (v) + 84Z(20)) + T 18" (Z(21) = (v) + 31 (T(21))-
O

Proof of b). Suppose that j*f(z) € EIF. Observe that the identity (6)
implies that j* f intersects Eé_- transversely at x if and only if

T.P = TPNT (p'Sf) + (5f)w (T M)
= T (PNp'sh) + (74 e (TM)
= 7. (PN3T) + () (M),

where z = j* f(z) = (% f (z ), *p(z)) = (21, 22). So, in order to prove b), we
need to show that ¥/ and P intersect transversely at z, or equivalently that

T, P + (pZ)*z(TzEI) = TZ2Jk(M> V)-

Since J*¥(M,V) ~ M x V x J¥(m, q), and since P is transverse to {z} x V x
J¥(m, q), it is sufficient to prove that Ty(z)V and T, J¥(m, q) are contained

in (p2)s. (T:21).

Observe that if ¢ denotes the local flow of a vector field X defined on
M, vanishing at x, then j*(f o % )(x) belongs to X! for all t. Hence

d(i* f ot T
e (5 (fdfx)( ))(0) I

Moreover, the set of vectors (p2)«,(£x), as X varies among vector fields
vanishing at x, coincides with T,,J%(m,q). So it remains to prove that
Tp(x)V is contained in (pp).,(T.%!) as well. This is easily seen once we
notice that 7, %! contains T, )(Rx V), and hence that (p2)«, (T.X!) contains

(P2)+. (Tf'( )(R xV))= o)V 0

Proof of ¢). From a) we know that Eéf = E Besides, if x lies in Eff,

then
Kerd(f|2})(a:) = Kerdf(z) N Tszg

= T,F N szfg.
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Let f be an element of A. We would like to interpret the first few Eg_- f’s.
Before doing so, we introduce the foliated second differential of f (with
respect to the foliation F), that is, the map

(8) Ef TeFeTsF - R: (X,Y)— Y(X(f)),

where X is any local section of TF extending X. (It appeared already
implicitely in Definition 3.2.) As in the nonfoliated case, it is easily checked
that d?f is well-defined and symmetric.

- Zg—l’)f = Xy is the foliated singular locus of f (according to Defini-
tion 3.2).

Eg?’o) is the set of nondegenerate leafwise critical points (still according
to Definition 3.2).

- Eg?’;) is the set of leafwise critical points x for which d*f(x) has

rank n — 1.

- In general, as implied by Proposition 3.10, Egﬁl}""ik) is the set of points

x in Egﬁf/’;"’ik_l) where dim (Tz}"ﬂ TmEg?}""i’“‘l)> = 0.

Observe that M is partitioned into the embedded submanifolds Eé, £ where
I = (i1,...,i,0) and iy # 0. They intersect F transversely, in the sense
that Tmﬁg_-’f NT,F = {0} for all z in Eéyf. Finally, the submanifold Eg-‘,f
is of course not closed in general. In fact,

(ilv"-vik) (]’1,...,]’[)
Xry T C U XEf
(F15eede) > (01,0 i)

where the symbol > refers to the lexicographical order on the set of tuples
of nonnegative integers.

3.2. Isolatedness of leafwise critical points.

We will need (cf. Observation 6.2) to approximate an F-generic function
by one whose leafwise critical points are isolated with respect to the leaf
topology. The purpose of this subsection is to prove that the latter property
is generic (cf. Proposition 3.21).

Recall that £, and m, denote the ring of germs of smooth maps R" —
R at the origin and its maximal ideal respectively. The set of k-jets of
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maps (R?,0) — (R,0) at the origin is denoted by J*(n). For £ > k, the
natural map J¢(n) — J*(n) : jf(0) — j*£(0) is denoted by mf. As before,
Z1,...,Ty are the standard coordinates on R".

Definition 3.11. The Jacobian ideal of an element f € m2, denoted by

J(f), is the ideal of &, generated by the partial derivatives E?Tfl’ e 867{1 of
f. We say that f has codimension k if cod (J(f)) = dimg (m,,/T(f)) = k.

We will think of a singular element z = j* f(0) of J¥(n) (i.e., df(0) = 0) as
a polynomial function on R", and define its Jacobian ideal and codimension
accordingly.

The following is a consequence of Nakayama’s lemma. A proof can be
found in [12] (Appendix A.2., Proposition 2.2.).

Lemma 3.12. If f — f(0) € m2 has finite codimension, then 0 is an isolated
singularity of f.

Definition 3.13. Two germs f and g in &,, are said to be equivalent if there
exists a germ ¢ of local diffeomorphism (R™,0) — (R™,0) of R™ at the origin
for which f =go ¢.

Observe that equivalent germs have same codimension.

Definition 3.14. A germ f € &, is k-determined if for any element g in
mk+l the germ f + g is equivalent to f.

Theorem 3.15 ([15]). If the codimension of f € &, is k, then f is (k+2)-
determined.

Consider in J¥(n) the set Z* consisting of singular k-jets having codi-
mension strictly larger than k — 2.

Proposition 3.16. The set Z* is a real algebraic subset of the Euclidean
space J¥(n).

Before proving Proposition 3.16, let us mention some facts about real
algebraic sets. Recall that a real algebraic subset of a Euclidean space RP is
the zero locus of a collection of polynomial functions defined on RP. Such a
set is a variety when it is irreducible, that is, when it cannot be decomposed
into the union of two proper real algebraic sets. A real algebraic subset S of
RP can be written uniquely (up to reordering the factors) as a finite union

S=WVu...uV,
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of varieties, where no factor V; is contained in a factor V; with i # j. Such
a decomposition is said to be minimal. Real algebraic sets can also be
decomposed into smooth submanifolds :

Theorem 3.17 ([21]). Any real algebraic subset of RP can be decomposed
into a finite union of disjoint embedded submanifolds of IRP.

The dimension of S is defined to be the maximum dimension of the
factors. The following result will be crucial later on (cf. proof of Proposi-
tion 3.20).

Theorem 3.18 ([21]). A proper subvariety of a variety has strictly smaller
dimension.

Proof of Proposition 3.16. This type of argument is quite standard (see [12]).
Let f € J*(n) be a singular jet. First observe that cod (J(f)) > k—2 if and
only if cod (J (f)+m¥) > k—2. Indeed, suppose that cod (J(f)+mF) < k—2.
Then, in the following nested sequence of spaces

mn, D J(f)+ms D J(f)+md > 0 T(f) +mk,

equality must occur somewhere, that is, J(f) +m" = J(f) +m.*! for some
r < k — 1. This implies that m” C J(f) +m.*L. Hence m¥ c m” c J(f)
(cf. [13] Proposition 4. p. 3). Therefore cod (J(f)) = cod (J(f) + mk) <
k — 2. The other implication is obvious.

Now cod (J(f) +mE) > k — 2 is equivalent to
dim (J(f) + mF)/mk < dim (m,,/mF) — (k — 2) < N

The vector space (J(f) + mE)/mE is generated by elements of the type
x® g gi, where « is a multi-index with |a| < k — 2. Therefore, its dimension
is less than N when the rank of a certain matrix M, whose coefficients are
linear functions of the coeflicients of the polynomial function f, is bounded
by N — 1; or equivalently, when all minors of M of size N and larger vanish.

g

The combination of Theorem 3.16 and Theorem 3.17 implies that

zF = []... ] M,

where each M; is an embedded submanifold of J*(n).
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Proposition 3.19. For all £ > k, the real algebraic set Z* is a subset of
the real algebraic set (mf)~1(Z*).

Proof. Let f be an £-jet whose truncation Wﬁ(f) does not belong to Z*, that
is, cod (J(m£(f))) < k — 2. Theorem 3.15 implies that f is equivalent to
7t (f). Hence cod (J(f)) < k — 2 as well. Thus f lies outside Z*. O

Proposition 3.20. The codimension cy of Z* in J*(n) is an unbounded
function of k.

Proof. Consider the homogeneous polynomial r = ac'f“ +...+xFtL of degree
k + 1. The Jacobian ideal of r coincides with (z%,...,z%), and contains
mz(kfl)ﬂ. Thus

cod (r) < cod (mPF—D+1) i g

Let p be any polynomial of degree k. The codimension of p + r is bounded
by the codimension of r (cf. [12] A.2., Theorem 2.7). Thus cod (p + ) < ax
for all p € J¥(n). Let £ = ax + 2. We have just shown that for all p € Z*,
the set () ~1(p) is not entirely contained in Z*.

Now, let Z¥ =V} u...U V,fk be the minimal decomposition of Z* into
varieties. Let (Wﬁ)*l(ij) be denoted by W;. The real algebraic set W is
irreducible as well. Because Z¢ = V{f U ... U Vrfz C (m5)~Y(Z*), the set V;*
coincides with (VI NWi)U...U (V¥ N W,,). Since V¢ is irreducible, there
exists an index j; such that Vf = Vié N Wj,. The previous paragraph implies
that Vf is a proper subset of Wj,. Hence, the codimension of Vf is strictly
larger than that of W;, (Theorem 3.18). Thus, the codimension of Z¢ in
J¢(n) is strictly larger than that of (%) ~1(Z¥), that is cod Z* > cod Z*. O

Proposition 3.21. Let M be a manifold endowed with a foliation F. For
f in a residual subset B of C*°(M), and for any leaf F of F, the critical
points of f|r are isolated in F.

Proof. Given a leaf F of the foliation F, define Z*(F) c J*(F,R) to be

(zy)EF xR

where Z* (F)(z,y) corresponds to Z * under the identification of the fiber at
(z,y) of the bundle J*(F,R) — F x R with J*(n). Then, define Z*(F) C



390 Mélanie Bertelson
JE(M,R) to be:

ZMF) = U (@),
Fec{leaves of F}

where 7 is defined by the expression (3). Locally, the set Z*(F) is the union
of finitely many embedded submanifolds of J*¥(M, R) having codimension at
least c;. Hence, Thom’s Transversality Theorem implies that, provided k
is large enough for ¢ > dim M, the set B of smooth real-valued functions
on M whose k-jet does not meet Z*(F) is residual in C*° (M) with respect
to the fine C'™° topology. Let f be such a function. For any leafwise singu-
larity = of f, the jet j*(f|r,)(x) has codimension k — 2 at most. Thus, the
germ of f|p, at x is equivalent to j*(f|r,)(x), and has finite codimension as
well. Lemma 3.12 implies that the singularities of f|g, are isolated in Fy.

O
3.3. F-generic functions.

Let M be an m-dimensional manifold carrying a foliation F of dimension n
and codimension gq.

Definition 3.22 (F-genericity). A smooth real-valued function f on M
is said to be F-generic if j' f intersects Egg) transversely and j2f intersects
EE;I’”) transversely for all pairs (i1,142).

Definition 3.23 (Strong F-genericity). A smooth real-valued function

on M is said to be strongly F-generic if

i) the ordinary critical points of f are both nondegenerate and leafwise
nondegenerate;

ii) for every sequence I of any length k, the map j* f intersects Eg_- trans-
versely;

iii) the leafwise critical points of f are isolated with respect to the leaf
topology.

Here as well, it is a consequence of Thom’s Transversality Theorem that
the set of (strongly) F-generic functions is residual in C*°(M) for the fine
C™ topology. Indeed, the set of functions whose singularities are nonde-
generate is a residual set (cf. [17]), as is the set of functions satisfying %)
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(introduced in Definition 3.9), and the set of functions satisfying i) (con-
taining the set B introduced in Proposition 3.21). So the only thing that
remains to be proven is that generically, critical points of f are leafwise
nondegenerate. Introduce the following subsets of J?(M,R)

wt Lm0 s <p<n,

One easily proves that the W¥s are embedded submanifolds of J2(M, R)
of codimension strictly larger than m. Hence, the set of functions whose
second jet does not meet any W is residual. By construction, the critical
points of those functions are leafwise nondegenerate.

Remark 3.24. Reflecting on Definition 0.3, one might think that ¢) is
superfluous. Indeed, the set of strongly JF-generic functions is dense in
C*°(M), and we can therefore approximate in the fine C*° topology any
given function by a strongly F-generic one. The problem is that one usually
creates leafwise local maxima in the process. It is not clear, although quite
plausible, that a function f with no leafwise local maxima always admits
a nearby strongly F-generic function with no leafwise local maxima. How-
ever, if f is already JF-generic, then any sufficiently (C'°°-) nearby strongly
JF-generic function will not have leafwise local maxima either.

The proof of the next lemma is very similar to that of the corresponding
result in the single-leaf case (cf. [17] for example). We nevertheless include
it for the sake of completeness.

Lemma 3.25. Let f : M — R be a smooth function, and let x be a point

in M for which j?f(z) € Z(;-L’nfr), Then there exists a chart centered at x
and adapted to F, with local coordinates x1, ..., xm, with respect to which f
has the following expression

9) fxr,. . xm)=+22 £ . 222+ £(0,...,0, %41, .., Tm).

Proof. Consider local coordinates x1,...,T,, centered at x for which F is
defined near x by the equations x,+1 = ¢pt1,- .., Tm = Cm, Where c1,...,cm
are constants . Since j2f(z) € Eg?’nfr), the function f|p, is singular at
z, and we may assume (after eventually performing a linear change of the
coordinates z1,...,z,) that

0% f I 0
(Ge5),. . = (& )
8:1318:EJ 1<4,j<r 0 r—d
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One deduces from the implicit function theorem that there exists a neigh-
borhood U of 0 in R™ ", a neighborhood U’ of 0 in R", and a function
a: (U,0) = (U’,0) such that, for every ¢ = 1,...,r, and for z in U’ x U,
one has

of
ox;

(x1,...,2m) =0 ifand only if (x1,...,2,) = @(Tri1,---, Tm)-

Use « to define new coordinates near x as follows:

x; = X; — ai($r+1,... ,l’m) fOI' 1 S ) S T
:v; = 1 for j>r.
Now
of ;
%(0,...,0,$;+1,...,$;n):0 for 1§ZST-
(2

The primes are omitted hereafter. A classical argument (cf. [17] Lemma
2.1.) shows that in a convex neighborhood of 0, one has

(10) f(x1, .., xm)
:f(O,...,O,:er,...,a:m)—i- Z mimjfij(:vl,...,mm).

1<i<j<r
Consider the coordinates i, ..., z}, defined near = by
1 fri(x)
/
zy = z/|fu@)+5 ) ri———=
2 Zz_; | f11 ()]
. = x; for i>2.

With respect to these coordinates, f can be written as (10), where f11(z) =
1, where fi;(z) = 0, and where f;;(0) remains unchanged. We repeat
this process, modifying successively z2,...,z,, until the expression (9) is
achieved. Observe that every change of coordinates that has been made
preserves F since it leaves the coordinates z,+1,. .., Zm untouched. [l

Proposition 3.26. Let f : M — R be an F-generic function without leaf-

wise local mazrima, and let x be in E%’}PT). Then, for any system of co-
ordinates centered at x satisfying the conclusion of the previous lemma, the
quadratic form Q(z1,...,x,) = £22 £ ... £ 22 occurring in expression (9)

must have at least one positive sign.
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Proof. Suppose on the contrary that either ) = 0 or @) is negative definite.
We claim that, if so, any neighborhood of = contains leafwise local maxima
of f, contradicting the assumption.

Let x € M, and let (U,p) be a chart at z, adapted to F, with local
coordinates z1,..., %y, with respect to which f is expressed by (9). The
chart (U, ¢) induces a chart (U, @) on J2(M,R):

¢ : U= U) — ¢U)xRxR"™ xS
p=75%9(z) — (o(@),9(x), Lp, Sp),

where 72 denotes the natural projection J?(M,R) — M, and where S™
denotes the set of symmetric m X m matrices with real coefficients. The
symbol L, (respectively S,) stands for the Jacobian (respectively Hessian)
matrix of g o o1 at p(x).

It is convenient to decompose a symmetric n X n matrix S into blocks

as follows:
A B
s<(p 1)

where A and D are r x r and (n — r) X (n — r) symmetric matrices, and
where B is some 7 X (n—r) matrix. If A is nonsingular, then S has rank r if
and only if the matrix e(S) = —B'A~'B + D vanishes. Define U to be the
neighborhood of j2f(z) in U consisting of jets of local maps whose Hessian
has a nonsingular upper left r x r block. Thus

28 U = (po §)7(0),
where p denotes the submersion:

p=p' xp* : ¢U) - R*xS*
(z,t,L,S) = (p(L) e(a(9))),

and where p : R x R™™ " — R" (respectively ¢ : S™ — S") is the natural
projection. Since j2f (respectively j!f) intersects Eg?’n_r) (respectively X)
transversely at z, the maps po @oj2f and p' o B o j2f are submersions near

z. Moreover (p' o g o j2f),,(TxXs) = 0, and thus
p2 o@oj2f|gfnU :XyNU = S""

is a submersion near = as well. This implies in particular that for ¢ suffi-
ciently small, there exists a z, in £;NU such that p?o@oj2f(z,) = —el,;.
Then d?f(x,) = —Id is negative definite. Thus f achieves a leafwise local
maximum at x,. O
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Remark 3.27. The assumption that f is F-generic and has no leafwise
local maxima prevents f from having totally degenerate singularities (sin-
gularities at which the foliated second differential of f vanishes).

4. Leafwise gradient vector fields.

Let (M, F) be a foliated manifold, let f be a positive, proper, strongly F-
generic function on (M,F) (Definition 3.23), and let g be a Riemannian
metric on M.

Definition 4.1. The leafwise gradient vector field of f associated to the
metric g, denoted by Vrf, is the orthogonal projection onto T'F of the
(ordinary) gradient vector field of f. Equivalently, V£ f is the section of
TF whose restriction to each leaf F' is the gradient of f|r associated to the
metric g|p.

The local flow of V£ f is denoted by ¢!. The orbit of a point = under the
flow ¢! is denoted by 6. If S is some subset of R, the portion {¢(z);t € S}
of 6, is denoted by ¢°(z). Finally, the negative (respectively positive) limit
set of the orbit 6, is denoted by L (respectively L), i.e.,

L= (et (@) and £f=[)er)(a).
n=0 n=0
Lemma 4.2.

i) The set of points where V r f vanishes coincides with X¢. Where V£ f
does not vanish, (V£ f)(f) > 0.

ii) For every x in M, the set L, reduces to a single point, lying in X¢.
Similarly, the set L7 is either empty if the trajectory of = is unbounded,
or consists also of a single point, lying in Xy as well.

Proof.

i) Both assertions follow from the observation that for any X in TF,
we have

Xf=df(X)=9(Vf,X)=g(Vrf, X).

i) Since p(~%(z) is bounded (¢~ (z) c f1[0, f(z)]), for any se-
quence t; — —oo of real numbers, the sequence ¢’ () has a converging
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subsequence . The set £ is therefore nonempty. Moreover, because
L, is ¢'-invariant and contained in a level set of f (the one at level

inf {f(¢"(z));t € R}), it must be contained in Xf (since f increases
along nonconstant trajectories of V. f).

Observe now that £ is connected. Indeed, suppose it is not, and let
O; and Oy be disjoint open subsets of M containing £ in their union.
There exists a T < 0 for which ¢!(z) € O; UO2 as soon as t < T.
Otherwise there would be a sequence t;, — —oo for which O1UQO2 does
not contain ' (z), hence not either limy_,, ¢% (x). Connectedness of
©(=>T](z) implies that £ is entirely contained in one of the O;’s.

To conclude, we need to prove that £, is contained in the leaf F).
Suppose not, and let w be an point in £ that does not belong to F;.
Let also (U, ¢) be a chart adapted to F centered at w with ¢(U) =
[0, 1] x [0,1]9. Denote by P, the plaque ¢ 1([0,1]® x {a}). Since f
is strongly JF-generic, its leafwise critical points are isolated for the
leaf topology. We may therefore assume that w is the only point
in ¥y that lies in Fy. Because w belongs to £, — F;, there is a
sequence aj converging to 0 such that each plaque F,, contains a
segment go[tk’sk](a:) of 0, that meets the boundary of P, along its
endpoints (i.e. ' (z) and % (z) are in dP,,). We may also assume,
without loss of generality, that ¢ and s both converge to —oc. Now
the sequence ¢’ () has a subsequence that converges to a point w’ in
OPy. Since by construction w’ lies in £, , it is necessarily a leafwise
critical point of f, contradicting the hypothesis made earlier on U.

We have now all the ingredients needed : £ is nonempty and con-
nected, consists of leafwise critical points of f, and is entirely contained
in a leaf. Property i¢) of Definition 3.23 implies thus that £ is a sin-
gle point. The same argument proves the second part of statement i)
as well.

0

Definition 4.3. Given z in M, the limit point £, is denoted by . Sim-
ilarly, when 6, in bounded, the limit point £ is denoted by zT.

Definition 4.4.

1. If A is a subset of Xy, we define the stable set of A to be the set
W(A)={xz e M;zt e A}.
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2. If A is a subset of M, the saturation of A is defined to be the set
SA={x € M; ¢'(x) € A for some t > 0}.

The following lemma will reduce the proof that the h-principle holds on
M to the proof that it holds near the “skeleton” W(Xy). Let (a,b) be any
pair of real numbers with a < b. The slice f~'([a,b]) is denoted hereafter
by M¢, and the set W(X; N ML) N M2 by WEh(Zy).

Lemma 4.5. Given any pair a < b of reqular values of f, and given any
neighborhood U of M§ UW? (), the flow of Vxf yields a foliated isotopy
Yy M — M, t €[0,1], such that

- pe(ME) € M for all t in [0,1],
- Y:bl(]u(l))) - U7
- 1) coincides with the identity map on Mg U WZ(Ef),

- Yy s stationary for t > %

Proof. Let U be an open neighborhood of Mg U W?5(Zy). As a first step,
we prove existence of a neighborhood N of ¥; N M? whose saturation SN
is contained in U. Suppose that such an N does not exist. Consider the
neighborhoods Ny, of Xy N M? given by Ny = {x € M; the distance between
z and X7 N M? is less than %} Since Xy N M? is compact, Ny, is in U for
k large enough. Now, suppose that for every k there exists xj in IVj such
that for some negative tj, the point yx = ¢ (zx) does not belong to U.
There exists subsequences xj, and yy, of x; and y; respectively, converging
to points z and y respectively. The point z lies in X N M?, and the point
y lies outside U. Thus the trajectory 6, intersects f~*(b) — X; nontrivially.
Denote by H the foliation of M — X by the flow lines of V£f. Let K be the
portion of 6, located between levels f(y) and level b. Since K is a compact
subset of a leaf of H, there exists a closed neighborhood O of K in M — X¢
such that H|p is isomorphic to a product foliation. For [ sufficiently large,
Yk, is contained in O, and therefore z;, and z are contained in O as well.
This contradicts the hypothesis that O does not intersect ;.

Now choose an open neighborhood N of ¥y N M? for which SN C U.
Notice that SN is an open neighborhood of W%(Sy). Since f !(a) is
compact, there exists a 6 > 0 such that f~'([0,a + §)) C U. Let
U =S8NUf 1([0,a+0)). Because f increases along nonconstant trajecto-
ries of V£ f, there exists, for every z in M?, a t, < 0 such that ¢(z) € U
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for all ¢ < t,. Moreover, since M? is compact, such a t, can be chosen
that does not depend on z. Hence ¢! shrinks M(’)’ inside U, but does not
coincide with the identity on M{ U WZ(Zf). Multiplying V£f by a smooth
function n : M — [0,1] that equals 0 on Mg UW?%(Z;) and 1 outside U
yields a vector field nV £ f whose flow provides us with the desired isotopy.
Indeed, let 9; = @Mt where 6 is a smooth function [0,1] — [0, 1] such
that 6(0) = 0 and 6(t) = 1 for all t > . The isotopy ¢, satisfies the four
required properties. [

5. Construction of the metric.

Let M be an m-dimensional manifold endowed with a foliation F of di-
mension n and codimension g. Supposing the foliated manifold (M, F) uni-
formely open (Definition 0.3), let f : M — R be a strongly F-generic func-
tion (Definition 3.23) without leafwise local maxima (cf. Remark 3.24). In
this section, we carry out the construction of a Riemannian metric for which
the stable set of the foliated singular locus of f (Definition 3.2 and Defini-
tion 4.4) is locally contained in a finite union of embedded submanifolds, of
codimension at least one, transverse to the foliation F.

A submanifold S of M is said to intersect F transversely if for all s
in S, the quantity dim (755 + TsF) is maximal, that is, coincides with
min{dim S + dim F, dim M }. Observe that a submanifold S whose dimen-
sion is strictly less than ¢ does never intersect each leaf of F transversely!
Nevertheless, it might intersect the foliation F transversely. Let g be a
Riemannian metric on M. Recall the foliated second differential d?f of f
(Subsection 3.1, formula (8)). Because the bilinear map d*f (o) is symmetric
for all o € ¥, the identity d*f(0)(X,Y) = g(X, AY) defines a g-self-adjoint
map A : T,F — T,F. The map A can be diagonalized by means of a g-
orthogonal basis. We therefore have a splitting T, F = V,F @ V.- © V2 into
positive, negative and null eigenspaces for A. The space V? is the kernel
of d*f(c) and is thus intrinsically defined (independently of g), unlike the
other two. The distributions V* : o0 € [ V., although not of constant
rank, are smooth (unlike the distribution V?: o € S — V). Smoothness
for such a distribution is defined as follows : for every o in X there exist
local sections Xi,..., X4 of TM defined in a neighborhood U of ¢ in Xy
such that

- {X1(0),...,Xq(0)} is a basis of V;F,

- X;i(0") belongs to V.+ for all o’ in U.
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Remark 5.1. Consider a sequence I = (i1,...,ig_1,i% = 0). The rank of
VY and hence of V* @ V~ is constant on the submanifold Eé’ s (cf. Sec-
tion 3.1). Moreover, since both V' and V'~ are smooth distributions, their
rank must be constant on any connected component of Eg_-’ £

Definition 5.2. The union of the connected components of Eé_: Fon which
rk VT achieves a fixed value d is denoted by Eg, and called hereafter a
stratum of ¥ (provided it is nonempty). We introduce an order on the set
of strata as follows:

Zgjl""’jl) < 2‘(;1""’%) <~ (n —e,71,--- ,jg) > (n —d,iq,... ,ik),
where > refers to the lexicographical order on tuples of nonnegative integers.

Observe that because i = 0, a stratum S is an embedded submanifold
(generally neither connected nor closed) that intersects F transversely, in the
sense that TsS N T, F = {0} for all s in S. Moreover, there are only finitely
many strata, and they form a partition X ;. Furthermore, the closure of Eé
is contained in the union of the ¥/’s with e < d and J > I (see end of
Section 3.1), i.e., it is contained in the union of the smaller (with respect to
the order introduced in Definition 5.2) strata. Consequently, the union of
the [ smallest strata is a closed set.

5.1. Outline of the construction of the metric.

The construction is based on the following observation. Let o be an element
of ¥¢, and let xq, ...,y be local coordinates defined on a neighborhood U
of o in M with respect to which f has the following expression:

f@1,. . xm) =224+ 22+ £(0,...,0, 2441, ., Tm),

with d > 0 (Lemma 3.25 and Proposition 3.26). Let us introduce the fol-
lowing piece of notation : given an open subset O of M, let

Wo(2s) ={z€0; 2t €5;N0 and ¢'(z) € O Vt >0},

where ¢! denotes the flow of the leafwise gradient vector field Vzf of f
associated to the metric g (Definition 4.1), and where 7 = lim;_, ¢*(7)
(cf. Definition 4.3). The set Wo(Xy) is the stable set (Definition 4.4) of
X5 N O with respect to (V£f)|o. If instead of the metric g, we use the
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Euclidean metric with respect to the coordinates x1,...,z, to construct
V£f, then

(11) WU(Ef)C{Q?l:O,...,deO},

and the plane {x1 =0,...,24 = 0} is transverse to F, as needed.

The problem is that it is not clear that a global Riemannian metric g
exists with the property that every point o in ¥ admits local coordinates
as above, with respect to which g is Euclidean (at least along the leaves).
Fortunately, we do not need that much: for the property (11) to hold, it
is sufficient to have a Riemannian metric on U for which the plane {z; =
0,...,zg = 0} is orthogonal to the planes {z411 = cgt1,---,Tm = Cm}
(cf. Proposition 5.3). This constitutes the key observation, as it can be
globalized, at least to a neighborhood of a stratum. Subsection 5.2 shows
how. Briefly, starting with the (constant rank) distribution V* on a stratum
S, we construct a foliation G C F on a neighborhood N of S such that TsG =
VT (the foliation G plays the role of the planes {Z411 = €441, - - Tm = Cm})-
Then, we consider the manifold P of critical points of f along the leaves of
G (the manifold P plays the role of the plane {z; = 0,...,z4 = 0}). It is
shown that any metric for which TP is orthogonal to TpG has the property
that War(X¢) C P (after eventually reducing N slightly).

Going from one stratum to the entire X is done by induction on the order
of the strata (Subsection 5.3). Basically, to carry out this induction, we need
to construct the foliation G in such a way that it “matches” the foliations
already constructed near smaller order strata, meaning that where two such
foliations coexist, the largest dimensional one contains the other one. The
ordering is, roughly speaking, according to the number of strata that a given
stratum contains in its closure. Closed strata are the smallest, strata having
only closed strata in their closure come next, and so forth. This is dictated
by the lexicographical ordering of the Boardman symbols, combined with
the rank of the distribution V. Once a “coherent” set of foliations has been
constructed, one may build a metric for which Wx/(X¢) C P for all strata
S (cf. Subsection 5.4).

5.2. The metric near one stratum.

Let S be a (neither necessarily connected nor closed) embedded submanifold
of ¥y. Suppose that S intersects F transversely, and that the dimension of
V™ is constant on S. Typically S is a stratum of X; (cf. Definition 5.2).
Consider also exp : @ ¢ TM — M, the exponential map associated to g,
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defined on a fiberwise convex neighborhood @ of the 0-section in TM. The
construction of the metric near S is divided into the five following steps.

First step. The submanifold S is extended to an embedded submanifold
S’ of M, transverse to F, and of dimension ¢ = cod F.

If E = (TS + TsF)*, then exp|p,; is an embedding provided O =
O N E is sufficiently small. Define S’ = exp(0). Because exp, = Id along
the O-section, the bundle TS’ coincides with T'S @ E. In particular, the
submanifold S’ is transverse to F along S. We may assume that O has been
chosen small enough for S’ to be transverse to F everywhere.

Second step. Let D be a subbundle of TsF (e.g., D = V' when S is a
stratum). We extend D to a subbundle D’ of T/ F.

Let V be a linear connection on T F. For every x in S’, there is a
natural path between z and a point z, in S. Indeed, take v, : [0,1] — S’ :
t — exp(tX), where exp(X) = x. The connection V and the path -y, induce
a linear isomorphism ¢, : T, , F — TpF, obtained by parallel translation
along -y, with respect to V. For z in ', define D, to be iz(Dy,).

Third step. Given an embedded submanifold S’, complementary to F, and
a subbundle D’ of Ts/F, we extend D’ to a smooth foliation G tangent to
F, defined on a tubular neighborhood N of 5.

Consider the map
f;u CTgF —> M : X, GTSF'_)TXS(]-)a

where 7x, denotes the geodesic for the Riemannian metric g|r, starting at s
and tangent to X, (in particular 7x, C F;), and where U is some fiberwise
convex neighborhood of the 0-section on which £ is an embedding. The map
¢ is called hereafter the foliated exponential map associated to the metric g.
Consider now the foliation G of I by the traces of the cosets of D', and the
push-forward G of G via the map &. Let N = &(U).

Fourth step. Suppose that the foliated second differential d?f of f is posi-
tive definite on D. Let P be the foliated singular locus of f with respect to
the foliation G, that is, the set {z € N'; df (T;;G) = 0}. Provided the neigh-
borhood N of S is sufficiently small, the set P is an embedded submanifold
of N transverse to G and closed in N.

Let p : BTG — N be the bundle of basis of T'G. Define the map

n: BTG —RY: {e1,...,eq} — (df(e1),...,df(eq)),
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where d is the dimension of G. Since d?f is nondegenerate on D = TsG, the
map 7 is a submersion near p (S). Therefore, the map 7 is a submersion
near 7~ 1(0) provided N is sufficiently small. The submanifold 771(0) co-
incides with p~1(P), where P is a closed embedded submanifold of A. To
prove that P is transverse to G, consider a vector X in T,P N T,G, with p
in P. Extend X to a section X of TG defined on a neighborhood U of p in
N. On PNU, the function X f vanishes, and because X is tangent to P,
we have 0 = X (X f) = d?f(X, X) (notice that d?f is indeed well-defined on
TpG; it is the foliated second differential of f with respect to the foliation
G). Since d*f is nondegenerate on TsG = D, it remains nondegenerate on
TpG provided N is sufficiently small. Thus, the vector field X must vanish.

Fifth step. Let A be a Riemannian metric for which T'P is orthogonal to
TpG. Such a metric can be constructed by means of a partition of unity
for instance. The leafwise gradient vector field V£ f of f associated to h
(Definition 4.1) satisfies the the following property.

Proposition 5.3. There exists a neighborhood M of N N Xy contained in
N for which
WM(EJC) C P.

Proof. First observe that if  belongs to P, then (V£ f), belongs to TP (as
implied by the identity h(V £ f,T,G) = df (x)(TxG) = 0). We will then show
that for some sufficiently small neighborhood M of N’ N ¥y, no trajectory
of (V£f)|m starting outside P N M can approach P N M D Xy in forward
time.

Since G C F, and since P is complementary to G, given z in P, there

exist coordinates x1,...,Tm, called nice hereafter, on a neighborhood U of
x such that
1) Tpt1 = Cntly---,Tm = Cm define Fly,
i) zg11 =cas1y--.,Tm = Cm define G|y,
iii) 21 =0,...,z4 =0 define PN U,
iv) f(z1,... ,:vm)—:vl—f— —|—:vd—|—f( ey 0,Tgg1, ey T).

The proof of this fact, very similar to that of Lemma 3.25, is omitted.

Let x be an element of P and let z1, ..., z,, be nice coordinates defined on
a neighborhood U of x. Let also u = Zfl 1 Ui 83 be a nonvanishing constant
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vector field on U tangent to the foliation G. In the next paragraph, a dot
- will denote the Euclidean scalar product with respect to the coordinates

Z1,...,Tm. We have the following sequence of identities:
29 i@ = Y Z 2L iy | (a)
ou ij=1 axz 817]6
= 3 S (oL i) + L2
e 6313 8£Ek Oxy Ox;
1,7=1 k=1
8h ki

- 9 :

o)+ 35 3 25,

where h* denotes the component k,j of the inverse of the matrix of
hlrFx7F. In particular, if  belongs to PN Xy =N N Xy, we have

%(Vy:f ~u)(x) = 2h(u,u)(z) > 0.

Hence, for all = in P N Xy, there exists an open neighborhood U, of z,
endowed with nice coordinates, such that %(V #f - u) is strictly positive on
U,, for all nonvanishing constant vector field v tangent to the foliation G. As
a consequence, a trajectory 0, of V. f for which 0, (¢) lies in U, — (P NU,)
for all ¢ in [t,, 00) cannot converge to a point in P N U,. Indeed, Let w be
any point in U, — (P NUy,), and let w be a nonvanishing constant vector
field parallel to the vector joining w, = (0,...,0,Z411,...,Zm) to w =
(z1,...,%m). Then, since %(fo ~u)|ly, > 0 and (V£f - u)(w,) = 0, the
quantity (Vzf - u)(w) is strictly positive. Supposing w = 0.(t) for some
t > t,, the last assertion implies that the Euclidean distance between 6,(t)
and PN U, grows with ¢.

Let {U;;i > 1} be a locally finite refinement of the covering {Uy;z €
PN Ef} of PN Ef. Let M = NN (Ui21Ui)- Any trajectory of (V]:f)|M
starting in PNM remains in PNM, and no trajectory starting outside PNM
will approach PN M in forward time. Indeed, suppose on the contrary that
lim; o 0,(t) € P, for some trajectory 6, of (Vx£f)|ar. Then, for some ¢,
and some 4, the point 6,(t) lies in U; for all ¢ > tp. The discussion in the
previous paragraph implies that 6,(¢) € P for all ¢ > tp, and hence that
0, C P. O

Remark 5.4. The reason for introducing M instead of supposing once
more N small enough is that we need to make sure that the portion of
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¥ ; whose stable set is taken care of (N N Xy in the previous proposition) is
fixed once G is given.

Conclusion 5.5. Suppose given the following data:
- an embedded submanifold S of ¥ intersecting F transversely,
- a subbundle D of TF restricted to which d?f is positive definite.

We can then construct a foliation G tangent to JF, defined on a tubular
neighborhood N of S, satisfying the following properties.

i) TG coincides with D.

ii) The foliated singular locus P of f with respect to the foliation G, is
an embedded submanifold transverse to G (equivalently d*f is positive
definite on TpG). In particular, P as codimension at least one and
intersects F transversely.

iii) Let h be a Riemannian metric on A for which T'P is perpendicular
to TpG. Then there exists a neighborhood M of N N X 7 contained
in AV such that the leafwise gradient vector field of f associated to h
satisfies the property that Wx(Xf) C P.

5.3. Construction of a complete system of foliations.

As explained in the beginning of Section 5, the construction of a suitable
Riemannian metric goes by defining a collection of foliations, one near each
stratum, in a compatible way. The word compatible means that where two
such foliations coexist, the one whose dimension is largest contains the other
one. This construction is the subject of the present subsection.

Definition 5.6. Consider a collection of strata Si,...,S5; satisfying the
property that for all k, the set Sy U ... U S; is closed in M. A system
of foliations on U._, Sk is a collection {Gy;k = 1,...,1} of foliations, where
G}, is defined on a tubular neighborhood N, of an open subset Oy = N, NSy
of Si. Moreover, the following properties are required to hold :

a) Forall 1 <k <[, S, CNU...UN|.

b) If Sk, and Sk, are such that Sg, NSk, = 0 = Sk, NSk, then N, NN, =
0.

¢) dimGr =1k (V7T|s,).



404 Mélanie Bertelson

d) If dim Gy, > dim Gg,, then TG, D TGk, on N, N Ny,.

e) For all k, the foliated singular locus of f with respect to G, i.e. the set
P, = {p € Ny; df (p)(TpGr) = 0}, is a submanifold of N, transverse
to gk

A complete system of foliations on Xy is a system of foliations on the union
of all the strata constituting X .

Remark 5.7. Notice that the set S1,...,S5; of [ smallest strata, arranged
in decreasing order, satisfies the property that S U... U S is closed for all
1<k<I

Remark 5.8. Given a system of foliations on UfczlSk, we will always as-
sume (and this is not restrictive) that another system of tubular neighbor-
hoods A, of open subsets O, = N, N S of Sk as been given that satisfies
N, C Ny for all k, as well as property a) in Definition 5.6. Hence, the
collection {Gg|ar, } is also a system of foliations on Ut Sk. We will also use

e N, ... N3/, ... to denote more tubular neighborhoods of open subsets

0,,01,...,0, ... of Sk such that
N, C NV CcNe c N c vy

The need for these additional neighborhoods will appear in the proof of
Proposition 5.9. It explains why, in Definition 5.6, we consider a tubular
neighborhood of an open subset of a stratum, rather than a tubular neigh-
borhood of the entire stratum. Indeed, if N is a tubular neighborhood of a
nonclosed embedded submanifold S (like most strata), there is no tubular
neighborhood A’ of S with N” C N. To obtain such an inclusion we have
to replace S by a submanifold O of S with O C S.

Proposition 5.9 (Recurrence step). Let Si,...,S; be a set of strata sat-
isfying the property that for all k, the set Sy U ... U S] is closed in M, and
suppose that {Gr; k = 1,...,1} is a system of foliations on UpSk. Let S be
another stratum for which SU .Sy U... US| is closed. Then we can extend
{Gr;k=1,...,1} to a system of foliations on SUS; U...US.

The word extend has to be given the following meaning. A foliation G
will be constructed on some tubular neighborhood N of an open subset O
of S in such a way that G together with the restrictions of the foliations Gy,
to the neighborhoods AV}, is a system of foliations on SUS; U...US].
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Proof. We will assume for our convenience that SNSg #Qforalll <k<I
(if this is not true, select the S;’s intersecting S nontrivially, label them
Si,...,5;, and ignore the other ones until further notice). We can also
assume that dim Gy > dim Gy for all 1 < k <1 —1 (without affecting the
property that Sy U...US; is closed for all k).

The proof follows the first three steps of Subsection 5.2. The difficulty
lies in the second and third steps. We will need to adjust the distribution D’
and then the foliation G so as to make them match the foliations Gj, already
constructed.

Adjustment of D’. Suppose S C Egol""’““), in particular rk V; =d,. We
begin with describing a procedure that allows one to canonically extend a
d-dimensional subspace of T,F, s € S, on which d?f is positive definite (d
may therefore not be greater than d,), to a d,-dimensional subspace with
the same property.

Because d?f induces a metric on TsF whose rank and signature are
constant, it yields a bundle decomposition TsF = V @ V~ @ VO into ¢-
orthogonal and d?f-orthogonal subspaces (cf. beginning of Section 5). Let p;
denote the projection TsF — VT, and let py denote the projection TsF —
V~ @ VY. Given an element X in T5F, write X = X+ 4+ X~ + X°, where
X+, X~ and X belong to V*, V= and V° respectively. For 1 < d < d,,
consider

W = Upes (W ={X e T.F; &°f(X,X) > 0})
Pl = Uses (PH! = {P € GUTF); P~ {0} c Wi},

where G¢(T,F) denotes the Grassmann manifold of d-planes in T,F. If E
is a vector space endowed with an inner product, let S(E) denote the unit
sphere in F, and let B(E) denote the open unit ball in E. Observe that if
P is a plane in P*? then p;|p is injective. Hence, an element P of P g
the graph of a linear map defined on p; (P):

ep : p(P) — Vg xV)
z = p2o(pilp)(z),

whose restriction to the sphere S(p1(P)) takes its values in B(V, ) x V2.
Conversely, an element of G4(T,F) that coincides with the graph of such

a linear map belongs to Ps 4 Notice that if P is do,-dimensional, then
pi(P) = Vi
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Now given an element P in some P4 with d < do, we extend it to an
element £(P) in P % as described hereafter. Let gp : V;™ — p1(P) denote
the orthogonal projection onto pj(P). Then define £(P) via its associated
linear map ¢g(p) by:

pepy = Vit = Vo x V)
z = (epogp)(x).

Remark 5.10. We can form convex linear combinations of elements in

Ptdo Indeed, let Py,..., P, be elements of P, 4 for some s in S, and
let ai,...,a, be positive real numbers with a;i + ... + a, = 1. Then
a1P; + ...+ a, P, denotes the element of Pj’do whose associated function ¢
is a1¢op, + ...+ arpp.. The map ¢ takes its values in B(V,”) x V2, as this
set is convex.

As in the first step of Section 5.2, the stratum S is extended to a g-
dimensional embedded submanifold S’ transverse to F. The manifold S’
is the image of a fiberwise convex neighborhood O of the 0-section in the
bundle p : E = (T'S + TsF)* — S by the exponential map associated to g.
Recall from the second step of Section 5.2, that a linear connection on T'F
determines, for each point = in S’, a linear isomorphism i, : T, . F — T, F,
where 79 = p(exp 1(z)). Set O} = exp(O Np YN, NS)) and O} =
exp(ONp LN NSY)).

Lemma 5.11. Provided O is sufficiently small, the following properties hold
for all k:

- OLCN}C,
OIS NYNS,

- for every x in O, the space iz *(T,Gy) is contained in Wi U {0}.

Proof. Given a subset U of S and a positive number ¢, let U¢ denote the
subset exp(UserBe(05)) of S’, where B.(0;) is the ball of radius € centered
at 0 in p~!(s). For every s in S, there exists a neighborhood Us of s in S
and a positive number €5 such that

- U C Ny, for all k for which s € N,

- UsNN' =0 for all k for which s ¢ N,
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vl

- Us ¢ N for all k for which s € Ny,

- Uss NN} =0 for all k for which s ¢ Ny,
2 (TeGr) c Wi U{0} for all z € Ugs with s in N

Let {U;;i > 1} be a locally finite refinement of the covering of S by the
UZs’s. For any fiberwise convex neighborhood O of the 0-section in E such
that exp(Q) C U;U;, the required three properties are satisfied. O

For all £ = 1,...,l, the dimension of Gy is at most equal to d, (we
supposed that SN Sy # 0 for all k, and this implies that rk VS+ > rk V;};
for all k). We can therefore associate to each foliation Gy a d,-dimensional
distribution D}, defined on O}, tangent to F, and containing 7'Gy. Simply
let

(D) =iz (€ (i7" (TGr))) -

We would like to paste the D}’s together so as to obtain a d,-dimensional

distribution D' C TgF on S’ containing the distributions Tg N%,gk, and

for which d?f is positive definite on D = D’|g. For each k between 1 and I,
let pj, : M — [0,1] be a smooth function equal to 1 near N} and vanishing
near the complement of N,. We define D’ as follows:

D; = Pl(mo)(pll)m +(1— P1($0))92($0)(D,2)w ot
(1= p1(2o)) - -- (1 = pr—1(20)) () (D )e + - +
(1= p1(2o)) - (1 = pulxo))ia(V5h),

where z is in S, and where zg = p(exp~!(x)). It is understood that when
some distribution D) is not defined at the point x, the quantity p(z,)(D})»
is defined to be pi(x,)iz(V,"). The linear combination appearing in the right
hand side has to be understood as follows. If Pi,..., P. are subspaces of
T, F for some x in S’ such that i;1(P;) ¢ W U {0}, and if ay,...,a, are
real numbers, then

aiPi+...+a.P- =1, (aligl(Pl) +...+ a,«igl(Pr)) ,

where the linear combination in the right hand side has to be interpreted
according to Remark 5.10. Observe that on O}, hence on N}’ N S’, the
distribution D’ contains T'Gy. Indeed, the function (1 — pg(z,)) vanishes on

%, hence, only D', ..., D) are involved in the definition of D, for z in O}.
By construction, ’D;- contains T'Gy, for j between 1 and k; hence, any convex
linear combination of Df,..., D) contains T'G;, as well.
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To keep notations light, we denote N}’ by Ny, N} by N, and so forth,
while fixing AV},.

Adjustment of G. We will now extend the distribution D’ to a foliation
G C F defined on a tubular neighborhood N of S’, that contains G on
N NN} Recall from the previous section the foliated exponential map:

EUCTsqF — M,

where the set U is a fiberwise convex neighborhood of the O-section in Ts: F,
small enough for ¢ to be an embedding. Let G, denote the foliation (£);(Gx)
defined on ¢~1(N}). It is of course tangent to the foliation of & by the
fibers of the natural projection 7 : T F — S'. Forallk =1,...,1, let £, =
(TGr)* NTF. Given any k, there exists a (not necessarily fiberwise convex)
neighborhood Vi of the O-section of Tinpr, F contained in £~1(AN), such
that each leaf of Qkhik intersects £ along exactly one point. In particular,
there is a map gy : Vi — & defined by {gi(z)} = (Gi)e N Ek, where
(G1)z denotes the leaf of G|y, containing z. The following lemma is very
similar to Lemma 5.11 although it is formulated in Ts/F instead of M. Its
proof is omitted. Let U}, (respectively U}) denote the set U N7~ (N}, NS’
(respectively U N L (N} N S")).

Lemma 5.12. Provided U is sufficiently small, the following properties hold
for all k.

- U;c C Vg,

Uy S WD),

Let g1 denote the orthogonal projection TeF — D', and let v :
T F xTeF — T F be the map that sends the pair (z,y) to the orthogonal
projection of x onto the coset of D' passing through the point y (that is,
v(z,y) =z + gi+1(y — x)). For each 1 < k <, consider a smooth function

pr : M — [0,1] whose value is 1 near N7/, and is 0 near the complement of
N.. Define p: U — T F by

W) = vz, pi(eo)gi(@) + (1 - pi(eo))pa(@o)ga(a) + ...+
(1= p1(20)) - - (1 = prp—r1(20)) (o) g1 () + .. +
(1= p1(20)) .- (1 = pu(o))grsa (@)

where x, = 7(z), and where, if gi(x) is not defined, we set pg(x,)gr(z) = 04, .
Observe that the map p coincides with the identity on the 0-section. Denote
by G’ the foliation of T's'F by the cosets of D’. The idea is that, provided p
is a diffeomorphism, the foliation N(Qk|ug) is tangent to the foliation G'.
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Lemma 5.13. There ezists a fiberwise convez neighborhood U C U of the
0-section in TgrF for which p : U — TgF is a diffeomorphism onto its
image, another neighborhood of the 0-section in TgF.

Proof. First observe that the map ux(xz) = v(z, gi(x)), defined for z in Vg,
coincides with the identity on Vi N &y (or on T/ F for k =1+ 1), and that
(ug)«(X) = X for X in TsGy, with s in S"NVy (as a consequence of the fact
that (D')s contains TGy, for s in S’ NAN). Hence, the map (ug)«, coincides
with the identity map for s in S’ N V. Observe now that, if we fix s in S’
and let x vary in T, F NU, the map p can be written as :

wz) =v(z, tigi(z) + ... + tig(x) + tiy1gi41(2)),

where ¢, = (1 — p1(8)) ... (1 — pr_1(5))pk(s) for 1 < k < [, and where
tiv1 = (1 — p1(s)) ... (1 — pi(s)). Hence, for X in Ty, T, F ~ T3 F, we have

e, (X) = iy (X, (1o + -+ tipagi),, (X))
= Vs, (B4 bg1) X, 01(90) (X)) + -+ L1 (gi41)+, (X))
=t Vi (s,6) (X, (1) (X)) + ...+t Vi (s,9) (X, (g141)+.(X))
= 11 (p)s (X)) + oo+ g (pig)s, (X)
= th—f—...—l—tl_HX
= X.

Thus ps, =Id for all s in S’, and the lemma follows. O

Lemma 5.14. For all k, the foliation u;*(G') contains the foliation Gy, on
Ul N U, hence on EXNT)NU.

Proof. If z belongs to UY NU, then (1 — px(z,)) = 0. Hence the map p can
be expressed as follows:

px) = vz, pr(zo)gi(e) + (1 - pi(2o))p2(2o)ga(z) + ... +
(1= p1(2o)) - (1 = pr—1(20)) pr (o) g () -

Besides, for all j = 1,...,k, the map z — p;(z,)gj(z) is constant on the
leaf (G)z of Gk|ugma passing through x. This assertion follows from the
fact that whenever k; > kg, the distribution T'Gy, contains the distribution
TGy, on N, NNg,. Thus the map p sends the entire leaf (G}), into a coset
of D'. O
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The foliation G is defined to be & (u;'(G')|;;). Its domain is the open
set N = {(Z:l) Lemma 5.14 implies that G contains Gy on N}’ N N. Define
P to be the foliated singular locus of f with respect to G, that is, P =
{p € N;df (p)(T,G)}. We may assume, after shrinking A if needed, that df
is positive definite on TpG (cf. Fourth step of Subsection 5.2). The strata
we might have ignored in the very beginning of this proof should now be
re-incorporated.

Lemma 5.15. The foliations G,G1,...,G;, defined on N Ny,...,N; re-
spectively, form a system of foliations on SU S U...US].

Proof. Among the five defining properties of a system of foliations, properties
a), ¢), d) and e) have been taken care of during the construction. Only b)
requires some attention. We need to make sure that N does not intersect
the tubular neighborhoods of the strata that we discarded at the beginning
of the proof. A way to insure this is to fix a family of neighborhoods N,
one for each strata Si, satisfying the following property:

ifgkl N Sk2 =0 = Skl ﬂgkz, then ./Vkl ﬂﬂ/’k2 = () as well.

Then, whenever we consider a neighborhood of some strata Sy, we request
that it be contained in N. O

End of the proof of Proposition 5.9.

Corollary 5.16. A complete system of foliations on Xy exists.

Proof. Let S1,...,5; be the set of all strata of ¥, presented in such a way

that S; > S2 > .... Then, as described in Subsection 5.2 (or in Propo-
sition 5.9 with { = 0), we can construct a foliation G; near S; and use
Proposition 5.9 repeatedly to extend G; to a system of foliations near UgSy.

O

5.4. Construction of a metric from a complete system of
foliations.

Let {Gr;k =1,...,1} be a complete system of foliations on 3;. Each G, is
defined on a tubular neighborhood A, of an open subset Oy, of the stratum
Si. The foliated singular locus of f with respect to G is denoted by Pj.
We suppose that dim G, > dim G4 for all k.



A h-principle for open relations invariant 411

Definition 5.17. A Riemannian metric is said to be adapted to the system
of foliations {Gy; k = 1,...,1} if T, Py is perpendicular to TGy, for all z in
PN N;c

Proposition 5.18. A Riemannian metric adapted to the system of folia-
tions {Gr; k =1,...,1} exists.

Proof. For x in M, let U, be a neighborhood of « in M, and let h, be a
Riemannian metric defined on U, such that

1. U, C N, for all k for which z € P, N N},
2. U, NP, NN, =0 for all k for which = ¢ P, NN/,
3. if x € P, NN}, then T, Py Ly, T,Gy for all y in U, N Py

Existence of U, and h, is easily seen, except perhaps for the last condition.
Suppose that x belongs to N;c N Py if and only if k € {k1,ko,...,k.}, with
k1 < ko < ... < k. Then for Property 3. to hold, it is sufficient that the
following bundles be pairwise hg-orthogonal.

TPkl,Tsz N Tgkl . TPk3 N Tgkz, .. 7TPI<:T N Tng71 R Tgkr.

These bundles span TM on U, N (N;j(N ;cj N Py,)) and are linearly indepen-
dent, so that the Gram-Schmidt orthogonalization process can be carried
out.

let {U;; i > 1} be a locally finite refinement of the covering of M by the
U,’s, and let {0;} be a partition of unity subordinate to the covering {U;}.
Denote by h; the metric h;,, where x; is chosen in such a way that U; C Uy,.

Define
h=>0ih.
i>1
Then T, Py Ly, TyGy whenever y belongs to P,NA. Indeed, let y € PN},
and suppose that y belongs to U; C U, for some i. Then z; € P N N;C
Hence T P, is perpendicular to TG, with respect to the metric h;. Since
this holds true for every 4 for which y € U;, we have TP, Ly TyGy.

5.5. Conclusion.

The preceding subsections show how to construct a complete system of foli-
ations {Gr; k =1,...,1} on Xt (Definition 5.6 and Corollary 5.16), as well as
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a Riemannian metric h adapted to that system (Definition 5.17 and Propo-
sition 5.18). By Proposition 5.3, there exists, for every k, a neighborhood
My, of Nj. N3y for which

WMk(Ef) C P,

where P, denotes the foliated singular locus of f with respect to the folia-
tion Gi. The submanifold P, has codimension at least one and intersect F
transversely. Notice that the M}’s cover Y.

6. The proof.

Let us recall the statement of Theorem 0.4 whose proof will be completed
in the present section.

Theorem 6.1. On a uniformely open foliated manifold, any open relation
invariant under foliated isotopies satisfies the parametric h-principle.

Proof. Let €2 be an open relation invariant under foliated isotopies on the
uniformely open foliated manifold (M,F). Consider a proper F-generic
function f : M — [0,00) without leafwise local maxima. As observed in
Remark 3.24, we may assume, without loss of generality, that f is not
only F-generic but also strongly F-generic. Let Xy = S;U...US; be
the decomposition of the foliated singular locus of f (Definition 3.2) into
strata (Definition 5.2). Let {Gr;k = 1,...,l} be a complete system of
foliations (Definition 5.6 and Corollary 5.16), endowed with an adapted
metric h (Definition 5.17 and Proposition 5.18). As before, we will de-
note by N, the domain of definition of the foliation Gy, by Py the foliated
singular locus of f with respect to the foliation Gy, and by My a neigh-
borhood of Ny N Xy for which Wy, (Xf) C Py (Proposition 5.3). The
leafwise gradient vector field of f with respect to h (Definition 4.1) is de-
noted as before by V£, and its local flow by ¢!. We will need a partition
P={ag=0=a1 <azx<...<a; <...}of [0,00) by non critical val-
ues (except for ag and aj) of f. The latter provides us with an exhaustion
M = U;K; of M by compact subsets K; = f1([ai,ait1])-

The proof of Theorem 6.1 consists in showing that, provided the partition
P is fine enough, the hypotheses of Proposition 1.12 are satisfied. The first
hypothesis, that the h-principle is valid near Ky is easy to handle. Indeed,
Ko = f71(0) is a finite union of points (we assume here that the minimum
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value of f is 0), and the local h-principle (Definition 1.8) is valid for any
open relation (cf. Proposition 1.9), in particular for €. Concerning the
second hypothesis, that the h-principle for extensions is valid on each pair
(Kiy1, K;), it is proven in two steps. The combination of Lemma 4.5 and
Lemma 1.11 proves the h-principle for extensions on each pair (K;41, K; U
Wait?(2y)). It remains to prove that the h-principle for extensions is valid
on each pair (K; UWgit?(3f), K;). This is where the construction of a
Riemannian metric carried out in Section 5 is needed, as will become clear
below. Fix a slice K;.

Observation 6.2. Since f is a strongly F-generic function on (M, F), for
each leaf F' of the foliation F, the critical points of f|r are isolated in F'.
Moreover, the submanifold ¥ is closed and embedded. Hence, for each o
in ¥y, there exists a neighborhood U, of o in M satisfying the following
properties :

1. U, is the domain of a chart (U,, ¢,) adapted to F and centered at o
such that ¢, (U,) = BL x B2, where B. is a closed ball about (o) in
the image of the leaf F,, and where B2 is a closed ball about ¢(o) in
the transverse direction.

2. U, is contained in My, for some k.

3. The compact set bU, ot ¢ (0Bl x B2) does not intersect .

Let {U,; 7 =1,2,...} be a locally finite refinement of the cover of X by
the U,’s. Observe that U,.bU,. is a closed set, and that for only finitely many
r’s, the set U, intersects K; nontrivially. For each r, choose a 0, in 3; such
that U, C U,,. Choose also an index k, € {1,...,l} for which U, C My, .
We will use the notations introduced in Section 4.

Lemma 6.3.
W) el SWrnp,).

Proof. Let x be a point in M — ¥ such that 2 is in X. The critical
point T belongs to U, for some r. Either the trajectory <p[0’°°) (z) intersects
bU,., or it is entirely contained in U,. In the second case, we deduce from
Proposition 5.3, and from the fact that U, C My, , that  must be contained
in U, N Py,. In the first case, let 29 = ¢*(x) be the point in ¢l (z) N bU,
for which ¢ is maximum. Then %) (z) is entirely contained in U,, and
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Proposition 5.3 implies that ¢ must belong to Py,. In both cases, = belongs
to S(UTﬂPkT). O

Lemma 6.4. Let
gi = inf {f(x)— f(z7); 2 € U (bU, N P, ) N K; and ™ € K; }.

Then €; s positive.

Proof. Suppose on the contrary that €; = 0. Then there exists a sequence
(z;) of points in UpbU,NK; with z; in K; such that lim; . (f(z;)—f(z;)) =
0. We may assume, after extracting a subsequence if necessary, that the
sequence (x;) converges in K; to a point z. Since x belongs necessarily to
U,-bU,., it is not a leafwise critical point of f, and we may therefore consider
a chart (U,v) about z, adapted to the foliation H of M — X by the orbits of
V£f. For all sufficiently large j, the point z; lies in U. Letting 2’ = ¢'(x)
with ¢ < 0 be an element in U, there exists a sequence z; = ¢% (z;) with
tj < 0 converging to z’. Because f is strictly increasing along nonconstant
trajectories of Vrf,

0 < f(z)— f(2)
= lim (f(z;) - f(z5))
< tm (f(x) - f()).

Jj—00

contradicting the hypothesis that lim;_,, (f(:vj) — f(xJ)) =0. O

Now let P! ={bp =0=1">1 < by < ... < bj...} be arefinement of the
partition P such that, if a; = bj;, then b; 1 —b; < ¢;, whenever j; < j < ji41.
Fix j, let L; denote the slice f~1([bj, bj+1]), and let i be the index for which
[bj, bj41] C [ai, aita].

Lemma 6.5. For all r, the set N, = S(U, N Py, NLj) N L; is a finite union
of compact subsets of embedded submanifolds of codimension at least one,
transverse to F.

Remark 6.6. It is not true in general that IV, is an embedded submanifold.
The problem is that, even though Vrf is a leafwise gradient vector field,
there might be trajectories leaving U, NPy, and coming back later to U,NF, ,
creating in the process self-intersections in N,..
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Proof of Lemma 6.5. As in the proof of Lemma 6.4, let ‘H denote the foliation
of M — ¥ by the orbits of Vxf. For any point z in bU, N P, N L;, there
exists a t, < 0 for which ¢ (z) = =y belongs to f~!(b;) — S;. Indeed,
bjy1—bj < e, but f(z)— f(z7) > &;, by definition of €;. Let V,, be an open
neighborhood of plt9(z) in M such that

- Hly, is isomorphic to a product foliation,

- each leaf of H|y, intersects f~1(b;) nontrivially.

Let also U, be a neighborhood of z in VN My, for which U, NPy, ~ Ug} X Umz,
where

- U} is a neighborhood of z in the leaf H, of # through =,

- U2 is an submanifold containing = whose projection onto the leaf space
of H|y, is an embedding.

Existence of U, is guaranteed by the fact that H is tangent to P, —X. Then
S(U, N P, ) NV, is an embedded submanifold (it is isomorphic to U2 x R).
Now, since bU, N Py, N L; is compact, it is covered by a finite number of U, s,
say by Ug,,...,Ug,. Moreover, we may assume that for each 1 < ¢ < n,
there exists a relatively compact refinement V; of Uy,, such that U,V; also
cover bU, NPy, NL;. Then the compact sets S(V;N P )NL;, £ =1,...,n and
U, NPy, cover N,, and are contained in the submanifolds S(U, N Py, ) N Vy,,
¢ =1,...,n and P, respectively. Because P is transverse to F, and
because H is tangent to F, the submanifold S(Uy, N Py,.) N Vy, is transverse
to F as well (since U2 is transverse to ). Moreover, by construction, the
submanifolds S(Uy, N Py, ) N V,, and Py, have codimension at least one. O

It follows from Lemma 6.5 and Lemma 6.3 that the stable set of L; N X,
with respect to (V£f)|r; is contained in a finite union of compact sub-
sets of embedded submanifolds intersecting F transversely, and having their
codimension at least equal to one. We can thus use Theorem 1.13 and
Remark 1.14 to conclude.

End of the proof of Theorem 6.1.
7. Examples of uniformely open foliated manifolds.
The very first class of examples of uniformely open foliated manifolds con-

sists of the products (M,F) x R. Let f be any positive, proper, F-
generic function on (M,F) (such a function always exists). The function
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g: M xR —=R: (z,t) = f(z) +t? has no leafwise local maxima, and sat-
isfies the hypotheses of Definition 0.3. As implied by the following theorem
due to Palmeira, foliations of the type (M,F) x R include an important
class of plane foliations (i.e., foliations whose leaves are diffeomorphic to
some Euclidean space).

Theorem 7.1 ([19]). If F is a transversely orientable plane foliation on an
orientable n-dimensional manifold M (with n > 3), with finitely generated
fundamental group, such that all leaves are closed, then there exists a two
dimensional surface S and a plane foliation Fg on S such that F is conjugate
to the product of Fo with R*2.

Another class of examples is described in the following lemma.

Lemma 7.2. Let 7w : M — B be a locally trivial fibration with compact fiber
L and open base, and let F be a foliation on M that is transverse to the
fibers of w, in the sense that T,F + Kerm,, = TyzM for all x in M. Then
the foliated manifold (M, F) is uniformely open.

Proof. Let g : B — [0,00) be a proper Morse function without local maxima.
It is sufficient to prove that if f : M — [0, 00) is sufficiently close to 7*¢ in
the fine C*° topology, then f is proper and has no leafwise local maxima. It
is easy to see that a function that is C°-close to a proper function is proper
as well. Let {x7;j > 1} be the set of critical points of g. For every j, let
zl,... ,wfc be local coordinates about 7, defined on a neighborhood U7 of
2z’ in B, for which

g(zl,...,z) = (3371)2 +9(0,2%,...,27).

Assume also that U7 is small enough to guarantee existence of a trivialization
¢ : m1(UJ) — U’ x L, with the property that the image of each local
sections o7 : U7 — 771 (U?) : z + ¢~ !(z,€), £ € L is contained in a leaf of
F. A function f whose 2-jet is sufficiently close to that of 7*g satisfies the
following properties.

- The leafwise critical points of f are all contained in 7 *(U,;UY).

- For all j > 1, and for all £ in L, the second derivative of f o O'Z in the
direction of x is strictly positive on U7.
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Then, if y is a leafwise critical point of f, the foliated second differential of
f at y may not be negative definite, that is, ¥ may not be a leafwise local
maximum of f. O

Remark 7.3. It is not know to us whether locally trivial fibrations with
open fibers are always uniformely open foliated manifolds. Nevertheless,
such foliated manifolds satisfy the conclusion of Theorem 0.4, as implies
Theorem 0.1 (cf. [1, 2]).

We will now describe a general procedure that allows one to construct
uniformely open foliated manifolds. We need to recall the notion of Novikov
component of a codimension one foliation F on a closed manifold M.

Definition 7.4 ([18]). Two points x and y in M are said to be equivalent
with respect to F if either F, = Fy, or the foliation F admits a closed
transversal that contains both x and y.

It is not difficult to verify that this defines an equivalence relation on M.

Definition 7.5. A Nowikov component of the foliation F is an equivalence
class for this equivalence relation.

Theorem 7.6 ([18]). A Nowvikov component is either a compact leaf or an
open submanifold whose boundary is a finite union of compact leaves which
are themselves Novikov components.

Example 7.7. The Reeb foliation on S3 has three Novikov components.
One of them is the torus leaf. The other two are the two open solid tori
bounded by the torus leaf.

Remark 7.8. A transversely orientable codimension one foliation with one
Novikov component may have compact (necessarily nonseparating) leaves.
Such compact leaves may admit closed transversal that do not pass through
all the leaves. (See M.P. Muller’s example [16].)

The following result is due to Ferry and Wasserman.

Theorem 7.9 ([6]). For a codimension one foliation F on a closed mani-
fold M, the following statements are equivalent.

- F has one Novikov component.
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- There exists an F-generic function f : M — R with no degenerate
leafwise critical points.

Consider now a codimension one foliation F with one Novikov compo-
nent on a closed (n + 1)-dimensional manifold M. Let f : M — R be an
F-generic function without degenerate leafwise critical points. Let I' C M
be the set of leafwise local maxima of f. Notice that since f has no degen-
erate leafwise critical points, its singular locus (Definition 3.2) is necessarily
transverse to F (cf. Section 3.1 or [6]). It is therefore a finite union of em-
bedded circles intersecting F transversely; the set I' is the union of some of
them.

Lemma 7.10. The foliated manifold (M' = M — T, F' = F|py_r) is uni-
formely open.

Proof. We already have a bounded below F-generic function f|; on M’ with
no leafwise local maxima. The only thing that needs to be done is to modify
flar so as to make it proper. Take a tubular neighborhood U of I in M. The
set U is the image of an embedding e : E — M, defined on the total space
of a rank-n vector bundle p : E — I', such that eos =Idp, where s : I' - E
is the zero section. Since I' is transverse to JF, we may assume, without
loss of generality, that the foliation F|y corresponds, under the map e, to
the foliation of E by the fibers of p. Such a tubular neighborhood is called
hereafter a foliated tubular neighborhood. Let g be a Riemannian metric on
the bundle E. Let 6 : R — [0, 1] be a function with compact support whose
only critical value, aside from 0, is a global maximum achieved at the point
0. Consider the function

0(g(e ‘1z, e 1z)) .
FoM SRz f(z) + oz, e 1) for x in U-T
f(z) otherwise.

The function f’ is proper and bounded below. Moreover, provided U is
small enough, its leafwise critical points are exactly those of f|p. Thus f’
has no leafwise local maxima. O

Remark 7.11. Making f|y;—r proper requires the set I' of leafwise local
maxima of f to be a union of circles. If on the contrary, I' has a line
segment as one of its connected components, as might be the case if the
function f had degenerate leafwise critical points, it would not be possible
to make f|,, t proper without creating leafwise local maxima.
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Remark 7.12. It is a classical result due to Rummler and Sullivan that a
transversely orientable codimension one foliation has one Novikov compo-
nent if and only if it is geometrically taut, that is, if and only if M admits
a Riemannian metric with respect to which all the leaves of F are minimal
submanifolds (a proof of this result can be found in [4]).

As was suggested to us by T. Tsuboi, interesting foliations with one
Novikov component are obtained by identifying deleted tubular neighbor-
hoods of closed transversals (idea originally due to M. Hirsch). More pre-
cisely, let M be an (n+1)-dimensional manifold endowed with a codimension
one foliation F. Let c1,cp : ST — M be disjoint embeddings transverse to
F. Suppose that the normal bundle of ¢;(S') is trivial (which it is when the
foliated manifold (M, F) is orientable). Consider disjoint foliated tubular
neighborhood U; and Uz of ¢1(S!) and ca(S') respectively. The set U is the
image of an embedding e; : S' x R® — M that coincides with ¢; on S* x {0},
and that maps the “vertical” foliation of S' x R™ isomorphically onto the
foliation F|y,. The fiberwise connected sum along the closed transversals
c1 and cg, denoted hereafter by (M, F)c, #c,, is defined to be the foliated
manifold obtained by removing the two curves c;(S!) and cy(S') from M
and identifying U; — ¢1(S1) with Uy — c2(S') by means of the map

Ui — 61(51) — Uy — 02(51) cei(t,z) — eg <t, ﬁ) ,

where ¢t € S' and ¢ € R*. If F has one Novikov component, so does

(Mv ‘7:)01#62'

Consider, for instance, a manifold of the type M = S! x F, where F is
some n-dimensional manifold. Let 7 denote the natural projection M — S,
and let F denote the (trivial) foliation of M by the fibers of 7. Let also ¢1, ¢2 :
St — M be disjoint embeddings such that woc; coincides with Id g1 and wocy
coincides with the double cover €% s ¢?2? (alternatively, one could suppose
that 7 oc; and 7o ¢y are different covers of St of type e — eine). Then the
foliated manifold (M, F)c, #c, has one Novikov component, and dense leaves.
Indeed, a leaf of the connected sum corresponds to an equivalence class for
the equivalence relation on S' generated by e ~ €?2?. The uniformely open
foliated manifold obtained by removing from M the set of closed curves along
which some given F-generic function without degenerate leafwise critical
points achieves leafwise local maxima has dense leaves as well. Besides, if F'
is an open manifold, it is not necessary to remove anything from (M, F)c, #c,
to achieve uniform openness.



420 Mélanie Bertelson

Lemma 7.13. If the manifold F' is open, then the fiberwise connected sum
(M, F)ey e, is uniformely open.

Proof. Let f : F — [0,00) be a proper Morse function without local maxima.
Let a be a noncritical value of f. Let v : S — F be an injective map whose
image is contained in the level set f !(a). Let ¢ be a point in f~!(a)—~v(S*).
Suppose that the closed transversal ¢; coincides with the map S — M : t —
(t,q), and that cy coincides with the map S' — M : t — (2t,7(t)). Suppose
also that on the tubular neighborhoods U; and Us of ¢; and co respectively
along which the identification is performed, the function p* f corresponds to
some function of the following type :

SLxRY 5 R:(t,x1,...,20) — a+ h(z,),

where p denotes the projection M — F and where h : R — R is an
embedding. The function p*f|a/—(c,(s1)ucy(s1)) Yields a proper function
[ Me, e, — [0,00) that coincides with p*f on M — (U; U Us), and whose
critical locus in (U; — ¢1(S')) ~ (U2 — c2(S1)) is made of two disjoint trans-
verse closed curves, consisting of leafwise critical points of leafwise index
n — 1 and 1 respectively. Figure 1 shows how to construct f’ on the con-
nected sum of a fiber in the tubular neighborhood U; with the corresponding
fiber in the tubular neighborhood Us. O

8. Application to Poisson geometry.

Let us recall that a regular Poisson manifold can be described as a foliated
space (M, F) endowed with a leafwise symplectic structure, that is, a section
of the second exterior power of the cotangent bundle T*F of the foliation
F, whose restriction to each leaf of F is a symplectic form (cf. [5]). The
question of existence of such a structure on a given foliated manifold as been
approached in a previous paper [2] (see also [1]), where examples of foliations
are presented that do not support any leafwise symplectic structure although
the obvious obstructions vanish. On the other hand, as explained below, a
leafwise symplectic structure on the foliated manifold (M, F) is a solution
of a certain open, foliated invariant differential relation.

Consider a foliated manifold (M,F). A section of the bundle AFT*F
is called a tangential differential k-form. A tangential differential 2-form «
is said to be nondegenerate if for every point = in M, the skewsymmetric
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R

indexn — 1

index 1

Figure 1: The function f’ on the connected sum of two corresponding fibers.

bilinear form a(x) on T,F is nondegenerate. The usual exterior differential
restricts naturally into a map dz : T(A*T*F) — T'(A*TLT*F) (cf. [11]). The
corresponding cohomology

HH(F) = {dF — closed * —forms }

~ {dF — exact x —forms } ’

is called the tangential de Rham cohomology of the foliated manifold (M, F).
There is a natural affine fibration L : (T*F)! — A2T*F defined by
L(j'a(x)) = dra(z). Choose a dr-closed tangential differential 2-form 6.
Define 2y to be the differential relation Qg = { j'a(z); 8(z) + L(j'a(z)) is
nondegenerate }. A solution of €y is thus a tangential differential 1-form «
such that dra + 6 is a leafwise symplectic structure belonging to the same
tangential de Rham cohomology class as 6. Thus, the set of solutions, mod-
ulo the set of dz-closed 1-forms, parameterizes the set of leafwise symplectic
structures lying in the class [#]. On the other hand, since the map L is an
affine fibration, the space of sections of {2y is weakly homotopy equivalent
to the space of leafwise nondegenerate 2-forms.

Proposition 8.1 ([7]). The relation Qg is open and invariant under foli-
ated isotopies.
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Proof. That €y is open follows directly from its definition. The second
assertion relies on considering the “right” lift for isotopies, that is :

t
pt-a=pla+ / o7 (i(X.)6) ds,
0

where « is an element of 7% F, and where X; denotes the time-dependent
vector field associated to the isotopy ;. If a is a tangential differential
1-form for which the tangential differential 2-form dra + 0 is leafwise non-
degenerate, then ¢;(dra + 0) is leafwise nondegenerate as well (while the
form ¢} (dra) + 0 might very well be leafwise degenerate), and

oi(dra+0) = drpia+6+ (¢i0—0)
t
d

ds

S

t
= dy:(pja—i-e—l—/ wsLx,0ds
0
t
= dy:(pja—i-e—l—/ prdri(Xs)0ds
0

t
= dr ((pZa-l-/ wzi(Xs)Hds) +6.
0

Thus, Theorem 0.4 applies to the relation 2.

Theorem 8.2. Let (M,F) be a uniformely open foliated manifold. Given
a dr-closed tangential differential 2-form 6, any family Bs,s € [0,1]P of
leafwise nondegenerate 2-forms is homotopic to a family of leafwise sym-
plectic structures cohomologous to 0. Moreover, if Bs is already symplectic
and cohomologous to @ for s in 9([0, 1]P), the homotopy may be chosen to be
stationary for those parameters. Equivalently, the inclusion of the space of
leafwise symplectic structures cohomologous to 6 into the space of leafwise
nondegenerate 2-forms is a weak homotopy equivalence

Theorem 8.2 implies the following existence and uniqueness result for
leafwise symplectic structures.

Corollary 8.3. On a uniformely open foliated manifold any leafwise non-
degenerate 2-form can be deformed into a leafwise symplectic form (with
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prescribed tangential de Rham cohomology class). Moreover, if two coho-
mologous leafwise symplectic structures can be joined by a path of leafwise
nondegenerate 2-forms, they can also be joined by a path of cohomologous
leafwise symplectic forms.
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