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Minimal annuli with and without slits

ToBiAs H. COLDING AND WILLIAM P. Minicozzi 1T 1

0. Introduction.

In this paper we bound the oscillation of the unit normal of minimal annuli
with and without slits. Our estimates are independent of the ratio of the
inner and outer radii. Hence, we recover standard removable singularity
results as the inner radius goes to zero. The estimate for annuli with slits
is important in proving a removable singularities theorem for minimal limit
laminations.

Proposition 1.3 shows that if a minimal annulus ¥ in R? has [, |4 <
/8 and fEK > —m, then X is a graph. Proposition 1.12 extends this
to surfaces with quasi-conformal Gauss map and shows that if [ |A| is
actually small, then X is Lipschitz close to a plane. These results, as well as
the rest of the results of this paper, can be easily extended to hold locally
in any 3-manifold.

In Section 3 we extend this to what we call “minimal annuli with slits”.
These are multi-valued minimal graphs over an annulus in the plane. A
particular example is a rotation of a rescaled half-helicoid:

(0.1)
{€d/(27) (s cost,s sint,t) | 2w/e < s < 2w R/(ed) and 0 < ¢ < 27}.

Since n(ed/(27) (s cost, s sint,t)) = (sint, —cost,s)/(1 + s2)'/2 and s >
27/,

(0.2) In —(0,0,1)| < ein (0.1),

independent of § and R. In Theorem 3.36, we obtain a similar bound in
general for minimal annuli with slits satisfying certain boundary conditions.
This bound implies that there is a fixed plane which these are Lipschitz
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close to on every scale. This consequence will be used elsewhere to prove
the removability of singularities for minimal limit laminations.

The results given here should be compared with Rado’s theorem (see for
instance [CM]) which states that a minimal surface in R® whose boundary
is a circle which is a graph over the boundary of a convex set in a plane is
itself a graph (and in fact a disk).

Throughout, ¥ C R3 is a compact connected oriented immersed sur-
face; A, Vy, Ax, n, K are the second fundamental form, covariant derivative,
Laplacian, unit normal, and sectional curvature. Given z € R3 and s > 0,
Bg(x) is the extrinsic ball of radius s centered at z. Likewise Ds(z) will be
the disk in the plane centered at z and with radius s. Finally, Bs(a) is the
intrinsic ball in S? of radius s centered at a € S2.

1. Minimal annuli.

In this section, if a € S%, a* denotes {x € R3|(z,a) = 0}. For a,b € S?,
Angle(a, b) is the angle between a',b'; i.e., Angle(a,b) = distgz(a, {b, —b}).

Let f be harmonic on X% with critical points {y;} with multiplicities
{m;}. Suppose that none of the y;’s lie on dX. The Bochner formula on

S\ {yi} gives

\Vs|Vs P2

H 2
[Hessr|” o p _ —2K.

1.1 As log |[Vs fI? =20 —1
(L) = log[Ve/| Vs f|? Vs fl*

Here we used that since Ayf = 0, then 2|Hess¢|? |V f|? = |[Vx|Vsf?%
Hence, by Stokes’ theorem

dlog|VsfI? / 2
1.2 / —_— = = Ay log |Vef|+4n m;
(1.2) oz dn S\{wi} v/l Z
= 2/ K+47eri.
¥ i

Proposition 1.3. If ¥ is connected and minimal with boundaries o1 and
02, f0'1U0'2 |A| < /8, and [ K > —m, then X is graphical.

Proof. Fix q; € o0;. Since |Vxdistg2(n(g;),n())| < |A|, the assumption on
0% gives

(1.4) S sup distss (n(g:), n(z1)) < Z/ A < /8.

— ZiE€0;
i i i
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Choose b € S? with Angle(n(g;),b) < 7/4 for i = 1,2. We will show that
¥ is graphical over the plane b-. By the triangle inequality and (1.4), for
i=1,2,

(1.5) sup Angle(b,n(z;)) < w/4 + sup distgz(n(g;),n(z)) < 37/8.

2; €04 2i€0o;

Rotate coordinates so that b = (0,0, 1) and b" is the z1-z2-plane. Fix 6 and
set f = x1cosf + xosinf. Given x € X,

(1.6) Vs f|2(z) =1 — {(cos8,sin6,0),n(z))? > (b,n(z))?.
On 0¥ = 01 U oy, (1.5) and (1.6) imply that

. i >i .
(1.7) 16nzf Ve f| > 10ng |(b,n(z))| > cos(37/8) > 1/3
Since |Vx|Vg f|| < |Hessg| < |A[, (1.7) gives on 02
(1.8) Vs log|VsfI?| = 2|Vs|Vsfll/|Vefl <6]A].

Integrating (1.8), we get

(1.9) /6E

Since ¥ is minimal, Ay f = 0. Substituting (1.9) into (1.2),

d log |Vs fI?
dn

< 6/ A] < 37/4.
ox

d log |Vx f|? /
110)  4nY omi= [ SEEIL 9 | K <3n/44om <dnm;
(1.10) 7r i m /82 I g <37m/44+2m <4n

hence, f has no critical points. Since this is true for any 6, X is graphical
over bt. O

We next generalize Proposition 1.3 to ¥ with n quasi-conformal. We
will use that if Q& C S? is connected and diamgz2(Q) < 7/2, then by the
maximum principle

(1.11) diamgz (Q2) = diamg2(0€2) ;

here we used that distZs(z,-) is convex on B, 2(z) C 8%
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Proposition 1.12. If ¥ C R? is connected, [ |K| <, |A]> < C|K]|, and
0% has components {o; }1<i<n with

n

(1.13) Z inf sup {distg2(n(z),a)} <e<7/8,

- a€S? zeo;

then n(X) C Bac(a) for some a € S? and X is the graph of u over a with
|[Vu| < 4e.

Proof. Choose a; € S? and ¢; > 0 so that n(o;) C B, (a;) C S? for each i,
> i€ <€, distg2(as,a;) # € +€;, and distg2(as, a;) # |e; — €;| for @ # j (i.e.,
the 0B, (a;)’s are transverse). Let €1, ..., {2, be the connected components
of U™, B, (a;), so that

(1.14) Zdlamsz Zdlamsz (a;)) <2e<m/4.
i=1

Since the 0B, (a;)’s are transverse, each 0€); is a finite union of transverse
circular arcs. Hence, there are (closed) disks QY with €; C QY, 909 C 69,
and diamgz (2?) = diamg2(€;) (using (1.11)). Since 909 N 8&2? =0ifi#j,
a disjoint subset (after reordering) Y, ... ,Qg has

(1.15) U2 n(o;) U™ Q cul QY.

Since diamg:(Q)) = diamg2(£2;), (1.14) and the volume comparison imply
that

(1. 16)
zArea oY) < FZdlamsg ) < WZdlamsz () < m(m/4)
=1
Since the QV’s are disjoint disks,
(1.17) Q=8*\uL, !

is a connected open set with ¢ boundary components. We show next that
q=1.If g > 1, then H}(n(Z)NN) > distg> (27, Q29) > 0 since ¥ is connected
and n(X) N QY # O for each i. Here H! is the one-dimensional Hausdorff
measure. Hence, since Q N n(0%) = (), Lemma A.1 implies that Q C n(X).
However, together with (1.16), this would imply that

(1.18) 37 < 47— Area (UL, QF) = Area () < Area(n / |K| <,
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so that we must have ¢ = 1. Hence, n(X) C O and the claim follows from
(1.14). O

2. Holomorphic functions on annuli.

We will now obtain C%! estimates for holomorphic functions on annuli as a
model for the Gauss map of a minimal annulus with a slit. The next section
extends these arguments to that case.

Lemma 2.1. If f : Dr \ Ds — C is holomorphic and faDRuaD,; IVf] <k,
then

2.2 i — ¢ <e.
(2.2) min max |f(z) —c| <e

Proof. For § < s < R, set

2T
(2.3) I(s)=(27s) ! f=02n! f(set?)de,
0D 0

and ¢ = I(9). Differentiating (2.3), we have

0 0 2T 9
(2.4) 2w sl (s) = of = —is ! of =—i —fdG
OD, or 0D, 00 0 00
= —i[f(se'®™) = f(se)] =0,
where we used that g—r = —ir! % since f is holomorphic. In particular,

I(R) = c. Since I(s) is the average of f over 0D;, there exist y1,y2 € 0Dg
with

(2.5) ¢ = Re(f(y1)) +iIm(f(y2)) -
Combining (2.5) with faDRu8D5 IVfl <k,

(2.6)  max [Re(f(y) —c)| <¢/2and max |Im(f(y) —c)| <¢/2,

so that |f —c¢| < e on O(Dg \ Ds). The maximum principle then gives (2.2).
O

Note that Lemma 2.1 does not hold for harmonic functions (in particular,
(2.4)); e.g., take € logr/(47) and R > 3™ §. Clearly, Lemma 2.1 holds for
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the real part of a holomorphic function. However, on an annulus, not every
harmonic function can be written this way.

It is not hard to see that |f’(z0)| < €(1/R + 6 |z0|72)/m for 29 € Dgys \
Dys. It is not clear whether a corresponding estimate holds when there is a
slit.

3. Minimal annuli with slits.

We will now bound the oscillation of the Gauss map of a double-valued
minimal graph over an annulus with a slit. Double-valued on the slit. Fix
0<a<1l,0<d< R/4,0 < e Suppose Q C {x3 = 0} is a topological
annulus,

(3.1) X C Bg)\ By is a minimal graph of u over  with |Vu| < 1/6,
(3.2) Y =vsUygU~v4 Uy_ with s =0BsNX,yg = 0BrN X,
(3.3) v+ ={(t,0,us(t)) |0+ <t < Ri},u_(6)=0,n_(4,0,0) =(0,0,1),
(3.4) d_=46,50/6 <6y <0,5R/6 <R+ <R,

(3.5)

|uy () —u—(t)] +t|Vuy(t) — Vu_(t)| < €d (t/6)* for 6 <t < min{R.},
(3.6) |A|(x) < e€/rforxeX,

2

where r? = 22 + 22 + x§ In Lemma 3.9, we will see that {2 is given in polar

coordinates by
(3.7) {(p,0) [ ps(6) < p < pr(f) and 0 < 6 < 27},

where ps and pgr are functions of § and, by convention, §# = 0 and 0 = 27
correspond to u_ and u, respectively. Hence, u is double-valued over the
xi-axis from ¢ to min{R4} (the “slit”) with values uy and Vuy for u and
Vu = (01u, Oau), respectively, and 0 has corners (e.g., if ps(0) # ps(2)).
Let IT : S?\ {(0,0,—1)} — C be the stereographic projection so II(z) =
(1 +iz2)/(1+x3) and if a,a’ € By 4(0,0, 1), then

(3.8) M(a) ~ TI()| < la — /| < 2|1(a) ~ T1(a)]

(See, e.g., (28) on page 20 of [A] for (3.8)).

Our arguments will be modelled on those for holomorphic functions in
Section 2. New error terms will arise both from the presence of the slit and
from the fact that ¥ is not flat. Set 74 = dB; N ¥ and let o, C {z3 = 0} be
the orthogonal projection of ;.
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Lemma 3.9. Ife < 1/(5472), § <t < R, and ¥ satisfies (3.1)-(3.6), then
each oy is a radial graph of a function p; of 0 with 5t/6 < p; <'t, and

(3.10) u?(z1,22) < (22 + 22)/36 for (z1,22) € Q,
(3.11) |Vu| < 3me and |u| < 57%€d on Ds N,
(3.12) pe(27) — pe(0)] < €6 (t/0)*.

Proof. By (3.1) and (3.6), we have
(3.13) |V|Vul|(z1, 22) < |A|(z1, z2,uw) (1+ |Vul?)? < 9e (2? +22)"1/%/8.

Combining (3.3) and (3.13),

(3.14) max |Vu| < |Vu_(8)| 4+ 27 max |V|Vu|| <9me/4,
0Ds 0Ds
(3.15) max |u| < |u_(8)| + 276 max |Vu| < 9n?ed/2 < §/12.
0Ds 0Ds

Integrating |Vu| < 1/6 along rays, (3.15) implies that
(3.16) u?(z1,x2) < (22 + 22)/36 for (z1,22) € QN {(2? + 22)Y/? > 56/6} .

Since 2542%(1 + 1/36)/36 < §? and Q is connected, it follows that Q C
{(2? + 23)/2 > 55/6} and (3.10) holds for all (z1,22) € Q. Define the
function r, : Q@ — R by ry(z1,22) = |(z1, 22, u(z1,22))|. Using |Vu| < 1/6
and (3.10), for any 6,

(3.17) Or2/0p = 0/0p [p* +u’(pcosf, psind)] > r, > p > 0.

In particular, oy is a radial graph p.(6)(cos6,sin ) with 5¢/6 < pi(0) <
Integrating (3.13) along rays from dD;s and using (3.14)—(3.15) gives (3.1
Using (3.5), the definition of p;, and |ui|(t) < t/6,

t.
).
(3.18) |(p7(2) + u® (pr(2))) 2 — ¢

< |pi@7) +u? (pr(27)) — £ /t

= |uZ (pe(2m)) — u? (pe(2))] /t
< Ju(pe(2m)) —uy(pe(27))[ /3 < €6(2/6)%/3.

Finally, since % (2 4+ u? (t))V/2 > 1/2 (by (3.17)), (3.18) implies that
(319) |pe(2m) = pe(0)] < 21(p7 (27) +u (pu(27)))"/% — ] < €6 (2/5)*.
0
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Lemma 3.20. Ife < 1/(5472),§ <t < R, and ¥ satisfies (3.1)-(3.6), then

(3.21) 27— Cope <6t / |Vsr,
s
(3.22) t ! Length(vy;) < min {27 + Coe,37}.

Proof. By Lemma 3.9, each oy is a radial graph of p;. Hence,

(3.23) (pe(0))% + u®(ps(0) cos B, ps(0) sinB) = ¢
Differentiating (3.23) (with respect to 6), we get

(3.24)  p1Ogpr + u(Vu, (cosb,sin b)) dgpr = —u pt(Vu, (—sin b, cosh)) .
Substituting 5t/6 < p; < t, |Vu| < 1/6, and |u| < t/6 on oy,

(3.25)  |Gopel < fult[Vul/[pr — Jul [Vul] < 3Jul [Vl /2 < t/24.

By (3.25) (and since p; < t), |dot/df| = |(cos 0, sin @) Ogp; + pt(—sin b, cos 0)|
< 25t/24. Combining this with |Vu| < 1/6 implies that

dO’t

| L+ IVul>)Y/2do < 57t/2.

2m
(3.26) Length(vy:) §/
0

The triangle inequality and (3.11) imply that p; > ¢ — maxy, [u| > (1 —
5n%¢€)d, so

(3.27) Length(~s) > Length(os) > 27 min ps > (2r — C1 €)d.
Given = = (z1, T2, 23) € s, then (z1,22) € 05 C Ds and (3.11) give
(3.28)  |(n(x),z/8)] =01 (1 + |Vu|?) V2 |u — 21010 — z200u| < Coe.
Consequently,

(3.29) |Ver| >1—Cheon ;.

Combining (3.27) and (3.29) gives (3.21) for any Cy > Cy + 27 Ch.

Below, we will need that the endpoints of - are close. By (3.12),
lpe(27) — pe(0)] < €6(t/5)® < et. Therefore, by the triangle inequality,
|Vu| < 1/6, and (3.5), we get

(3.30) |t (pe(2m)) — u—(p(0))|

< Jug (p1(2m)) = i (pe(0)) [ + 4 (p£(0)) — w2 (0))]
<et/6+et="Tet/6.
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We conclude that the distance between the endpoints of v; is at most 2€t.

Let P; be the plane orthogonal to n(y; N ~y_) through v N~y_. Let 6¢
be the (orthogonal) projection of v; to P;. Since |Vu| < 1/6, ¥ is a multi-
valued graph over (a subset of) P; of a function w. To complete the proof,
we will argue as above to bound the length of 6; and |Vw| on 6. Using
(3.26), Length(6¢) < 5mt/2. Hence, as in (3.13)—(3.15), we get

(3.31) max |Vw| < Cse,
ot

(3.32) max |w| <571 Czet/2.
&

It remains to bound the length of 6; by 27 ¢ plus a multiple of ef. Using
|Vu| < 1/6 and (3.10), B; N P, C {|z3| < t/2}. In particular, B; intersects
P; with slope at least v/3 (in absolute value) over {z3 = 0}. Since the slope
of P, is less than 1/6 over {z3 = 0}, this implies that |Vpr| > Cy > 0
on 0B; N P,. Choose polar coordinates ﬁ,é on P; so 0B; N P; is a circle
p = Const < t. Arguing as in (3.17), we get, for any 6,

(3.33) 8/0p | p* + w?(pcosb, psinf)| > Csp> 0.

Hence, 6y, like oy, is a connected (multi-valued) radial graph of a function
pr of § satisfying (3.23)-(3.25). From (3.25), (3.31), and (3.32), we get that
|0;0¢| < Cget. Inserting this and (3.31) into (3.26) (with w in place of u)
gives (3.22) since the domain of j; is contained in {#| —Ce < § < 2r+Ce}.
This followed since the distance between the endpoints of +; is at most 2 €t
(and orthogonal projection is distance nonincreasing). [

The key point in the next theorem, our main result, is that the constants
are independent of 6 and R. The proof follows Lemma 2.1. If ¥ is as in (3.1),
then the Gauss map n : ¥ — B /4(0,0,1) C S? is conformal. Composing
n with the stereographic projection IT and using (3.8), we get a conformal
map

(3.34) f=1I(n(-)): ¥ — D;1(0) C C with |[Vxf| <|A4].
Note that, if z,y € 2, then

B Vu(x) B Vu(y)
|f(z,u(z)) — f(y,uly))| = T (T [Ve@P2 T+ 1+ V()P
(3.35) <2 |Vu(z) — Vu(y)| .
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Theorem 3.36. There are C(a),ep(a) > 0 so that if € < eg and X satisfies
(3.1)-(3.6), then

(3.37) max In(z) — (0,0,1)] < Ce.

Proof. We will prove (3.37) by bounding |f|. For § < s < R, set

dlogr

(3.38) .MﬁwA/fwm:/f =
s s

We will show that I(s) is almost constant. By Stokes’ theorem and the
co-area formula,

(3.39) I(s) —1(0) = /B mz{ng, Vs logr) +/ fAxlogr

BsNS.
dlogr
_/ I
BsN(y4+Uy-) n

- / £ / V[ (Vsf, Var) dt
) Yt

+/BSﬁEfA210gT‘—/5 [f+ Fy — - F_|(t) dt

0 st
- [ normd- [ roRod
6+ S0

[t

S0

Here s = p5(0), s4 = ps(27) (so that s? = s2 +ul(s+)), sp = min{s,,s },
and

(3.40) fi(t) = f(t,0,us(t)),
Fi(t) < (—01usBoug, 1 + (O1us)?, Douy) (t, O;U:t)>
(|O1us Oous |2 + (14 |O1us|?)? + |Oous|?)1/27 ¢2 +ud

(1 + |Drus]?)/?
Oou+ |:—t Ou+ + ui]
(14 [Vug|?)1/2 2+ul |

(3.41) =

In (3.41), d;us (t) denote the values of d;u(t,0). When ¥ is an annulus in
the plane, the the last five terms in (3.39) don’t appear and the first term in
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(3.39) vanishes since f is conformal (see (2.4)); we will bound these terms
in general in Lemma 3.45 below.

Lemmas 3.9, 3.20 give bounds for |Vu| along s and the length of 7s;
together this bounds |I(4)|. Combining this with the bound on I(s) — I(J)
from Lemma 3.45, we get

(3.42) () < [(8)| + 1(s) = I(9)] < Cge.

By (3.47) and (3.42) (and since 7, is connected), there exist ys € v, with

(343) [Re(f(ys)HI < || flVsr|

Vs

so long as € < 27/Cs. Combining (3.43) with the gradient bound (3.34),
the length bound on v from Lemma 3.20, and (3.6), we get

/ / Vsr| < |I()]/(27 — Cse) < Che,

s

(3.44) mEaX|Re(f(y))| < Cje+3mssup|A|l < Cye.

Yycs Vs
Repeating this, (3.44) holds also for max,, [Im(f)| so |f| < vV2Cse on X,
giving (3.37). O

We will now show that I(s) defined in (3.38) is almost constant.

Lemma 3.45. With the notation as in Theorem 3.36 and its proof (see
(3.34) and (3.38))

(3.46) [I(s) —1(0)] < Cse,

(3.47) 21 —Cse< st / |Vyr|.
Vs

Proof. To get (3.46), it suffices to bound the six terms in (3.39). We begin
with the last three. Since |Vu| < 1/6 and |us(t)] < t/6 (by (3.10)), we get
|Fe(t)] < |Vuyl|/(3t) < 1/(18t). By this, |f| < 1, and |Vuy(t)| < 3me for
t <0 (by (3.11)), we get

; ; o |V
(3.48) f@ @l [ Fwas [ Mg e,

5y 5y 5, St
where we also used that §; > 55/6. By (3.12), |ps(27) — ps(0)| < €9 (s/0)?.
Therefore, since |f| < 1 and |Fy(t)| < |[Vuy|/(3t) < 1/(18t),

+ €0 /8\@ S\'
— — < €.
|Fe(t)]| dt < 1830 <5> <€(S) <e

S

(3.49) /si | f+ Fel(t)dt < /

S0 S0
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Let 7, be the unit tangent to ;. For the first term in (3.39), since f is
conformal and Vyr/|Vyr| is the unit normal to v,

(3.50) |vzm4«vgﬂvgm::§/<V;ﬂ%>=iU¢@+)—f(t)L
Tt vt
where t? = 2 +u% (t+) as before. By (3.5), (3.6), (3.34), (3.35), and (3.12),

(3.51)  [f(t4) = =) < [f4+(t4) = f=(Ep)[ + [f-(E4) — f- (=)
<2e(0/t ) ety —t_|/to < 4e(5/t),

where top = min{t,,t_} > 5¢/6. Hence, (3.50) and (3.51) give
(3.52)

‘/ ¢! / |Vsr| ™ (Vs f, Vsr) dt‘ < 4/ tle(6/t) 7 dt <
5 ve 5 1

de

-«
Note that, since ¥ is minimal,
(3.53) Aslogr =2(1— |VsrfH)r2>0.

Using |f| < 1, (3.53), and Stokes’ theorem, the second term in (3.39) is
bounded by

(3.54) ‘/ fAsxlogr
NS

g/ Aglogrgs_l/ |Vsr|
BsNX s

/ dlogr
Bon(rpUyo) AN

<sV [ |Vgr|=6"' [ |Vgr|

— 571 |V§;T‘| +
s

s Y5
S0 0
4 [CIE) - P@lder [P (o) de
5 5y
S+ S_
+/ |F+(t)|dt+/ \F_(t)| dt .
S0 S0

We next bound |Fy(t) — F_(t)|]. Given p,t € R with |p| < ¢/6 and ¢ €
Dy 6(0) C R?, define Fi(q) = ¢2 (1 + qf + ¢3)~"/%, and Fa(t,p,q) = (p —
q1t) (2 +p?) 71, so that

(3.55) Fy(t) = Fi(Vuy) Fa(t,us,Vuy).
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Keeping in mind that |p| <¢/6 and |g| < 1/6, it is easy to see that
(3.56) IVE? = (qi 65 + (1 +a7)*) /(L + 1a*)?
< (L+a) (L +gl*)/ (1 +g?)?
OpFs| = [t* —p* + 2pqu t]/ (£ + p°)°
< (8 +qi )/ (7 +p°)* < 2/82,
0y, Fa| =t/(t* +p®) < 1/t, and 0, F> = 0.
Since |F1| < 1/6 and |F5| < 1/(3t), (3.5), (3.55), and (3.56) imply that

[y (t) — F_(t)| < [F1(Vuy) Fa(t, ug, Vug) — F1(Vu_) Fa(t, ug, Vuy )|

(V) Fa(touy, V) — Fy(Va_) Fy(tyus, Vu_)|
+ |F1(Vu_) Fa(t,us, Vu_) — Fi(Vu_) Fa(t,u_, Vu_)|

< [V (1) — Vu_(1)] (max |V Fi]/(3) + max |V, F51/6)
+ [ug(t) — u—(t)| max |0, F>[/6

(3.57) <edlogr?,

Combining Lemma 3.20, (3.48), (3.49), and (3.57), (3.54) becomes

/ fAxlogr
BsNE
As in (3.58), Lemma 3.20, Stokes’ theorem, (3.53), (3.48), (3.49), and

(3.57) imply that
/ dlogr
Bin(ysuyo) A1
giving (3.47).

Combining |f| < 1, |FL(t)| < 1/(18t), (3.5), (3.35), and (3.57), we have

[+ By = f-F | () S |f+ Fo — f+ F-| () + [f+ F- = f- F_[(¢)
(3.60) < eSO 1 1/(9t) st L,

S0
(3.58) S2006+36—|—651a/ t*2dt < Cse.

)

(3.59) s [ |Vgr| >4t / |Vr| — > 271 — Cse,
Vs Vs

For the remaining term in (3.39), we integrate (3.60) to get

(3.61) /:0 fLFy— f F |()dt <265 /;0 24t < 2e/(1—a).

Finally, substituting (3.48), (3.49), (3.52), (3.58), and (3.61) into (3.39), we
get (3.46). O
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Appendix A. A fact about qausi-conformal maps.

The following lemma is a special case of the fact that quasi-conformal maps
are open (see, e.g., [V]); we include for completeness a proof of this lemma.

Lemma A.1. If ¥ is compact, connected, |A]*> < C|K|, Q C S? is a con-

nected open set with O piecewise smooth and compact, QNn(dL) = 0, and
HY QN n(X)) #0, then Q C n(X).

Proof. Set J = {y € £|K(y) = 0}. n(J) is closed and @ N n(X) \ n(J)
is (relatively) closed in © \ n(J). Since |A|*> < C|K]|, the differential of n
vanishes on J. By the general Morse-Sard-Federer theorem, H!(n(J)) =
0 (see [F] theorem 3.4.3). Hence, 2\ n(J) is connected (and open) and
QNn(X)\n(J) # 0. Since the implicit function theorem implies that
QNn(X)\n(J) is also open, 2\ n(J) C n(X), giving the claim. O
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