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Abstract. We define a higher homotopy commutativity for the multipli-
cation of a topological monoid. To give the definition, we use the resultohedra
constructed by Gelfand, Kapranov and Zelevinsky. Using the higher homotopy
commutativity, we have necessary and sufficient conditions for the classifying
space of a topological monoid to have a special structure considered by Félix,
Tanré and Aguadé. It is also shown that our higher homotopy commutativity
is rationally equivalent to the one of Williams.

1. Introduction.

Félix-Tanré [7] studied a condition for a pointed mapping space to be an
H-space. To give the condition, they introduced the concept of H(n)-space for
n ≥ 1. Then by their result [7, Proposition 1], if Y is a space with cat(Y ) ≤ n

and Z is an H(n)-space, then Map∗(Y, Z) is an H-space, where cat(Y ) denotes
the Lusternik-Schnirelmann category of Y . From the definition, any space is an
H(1)-space, and a space Z is an H(∞)-space if and only if Z is an H-space.

Aguadé [1] also considered another criterion for a space to be an H-space. He
first defined a T -space as a space Z such that the fibration

ΩZ // Map(S1, Z) e // Z

is fiber homotopy equivalent to the trivial fibration, where ΩZ is the based loop
space of Z and e : Map(S1, Z) → Z denotes the evaluation map at the base point.
While an H-space is always a T -space, the converse is not true. To study when
a T -space is an H-space, he also introduced the concept of Tk-space for k ≥ 1.
Then his result [1, Proposition 4.1] implies that a T1-space and a T∞-space are
the same as a T -space and an H-space, respectively.
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Generalizing both of the definitions by Félix-Tanré and Aguadé, we introduce
the concept of Hk(n)-space for n ≥ 1 and 1 ≤ k ≤ n (see Definition 5.1). Then it
is easy to see that an Hn(n)-space is just an H(n)-space, and an Hk(∞)-space is
the same as a Tk-space. In particular, a space Z is an H∞(∞)-space if and only
if Z is an H-space.

Sugawara [19] gave a criterion for the classifying space of a topological monoid
to be an H-space. His criterion is a higher homotopy commutativity for the
multiplication (see Theorem 4.1). In this paper, we define a higher homotopy
commutativity of a topological monoid, and generalize the result by Sugawara
to the case of Hk(n)-spaces. The polytopes used in the definition are called the
resultohedra, which are constructed by Gelfand-Kapranov-Zelevinsky [8].

A topological monoid with a multiplication admitting our higher homotopy
commutativity is called a Ck(n)-space for n ≥ 1 and 1 ≤ k ≤ n (see Definition 4.3).
From the definition, any topological monoid is a C1(1)-space, and a topological
monoid X is a Ck(2)-space if and only if the multiplication of X is homotopy
commutative for k = 1, 2. Moreover, any abelian topological monoid is a C∞(∞)-
space.

Our main result is stated as follows:

Theorem A. Let n ≥ 1 and 1 ≤ k ≤ n. Assume that X is a connected
topological monoid. Then X is a Ck(n)-space if and only if the classifying space
BX is an Hk(n)-space.

From Theorem A, we have the following corollary:

Corollary 1.1. Let X be a connected topological monoid.

(1) X is a Ck(∞)-space if and only if BX is a Tk-space for k ≥ 1. In particular,
X is a C1(∞)-space if and only if BX is a T -space.

(2) X is a Cn(n)-space if and only if BX is an H(n)-space for n ≥ 1.

Stasheff [17] expanded the theory of Sugawara into the concept of An-map
for n ≥ 1 (see Section 4). Then by Corollary 1.1(2) and Proposition 4.2, we see
that a topological monoid X is a Cn(n)-space if and only if the multiplication of
X is an An-map for n ≥ 1.

Williams [22] also considered another type of higher homotopy commutativ-
ity of a topological monoid. The polytopes used in his definition are called the
permutohedra, which are introduced by Milgram [16] to construct approximations
to iterated loop spaces. A topological monoid with a multiplication of this sort is
called a Cn-space for n ≥ 1. While a Ck(n)-space is always a Cn-space by Propo-
sition 4.5, the converse is not true (see Propositions 5.3 and 5.5). However, when
the spaces are assumed to be rationalized, we have the following result:
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Theorem B. Let n ≥ 1 and 1 ≤ k ≤ n. Assume that X is a connected
topological monoid. Then X(0) is a Ck(n)-space if and only if X(0) is a Cn-space,
where X(0) denotes the rationalization of X.

Throughout the paper, all spaces are assumed to be pointed, connected and
of the homotopy type of CW -complexes.

This paper is organized as follows: In Section 2, we recall the definition and
properties of the resultohedra which are used in the latter sections. In Section 3, we
regard the resultohedron as a subspace of the permutohedron (see Proposition 3.1).
From this interpretation, the permutohedron is decomposed by the resultohedra
combinatorially (see Proposition 3.3). In Section 4, we define a Ck(n)-space using
the resultohedra, and show that a Ck(n)-space is always a Cn-space by Proposition
3.3 (see Proposition 4.5). Section 5 is devoted to the proofs of Theorems A and
B. We recall the projective spaces of a topological monoid, and define an Hk(n)-
space. To prove Theorem A, we generalize the definition of the projective space to
be compatible with a Ck(n)-structure. Using Theorem A, Proposition 4.5 and the
result by Félix-Tanré [7], we prove Theorem B. In Section 6, we show that a Ck(n)-
structure is preserved by the homotopy localizations introduced by Bousfield [2]
and Dror Farjoun [6] (see Theorem 6.2). Then we have that a Ck(n)-structure is
compatible with the Postnikov systems and the higher connected coverings (see
Corollary 6.5).

2. Resultohedra.

Let µn : Xn → X be the n-fold multiplication of a topological monoid X given
by µn(x1, . . . , xn) = x1 · · ·xn. Then Williams [22] considered a higher homotopy
between the maps {µnσ | σ ∈ Σn}, where Σn denotes the n-th symmetric group
which acts on Xn by the permutation of the factors. The polytopes to describe this
higher homotopy are called the permutohedra, which are introduced by Milgram
[16]. The n-th permutohedron Pn has vertices corresponding to Σn.

Now, if BX is an H-space, then the multiplication of X satisfies the higher
homotopy commutativity of Williams in the infinite level. Unfortunately, the con-
verse is not true. To make BX an H-space, we need to consider higher homotopy
commutativity given by shuffles, where σ ∈ Σm+n is called an (m,n)-shuffle if

σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n) for m,n ≥ 1.

For example, for the second level, we consider higher homotopy commutativity
corresponding to the (1, 2) and (2, 1) shuffles. For these cases, the polytopes
representing the higher homotopy are the 2-simplex ∆2. For the third level, we
consider three types corresponding to the (1, 3), (2, 2) and (3, 1) shuffles. The
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polytopes for the higher homotopy commutativity corresponding to the (1, 3) and
(3, 1) shuffles are the 3-simplex ∆3, while for the (2, 2) shuffle, we need to consider
a more complicated polytope illustrated in [8, p. 240, Figure 1] (see also [9, p. 414,
Figure 61]).

In this section, we introduce the polytopes to describe our higher homotopy
commutativity. The polytopes are called the resultohedra, which are constructed
by Gelfand-Kapranov-Zelevinsky [8]. Since these polytopes are very complicated,
we first describe the vertices of them by lattice paths. Our description is an
analogy of the one of the vertices of the permutohedron Pn by the lattice paths in
In described by Milgram.

Let m,n ≥ 1. A lattice path in the rectangle [0,m] × [0, n] is a map ` : [0,

m + n] → [0,m]× [0, n] such that `(0) = (0, 0), `(m + n) = (m,n) and if we write
`(s) = (`1(s), `2(s)) for s ∈ [0,m + n], then `(i + t) is either (`1(i) + t, `2(i)) or
(`1(i), `2(i)+ t) for 0 ≤ i < m+n and t ∈ I. We denote the set of all lattice paths
in [0,m]× [0, n] by Lm,n.

For any two words x1 · · ·xm and y1 · · · yn, we have a new word w of length
m + n containing x1 · · ·xm and y1 · · · yn as subsequences. In other words, if we
put zi = xi for 1 ≤ i ≤ m and zm+j = yj for 1 ≤ j ≤ n, then w is given by

w = zσ−1(1) · · · zσ−1(m+n) for some (m,n)-shuffle σ.

We call such a word w a shuffle of x1 · · ·xm and y1 · · · yn. In [0,m] × [0, n], we
label the interval [i − 1, i] × {j} by xi for 1 ≤ i ≤ m, 0 ≤ j ≤ n and the interval
{i} × [j − 1, j] by yj for 0 ≤ i ≤ m, 1 ≤ j ≤ n as in Figure 1. Then each lattice
path ` ∈ Lm,n is labeled by a shuffle of x1 · · ·xm and y1 · · · yn. In this label of `,
the symbol xi means the horizontal unit move from the line x = i− 1 to the line
x = i for 1 ≤ i ≤ m, and yj is the vertical move between two lines y = j − 1 and
y = j for 1 ≤ j ≤ n. For example, the lattice path ` ∈ L4,3 in Figure 1 is labeled
by x1y1x2x3y2x4y3.

x1 x2 x3 x4

y1

y2

y3

x1

x2 x3

x4

y1

y2

y3

p0 = 0 p1 = 1 p2 = 0 p3 = 1 p4 = 1
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q2 = 1

q3 = 0

6 6 6 6 6
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Figure 1. The lattice path ` = x1y1x2x3y2x4y3.
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Given a lattice path ` ∈ Lm,n, let p`
i and q`

j be the lengths of the intersections
of ` with the lines x = i for 0 ≤ i ≤ m and y = j for 0 ≤ j ≤ n, respectively.
Then in the corresponding shuffle of x1 · · ·xm and y1 · · · yn, p`

i is the number of
yjs between xi and xi+1 for 0 ≤ i ≤ m, and q`

j is the number of xis between yj and
yj+1 for 0 ≤ j ≤ n. For example, (p`

0, . . . , p
`
4, q

`
0, . . . , q

`
3) = (0, 1, 0, 1, 1, 1, 2, 1, 0) for

` = x1y1x2x3y2x4y3 in Figure 1.
For m,n ≥ 1, Gelfand-Kapranov-Zelevinsky [8, Theorem 4] defined Nm,n

as the subspace of Rm+n+2 consisting of all points (p0, . . . , pm, q0, . . . , qn) ∈
(R+)m+n+2 with the relations:

∑

0≤i≤m

pi = n,
∑

0≤j≤n

qj = m, hi,j ≥ 0 and hm,n = 0, (2.1)

where R+ = {t ∈ R | t ≥ 0} and

hi,j =
∑

0≤k≤i

(i− k)pk +
∑

0≤l≤j

(j − l)ql − ij for 0 ≤ i ≤ m and 0 ≤ j ≤ n.

Then by their result [8, Theorems 2’ and 6], Nm,n is an (m + n− 1)-dimensional
polytope such that the set of all vertices is given by

v(Nm,n) =
{(

p`
0, . . . , p

`
m, q`

0, . . . , q
`
n

) ∈ Rm+n+2 | ` ∈ Lm,n

}
.

According to Kapranov-Voevodsky [14, p. 242, 6.2], the polytope Nm,n is called
the resultohedron. By [8, Proposition 13], Nm,1 and N1,n are the simplices ∆m

and ∆n, respectively (see (2.4)). For convenience, we put Nm,0 = N0,n = {∗} for
m,n ≥ 1.

Consider the subspaces N(pi), N(qj) and N(hi,j) of Nm,n defined by

N(pi) =
{
(p0, . . . , pm, q0, . . . , qn) ∈ Nm,n | pi = 0

}
for 0 ≤ i ≤ m,

N(qj) =
{
(p0, . . . , pm, q0, . . . , qn) ∈ Nm,n | qj = 0

}
for 0 ≤ j ≤ n

and

N(hi,j) =
{
(p0, . . . , pm, q0, . . . , qn) ∈ Nm,n | hi,j = 0

}

for 0 < i < m and 0 < j < n.

Proposition 2.1 ([9, Chapter 12, Corollary 2.17, Theorem 2.18]).
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(1) The boundary of Nm,n is given by

∂Nm,1 =
⋃

0≤i≤m

N(pi), ∂N1,n =
⋃

0≤j≤n

N(qj)

and

∂Nm,n =
⋃

0≤i≤m

N(pi) ∪
⋃

0≤j≤n

N(qj) ∪
⋃

0<i<m,0<j<n

N(hi,j) for m,n > 1.

(2) The facets N(pi), N(qj) and N(hi,j) are affinely homeomorphic to Nm−1,n,
Nm,n−1 and Ni,j ×Nm−i,n−j by the face operators

ε(pi) : Nm−1,n → Nm,n for 0 ≤ i ≤ m,

ε(qj) : Nm,n−1 → Nm,n for 0 ≤ j ≤ n

and

ε(hi,j) : Ni,j ×Nm−i,n−j → Nm,n for 0 < i < m and 0 < j < n,

respectively.

Using the same way as the proof of [16, Lemma 4.5], we have the following
lemma:

Lemma 2.2. There are degeneracy operators {δk : Nm,n → Nm−1,n}1≤k≤m

and {δ′l : Nm,n → Nm,n−1}1≤l≤n with the following relations:

δkε(pi)(a) =





ε(pi)δk−1(a) if 0 ≤ i < k − 1

a if i = k − 1, k

ε(pi−1)δk(a) if k < i ≤ m,

δkε(qj)(a) = ε(qj)δk(a) for 0 ≤ j ≤ n,

δkε(hi,j)(a, b) =

{
ε(hi,j)(a, δk−i(b)) if 0 < i < k

ε(hi−1,j)(δk(a), b) if k ≤ i < m.

(2.2)
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δ′lε
(pi)(a) = ε(pi)δ′l(a) for 0 ≤ i ≤ m,

δ′lε
(qj)(a) =





ε(qj)δ′l−1(a) if 0 ≤ j < l − 1

a if j = l − 1, l

ε(qj−1)δ′l(a) if l < j ≤ n,

δ′lε
(hi,j)(a, b) =

{
ε(hi,j)(a, δ′l−j(b)) if 0 < j < l

ε(hi,j−1)(δ′l(a), b) if l ≤ j < n.

(2.3)

Proof. We prove the case of {δk}1≤k≤m by induction on m and n. When
m = 1 or n = 0, we put δk(a) = ∗ for 1 ≤ k ≤ m. Let m > 1 and n > 0. Assume
inductively that {δk : Nm′,n′ → Nm′−1,n′}1≤k≤m′ are constructed for m′ ≤ m and
n′ ≤ n with (m′, n′) 6= (m,n).

Now we define δ̃k : ∂Nm,n → Nm−1,n by (2.2) for 1 ≤ k ≤ m. Since Nm,n

is the reduced cone of ∂Nm,n, if a ∈ Nm,n, then we can write a = (b, t) with
b ∈ ∂Nm,n and t ∈ I. Set δ̃k(b) = (c, u) with c ∈ ∂Nm−1,n and u ∈ I. Then we
can define δk : Nm,n → Nm−1,n by δk(a) = (c, tu), and {δk}1≤k≤m satisfies the
required conditions. In the case of {δ′l}1≤l≤n, the proof is similar. This completes
the proof. ¤

Let ∆m denote the m-simplex:

∆m =
{

(t0, . . . , tm) ∈ (R+)m+1

∣∣∣∣
∑

0≤i≤m

ti = 1
}

for m ≥ 0 (2.4)

with the vertices vi = (

i︷ ︸︸ ︷
0, . . . , 0, 1,

m−i︷ ︸︸ ︷
0, . . . , 0) for 0 ≤ i ≤ m. Then we have the face

operators {∂i : ∆m−1 → ∆m}0≤i≤m and the degeneracy operators {sk : ∆m →
∆m−1}1≤k≤m (cf. [11, p. 109]). We define ρm : ∆m → [0,m] by

ρm(t0, . . . , tm) =
∑

0≤i≤m

iti,

and identify the image ρm(∆m) = [0,m] with the edge v0vm ⊂ ∆m (see Figure 2).
Consider the quotient space

∆m,n = ∆m ×∆n/ ∼ for m,n ≥ 0 with m + n ≥ 1

and the projection πm,n : ∆m × ∆n → ∆m,n, where the relation “ ∼ ” is given
by (a1, vj) ∼ (a2, vj) if ρm(a1) = ρm(a2) for a1, a2 ∈ ∆m and 0 ≤ j ≤ n, and
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Figure 2. The projection ρ2.

(vi, b1) ∼ (vi, b2) if ρn(b1) = ρn(b2) for b1, b2 ∈ ∆n and 0 ≤ i ≤ m (see Figure 3).
Denote πm,n(a, b) ∈ ∆m,n by 〈a, b〉 for (a, b) ∈ ∆m × ∆n. Then we have

the face operators {βi : ∆m−1,n → ∆m,n}0≤i≤m and {β′j : ∆m,n−1 → ∆m,n}0≤j≤n

given by βi(〈a, b〉) = 〈∂i(a), b〉 and β′j(〈a, b〉) = 〈a, ∂j(b)〉. Moreover, the degener-
acy operators {γk : ∆m,n → ∆m−1,n}1≤k≤m and {γ′l : ∆m,n → ∆m,n−1}1≤l≤n are
defined by γk(〈a, b〉) = 〈sk(a), b〉 and γ′l(〈a, b〉) = 〈a, sl(b)〉.

Now as in the case of [0,m]× [0, n], we label the edge vi−1vi × {vj} of ∆m,n

by xi for 1 ≤ i ≤ m, 0 ≤ j ≤ n and the edge {vi} × vj−1vj of ∆m,n by yj for
0 ≤ i ≤ m, 1 ≤ j ≤ n (see Figure 3). Put

Km,n =
{
` : [0,m + n] → ∆m,n | `(0) = 〈v0, v0〉 and `(m + n) = 〈vm, vn〉

}
.

Then any lattice path ` ∈ Lm,n can be regarded as ` ∈ Km,n (see Figure 4). Let
κ̃m,n : v(Nm,n) → Km,n be defined by κ̃m,n((p`

0, . . . , p
`
m, q`

0, . . . , q
`
n)) = `. Since

Nm,n is the convex hull of v(Nm,n):

∆2 ×∆1
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Figure 3. The projection π2,1.
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Figure 4. The lattice paths `1 = x1x2y1, `2 = x1y1x2 and `3 = y1x1x2 in K2,1.

Nm,n =
{ ∑

1≤i≤k

tiai

∣∣∣∣ ai ∈ v(Nm,n) and ti ∈ R+ with
∑

1≤i≤k

ti = 1
}

,

we extend κ̃m,n to κm,n : Nm,n → Km,n by

κm,n

( ∑

1≤i≤k

tiai

)
(s) =

∑

1≤i≤k

tiκ̃m,n(ai)(s) for s ∈ [0,m + n]. (2.5)

3. Permutohedra.

The n-th symmetric group Σn acts on Rn by the permutation of the factors.
Put n = (1, . . . , n) ∈ Rn. According to Milgram [16, Definition 4.1], the per-
mutohedron Pn is an (n − 1)-dimensional polytope defined by the convex hull of
{σ(n) ∈ Rn | σ ∈ Σn} for n ≥ 1. From the construction, there is a natural way
to describe all the faces of Pn.

Let u1, . . . , um ≥ 1 with u1 + · · · + um = n. A partition of n of type
(u1, . . . , um) is an ordered sequence (α1, . . . , αm) consisting of disjoint subse-
quences αi of length ui for 1 ≤ i ≤ m with α1 ∪ · · · ∪ αm = n as sets (see
[11, p. 107], [12, p. 3826]). Then there is a correspondence between the faces of
Pn and the partitions of n into at least two disjoint parts (see [11, p. 107]). In
particular, a facet of Pn is represented by a partition of n into just two disjoint
parts.

Consider the subspace Tn of Rn defined by

Tn =
{

(t1, . . . , tn) ∈ Rn

∣∣∣∣
∑

1≤i≤n

ti =
n(n + 1)

2

}
for n ≥ 1.

Put
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T (α1, α2) =
{

(t1, . . . , tn) ∈ Rn

∣∣∣∣
∑

1≤i≤u1

tα1(i) ≥
u1(u1 + 1)

2

}

and

∂T (α1, α2) =
{

(t1, . . . , tn) ∈ Rn

∣∣∣∣
∑

1≤i≤u1

tα1(i) =
u1(u1 + 1)

2

}
,

where (α1, α2) is a partition of n of type (u1, u2). From the definition,

Pn = Tn ∩
⋂

(α1,α2)

T (α1, α2)

whose boundary ∂Pn is given by

∂Pn =
⋃

(α1,α2)

P (α1, α2) with P (α1, α2) = Pn ∩ ∂T (α1, α2),

where (α1, α2) covers all partitions of n into two disjoint parts (see Figure 5). By
[16, Lemma 4.2], the facet P (α1, α2) is affinely homeomorphic to Pu1×Pu2 by the
face operator ε(α1,α2) : Pu1 ×Pu2 → P (α1, α2). Moreover, we have the degeneracy
operators {dk : Pn → Pn−1}1≤k≤n with the relations in [16, Lemma 4.5].

Now we recall that a permutation σ ∈ Σm+n is called an (m,n)-shuffle if

σ(1) < · · · < σ(m) and σ(m + 1) < · · · < σ(m + n) for m,n ≥ 1.
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P ((1), (2, 3))

P ((1, 3), (2))

P ((3), (1, 2))

P ((2, 3), (1))

P ((2), (1, 3))

?

6

³³)

PPi

PPq

³³1

t1 t2

t3

6

HHHHHHHHj

©©©©©©©©¼

T
T
TT

�
�
��

�
�
��

T
T
TT

r

r

r

r

rr

Figure 5. The permutohedron P3.
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We denote the set of all (m,n)-shuffles by Sm,n. Then there is a bijection between
Sm,n and Lm,n. In fact, if σ ∈ Sm,n, then putting xi on the σ(i)-th place for
1 ≤ i ≤ m and yj on the σ(m + j)-th place for 1 ≤ j ≤ n, we have a shuffle
of x1 · · ·xm and y1 · · · yn which is the label of some lattice path ` ∈ Lm,n. For
example, the (4, 3)-shuffle

(
1 2 3 4 5 6 7
1 3 4 6 2 5 7

)
∈ S4,3

is corresponding to the lattice path ` ∈ L4,3 labeled by x1y1x2x3y2x4y3 (see Figure
1).

Proposition 3.1 ([9, Chapter 12, Proposition 2.6]). The resultohedron
Nm,n is embedded in Pm+n as

Nm,n = Pm+n ∩
⋂

1≤i≤m−1

Hi ∩
⋂

1≤j≤n−1

H ′
j for m,n ≥ 1,

which is the convex hull of {σ(1, . . . , m + n) ∈ Rm+n | σ ∈ Sm,n}, where

Hi =
{
(t1, . . . , tm+n) ∈ Rm+n | ti+1 ≥ ti + 1

}
for 1 ≤ i ≤ m− 1

and

H ′
j =

{
(t1, . . . , tm+n) ∈ Rm+n | tm+j+1 ≥ tm+j + 1

}
for 1 ≤ j ≤ n− 1.

x1x2y1

x1y1x2

y1x1x2
t1 t2

t3
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Figure 6. The resultohedron N2,1.
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Remark 3.2. In (2.1), the resultohedron Nm,n is defined in Rm+n+2.
Proposition 3.1 implies that Nm,n is considered as a subspace of Rm+n.

In the proof of Proposition 4.5, we need the following result proved by Hemmi
[11] and Kapranov-Voevodsky [14]:

Proposition 3.3 ([11, p. 108, (5.1)], [14, Theorem 6.5]).

(1) The permutohedron Pn+1 is decomposed by the subspaces Γ(α1, . . . , αm) as

Pn+1 =
⋃

(α1,...,αm)

Γ(α1, . . . , αm) for n ≥ 1,

where (α1, . . . , αm) covers all partitions of n with m ≥ 1.
(2) If (α1, . . . , αm) is a partition of n of type (u1, . . . , um), then Γ(α1, . . . , αm)

is affinely homeomorphic to Nm,1 × Pu1 × · · · × Pum
by an operator

ι(α1,...,αm) : Nm,1 × Pu1 × · · · × Pum
→ Γ(α1, . . . , αm).

Γ((1, 2))

Γ((1), (2))Γ((2), (1))
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Figure 7. The decomposition of P3.

For the decomposition of the 4-th permutohedron P4, see [14, p. 245, Fig-
ure 15]. By Proposition 3.1, Nm,1 is embedded in Pm+1. Then the inclusion
Nm,1 ⊂ Pm+1 is corresponding to the operator ι((1),...,(m)) : Nm,1×P1×· · ·×P1 →
Γ((1), . . . , (m)) ⊂ Pm+1 in Proposition 3.3 (see Figures 6 and 7).

4. Higher homotopy commutativity.

Sugawara [19] introduced the concept of strongly homotopy multiplicativity
for maps between topological monoids. Later Stasheff [17] expanded his definition,
and introduced the concept of An-map for n ≥ 1. Let X and Y be topological
monoids and n ≥ 1. A map φ : X → Y is called an An-map if there is a family of
maps {Fi : Ii−1 ×Xi → Y }1≤i≤n such that F1(x) = φ(x) and
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Fi(t1, . . . , ti−1, x1, . . . , xi)

=

{
Fi−1(t1, . . . , tj−1, tj+1, . . . , ti−1, x1, . . . , xj · xj+1, . . . , xi) if tj = 0

Fj(t1, . . . , tj−1, x1, . . . , xj) · Fi−j(tj+1, . . . , ti−1, xj+1, . . . , xi) if tj = 1

for 1 ≤ j ≤ i− 1.
From the definition, an A2-map is just an H-map, and an A3-map is an H-

map preserving the homotopy associativity. Moreover, an A∞-map is the same as
a strongly homotopy multiplicative map.

Using the strongly homotopy multiplicativity, Sugawara gave a criterion for
the classifying space of a topological monoid to be an H-space (see also Stasheff
[18, p. 71, Theorem 14.1]):

Theorem 4.1 ([19]). Let X be a topological monoid. The multiplication
µ : X2 → X is strongly homotopy multiplicative if and only if the classifying space
BX is an H-space.

In Theorem 4.1, the condition of strongly homotopy multiplicativity for
µ : X2 → X can be regarded as a higher homotopy commutativity for µ. In fact,
we see that µ : X2 → X is an H-map if and only if µ is a homotopy commutative
multiplication of X.

Generalizing Theorem 4.1, we have the following result:

Proposition 4.2. Let X be a topological monoid. The multiplication µ :
X2 → X is an An-map if and only if BX is an H(n)-space for n ≥ 1.

The proof of Proposition 4.2 is given in Section 5.
Now we define a Ck(n)-space. Let n ≥ 1 and 1 ≤ k ≤ n. Put

Λk(n) =
{
(r, s) ∈ Z2 | r, s ≥ 0, 1 ≤ r + s ≤ n and s ≤ k

}
.

Definition 4.3. Let n ≥ 1 and 1 ≤ k ≤ n. A topological monoid X is called
a Ck(n)-space if there is a family of maps {Qr,s : Nr,s×Xr+s → X}(r,s)∈Λk(n) with
the following relations:

Qr,0(∗, x1, . . . , xr) = x1 · · ·xr and Q0,s(∗, y1, . . . , ys) = y1 · · · ys. (4.1)

Qr,s(ε(pi)(a), x1, . . . , xr, y1, . . . , ys)

=





x1 ·Qr−1,s(a, x2, . . . , xr, y1, . . . , ys) if i = 0

Qr−1,s(a, x1, . . . , xi · xi+1, . . . , xr, y1, . . . , ys) if 0 < i < r

Qr−1,s(a, x1, . . . , xr−1, y1, . . . , ys) · xr if i = r.

(4.2)
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Qr,s(ε(qj)(a), x1, . . . , xr, y1, . . . , ys)

=





y1 ·Qr,s−1(a, x1, . . . , xr, y2, . . . , ys) if j = 0

Qr,s−1(a, x1, . . . , xr, y1, . . . , yj · yj+1, . . . , ys) if 0 < j < s

Qr,s−1(a, x1, . . . , xr, y1, . . . , ys−1) · ys if j = s.

(4.3)

Qr,s(ε(hi,j)(a, b), x1, . . . , xr, y1, . . . , ys)

= Qi,j(a, x1, . . . , xi, y1, . . . , yj) ·Qr−i,s−j(b, xi+1, . . . , xr, yj+1, . . . , ys) (4.4)

for 0 < i < r and 0 < j < s.

Qr,s(a, x1, . . . , xi−1, ∗, xi+1, . . . , xr, y1, . . . , ys)

= Qr−1,s(δi(a), x1, . . . , xi−1, xi+1, . . . , xr, y1, . . . , ys) for 1 ≤ i ≤ r,

Qr,s(a, x1, . . . , xr, y1, . . . , yj−1, ∗, yj+1, . . . , ys)

= Qr,s−1(δ′j(a), x1, . . . , xr, y1, . . . , yj−1, yj+1, . . . , ys) for 1 ≤ j ≤ s.

(4.5)

Remark 4.4.

(1) Any topological monoid is a C1(1)-space, and a Ck(2)-space is a topological
monoid whose multiplication is homotopy commutative for k = 1, 2.

(2) An abelian topological monoid has a C∞(∞)-structure:

Qr,s(a, x1, . . . , xr, y1, . . . , ys) = x1 · · ·xr · y1 · · · ys for r, s ≥ 1.

In particular, Eilenberg-Mac Lane spaces have the homotopy type of C∞(∞)-
spaces.

Williams [22] considered another type of higher homotopy commutativity
using the permutohedra. Let n ≥ 1. A topological monoid X is called a Cn-space
if there is a family of maps {Qi : Pi×Xi → X}1≤i≤n with the following relations:

Q1(∗, x) = x. (4.6)

Qi(ε(α1,α2)(c1, c2), x1, . . . , xi)

= Qu1(c1, xα1(1), . . . , xα1(u1)) ·Qu2(c2, xα2(1), . . . , xα2(u2)), (4.7)

where (α1, α2) is a partition of i of type (u1, u2).

Qi(c, x1, . . . , xj−1, ∗, xj+1, . . . , xi) = Qi−1(dj(c), x1, . . . , xj−1, xj+1, . . . , xi) (4.8)
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for 1 ≤ j ≤ i.

Proposition 4.5. Let n ≥ 1 and 1 ≤ k ≤ n. If X is a Ck(n)-space, then
X is a Cn-space.

Proof. Since a Ck(n)-space is a Ck−1(n)-space for 1 < k ≤ n, it is enough
to prove the case of k = 1.

We work by induction on n. The result is clear for n = 1. Assume that the
result is proved for n, and consider the case of n + 1. Let X be a C1(n + 1)-
space. Since a C1(n + 1)-space is a C1(n)-space, by inductive hypothesis, there is
a Cn-structure {Qi}1≤i≤n on X. By Proposition 3.3, we can define Qn+1 : Pn+1×
Xn+1 → X by

Qn+1

(
ι(α1,...,αm)(a, c1, . . . , cm), x1, . . . , xn+1

)

= Qm,1

(
a,Qu1

(
c1, xα1(1), . . . , xα1(u1)

)
, . . . ,

Qum

(
cm, xαm(1), . . . , xαm(um)

)
, xn+1

)
,

where (α1, . . . , αm) is a partition of n of type (u1, . . . , um) with m ≥ 1 (see Figure
8). Then {Qi}1≤i≤n+1 is a Cn+1-structure on X. This completes the proof. ¤
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Figure 8. The C3-structure on X.

Let S2t−1 denote the (2t−1)-sphere for t ≥ 1. Then the p-completion (S2t−1)∧p
is a topological monoid if and only if t = 1, 2 for p = 2 and t | (p − 1) for p > 2,
where p is a prime (cf. [13, pp. 172–173, Section 24–2]).

Proposition 4.6.

(1) (S1)∧p is a C∞(∞)-space.
(2) (S3)∧2 is a C1(1)-space, but not a C1(2)-space.
(3) Let p > 2 and t > 1 with t | (p − 1). Put n = (p − 1)/t. Then (S2t−1)∧p is a

Cn(n)-space, but not a C1(n + 1)-space.
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Proof. We have (1) and (2) by Remark 4.4.
We consider the case of (3). Put W = (S2t−1)∧p . We first construct a Cn(n)-

structure {Qr,s}1≤r+s≤n on W . Assume inductively that {Qr,s}1≤r+s<m are con-
structed for some m ≤ n. Then the obstructions to the existence of Qr,s with
r + s = m belong to the cohomology groups:

Hj+1
(
Nr,s ×Wm, ∂Nr,s ×Wm ∪Nr,s ×W [m];πj(W )

)

∼= H̃j+2
(
(S2tm)∧p ;πj(W )

)
for j ≥ 1 (4.9)

since Nr,s ×Wm/(∂Nr,s ×Wm ∪Nr,s ×W [m]) ' (S2tm−1)∧p , where Y [m] denotes
the m-fold fat wedge of a space Y given by

Y [m] =
{
(y1, . . . , ym) ∈ Y m | yi = ∗ for some 1 ≤ i ≤ m

}
for m ≥ 1.

This implies that (4.9) is non-trivial only if j is an even integer with j < 2p − 2
since tm ≤ tn = p − 1. On the other hand, πj(W ) = 0 for any even integer j

with j < 2p − 2 by Toda [20, Theorem 13.4]. Thus (4.9) is trivial for all j, and
we have a map Qr,s with r + s = m. This completes the induction, and we have
a Cn(n)-structure {Qr,s}1≤r+s≤n on W .

We next show that W is not a C1(n + 1)-space. Assume contrarily that W

is a C1(n + 1)-space. Then by Proposition 4.5, W is a Cn+1-space, which is a
contradiction by [11, Theorems 2.2 and 2.4(4)]. This completes the proof. ¤

An H-space X is called Fp-finite if the cohomology H∗(X;Fp) is finite dimen-
sional, and is called Postnikov if the homotopy groups πj(X) vanish above some
dimension. For example, any Lie group is an Fp-finite H-space. On the other
hand, Eilenberg-Mac Lane spaces K(Z, n) are always Postnikov, but not Fp-finite
for n > 1.

By Hemmi-Kawamoto [12, Corollaries 1.1 and 3.6] and Kawamoto [15, The-
orem B], Proposition 4.5 implies the following corollary:

Corollary 4.7. Let X be a connected Ck(p)-space, where p is a prime and
1 ≤ k ≤ p.

(1) If X is Fp-finite, then the p-completion X∧
p is a p-completed torus.

(2) If the cohomology H∗(X;Fp) of X is finitely generated as an algebra over the
Steenrod algebra A ∗

p , then the p-completion X∧
p is Postnikov.

Bousfield [3, Theorem 7.2] determined the K(n)∗-localizations for Postnikov
H-spaces, where K(n)∗ denotes the Morava K-homology theory for n ≥ 1. By his
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result and Corollary 4.7(2), if X is a connected Ck(p)-space with finitely generated
cohomology over A ∗

p , then the K(n)∗-localization LK(n)∗(X
∧
p ) of X∧

p is the (n+1)-
st stage for the modified Postnikov system of X∧

p (see [3, p. 2408]).

5. Proofs of Theorems A and B.

Consider the loop space ΩZ of a space Z in the sense of Moore (cf. [13,
p. 45, Section 5–3 (iii)], [18, p. 14, Definition 4.1]). Then we may assume that the
multiplication of ΩZ is strictly associative. Recall the definition of the projective
spaces {Pn(ΩZ)}n≥0 of ΩZ. Put P0(ΩZ) = {∗}, and define Pn(ΩZ) for n ≥ 1 by

Pn(ΩZ) = Pn−1(ΩZ) ∪Ψn
∆n × (ΩZ)n,

where Ψn : ∂∆n × (ΩZ)n ∪ ∆n × (ΩZ)[n] → Pn−1(ΩZ) is given by the following
relations:

Ψn(∂i(a), ω1, . . . , ωn) =





Ψn−1(a, ω2, . . . , ωn) if i = 0

Ψn−1(a, ω1, . . . , ωi · ωi+1, . . . , ωn) if 0 < i < n

Ψn−1(a, ω1, . . . , ωn−1) if i = n.

(5.1)

Ψn(a, ω1, . . . , ωj−1, ∗, ωj+1, . . . , ωn)

= Ψn−1(sj(a), ω1, . . . , ωj−1, ωj+1, . . . , ωn) for 1 ≤ j ≤ n. (5.2)

Then we have the inclusions P1(ΩZ) = ΣΩZ ⊂ P2(ΩZ) ⊂ P3(ΩZ) ⊂ · · · . Put

P∞(ΩZ) =
⋃

n≥1

Pn(ΩZ).

Let ηn = ε̃n(ρn × 1(ΩZ)n) : ∆n × (ΩZ)n → Z, where ε̃n : [0, n] × (ΩZ)n → Z

is defined by ε̃n(t, ω1, . . . , ωn) = ωi(t − i + 1) if t ∈ [i − 1, i] for 1 ≤ i ≤ n. Then
{ηn}n≥1 induces a family of maps {εn : Pn(ΩZ) → Z}n≥1 such that ε1 : ΣΩZ →
Z is the evaluation map and εn|Pn−1(ΩZ) = εn−1 : Pn−1(ΩZ) → Z for n > 1.
Moreover, ε∞ : P∞(ΩZ) → Z is a homotopy equivalence (cf. [13, p. 55, Section
6–5], [18, p. 18, Theorem 4.8]).

If Z is an H-space, then identifying Z with P∞(ΩZ), we can restrict the
multiplication Z2 → Z to an axial map Pm(ΩZ)×Pn(ΩZ) → Z for any m,n ≥ 1.
From this fact, we introduce the concept of Hk(n)-space.

Definition 5.1. Let n ≥ 1 and 1 ≤ k ≤ n. A space Z is called an Hk(n)-
space if there is a map
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ψk(n) :
⋃

0≤s≤k

Pn−s(ΩZ)× Ps(ΩZ) → Z

with ψk(n)(z, ∗) = εn(z) for z ∈ Pn(ΩZ) and ψk(n)(∗, w) = εk(w) for w ∈ Pk(ΩZ).

Let BX denote the classifying space of a topological monoid X with X '
Ω(BX). From the above construction, we have the projective spaces {Pn(X)}n≥0

with the maps {εn : Pn(X) → BX}n≥1 such that ε1 : ΣX → BX is the adjoint
of the homotopy equivalence X ' Ω(BX) and ε∞ : P∞(X) → BX is a homotopy
equivalence.

Now we prove Proposition 4.2 as follows:

Proof of Proposition 4.2. If µ : X2 → X is an An-map, then by [17,
p. 300, Theorem 4.5], we have the induced map Pn(µ) : Pn(X2) → Pn(X) (see also
[18, p. 34, Theorem 8.4]). Put ψ(n) = εnPn(µ) : Pn(X2) → BX. Then ψ(n) is an
H(n)-structure on BX by [7, Definition 3].

Conversely, we assume that there is an H(n)-structure ψ(n) : Pn(X2) → BX

on BX. Then we can write µ = Ω(ψ(n))ιn : X2 → Ω(BX) ' X, where ιn : X2 →
ΩPn(X2) denotes the adjoint of the inclusion Σ(X2) ⊂ Pn(X2). Since ιn is an
An-map by [18, p. 34, Theorem 8.6], so is µ. This completes the proof. ¤

To prove Theorem A, we generalize the definition of the projective spaces,
and construct a family of spaces {Pm,n(X)}m,n≥0. Put P0,0(X) = {∗}, and define
Pm,n(X) for m,n ≥ 0 with m + n ≥ 1 by

Pm,n(X) = Pm−1,n(X) ∪ Pm,n−1(X) ∪Ψm,n
∆m,n ×Xm+n,

where Ψm,n : ∂∆m,n×Xm+n∪∆m,n×X [m+n] → Pm−1,n(X)∪Pm,n−1(X) is given
by the following relations:

Ψm,n(βi(a), x1, . . . , xm, y1, . . . , yn)

=





Ψm−1,n(a, x2, . . . , xm, y1, . . . , yn) if i = 0

Ψm−1,n(a, x1, . . . , xi · xi+1, . . . , xm, y1, . . . , yn) if 0 < i < m

Ψm−1,n(a, x1, . . . , xm−1, y1, . . . , yn) if i = m.

(5.3)

Ψm,n

(
β′j(a), x1, . . . , xm, y1, . . . , yn

)

=





Ψm,n−1(a, x1, . . . , xm, y2, . . . , yn) if j = 0

Ψm,n−1(a, x1, . . . , xm, y1, . . . , yj · yj+1, . . . , yn) if 0 < j < n

Ψm,n−1(a, x1, . . . , xm, y1, . . . , yn−1) if j = n.

(5.4)
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Ψm,n(a, x1, . . . , xi−1, ∗, xi+1, . . . , xm, y1, . . . , yn)

= Ψm−1,n(γi(a), x1, . . . , xi−1, xi+1, . . . , xm, y1, . . . , yn) for 1 ≤ i ≤ m,

Ψm,n(a, x1, . . . , xm, y1, . . . , yj−1, ∗, yj+1, . . . , yn)

= Ψm,n−1(γ′j(a), x1, . . . , xm, y1, . . . , yj−1, yj+1, . . . , yn) for 1 ≤ j ≤ n.

(5.5)

From the definition, we have P1,0(X) = P0,1(X) = ΣX. Since the projection
πm,n : ∆m×∆n → ∆m,n is compatible with the face operators and the degeneracy
operators, πm,n induces a map π̃m,n : Pm(X) × Pn(X) → Pm,n(X) for m,n ≥ 0.
In particular, we see that π̃1,0 : ΣX × {∗} → ΣX and π̃0,1 : {∗} × ΣX → ΣX are
the projections.

Lemma 5.2. Let n ≥ 1 and 1 ≤ k ≤ n. If X is a topological monoid such
that BX has an Hk(n)-structure ψk(n), then there is a map

ψ̃k(n) :
⋃

0≤s≤k

Pn−s,s(X) → BX with ψ̃k(n)
( ⋃

0≤s≤k

π̃n−s,s

)
= ψk(n).

Proof. Let θr,s : ∆r ×∆s ×Xr+s → BX be the composite of ψk(n) with
the inclusion

∆r ×∆s ×Xr+s → ∆r ×Xr ×∆s ×Xs

⊂ Pr(X)× Ps(X) ⊂
⋃

0≤s≤k

Pn−s(X)× Ps(X) for (r, s) ∈ Λk(n),

where the first arrow denotes the appropriate switching map. From the definition
of ψk(n), we have that

θr,s(a, vj , x1, . . . , xr, y1, . . . , ys) = ηr(a, x1, . . . , xr) = ε̃r(ρr(a), x1, . . . , xr)

for 0 ≤ j ≤ s and

θr,s(vi, b, x1, . . . , xr, y1, . . . , ys) = ηs(b, y1, . . . , ys) = ε̃s(ρs(b), y1, . . . , ys)

for 0 ≤ i ≤ r, which implies that there is a map θ̃r,s : ∆r,s × Xr+s → BX with
θ̃r,s(πr,s × 1Xr+s) = θr,s. Then {θ̃r,s}(r,s)∈Λk(n) induces a map

ψ̃k(n) :
⋃

0≤s≤k

Pn−s,s(X) → BX
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with the required conditions. This completes the proof. ¤

Proof of Theorem A. Assume that X is a Ck(n)-space and
{Qr,s}(r,s)∈Λk(n) is the Ck(n)-structure. From the same reason as in [23, p. 250],
we may assume without loss of generality that the image of Qr,s lies in the set of
loops of length r + s in X ' Ω(BX). Consider the adjoint ψr,s : [0, r + s] × Nr,s

× Xr+s → BX of Qr,s.
Let Φr,s : [0, r + s] × Nr,s → ∆r,s be the adjoint of κr,s : Nr,s → Kr,s given

in (2.5). Put Φ̃r,s = Φr,s|∂([0,r+s]×Nr,s) : ∂([0, r + s] × Nr,s) → ∂∆r,s. From the
definition, we have ∂∆r,s ∪eΦr,s

[0, r + s] × Nr,s = ∆r,s, and so Φr,s : ([0, r + s]
× Nr,s, ∂([0, r + s] × Nr,s)) → (∆r,s, ∂∆r,s) is a relative homeomorphism. Then
we have inductively a family of maps {θ̃r,s : ∆r,s × Xr+s → BX}(r,s)∈Λk(n) with
θ̃r,0 = ε̃r and θ̃0,s = ε̃s, which implies that {θ̃r,s}(r,s)∈Λk(n) induces a map

ψ̃k(n) :
⋃

0≤s≤k

Pn−s,s(X) → BX

such that

ψk(n) = ψ̃k(n)
( ⋃

0≤s≤k

π̃n−s,s

)
:

⋃

0≤s≤k

Pn−s(X)× Ps(X) → BX

is an Hk(n)-structure on BX.
Conversely, we assume that BX is an Hk(n)-space. Let θ̃r,s : ∆r,s ×Xr+s →

BX denote the composite of ψ̃k(n) with the inclusion

∆r,s ×Xr+s ⊂ Pr,s(X) ⊂
⋃

0≤s≤k

Pn−s,s(X) for (r, s) ∈ Λk(n),

where

ψ̃k(n) :
⋃

0≤s≤k

Pn−s,s(X) → BX

is given by Lemma 5.2. Consider the adjoint Qr,s : Nr,s×Xr+s → X of θ̃r,s(Φr,s×
1Xr+s) : [0, r+s]×Nr,s×Xr+s → BX. Then {Qr,s}(r,s)∈Λk(n) is a Ck(n)-structure
on X. This completes the proof of Theorem A. ¤

Let CP∞ be the infinite dimensional complex projective space. Then the
cohomology is given by H∗(CP∞;Fp) ∼= Fp[u] with deg u = 2, where p is a prime.
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Consider the homotopy fiber Zt of the map φt : CP∞ → K(Z/p, 2t) corresponding
to the class ut ∈ H2t(CP∞;Fp) for t ≥ 1. Put Xt = ΩZt for t ≥ 1.

Proposition 5.3.

(1) If t = pa for some a ≥ 0, then Xt is a C∞(∞)-space.
(2) Assume t = pab for a ≥ 0 and b > 1 with b 6≡ 0 mod p. Then Xt is a

Ck(n)-space if k < pa or n < t, but not a Cpa(t)-space.

We remark that Proposition 5.3 is a generalization of the result by Aguadé
[1, Proposition 4.2].

To prove Proposition 5.3, we need the following lemma:

Lemma 5.4. Consider the homotopy commutative diagram:

ΩB // F
ι // X // B

L //

g

OO

K,

f

OO

(5.6)

where the top horizontal arrow is a fibration sequence and (K,L) is a relative CW -
complex. Assume that (K, L) has the extension property with respect to ΩB, that
is, for any map d : L → ΩB, there is a map d̃ : K → ΩB with d̃ |L = d. If there
is a lift f̃ : K → F with ιf̃ ' f , then we have a map h : K → F with ιh ' f and
h|L = g.

Proof. Let ν : ΩB×F → F be the natural action of the principal fibration
(5.6). Since ιf̃ |L ' f |L ' ιg, there is a map d : L → ΩB with ν(d× f̃ |L)∆L ' g.
From the assumption, we have a map d̃ : K → ΩB with d̃ |L = d. Put g̃ = ν(d̃ ×
f̃)∆K : K → F . Then ιg̃ = ιν(d̃× f̃)∆K ' ιf̃ ' f and g̃ |L = ν(d× f̃ |L)∆L ' g.
From the homotopy extension property with respect to (K,L), we have a map
h : K → F with h ' g̃ and h|L = g. This completes the proof. ¤

Proof of Proposition 5.3.

(1) If t = pa for some a ≥ 0, then Zt is an H-space, and so the result follows
from Corollary 1.1.

(2) We first prove that if k < pa or n < t, then X is a Ck(n)-space. Put

K =
⋃

0≤s≤k

Pn−s(Xt)× Ps(Xt) and L = Pn(Xt) ∨ Pk(Xt).

Let f : K → CP∞ be the composite of µ(ιt)2 : (Zt)2 → CP∞ with the inclusion
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K ⊂ (Zt)2, where µ is the multiplication of CP∞ and ιt : Zt → CP∞ denotes
the fiber inclusion. We define g : L → Zt by g(z, ∗) = εn(z) for z ∈ Pn(Xt)
and g(∗, w) = εk(w) for w ∈ Pk(Xt). Then f |L ' ιtg. Put ξi = (ιtεi)#(u) ∈
H2(Pi(Xt);Fp) for i ≥ 1.

If k < pa, then

(φtf)#(ι2t) = f#(u)t = (ξn ⊗ 1 + 1⊗ ξk)pab

=
(
(ξn)pa ⊗ 1 + 1⊗ (ξk)pa)b

= (ξn)t ⊗ 1 = (εn)#((ιt)#(u)t)⊗ 1 = 0,

and so there is a map ψk(n) : K → Zt with ψk(n)|L = g and ιtψk(n) ' f by
Lemma 5.4. This implies that Zt is an Hk(n)-space, and so Xt is a Ck(n)-space
by Theorem A.

In the case of n < t, (φtf)#(ι2t) = f#(u)t = 0 since cat(K) ≤ n, and so by
the same reason as above, Xt is a Ck(n)-space.

We next show that Xt is not a Cpa(t)-space. Assume contrarily that Xt is a
Cpa(t)-space. Then Zt is an Hpa(t)-space by Theorem A. Let f : Ppa(b−1)(Xt) ×
Ppa(Xt) → Zt denote the composite of ψpa(t) with the inclusion

Ppa(b−1)(Xt)× Ppa(Xt) ⊂
⋃

0≤s≤pa

Pt−s(Xt)× Ps(Xt),

where ψpa(t) is the Hpa(t)-structure on Zt. Then we have

(φtιtf)#(ι2t) =
(
ξpa(b−1) ⊗ 1 + 1⊗ ξpa

)t

=
(

t

pa

)
(ξpa(b−1))pa(b−1) ⊗ (ξpa)pa

with
(

t

pa

)
≡ b 6≡ 0 mod p.

Since φtιtf ' ∗, we have a contradiction, which implies that Xt is not a Cpa(t)-
space. This completes the proof. ¤

Proposition 5.5.

(1) If 1 < t < p, then Xt is a Ct−1-space, but not a Ct-space.
(2) If t = 1 or t ≥ p, then Xt is a C∞-space.

Recall the following result proved by Williams [21]:

Theorem 5.6 ([21, Theorem 2]). Let n ≥ 1. A topological monoid X

is a Cn-space if and only if there is a map ψn : Jn(ΣX) → BX with ψn|ΣX =
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ε1 : ΣX → BX, where Jn(Y ) denotes the n-th James reduced product space of a
space Y for n ≥ 1.

Proof of Proposition 5.5. (1) By Propositions 4.5 and 5.3(2), Xt is a
Ct−1-space.

If we assume that Xt is a Ct-space, then there is a map ψt : Jn(ΣXt) → Zt

with ψt|ΣXt
= ε1 by Theorem 5.6. Let f : (ΣXt)t → Zt denote the composite of

ψt with the projection (ΣXt)t → Jt(ΣXt). Then we have

(φtιtf)#(ι2t) = (ξ1 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ ξ1)t

= t!ξ1 ⊗ · · · ⊗ ξ1 with t! 6≡ 0 mod p.

Since φtιtf ' ∗, we have a contradiction, and so Xt is not a Ct-space.
(2) By Propositions 4.5 and 5.3(1), X1 is a C∞-space.
Since S1 is a C∞-space, there is a map ψ′n : Jn(S2) → CP∞ with ψ′n|S2 =

ε′1 : S2 → CP∞ for any n ≥ 1 by Theorem 5.6.
Now we prove that there is a family of maps {ψn : Jn(ΣXt) → Zt}n≥1 with

the following relations:

ψ1 = ε1 : ΣXt → Zt,

ψn|Jn−1(ΣXt) = ψn−1 for n > 1,

ιtψn ' ψ′nJn(ΣΩιt) for n ≥ 1.

(5.7)

We work by induction on n. The result is clear for n = 1. Assume that the
result is proved for n− 1. Put K = (ΣXt)n and L = (ΣXt)[n]. Let f : K → CP∞

be the composite of ψ′nJn(ΣΩιt) with the projection K → Jn(ΣXt). Then by
inductive hypothesis, there is a map ψn−1 : Jn−1(ΣXt) → Zt with (5.7).

Consider the composite g : L → Zt of ψn−1 with the projection L →
Jn−1(ΣXt). Then f |L ' ιtg. If t ≥ p, then

(φtf)#(ι2t) = f#(u)t = (ξ1 ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ ξ1)t−p

· ((ξ1)p ⊗ 1⊗ · · · ⊗ 1 + · · ·+ 1⊗ · · · ⊗ 1⊗ (ξ1)p) = 0,

and so there is a map ψ̃n : K → Zt with ψ̃n|L = g and ιtψ̃n ' f by Lemma 5.4.
Since ψ̃n|L = g, we have a map ψn : Jn(ΣXt) → Zt with (5.7), which implies that
Xt is a C∞-space by Theorem 5.6. This completes the proof. ¤

Remark 5.7. Let Wt be the homotopy fiber of the map φ′t : CP∞ →
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K(Q, 2t) corresponding to the class vt ∈ H2t(CP∞;Q) for t > 1, where
v ∈ H2(CP∞;Q) denotes the generator. Put Yt = ΩWt for t > 1. Using the
same way as the proofs of Propositions 5.3 and 5.5, we can prove that Yt is a
Ck(t− 1)-space for any 1 ≤ k ≤ t− 1, but not a Ct-space.

Now we proceed to the proof of Theorem B.

Proof of Theorem B. If X(0) is a Ck(n)-space, then X(0) is a Cn-space
by Proposition 4.5.

Now we consider the converse. Let S be the set of all generators for
H∗(BX(0);Q) as a Q-algebra. Consider the free Q-algebra A∗ generated by S

with the projection ω : A∗ → H∗(BX(0);Q). Since X(0) is a Cn-space, there is a
map ψn : Jn(ΣX(0)) → BX(0) with ψn|ΣX(0) = ε1 by Theorem 5.6.

From the same reason as the proof of [11, Lemma 4.7], we have

kerψ#
n ω ⊂ Dn+1A∗, (5.8)

where Dn+1A∗ denotes the (n+1)-fold decomposable module of A∗. Since kerω ⊂
kerψ#

n ω, we have ker ω ⊂ Dn+1A∗ by (5.8). This implies that BX(0) is an H(n)-
space by [7, Proposition 8]. Then by Theorem A, X(0) is a Ck(n)-space for any
1 ≤ k ≤ n. This completes the proof of Theorem B. ¤

6. Homotopy localizations.

Let A and B be spaces and f ∈ Map∗(A,B). According to Dror Farjoun
[6, p. 2, A.1], a space Z is called f -local if the induced map f# : Map∗(B,Z) →
Map∗(A,Z) is a homotopy equivalence. In particular, when B = {∗} and f : A →
{∗} is the constant map, Z is called A-local, that is, Map∗(A,Z) is contractible.

Bousfield [2, Section 2] and Dror Farjoun [6, Section 1] constructed the A-
localization LA(X) with the universal map φX : X → LA(X) for a space X. By
their results [6, p. 4, A.4] and [2, Theorem 2.10(ii)], LA(X) is A-local and φX

induces a homotopy equivalence

(φX)# : Map∗(LA(X), Z) // Map∗(X, Z) (6.1)

for any A-local space Z (see also [5, Theorem 14.1]).

Definition 6.1. Let n ≥ 1 and 1 ≤ k ≤ n. Assume that X and Y are
Ck(n)-spaces with the Ck(n)-structures {QX

r,s}(r,s)∈Λk(n) and {QY
r,s}(r,s)∈Λk(n). A

homomorphism φ : X → Y is called a Ck(n)-map if there is a family of maps
{Dr,s : I ×Nr,s ×Xr+s → Y }(r,s)∈Λk(n) with the following relations:
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Dr,0(∗, x1, . . . , xr) = φ(x1 · · ·xr) and D0,s(∗, y1, . . . , ys) = φ(y1 · · · ys). (6.2)

Dr,s(t, ε(pi)(a), x1, . . . , xr, y1, . . . , ys)

=





φ(x1) ·Dr−1,s(t, a, x2, . . . , xr, y1, . . . , ys) if i = 0

Dr−1,s(t, a, x1, . . . , xi · xi+1, . . . , xr, y1, . . . , ys) if 0 < i < r

Dr−1,s(t, a, x1, . . . , xr−1, y1, . . . , ys) · φ(xr) if i = r.

(6.3)

Dr,s(t, ε(qj)(a), x1, . . . , xr, y1, . . . , ys)

=





φ(y1) ·Dr,s−1(t, a, x1, . . . , xr, y2, . . . , ys) if j = 0

Dr,s−1(t, a, x1, . . . , xr, y1, . . . , yj · yj+1, . . . , ys) if 0 < j < s

Dr,s−1(t, a, x1, . . . , xr, y1, . . . , ys−1) · φ(ys) if j = s.

(6.4)

Dr,s(t, ε(hi,j)(a, b), x1, . . . , xr, y1, . . . , ys)

= Di,j(t, a, x1, . . . , xi, y1, . . . , yj) ·Dr−i,s−j(t, b, xi+1, . . . , xr, yj+1, . . . , ys)
(6.5)

for 0 < i < r and 0 < j < s.

Dr,s(t, a, x1, . . . , xi−1, ∗, xi+1, . . . , xr, y1, . . . , ys)

= Dr−1,s(t, δi(a), x1, . . . , xi−1, xi+1, . . . , xr, y1, . . . , ys) for 1 ≤ i ≤ r,

Dr,s(t, a, x1, . . . , xr, y1, . . . , yj−1, ∗, yj+1, . . . , ys)

= Dr,s−1(t, δ′j(a), x1, . . . , xr, y1, . . . , yj−1, yj+1, . . . , ys) for 1 ≤ j ≤ s.

(6.6)

Dr,s(0, a, x1, . . . , xr, y1, . . . , ys) = φ(QX
r,s(a, x1, . . . , xr, y1, . . . , ys)). (6.7)

Dr,s(1, a, x1, . . . , xr, y1, . . . , ys) = QY
r,s(a, φ(x1), . . . , φ(xr), φ(y1), . . . , φ(ys)).

(6.8)

Theorem 6.2. Let n ≥ 1 and 1 ≤ k ≤ n. If X is a Ck(n)-space, then the A-
localization LA(X) is a Ck(n)-space such that the universal map φX : X → LA(X)
is a Ck(n)-map.

Using the same way as the proof of [15, Proposition 4.1], we have the following
proposition:

Proposition 6.3. Let n ≥ 1 and 1 ≤ k ≤ n. Assume that X and Y are
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topological monoids and φ : X → Y is a homomorphism. If X is a Ck(n)-space
and Y is φ-local, then Y is a Ck(n)-space such that φ is a Ck(n)-map.

We give an outline of the proof of Proposition 6.3.

Proof of Proposition 6.3. We work by induction on n. The result is
clear for n = 1. Assume that the result is proved for n− 1.

Let {QX
r,s}(r,s)∈Λk(n) be a Ck(n)-structure on X, and put k′ = min{k, n− 1}.

By inductive hypothesis, we have that Y is a Ck′(n− 1)-space and φ : X → Y is a
Ck′(n− 1)-map whose Ck′(n− 1)-structures are given by {QY

r,s}(r,s)∈Λk′ (n−1) and
{Dr,s}(r,s)∈Λk′ (n−1), respectively. Put

Ur,s = (I × ∂Nr,s ∪ {0} ×Nr,s)×Xn ∪ I ×Nr,s ×X [n]

for r, s ∈ Λk(n) with r + s = n, and let Er,s : Ur,s → Y be defined by (6.2)–(6.7).
From the homotopy extension property, there is a map Ẽr,s : I ×Nr,s ×Xn → Y

with Ẽr,s|Ur,s
= Er,s.

Consider the maps Fr,s : Nr,s×Xn → Y and Gr,s : ∂Nr,s× Y n → Y given by

Fr,s(a, x1, . . . , xr, y1, . . . , ys) = Ẽr,s(1, a, x1, . . . , xr, y1, . . . , ys)

and (4.1)–(4.4), respectively. Let µn : Y n → Y be the n-fold multiplication of Y

given by µn(y1, . . . , yn) = y1 · · · yn. We denote the adjoint of Fr,s and Gr,s by
ηr,s : Nr,s → Map∗(Xn, Y )(φn)#(µn) and λr,s : ∂Nr,s → Map∗(Y n, Y )µn

, respec-
tively. Then (φn)#(λr,s) = ηr,s|∂Nr,s

, which implies that there is a map λ̃r,s :
Nr,s → Map∗(Y n, Y )µn

with λ̃r,s|∂Nr,s
= λr,s and (φn)#(λ̃r,s) ' ηr,s rel ∂Nr,s

by [15, Lemmas 4.2 and 4.3]. Consider the adjoint G̃r,s : Nr,s × Y n → Y of λ̃r,s.
Using the same way as the proof of [15, Proposition 4.1], we modify G̃r,s and Ẽr,s

to have maps QY
r,s : Nr,s×Y n → Y and Dr,s : I ×Nr,s×Xn → Y with (4.1)–(4.5)

and (6.2)–(6.8). Then {QY
r,s}(r,s)∈Λk(n) and {Dr,s}(r,s)∈Λk(n) are Ck(n)-structures

on Y and φ, respectively. This completes the proof. ¤

Proof of Theorem 6.2. According to Dror Farjoun [6, p. 59, A.1], there
is a homotopy equivalence LA(X) ' ΩLΣA(BX) such that the universal map
φX : X → LA(X) is identified with Ω(φBX) : X → ΩLΣA(BX). Then we may
assume that LA(X) is a topological monoid and φX is a homomorphism. Since
LA(X) is φX -local by (6.1), we have the required conclusion by Proposition 6.3.
This completes the proof of Theorem 6.2. ¤

Proposition 6.4. Let n ≥ 1 and 1 ≤ k ≤ n. Assume that X and B are
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Ck(n)-spaces and φ : X → B is a Ck(n)-map. Then the homotopy fiber F (φ) of φ

is a Ck(n)-space such that the fiber inclusion ι : F (φ) → X is a Ck(n)-map.

Proof. Recall that

F (φ) = {(x, ω) ∈ X ×Map(I, B) | ω(0) = φ(x) and ω(1) = ∗}

and ι : F (φ) → X is given by ι(x, ω) = x (cf. [10, p. 407]). Let µ : F 2 → F

be the multiplication defined by µ((x1, ω1), (x2, ω2)) = (x1 · x2, ω1 ∗ ω2), where
ω1 ∗ ω2 ∈ Map(I, B) is given by (ω1 ∗ ω2)(t) = ω1(t) · ω2(t) for t ∈ I. Then F (φ)
is a topological monoid and ι : F (φ) → X is a homomorphism.

Let {QX
r,s}(r,s)∈Λk(n) and {QB

r,s}(r,s)∈Λk(n) denote the Ck(n)-structures on X

and B, respectively. Since φ : X → B is a Ck(n)-map, we have the Ck(n)-structure
{Dr,s}(r,s)∈Λk(n). Define Q

F (φ)
r,s : Nr,s × F (φ)r+s → F (φ) by

QF (φ)
r,s

(
a, (x1, ω1), . . . , (xr, ωr), (y1, ω

′
1), . . . , (ys, ω

′
s)

)

=
(
QX

r,s(a, x1, . . . , xr, y1, . . . , ys), ζr,s(a, ω1, . . . , ωr, ω
′
1, . . . , ω

′
s)

)
, (6.9)

where

ζr,s(a, ω1, . . . , ωr, ω
′
1, . . . , ω

′
s)(t)

=

{
Dr,s(2t, a, x1, . . . , xr, y1, . . . , ys) if t ∈ [0, 1/2],

QB
r,s(a, ω1(2t− 1), . . . , ωr(2t− 1), ω′1(2t− 1), . . . , ω′s(2t− 1)) if t ∈ [1/2, 1]

for (r, s) ∈ Λk(n). Then {QF (φ)
r,s }(r,s)∈Λk(n) satisfies (4.1)–(4.5), and so F (φ) is a

Ck(n)-space. Moreover, we see that ι : F (φ) → X is a Ck(n)-map by (6.9). This
completes the proof. ¤

According to Dror Farjoun [6, p. 26, E.1], the localization LSt+1(X) with
respect to the (t + 1)-sphere is the t-th stage X[t] for the Postnikov system of X.
Then by Theorem 6.2 and Proposition 6.4, we have the following corollary:

Corollary 6.5. Let X be a connected Ck(n)-space, where n ≥ 1 and 1 ≤
k ≤ n.

(1) The t-th stage X[t] for the Postnikov system of X is a Ck(n)-space and the
projection X → X[t] is a Ck(n)-map.

(2) The t-connected covering X〈t〉 of X is a Ck(n)-space and the fiber inclusion
X〈t〉 → X is a Ck(n)-map.
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Castellana-Crespo-Scherer [4, Theorem 7.3] proved that if X is a connected
H-space whose cohomology H∗(X;Fp) is finitely generated as an algebra over the
Steenrod algebra A ∗

p , then the BZ/p-localization LBZ/p(X) is Fp-finite and the
homotopy fiber F (φX) of the universal map φX : X → LBZ/p(X) is Postnikov.
By their result, Theorem 6.2 and Proposition 6.4, if X is a connected Ck(n)-
space with finitely generated cohomology over A ∗

p , then LBZ/p(X) is an Fp-finite
Ck(n)-space and F (φX) is a Postnikov Ck(n)-space.
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[ 1 ] J. Aguadé, Decomposable free loop spaces, Canad. J. Math., 39 (1987), 938–955.

[ 2 ] A. K. Bousfield, Localization and periodicity in unstable homotopy theory, J. Amer. Math.

Soc., 7 (1994), 831–873.

[ 3 ] A. K. Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc.,

353 (2001), 2391–2426.

[ 4 ] N. Castellana, J. A. Crespo and J. Scherer, Deconstructing Hopf spaces, Invent. Math.,

167 (2007), 1–18.

[ 5 ] W. Chachólski, On the functors CWA and PA, Duke Math. J., 84 (1996), 599–631.

[ 6 ] E. Dror Farjoun, Cellular spaces, null spaces and homotopy localization, Lecture Notes

in Math., 1622, Springer-Verlag, Berlin, 1996.
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