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Abstract. We define a higher homotopy commutativity for the multipli-
cation of a topological monoid. To give the definition, we use the resultohedra
constructed by Gelfand, Kapranov and Zelevinsky. Using the higher homotopy
commutativity, we have necessary and sufficient conditions for the classifying
space of a topological monoid to have a special structure considered by Félix,
Tanré and Aguadé. It is also shown that our higher homotopy commutativity
is rationally equivalent to the one of Williams.

1. Introduction.

Félix-Tanré [7] studied a condition for a pointed mapping space to be an
H-space. To give the condition, they introduced the concept of H(n)-space for
n > 1. Then by their result [7, Proposition 1], if Y is a space with cat(Y) < n
and Z is an H(n)-space, then Map, (Y, Z) is an H-space, where cat(Y) denotes
the Lusternik-Schnirelmann category of Y. From the definition, any space is an
H(1)-space, and a space Z is an H(co)-space if and only if Z is an H-space.

Aguadé [1] also considered another criterion for a space to be an H-space. He
first defined a T-space as a space Z such that the fibration

0Z — Map(S',Z) —= 7

is fiber homotopy equivalent to the trivial fibration, where 7 is the based loop
space of Z and e: Map(S!, Z) — Z denotes the evaluation map at the base point.
While an H-space is always a T-space, the converse is not true. To study when
a T-space is an H-space, he also introduced the concept of Tj-space for k > 1.
Then his result [1, Proposition 4.1] implies that a T)-space and a T,.-space are
the same as a T-space and an H-space, respectively.

2000 Mathematics Subject Classification. Primary 55P48, 52B11; Secondary 55P35, 55R35.
Key Words and Phrases. higher homotopy commutativity, resultohedra, topological
monoids, C(n)-spaces.


http://dx.doi.org/10.2969/jmsj/06320443

444 Y. HEMMI and Y. KAWAMOTO

Generalizing both of the definitions by Félix-Tanré and Aguadé, we introduce
the concept of Hy(n)-space for n > 1 and 1 < k < n (see Definition 5.1). Then it
is easy to see that an H,,(n)-space is just an H(n)-space, and an Hy(co)-space is
the same as a Tg-space. In particular, a space Z is an Ho,(00)-space if and only
if Z is an H-space.

Sugawara [19] gave a criterion for the classifying space of a topological monoid
to be an H-space. His criterion is a higher homotopy commutativity for the
multiplication (see Theorem 4.1). In this paper, we define a higher homotopy
commutativity of a topological monoid, and generalize the result by Sugawara
to the case of Hy(n)-spaces. The polytopes used in the definition are called the
resultohedra, which are constructed by Gelfand-Kapranov-Zelevinsky [8].

A topological monoid with a multiplication admitting our higher homotopy
commutativity is called a Cy(n)-space for n > 1 and 1 < k < n (see Definition 4.3).
From the definition, any topological monoid is a Cy(1)-space, and a topological
monoid X is a C(2)-space if and only if the multiplication of X is homotopy
commutative for k = 1,2. Moreover, any abelian topological monoid is a Cus(00)-
space.

Our main result is stated as follows:

THEOREM A. Letn >1and 1 <k < n. Assume that X is a connected
topological monoid. Then X is a Ci(n)-space if and only if the classifying space
BX is an Hy(n)-space.

From Theorem A, we have the following corollary:

COROLLARY 1.1.  Let X be a connected topological monoid.

(1) X is a Cy(o0)-space if and only if BX is a Ty-space for k > 1. In particular,
X is a Cy(00)-space if and only if BX is a T-space.
(2) X is a Cy(n)-space if and only if BX is an H(n)-space for n > 1.

Stasheff [17] expanded the theory of Sugawara into the concept of A,-map
for n > 1 (see Section 4). Then by Corollary 1.1(2) and Proposition 4.2, we see
that a topological monoid X is a C),(n)-space if and only if the multiplication of
X is an A,-map for n > 1.

Williams [22] also considered another type of higher homotopy commutativ-
ity of a topological monoid. The polytopes used in his definition are called the
permutohedra, which are introduced by Milgram [16] to construct approximations
to iterated loop spaces. A topological monoid with a multiplication of this sort is
called a C),-space for n > 1. While a Ck(n)-space is always a C,,-space by Propo-
sition 4.5, the converse is not true (see Propositions 5.3 and 5.5). However, when
the spaces are assumed to be rationalized, we have the following result:
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THEOREM B. Letn >1and 1 < k < n. Assume that X is a connected
topological monoid. Then X gy is a Cr(n)-space if and only if X is a Cy-space,
where X (o) denotes the rationalization of X.

Throughout the paper, all spaces are assumed to be pointed, connected and
of the homotopy type of CW-complexes.

This paper is organized as follows: In Section 2, we recall the definition and
properties of the resultohedra which are used in the latter sections. In Section 3, we
regard the resultohedron as a subspace of the permutohedron (see Proposition 3.1).
From this interpretation, the permutohedron is decomposed by the resultohedra
combinatorially (see Proposition 3.3). In Section 4, we define a Ci(n)-space using
the resultohedra, and show that a Cj(n)-space is always a C,-space by Proposition
3.3 (see Proposition 4.5). Section 5 is devoted to the proofs of Theorems A and
B. We recall the projective spaces of a topological monoid, and define an Hy(n)-
space. To prove Theorem A, we generalize the definition of the projective space to
be compatible with a Cj(n)-structure. Using Theorem A, Proposition 4.5 and the
result by Félix-Tanré [7], we prove Theorem B. In Section 6, we show that a Cj(n)-
structure is preserved by the homotopy localizations introduced by Bousfield [2]
and Dror Farjoun [6] (see Theorem 6.2). Then we have that a Cj(n)-structure is
compatible with the Postnikov systems and the higher connected coverings (see
Corollary 6.5).

2. Resultohedra.

Let 0 X™ — X be the n-fold multiplication of a topological monoid X given
by pn(z1,...,2,) = x1 - x,. Then Williams [22] considered a higher homotopy
between the maps {u,o | ¢ € ¥, }, where %,, denotes the n-th symmetric group
which acts on X" by the permutation of the factors. The polytopes to describe this
higher homotopy are called the permutohedra, which are introduced by Milgram
[16]. The n-th permutohedron P, has vertices corresponding to X,,.

Now, if BX is an H-space, then the multiplication of X satisfies the higher
homotopy commutativity of Williams in the infinite level. Unfortunately, the con-
verse is not true. To make BX an H-space, we need to consider higher homotopy
commutativity given by shuffles, where o € ¥, 1, is called an (m,n)-shuffle if

cl)<---<o(lm) and o(m+1)<---<o(m+n) form,n>1.

For example, for the second level, we consider higher homotopy commutativity
corresponding to the (1,2) and (2,1) shuffles. For these cases, the polytopes
representing the higher homotopy are the 2-simplex A2. For the third level, we
consider three types corresponding to the (1,3), (2,2) and (3,1) shuffles. The
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polytopes for the higher homotopy commutativity corresponding to the (1, 3) and
(3,1) shuffles are the 3-simplex A3, while for the (2,2) shuffle, we need to consider
a more complicated polytope illustrated in [8, p. 240, Figure 1] (see also [9, p. 414,
Figure 61]).

In this section, we introduce the polytopes to describe our higher homotopy
commutativity. The polytopes are called the resultohedra, which are constructed
by Gelfand-Kapranov-Zelevinsky [8]. Since these polytopes are very complicated,
we first describe the vertices of them by lattice paths. Our description is an
analogy of the one of the vertices of the permutohedron P, by the lattice paths in
I™ described by Milgram.

Let m,n > 1. A lattice path in the rectangle [0, m] x [0,n] is a map £: [0,
m + n] — [0,m] x [0,n] such that £(0) = (0,0), £(m +n) = (m,n) and if we write
L(s) = (£1(s),L2(s)) for s € [0,m + n], then £(i + t) is either (¢1(i) + ¢, ¢2(3)) or
(1(7),€2(i) +t) for 0 < i < m+n and t € I. We denote the set of all lattice paths
in [0,m] x [0,n] by Ln-

For any two words x -+ 2, and y - - - y,, we have a new word w of length
m —+ n containing 1 ---x,, and yi - - -y, as subsequences. In other words, if we
put z; = z; for 1 <4 <m and zp,4; = y; for 1 < j < n, then w is given by

W= Z5-1(1) "+ Zg—1(m4n) fOr some (m,n)-shuffle o.

We call such a word w a shuffle of z1 -z, and y1 ---y,. In [0,m] x [0,n], we
label the interval [¢ — 1,i] X {j} by a; for 1 <i <m, 0 < j < n and the interval
{i} x[j—1,4] by y; for 0 <i <m, 1 < j <n asin Figure 1. Then each lattice
path ¢ € £, ,, is labeled by a shuffle of x; - - - z,,, and y; - - - y,,. In this label of ¢,
the symbol z; means the horizontal unit move from the line z = ¢ — 1 to the line
z =1t for 1 <¢ < m,and y; is the vertical move between two lines y = j — 1 and
y = j for 1 < j <n. For example, the lattice path £ € £, 3 in Figure 1 is labeled

by z1y12223Y274Y3.

q3 =0—

Y3 4 Y3
g2 =1—

Y2 4 Y2 ¥4
q=2—

Y1 A Y1 2 3
Go0=1— - - -

R I I

po=0 p1=1 p2=0 p3=1 ps=1

Figure 1. The lattice path £ = x1y12223y224Y3.



Higher homotopy commutativity and the resultohedra 447

Given a lattice path £ € %, ,,, let pf and qf be the lengths of the intersections
of ¢ with the lines z = i for 0 < ¢ < m and y = j for 0 < j < n, respectively.
Then in the corresponding shuffle of z; - -+ 2,, and y; - - -y, pf is the number of
;s between x; and 2,41 for 0 < ¢ < m, and qf is the number of x;s between y; and
y;+1 for 0 < j < n. For example, (p,...,p4, ¢, ..., q5) = (0,1,0,1,1,1,2,1,0) for
{ = x1y17203Yy224Yy3 in Figure 1.

For m,n > 1, Gelfand-Kapranov-Zelevinsky [8, Theorem 4| defined N,,
as the subspace of R™*"+2 consisting of all points (po,...,Pm,q0s---,qn) €
(RT)m*+n+2 with the relations:

Z pi=n, Z q; =m, hi,j >0 and hy,n =0, (2‘1)

0<i<m 0<j<n

where Rt = {t € R|¢ > 0} and

hij = Z (i —k)px + Z (G—Dg—ij for0<i<mand0<j<n.
0<k<i 0<I<j

Then by their result [8, Theorems 2’ and 6], Ny, , is an (m + n — 1)-dimensional
polytope such that the set of all vertices is given by

V(Npn) = {(pg, R R SR qﬁ) ER™2 |1 L }-

According to Kapranov-Voevodsky [14, p.242, 6.2], the polytope Ny, , is called
the resultohedron. By [8, Proposition 13|, N, 1 and Ny, are the simplices A™
and A", respectively (see (2.4)). For convenience, we put N, o = No,, = {*} for
m,n > 1.
Consider the subspaces N(p;), N(¢;) and N (h; ;) of Ny, , defined by
N(pi) = {(pOa”-apTruq()a"'aqn) € Npn | pi = O} for 0 <@ <m,

N(q;) ={(po,---,Pm:q0---+an) € N | ¢; =0} for 0<j<n
and

N(h/i,') = {(po,.-.7pm,qo,---,qn) € Nm7n ‘ h”h] = 0}

for0<i<mand0<j<n.

PROPOSITION 2.1 ([9, Chapter 12, Corollary 2.17, Theorem 2.18]).
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(1) The boundary of Ny, is given by

aNm,lz U N(pi)a aNl,n: U N(qj>

0<i<m 0<j<n

and

ONmn = U N(pi)U U N(g;) U U N(hi ;) form,n > 1.

0<i<m 0<j<n 0<i<m,0<j<n

(2) The facets N(p;), N(g;) and N(h; ;) are affinely homeomorphic to Ny —1 5,
Nmn—1 and N; j X Ny_; n—j by the face operators
gPi) . Np—1n = Ny for 0 <7 <m,

e Nypp oy — Ny for0<j<n
and
E(hi’j): Ni,j X Nmfi,nfj - Nm,n fO’i‘ 0<i<mand0< ‘] < ™

respectively.

Using the same way as the proof of [16, Lemma 4.5], we have the following
lemma:

LEMMA 2.2.  There are degeneracy operators {0x: Npmn — Npm—1n}i<k<m
and {0]: Ny, — Npyn—1t1<i<n With the following relations:

P _1(a) if0<i<k—1
5,e®)(a) =4 a ifi=k—1k

ePi-1)(a) ifk <i<m,
5k€(Qj)(a) = s(qﬂ')(Sk(a) for0<j<n,
ehii)(a,0p_i(b)) if0<i<k

Spehii) (a,b) =
(a,) ehi-13) (5 (a),b) ifk <i<m.
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5P (a) = ePI§l(a)  for 0 <i<m,
el@)5]_(a) if0<j<i-1
61e\%) (a) = { a ifj=1-1,1

2.3
s(qffl)(;{(a) ifl <j<n, 23)

ehii)(a,6]_; (b)) if0<j<lI

ojehid) (a,b) = {
gthii=1) (51 (a),b) ifl <j<n.

PrROOF. We prove the case of {d;}1<kx<m by induction on m and n. When
m=1orn=0, we put 6p(a) = x for 1 <k <m. Let m > 1 and n > 0. Assume
inductively that {0x: Ny s — Np/—1.0 }1<k<m are constructed for m’ < m and
n' <n with (m’,n) # (m,n).

Now we define gk: ONpmw — Np—1, by (2.2) for 1 < k < m. Since N, ,,
is the reduced cone of ON,, ,, if @ € Ny, ,,, then we can write a = (b,t) with
b€ ONpn and t € I. Set 8;(b) = (¢,u) with ¢ € N1, and u € I. Then we
can define dx: Ny, — Nyp—1.p by 0k(a) = (c,tu), and {0 }1<k<m satisfies the
required conditions. In the case of {d]}1<;<n, the proof is similar. This completes
the proof. O

Let A™ denote the m-simplex:

A™ = {(to,...,tm) € (RH)mt!

> tizl} for m >0 (2.4)
0<i<m

3 m—1 ‘
with the vertices v; = (0,...,0,1,0,...,0) for 0 <4 < m. Then we have the face
operators {9;: A™™! — A™}i_;<,, and the degeneracy operators {sy: A™ —
A™ Y cp<m (cf. [11, p.109]). We define p,,: A™ — [0,m] by

pm(to, - tm) = Y ity

0<i<m

and identify the image p,,(A™) = [0, m] with the edge vov,, C A™ (see Figure 2).
Consider the quotient space

AT =A" x A"/ ~ form,n>0withm+n>1

“ 7

and the projection m,, ,: A™ x A™ — A™" where the relation “ ~ ” is given
by (a1,v;) ~ (a2,v;) if pm(ai1) = pm(az) for a1,a2 € A™ and 0 < j < n, and
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to

v2

vo v1

to t1

Figure 2. The projection pa.

(vi,b1) ~ (v, b2) if pp(b1) = pn(b2) for by, be € A™ and 0 < i < m (see Figure 3).

Denote 7, n(a,b) € A™" by (a,b) for (a,b) € A™ x A™. Then we have
the face operators {f;: A" 1™ — A™"}ocicp, and {8 AT A Yooy,
given by f3;({a, b)) = (0i(a),b) and B}((a,b)) = (a,0;(b)). Moreover, the degener-
acy operators {vy;: A™" — AmTLny o and {y): A™" — AT o) are
defined by vk((a, b)) = (sk(a),b) and y;((a, b)) = (a, si(b)).

Now as in the case of [0, m] x [0,n], we label the edge v;_1v; x {v;} of A™"
by x; for 1 < i < m, 0 < j < n and the edge {v;} x vj_jv; of A™" by y; for
0<i<m,1<j<n (see Figure 3). Put

Hn = {: [0,m+n] — A™™ | £(0) = (vg,vo) and £(m + n) = (Vm, vy) }-
Then any lattice path ¢ € ., ,, can be regarded as ¢ € ., ,, (see Figure 4). Let

Fmm: V(Nm.n) — HFmn be defined by Emm((pé, . ,pfn,qg, .. .,qf;)) = {. Since
Ny, is the convex hull of v(N,, ,,):

A? x A? A1

Y1

Y1

1

Figure 3. The projection s ;.
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Y1
Y1
€2
1

Figure 4. The lattice paths 1 = z1z2y1, 2 = z1y122 and f3 = y1z12T2 in Ho 1.

1

Nm,n :{ Z tia;

1<i<k

a; € /U(Nm,n) and ti S R+ with Z ti = 1}7

1<i<k

we extend Kmpn t0 Kmn: Nmop — Hm.n by

fim,n( Z tiai) (s) = Z tikm.n(a;)(s) for s € [0,m + n]. (2.5)

1<i<k 1<i<k

3. Permutohedra.

The n-th symmetric group ¥,, acts on R™ by the permutation of the factors.
Put n = (1,...,n) € R™. According to Milgram [16, Definition 4.1], the per-
mutohedron P, is an (n — 1)-dimensional polytope defined by the convex hull of
{o(n) € R" | 0 € ¥,,} for n > 1. From the construction, there is a natural way
to describe all the faces of P,.

Let wy,...,upm > 1 with g + -+ 4+ upy = n. A partition of n of type
(u1,...,uy) is an ordered sequence (ag,...,q,,) consisting of disjoint subse-
quences «; of length u; for 1 < i < m with a; U--- U @, = n as sets (see
[11, p.107], [12, p.3826]). Then there is a correspondence between the faces of
P, and the partitions of n into at least two disjoint parts (see [11, p.107]). In
particular, a facet of P, is represented by a partition of n into just two disjoint
parts.

Consider the subspace T;, of R™ defined by

T, = {(t177tn> €R"

Z ti:n(n—l—l)} for n > 1.

- 2
1<i<n

Put
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1
T(Oél,ag):{(tl,... ERn Z ta1(l ZU1(UIQ+)}
1<i<ug
and
n up(ug +1
3T(a1,a2)_{(t1,... yeR"| tal()_l(;)}’

1<i<uy

where (a7, a2) is a partition of n of type (u1,us). From the definition,

P, =T,N m T(alyaQ)

(a1,02)

whose boundary 9P, is given by

oP, = U P(ai,a0) with P(ag,as) = P, NOT (o, az),

(a1,02)

where (a7, as) covers all partitions of n into two disjoint parts (see Figure 5). By
[16, Lemma 4.2], the facet P(ay, as) is affinely homeomorphic to P,, x P,, by the
face operator (®1%2): P, x P, — P(ay,az). Moreover, we have the degeneracy
operators {di: P, — Pn_1}1<k<n With the relations in [16, Lemma 4.5].

Now we recall that a permutation o € ¥,,,1,, is called an (m,n)-shuffle if

ocl)<---<o(m) and o(m+1)<---<o(m+n) form,n>1.

t3

P((1,2),(3))
I (1,2),(
P((2)7(173))\ [P((1)7(273))

P((2,3),(1)) —~ T P((1,3),(2))

t1

P((3),(1,2)) J

Figure 5. The permutohedron Ps.
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We denote the set of all (m, n)-shuffles by .#},, . Then there is a bijection between
Fmn and L, . In fact, if 0 € 7, 5, then putting x; on the o(i)-th place for
1 < i < m and y; on the o(m + j)-th place for 1 < j < n, we have a shuffle
of 1 ---x,, and y; - - -y, which is the label of some lattice path ¢ € £, ,,. For
example, the (4, 3)-shuffle
1 2
<1 3

is corresponding to the lattice path ¢ € 2} 3 labeled by x1y1z223y224ys3 (see Figure

1).

ProprosITION 3.1 ([9, Chapter 12, Proposition 2.6]). The resultohedron
Np.n 15 embedded in P, as

4
6

N Ot

6 7
5

7) € 56173

3
4

N = Prgn N ﬂ H; N ﬂ H}  form,n>1,
1<i<m—1 1<j<n—1

which is the convex hull of {o(1,...,m+n) € R™*" | o € S, n}, where
H, = {(tlw-wthrn) GRm+n |ti+1 th—l-l} forlgzgm—l
and

HJI = {(t17...,tm+n) S Rm+n | tm+j+1 2 tm+j + 1} fOT‘ 1 § ] S n—1.

ts

T1T2Y1

T1Y122

t1 to

Yi1r1T2

Figure 6. The resultohedron Ny ;.
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REMARK 3.2. In (2.1), the resultohedron N, is defined in R™*"*2,
Proposition 3.1 implies that N, ,, is considered as a subspace of R™*".

In the proof of Proposition 4.5, we need the following result proved by Hemmi
[11] and Kapranov-Voevodsky [14]:

ProposITION 3.3 ([11, p. 108, (5.1)], [14, Theorem 6.5]).

(1) The permutohedron P,y is decomposed by the subspaces T'(a, ..., quy) as

Poi1 = U D(ag,...,qu) forn>1,

(a1yeeyam)

where (, ..., ayy) covers all partitions of v with m > 1.

(2) If (a1,...,0u,) is a partition of n of type (u1,...,Um), then T(aq,...,am)
is affinely homeomorphic to Np i1 x P, x --- x P, by an operator
pOrem) s Ny ) Py XX Py = T,y o).

I'((2), (1)) 2 (1), (2)
I((1,2)

Figure 7. The decomposition of Ps.

For the decomposition of the 4-th permutohedron Py, see [14, p.245, Fig-
ure 15]. By Proposition 3.1, N,, 1 is embedded in P,,4+1. Then the inclusion
Np,1 C Py, is corresponding to the operator (1o (m)) - Npaix Py x---x P —
I'((1),...,(m)) C P41 in Proposition 3.3 (see Figures 6 and 7).

4. Higher homotopy commutativity.

Sugawara [19] introduced the concept of strongly homotopy multiplicativity
for maps between topological monoids. Later Stasheff [17] expanded his definition,
and introduced the concept of A,-map for n > 1. Let X and Y be topological
monoids and n > 1. A map ¢: X — Y is called an A,-map if there is a family of
maps {F;: I'"1 x X* — Y }1<i<y, such that Fy(z) = ¢(x) and
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Fi(tl,...,ti,1,$17...,.’)3i)

{Fi—l(tla-~-atj—17tj+17- ..,ti_l,xl,...,xj * L1, - ..,J}i) if tj =0

Fj(tl,. ..,t]‘_hl‘l,. ..,Ij) 'Fi—j(tj+17~-- ;ti—laxj+17--~7xi) if tj =1

for1 <j<i-—1.

From the definition, an As-map is just an H-map, and an As-map is an H-
map preserving the homotopy associativity. Moreover, an A,.-map is the same as
a strongly homotopy multiplicative map.

Using the strongly homotopy multiplicativity, Sugawara gave a criterion for
the classifying space of a topological monoid to be an H-space (see also Stasheff
[18, p. 71, Theorem 14.1]):

THEOREM 4.1 ([19]). Let X be a topological monoid. The multiplication
pw: X? — X is strongly homotopy multiplicative if and only if the classifying space
BX is an H-space.

In Theorem 4.1, the condition of strongly homotopy multiplicativity for
p: X2 — X can be regarded as a higher homotopy commutativity for . In fact,
we see that p: X2 — X is an H-map if and only if p is a homotopy commutative
multiplication of X.

Generalizing Theorem 4.1, we have the following result:

PROPOSITION 4.2. Let X be a topological monoid. The multiplication w:
X? — X is an A,-map if and only if BX is an H(n)-space for n > 1.

The proof of Proposition 4.2 is given in Section 5.
Now we define a Cy(n)-space. Let n > 1 and 1 < k < n. Put

Ap(n)={(r,s) € Z*|r,s>0,1<r+s<nands<k}.

DEFINITION 4.3. Letn > 1and 1 < k < n. A topological monoid X is called
a Ci(n)-space if there is a family of maps {Qy s: Ny s X X5 — X}, e, (n) With
the following relations:

Qro(*,21,...,x) =x1 -2, and Qo s(*Y1,---,Ys) = Y1 Ys- (4.1)

QT’S(E(M)(G’%‘T;M ey Ty Y1y - -7315)
xl'Qr—l,s(aaan"'7xray17"'7ys) ifi=0
= Qro1,s(a, 1, T Tig1, o Ty Y1, -, Ys) HO0<i<r (4.2)

Q?'—l,s(avxh sy Tp—1,Y1y - - - 7ys) * Ly ifi=r.
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QT,S(E(qj)(a)7x17 ey Ty Y1y et ays)

yl'QT‘,S—l(aﬂmla"'axTWyQa"'7y3) lf.]:O
- Qr,sfl(a»xla"'7xrvy17~~~vyj'ijrl?"‘vys) 1f0<]<8 (43)
Qr,s—l(a7x1a-~-ax7‘7y1a"'7y8—1)'ys lfj:S

QT‘,S(‘?(hi’j)(a’a b)7x17 ey Ty Y1y e ’ys)
= Qi7j(a,x1, ey Ty Yty e e 7yj) . Qr—i,s—j(ba $i+1, e ,J?T,yj+1, - 7ys) (44)

for0<i<rand0<j<s.

QT,s(aya:la”'axi—17*7xi+17'"7x7'ay17"' 7y8)

= Qr—l,s(éi(a)axla sy Ti—1, L1y - ey Ty YLy e e 7y8) for 1 <4< T,
(4.5)
Qr,s(a7xla"'7xr,y17~'~7yj*1,*7yj+la"'7ys)

=Qrs1(05(a), 1, ., T Y1, Y1, Y1, -, Ys) for 1 <5 <.

REMARK 4.4.

(1) Any topological monoid is a Cj(1)-space, and a Cj(2)-space is a topological
monoid whose multiplication is homotopy commutative for k = 1, 2.
(2) An abelian topological monoid has a Co,(00)-structure:

Q’r,s(aaxlw”?x’myl?'"ays):ml"'x’r'yl"'ys for T,SZ 1.

In particular, Eilenberg-Mac Lane spaces have the homotopy type of Cu(00)-
spaces.

Williams [22] considered another type of higher homotopy commutativity
using the permutohedra. Let n > 1. A topological monoid X is called a C),-space
if there is a family of maps {Q;: P; x X* — X }1<i<, with the following relations:

Q1(*,x) = . (4.6)
Qi(e 122 ¢y, ¢0), x1, . . ., ;)
= Qul (Cla xal(l)v o >$a1(u1)) . Quz (C2a xa2(1)7 cey xaz(u2))7 (47)

where (aq, ag) is a partition of 4 of type (u1,uz).

Qi(c,xl, ey L1, K L1y - ,LUZ‘) = Qifl(dj(c),l'l, sy L1, Tj41y - - .,:v,») (48)
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for 1 <j <.

PROPOSITION 4.5. Letn > 1 and 1 <k <n. If X is a Ci(n)-space, then
X is a C,-space.

PROOF.  Since a Cj(n)-space is a Ck_1(n)-space for 1 < k < n, it is enough
to prove the case of k = 1.

We work by induction on n. The result is clear for n = 1. Assume that the
result is proved for m, and consider the case of n + 1. Let X be a Cy(n + 1)-
space. Since a C1(n + 1)-space is a C(n)-space, by inductive hypothesis, there is
a Cy-structure {Q; }1<i<n on X. By Proposition 3.3, we can define Q4+1: Pp41 X
X"+ s X by

Qnai1 (L(O‘l""’o"")(a, Cly oy Cm)y T1yenes :cn+1)
= QM,l(aa Qul (claxcn(l)a v ax(,n(ul))a ey

Qum (Cma Lo, (1)s - 7xo¢m(um))a xn—‘—l)a

where (o, ..., qm) is a partition of n of type (u1, ..., uy) with m > 1 (see Figure
8). Then {Q;}1<i<n+1 is a Cppy-structure on X. This completes the proof. O

Tox1X3 T1T2T3

I'((2), (1) (1), (2))

ZToT3T1 I'((1,2)) 12322

r3T2T1 T3T1T2

Figure 8. The Cs-structure on X.

Let 5*'~! denote the (2t—1)-sphere for t > 1. Then the p-completion (S5%*~1)7
is a topological monoid if and only if t = 1,2 for p =2 and ¢t | (p — 1) for p > 2,
where p is a prime (cf. [13, pp.172-173, Section 24-2]).

PROPOSITION 4.6.

(1) (8")p is a Coo(00)-space.

(2) (S?)% is a C1(1)-space, but not a Cy(2)-space.

(3) Let p>2andt>1 witht | (p—1). Putn = (p—1)/t. Then (S*~1)) is a
Chrn(n)-space, but not a Cy(n + 1)-space.
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PROOF. We have (1) and (2) by Remark 4.4.

We consider the case of (3). Put W = (S%~1)7. We first construct a Cy,(n)-
structure {Qr s b1<rts<n on W. Assume inductively that {Q, s }1<rts<m are con-
structed for some m < n. Then the obstructions to the existence of @, , with
r + s = m belong to the cohomology groups:

HITY(N, s x W™, ON,. s x W™ U N, x WM 7, (W)

= ﬁjJrQ((Sth);\;ﬂj(W)) forj>1 (4.9)

since N, s x W™ /(ON,. s x W™ U N, o x W) ~ (52tm=1)7, where Y™ denotes
the m-fold fat wedge of a space Y given by

Y[m]:{(yl,...,ym)eym|yi:*f0rsomelgi§m} for m > 1.

This implies that (4.9) is non-trivial only if j is an even integer with j < 2p — 2
since tm < tn = p — 1. On the other hand, m;(W) = 0 for any even integer j
with j < 2p — 2 by Toda [20, Theorem 13.4]. Thus (4.9) is trivial for all j, and
we have a map @, s with r + s = m. This completes the induction, and we have
a Cp(n)-structure {Qr s 1<r+s<n on W.

We next show that W is not a Cy(n + 1)-space. Assume contrarily that W
is a Cq(n + 1)-space. Then by Proposition 4.5, W is a C,,41-space, which is a
contradiction by [11, Theorems 2.2 and 2.4(4)]. This completes the proof. O

An H-space X is called F,-finite if the cohomology H*(X; F,) is finite dimen-
sional, and is called Postnikov if the homotopy groups m;(X) vanish above some
dimension. For example, any Lie group is an F,-finite H-space. On the other
hand, Eilenberg-Mac Lane spaces K(Z,n) are always Postnikov, but not F,-finite
for n > 1.

By Hemmi-Kawamoto [12, Corollaries 1.1 and 3.6] and Kawamoto [15, The-
orem B], Proposition 4.5 implies the following corollary:

COROLLARY 4.7.  Let X be a connected Cy(p)-space, where p is a prime and
1<k<p.

(1) If X is F,-finite, then the p-completion X;\ is a p-completed torus.
(2) If the cohomology H*(X; F,) of X is finitely generated as an algebra over the
Steenrod algebra o7, then the p-completion XpA 18 Postnikov.

Bousfield [3, Theorem 7.2] determined the K (n).-localizations for Postnikov
H-spaces, where K (n), denotes the Morava K-homology theory for n > 1. By his
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result and Corollary 4.7(2), if X is a connected Cj(p)-space with finitely generated
cohomology over &7, then the K (n).-localization L ), (X,') of X, is the (n+41)-
st stage for the modified Postnikov system of X/} (see [3, p.2408]).

5. Proofs of Theorems A and B.

Consider the loop space 27 of a space Z in the sense of Moore (cf. [13,
p.45, Section 5-3 (iii)], [18, p. 14, Definition 4.1]). Then we may assume that the
multiplication of (07 is strictly associative. Recall the definition of the projective
spaces {P,(QZ)}n>0 of QZ. Put Py(QZ) = {«}, and define P,(Q2Z) for n > 1 by

Po(QZ) = Py_1(QZ) Uy, A" x (Q2)",

where W,,: A" x (QZ)* U A" x (QZ)" — P, 1(QZ) is given by the following
relations:

U, _1(a,wa,. .. ,wy) ifi=0

\Iln(&(a),wl,...,wn) = \Iln_l(a,wl,...,wi -wi+1,...,wn) fo<i<n (51)

\Iln_l(a,wl,...,wn_l) if i =n.
\Ijn(a’awla"'awj—13*7wj+la"'aw’n)
=V, 1(sj(a),wr,...,wj—1,Wjt1,...,wy) forl<j<n. (5.2)

Then we have the inclusions P, (Q2) = ¥QZ C P,(2Z) C P3(QZ) C ---. Put

Pu(02) = | Pu(02).

n>1

Let 1, = En(pn X Liazyn): A" x (QZ)" — Z, where &,: [0,n] X (QZ2)" — Z
is defined by &,(t,w1,...,wp) = w;(t —i+1)if t € { — 1,4) for 1 < i < mn. Then
{Nn}n>1 induces a family of maps {e,,: P,,(2Z) — Z},>1 such that 1: ¥QZ —
Z is the evaluation map and e,|p,_,(0z) = €n-1: Pno1(Z) — Z for n > 1.
Moreover, € Ps(2Z) — Z is a homotopy equivalence (cf. [13, p.55, Section
6-5], [18, p. 18, Theorem 4.8]).

If Z is an H-space, then identifying Z with P, (Q2Z), we can restrict the
multiplication Z2? — Z to an axial map P,,(2Z) x P, (2Z) — Z for any m,n > 1.
From this fact, we introduce the concept of Hy(n)-space.

DEFINITION 5.1. Let n > 1and 1 <k <n. A space Z is called an Hy(n)-
space if there is a map
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Yr(n): | Paes(Q2) x P(Q2) = Z
0<s<k

with ¢ (n)(z, *) = e, (z) for z € P, (QZ) and ¢ (n) (*, w) = e (w) for w € Pr(QZ).

Let BX denote the classifying space of a topological monoid X with X ~
Q(BX). From the above construction, we have the projective spaces {P,(X)},>0
with the maps {e,,: P,,(X) — BX},>1 such that e1: X — BX is the adjoint
of the homotopy equivalence X ~ Q(BX) and €4, : Pso(X) — BX is a homotopy
equivalence.

Now we prove Proposition 4.2 as follows:

PROOF OF PROPOSITION 4.2. If u: X? — X is an A,-map, then by [17,
p. 300, Theorem 4.5], we have the induced map P, (1) : P, (X?) — P,(X) (see also
[18, p. 34, Theorem 8.4]). Put ¥ (n) = £, P, (11): Pn(X?) — BX. Then ¢(n) is an
H (n)-structure on BX by [7, Definition 3].

Conversely, we assume that there is an H (n)-structure ¢(n): P,(X?) — BX
on BX. Then we can write u = Q(1)(n))e,: X? — Q(BX) ~ X, where 1,,: X? —
QP,(X?) denotes the adjoint of the inclusion ¥(X?) C P,(X?). Since ¢, is an
A,-map by [18, p. 34, Theorem 8.6], so is . This completes the proof. O

To prove Theorem A, we generalize the definition of the projective spaces,
and construct a family of spaces { Py, 5 (X) }m.n>0. Put Py o(X) = {}, and define
Py (X) for myn > 0 with m+n > 1 by

Prn(X) = Pyt n(X) U Poyr_1(X) Uy, AT x X™47,

m,n

where U,,, ,, 1 A™™ x X YA X Xlmtnl _, P_10(X)UPy, n—1(X) is given
by the following relations:

\I/m,n(ﬁi(a)axla ey Ty Y1y e ayn)

Upcin(a, 22, .. Zm, Y1y oo, Yn) ifi=0
= Vin(a, T, o T g1, Ty YL, Yn) 0 <i<m (5.3)
\I/m—l,n(awxla"'7xm—1ayla"'7yn) ifi =m.

U (B5(@), 21, Ty Y1, -5 Yn)
lI/mn’Lfl(awxla"'7xm,y27"'7yn) lszo
=V no1(a, 21, T, Y1y Y Y1, -, Yn) HO0<j<n (5.4)

Upnn—1(, 1, ooy Ty Y1y -+ s Yn—1) if j =n.
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\IJHL,n(aaxla"'7xi—1a*7xi+17"'7zmay17"'ayn)
=W 10 (7(a), T1, .o i1, Tid 1, - o Ty YLy - -5 Yn)  for 1 <@ <m, (5.5)
\I/mm(a,fﬂl,...,l’m,yl,.-.7yj_1,*,yj+1,.»~,yn)

= \Ilm,n—l(r}/;'(a'%xla"'7$m7y1a" '7yj—17yj+1a"'7yn) for 1 S ] S n.

From the definition, we have P; ¢(X) = Py 1(X) = £X. Since the projection
Tmnt AT X A" — A™" is compatible with the face operators and the degeneracy
operators, T, , induces a map T n: Pr(X) X Po(X) — Ppa(X) for m,n > 0.
In particular, we see that 71 9: XX x {*} — XX and 7o 1: {*} x X — XX are
the projections.

LEMMA 5.2. Letn>1and1 <k <n. If X is a topological monoid such
that BX has an Hy(n)-structure i (n), then there is a map

i U Puss(X) = BX with y(n ( U 7 “):wk(n).

0<s<k 0<s<k

PROOF. Let 6, ,: A" x A% x X"* — BX be the composite of ¢ (n) with
the inclusion

AT X AS x X5 5 A" x X" x A% x X*

C P(X) x P,_s(X) x Ps(X) for (r,s) € Ag(n),
0<s<k

where the first arrow denotes the appropriate switching map. From the definition
of ¥y (n), we have that

er,s(aavjaxla'“axmyla"'ays) :nr(aaxlv"'vxr) :gr(pr(a)vxl,“'axr)
for 0 < j <sand
er,s(vi7ba‘rl7 ey Ly Y1y et 7115) = 775(1%917- . 'ays) = gs(ps(b)7yla e 73/3)

for 0 < ¢ < r, which implies that there is a map gr’sz A" x X' — BX with
Or,s(mrs X 1xrts) = 0ps. Then {0, s}y s)en, (n) induces a map

c U Paess(X) - BX
0<s<k
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with the required conditions. This completes the proof. O

PROOF OF THEOREM A. Assume that X is a Cy(n)-space and
{Qr.s}(rs)ehn(n) is the Cy(n)-structure. From the same reason as in [23, p.250],
we may assume without loss of generality that the image of ), ¢ lies in the set of
loops of length r + s in X ~ Q(BX). Consider the adjoint 1, s: [0,7 + s] X N, 4
x X™% - BX of Qrs-

Let @, s: [0 r+ 8] X N, s — A™* be the adjoint of K, s: N, s — S s given
n (2.5). Put <I>7.78 = @, sla(0,r+s]xN,..): O([0,7 + 5] X Ny i) — OA™. From the
definition, we have 9A™ Uz [0,r + s] x N., = A™, and so ®,.,: ([0,7 + 5]
X Ny, 0([0,7 4 s] X Ny5)) — (A" 8A”) is a relative homeomorphism. Then
we have inductively a family of maps {OT st AT X XTS5 — BX}, g)en, (n) With

HT 0 =& and 90 s = €5, which implies that {9,« s} (r,s)€Ag(n) induces a map

:|J Pass(X) - BX
0<s<k

such that
Yr(n) = @k(?ﬂ( U %ns,s). P,_4(X) x Ps(X) — BX
0<s<k 0<s<k

is an Hj(n)-structure on BX.
Conversely, we assume that BX is an Hy(n)-space. Let 6, o1 A" x X5 —
BX denote the composite of 1, (n) with the inclusion

A™® XXTJFSCPrs U P,_ ss X for (r,s)EAk.(n),
0<s<k

where

U Pu-es(X)— BX

0<s<k

is given by Lemma 5.2. Consider the adjoint Q, s: N, s x X" — X of GT s(Dp s X
Lxrta): [0, 48] X Np g x X" — BX. Then {Qrs}(r.s)ca, (n) 18 @ Ck(n)-structure
on X. This completes the proof of Theorem A. O

Let C P be the infinite dimensional complex projective space. Then the
cohomology is given by H*(CP>; F,) = F,[u] with degu = 2, where p is a prime.
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Consider the homotopy fiber Z; of the map ¢;: CP* — K(Z/p, 2t) corresponding
to the class u’ € H*(CP>; F,) for t > 1. Put X; = QZ, for t > 1.
ProrosiTION 5.3.

(1) Ift = p* for some a > 0, then X; is a Cu(00)-space.
(2) Assume t = p*b for a > 0 and b > 1 with b Z 0 modp. Then X; is a
Ci(n)-space if k < p® orn < t, but not a Cpa(t)-space.

We remark that Proposition 5.3 is a generalization of the result by Aguadé
[1, Proposition 4.2].
To prove Proposition 5.3, we need the following lemma:

LEMMA 5.4.  Consider the homotopy commutative diagram:

L

QB X B

I »”
K

b

>

R

where the top horizontal arrow is a fibration sequence and (K, L) is a relative CW -
complex. Assume that (K, L) has the extension property with respect to OB, that
is, for any map d: L — QB, there is a map d: K — QB with d|L =d. If there
is a lift f K — F with I,f f, then we have a map h: K — F with th ~ f and
hlL =4g.

PROOF. Letv: QB x F — F be the natural action of the principal fibration
(5.6). Since of |, ~ f|L ~ g, there is a map d: L — QB with v(d x f|.)AL ~ g.
From the assumption, we have a map d: K — QB with J|L =d. Put g = V(JX
f)AK: K — F. Then 1g = u/(gx f)AK ~ sz fand gL =v(d x f|L)AL ~ g.
From the homotopy extension property with respect to (K, L), we have a map
h: K — F with h ~ g and h|, = g. This completes the proof. O

PROOF OF PROPOSITION 5.3.
(1) If t = p* for some a > 0, then Z; is an H-space, and so the result follows
from Corollary 1.1.

(2) We first prove that if k& < p* or n < t, then X is a Cj(n)-space. Put

U Po_o(X;) X Po(X;) and L = P,(X,)V Pu(Xy).
0<s<k

Let f: K — CP™ be the composite of u(1;)?: (Z;)? — CP> with the inclusion
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K C (Z;)?, where p is the multiplication of CP* and t;: Z; — CP> denotes
the fiber inclusion. We define g: L — Z; by g(z,%) = en(z) for z € P,(X})
and g(x,w) = e(w) for w € Py(X;). Then f|r ~ ug. Put & = (ue;)?(u) €
H?(Pi(X,); Fp) for i > 1.

If k < p?, then

(6 f)* (1) = fH(W)' = (& @1+ 1@ &P
= (&) ©1+10 &))"
= (&)@ 1= (e)*(()*(w)) ®1=0,

and so there is a map ¥i(n): K — Z; with ¢¥g(n)|r = g and w9px(n) ~ f by
Lemma 5.4. This implies that Z; is an Hjy(n)-space, and so X; is a Ci(n)-space
by Theorem A.

In the case of n < t, (¢¢f)# (tar) = f7(u)t = 0 since cat(K) < n, and so by
the same reason as above, X; is a C(n)-space.

We next show that X is not a Cpa(t)-space. Assume contrarily that X; is a
Cpa(t)-space. Then Z; is an Hpa(t)-space by Theorem A. Let f: Ppa—1)(X;¢) X
Ppa(X¢) — Z; denote the composite of 1 (t) with the inclusion

Ppap-1)(X1) x Ppe(Xe) € | Pios(Xe) x Po(X0),

0<s<p*

where 90 (t) is the Hya (t)-structure on Z;. Then we have

(B f)* (120) = (Epagp-1) @ 1+ 1@ Epa)’

t a a . 4
= <pa> (Epap1)” 7Y @ (£0)P"  with (pa> =b# 0 mod p.

Since @yt f ~ *, we have a contradiction, which implies that X, is not a Cpa(t)-
space. This completes the proof. O

PROPOSITION 5.5.
(1) If 1 <t < p, then X; is a Cy_1-space, but not a Ci-space.
(2) Ift =1 ort > p, then X; is a Coo-space.

Recall the following result proved by Williams [21]:

THEOREM 5.6 ([21, Theorem 2]). Let n > 1. A topological monoid X
is a Cyp-space if and only if there is a map ¥y : J,(2X) — BX with ¢p|sx =
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e1: X — BX, where J,(Y) denotes the n-th James reduced product space of a
space Y form > 1.

PROOF OF PROPOSITION 5.5. (1) By Propositions 4.5 and 5.3(2), X; is a
C;_1-space.

If we assume that X is a Ci-space, then there is a map ¢;: J,(XX:) — Z;
with ¥;|sx, = €1 by Theorem 5.6. Let f: (¥X;)! — Z; denote the composite of
by with the projection (¥X;)! — J;(XX};). Then we have

(¢t£tf)#(b2t):(51®1®"'®1+"'+1®"'®1®£1)t
=t ®---®&  with t! £ 0 mod p.

Since ¢4 f ~ %, we have a contradiction, and so X; is not a C;-space.

(2) By Propositions 4.5 and 5.3(1), X; is a C.-space.

Since S! is a C-space, there is a map ¥/, : J,(S?) — CP> with ¢} |s: =
gh: 82 — CP> for any n > 1 by Theorem 5.6.

Now we prove that there is a family of maps {¢,: Jn(2X;) — Zi}n>1 with
the following relations:

P =e1: XXy — Zy,
q/}n‘Jn—l(ZXt) = wn—l fOI' n > 1, (57)
by =YL (5Qu)  forn > 1.

We work by induction on n. The result is clear for n = 1. Assume that the
result is proved for n — 1. Put K = (£X;)"” and L = (¥X;)". Let f: K — CP>
be the composite of i), J, (X)) with the projection K — J,(XX;). Then by
inductive hypothesis, there is a map ¥,—1: Jp—1(XX;) — Z; with (5.7).

Consider the composite g: L — Z; of ¢,_; with the projection L —
Jn—1(2X¢). Then f|p ~ ;9. If t > p, then

(Gef)# () = fFW) = (G @1@ @1+ +1® - ®1® &) P
((G)Pele- @1+ +10-- @11 (§)P) =0,
and so there is a map zzn: K — Z, with 1EH|L =g and mzn ~ f by Lemma 5.4.

Since Jn\L = g, we have a map ¥, : J,(XX;) — Z; with (5.7), which implies that
X; is a Cx-space by Theorem 5.6. This completes the proof. O

REMARK 5.7. Let W; be the homotopy fiber of the map ¢,: CP>® —
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K(Q,2t) corresponding to the class v! € H?(CP>;Q) for t > 1, where
v € H?(CP>;Q) denotes the generator. Put Y; = QW, for ¢t > 1. Using the
same way as the proofs of Propositions 5.3 and 5.5, we can prove that Y; is a
Ci(t — 1)-space for any 1 < k <t — 1, but not a Cy-space.

Now we proceed to the proof of Theorem B.

PrROOF OF THEOREM B. If X (o) is a Cy(n)-space, then X gy is a Cy,-space
by Proposition 4.5.

Now we consider the converse. Let S be the set of all generators for
H*(BX(0); Q) as a Q-algebra. Consider the free Q-algebra A* generated by S
with the projection w: A* — H*(BX(g); Q). Since X(g) is a C,,-space, there is a
map Vn: Jn (XX (0)) — BX(0) With ¥, |nx,, = €1 by Theorem 5.6.

From the same reason as the proof of [11, Lemma 4.7], we have

ker ¥ w c D"PLA*, (5.8)

where D"*1 A* denotes the (n+1)-fold decomposable module of A*. Since kerw C
ker ¥ w, we have kerw C D" A* by (5.8). This implies that BX gy is an H(n)-
space by [7, Proposition 8]. Then by Theorem A, X g is a Cy(n)-space for any
1 < k < n. This completes the proof of Theorem B. O

6. Homotopy localizations.

Let A and B be spaces and f € Map, (A, B). According to Dror Farjoun
[6, p.2, A.1], a space Z is called f-local if the induced map f#: Map,(B,Z) —
Map, (A, Z) is a homotopy equivalence. In particular, when B = {*} and f: A —
{*} is the constant map, Z is called A-local, that is, Map, (4, Z) is contractible.

Bousfield [2, Section 2] and Dror Farjoun [6, Section 1] constructed the A-
localization L 4(X) with the universal map ¢x: X — L4(X) for a space X. By
their results [6, p.4, A.4] and [2, Theorem 2.10(ii)], La(X) is A-local and ¢x
induces a homotopy equivalence

(¢x)*: Map, (La(X),Z) — Map,(X, 2) (6.1)

for any A-local space Z (see also [5, Theorem 14.1]).

DEFINITION 6.1. Let n > 1 and 1 < k < n. Assume that X and Y are
Ci(n)-spaces with the Cy(n)-structures {QX }(rs)ea,n) and {Q) Frs)cnnm)- A
homomorphism ¢: X — Y is called a Ci(n)-map if there is a family of maps
{Dys: I x Nypy x X" = Y}, 5)en,(n) With the following relations:
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D, o(x,21,...,20) = d(xr---x,) and Dogs(x,y1,...,¥s) = d(y1---ys). (6.2)

Dns(t,s(pi)(a),xl, e Xy YLy e e Ys)

d(x1) - Dr_1s(t,a @, o Tr Y1, - oy Ys) if1=0
=D, 1 5(ta, 1, X Tig 1y Ty Y1, -, Ys) EO<i < (6.3)
DT*I,S(taaa(Eh ey Tp—15Y1, - - 'ays) : ¢($T) ifi=nr.

DT’S(t,E(qf)(a)wl, e Ty YLy e ey Ys)

¢(y1)'DT,S—l(taa/axla"'axTvaa"'ays) lf]:O
=D, s1(ta, 1, .. e Y1, Y Yjr1, -, Ys) HO0<F<s (6.4)
Dr,sfl(taa,xla oy Ty Y1y 7y871) : ¢(ys) lfj = S.

Dns(t,s(hi’j)(a,b),xl, e Ty YLy e Ys)

= Di,j(t,&,xl, sy Ty Y1y - ay]) : D”‘—i,S—j(t7ba Lidly-osLryYj+1y--- 7ys)

(6.5)
for0<i<rand0<j<s.
D'r‘,s(taavxlv"'7$i717*7xi+17~~’7$Tay17"‘7y5)
=D,_15(t,0:,(a), T1, . i1, Tig1s ey TryY1,-.-,Ys) for 1 <i <,
(6.6)
DT,S(taa7x17'"a‘rT7y1a"'ayj—h*?yj-‘rla"'ays)
- Dr,sfl(ta(;;(a)wrl?' "amr7y1a"'7yjfl7yj+17"'7ys) for 1 S .7 S S.
D, s(0,a,2z1,...,Zr,Y1,---,Ys) :ng(Qifs(a,xl,...,mr,yl,...,ys)). (6.7)
D’I‘,S(]-vaaxlv"'7xT7y17"‘7y8) :Q}:S(aqﬁb(lj),»~»,¢(xr)7¢(y1),..,,¢(ys))~
(6.8)

THEOREM 6.2. Letn>1andl <k <n. IfX is a Cx(n)-space, then the A-
localization L o(X) is a Cr(n)-space such that the universal map ¢x: X — La(X)
is a Cr(n)-map.

Using the same way as the proof of [15, Proposition 4.1], we have the following
proposition:

PROPOSITION 6.3. Letn > 1 and 1 < k < n. Assume that X and Y are
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topological monoids and ¢: X — Y is a homomorphism. If X is a Ci(n)-space
and'Y is ¢-local, then Y is a Cy(n)-space such that ¢ is a Cx(n)-map.

We give an outline of the proof of Proposition 6.3.

PrROOF OF PROPOSITION 6.3. We work by induction on n. The result is
clear for n = 1. Assume that the result is proved for n — 1.

Let {QX.}(r.s)cnn(n) be a Ci(n)-structure on X, and put k" = min{k,n — 1}.
By inductive hypothesis, we have that Y is a Cy/(n — 1)-space and ¢: X — Y isa
Cy(n — 1)-map whose Cys(n — 1)-structures are given by {Q}f,s}(r,s)e/\k/(n_l) and
{Dr s} (r,s)en, (n—1), respectively. Put

Upe=(I xON,,U{0} x N, ;) x X" UT x N, , x X

for r,;s € Ag(n) with r + s =n, and let E, 5: U, s — Y be defined by (6.2)—(6.7).
From the homotopy extension property, there is a map Em: IXNpgx X" =Y
with E, |, , = B

Consider the maps F. s: Ny s x X™ — Y and G, 4: ON, s x Y™ — Y given by

Frs(a, 1, ., Tr Y1y, Ys) = Brs(l,a, 21,0, Ty Y1y -, Ys)

and (4.1)—(4.4), respectively. Let u,: Y™ — Y be the n-fold multiplication of YV
given by pn(y1,...,Yn) = y1---Yn. We denote the adjoint of F,, and G, s by
Nrst Nrs — Map, (X", Y)(gny#(u,) and Aps: ON,. s — Map, (Y™, Y),, , respec-
tively. Then (gb")#()\r’s) = Nrslon,.,, which implies that there is a map XT,S:
Ny — Map, (Y™, Y),,. with A slon,. = Ans and (¢™)#(Ns) = 1.5 rel ON,
by [15, Lemmas 4.2 and 4.3]. Consider the adjoint ér,s5 Ny s XY™ =Y of XT,S.
Using the same way as the proof of [15, Proposition 4.1], we modify C?'T)S and Er’s
to have maps QKS: Ny s xY" > Y and D, s: I x N g x X" — Y with (4.1)—(4.5)
and (6.2)-(6.8). Then {Q} }(r.s)enr(n) and {Dr s} (rs)en,(n) are Cr(n)-structures
on Y and ¢, respectively. This completes the proof. O

PROOF OF THEOREM 6.2.  According to Dror Farjoun [6, p.59, A.1], there
is a homotopy equivalence L,(X) ~ QLs4(BX) such that the universal map
¢x: X — La(X) is identified with Q(¢px): X — QLsa(BX). Then we may
assume that L4(X) is a topological monoid and ¢x is a homomorphism. Since
LA(X) is ¢x-local by (6.1), we have the required conclusion by Proposition 6.3.
This completes the proof of Theorem 6.2. g

PROPOSITION 6.4. Letn >1 and 1 <k < n. Assume that X and B are
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Cr(n)-spaces and ¢: X — B is a Cx(n)-map. Then the homotopy fiber F(¢) of ¢
is a C(n)-space such that the fiber inclusion v: F(¢) — X is a Cx(n)-map.

PROOF. Recall that
F(¢) = {(z,w) € X x Map(I, B) | w(0) = ¢(x) and w(1) = x}

and ¢: F(¢) — X is given by t(z,w) = z (cf. [10, p.407]). Let u: F? — F
be the multiplication defined by p((z1,w1), (2, ws2)) = (21 - X2, w1 * wa), where
w1 * we € Map(I, B) is given by (w1 * wa)(t) = wi(t) - wa(t) for t € I. Then F(¢)
is a topological monoid and ¢: F'(¢) — X is a homomorphism.

Let {Q¥}trs)enn(n) and {QF }(rs)ea, () denote the Cy(n)-structures on X
and B, respectively. Since ¢: X — B is a Ci(n)-map, we have the Ci(n)-structure

{Dr,s}(r,s)el\k(n)~ Define Qf:gd)) Nr,s X F(¢)T+S - F(¢) by

'f:§¢) (CL, (1‘1,(.«)1), EERE (xT7w7")7 (ylawll)a ce (y87w;))

= (Qfs(aaxlw"vx’myl)"'ays)agr,s(aﬂ")lw"7w7‘awlla"'aw;))a (69)
where
<T,s(a7w1>‘"7w’r7wllv"'7wé)(t)
Dr,s(2t7aaxla”wxraylv“'vys) lfte [0,1/2],
B Qfs(a,wl(Qt -1, w2t = 1), (2t —1),...,wl(2t — 1)) ifte[1/2,]1]

for (r,s) € Ag(n). Then {Q£§¢)}(T,S)EA,€(") satisfies (4.1)—(4.5), and so F'(¢) is a
Cr(n)-space. Moreover, we see that ¢: F(¢) — X is a Ci(n)-map by (6.9). This
completes the proof. O

According to Dror Farjoun [6, p.26, E.1], the localization Lge+1(X) with
respect to the (¢ + 1)-sphere is the t-th stage X[t] for the Postnikov system of X.
Then by Theorem 6.2 and Proposition 6.4, we have the following corollary:

COROLLARY 6.5. Let X be a connected Cy(n)-space, where n > 1 and 1 <
k <n.

(1) The t-th stage X[t] for the Postnikov system of X is a C(n)-space and the
projection X — X[t] is a Cx(n)-map.

(2) The t-connected covering X(t) of X is a Ci(n)-space and the fiber inclusion
X (t) — X is a Cr(n)-map.
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Castellana-Crespo-Scherer [4, Theorem 7.3] proved that if X is a connected

H-space whose cohomology H*(X; F},) is finitely generated as an algebra over the
Steenrod algebra 7, then the BZ /p-localization Lpz/,(X) is F)-finite and the
homotopy fiber F(¢x) of the universal map ¢x: X — Lpz,,(X) is Postnikov.
By their result, Theorem 6.2 and Proposition 6.4, if X is a connected Cf(n)-
space with finitely generated cohomology over &7, then Lpz,,(X) is an F)-finite
Cr(n)-space and F(¢x) is a Postnikov Cj(n)-space.
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