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Abstract. The linear Noether’s problem means the rationality problem
for the fixed field of linear actions on the rational function field. This paper
deals with a part of our study on the four dimensional linear Noether’s prob-
lem. Apart from the main part of our study, which will be published in other
papers, the results which require complicated calculations by a computer are
published here as a separate paper. The problem is affirmative for all of 5 non-
solvable subgroups and the largest and one of the second largest subgroups of
GL(4,Q). As relevant topics, we remark that PSp(3,2) (the simple group of
order 1451520) has a generic polynomial over Q.

1. Introduction.
The linear Noether’s problem is defined as the following problem.

PROBLEM 1. Let K be a field and G be a finite subgroup of GL(n, K). If
we define G-action on K (z1,...,zy,) by

o(z;) = Zaijxi (j=1,...n) for Vo= (a;) € G,
i=1

then is the fixed field K (zy,...,z,)" rational over K?

In general, for mutually conjugate subgroups G; and Gs of GL(n, K), linear
Noether’s problems are the same by changing variables. So we have only to con-
sider the conjugacy classes of finite subgroups of GL(n, K) and we have 227 ones
in the case of n =4, K = Q. See [1].

Up to the present, we have the following result, including the result of this
paper. See the end of this section.

THEOREM 1.  Four-dimensional linear Noether’s problem is affirmative for
all groups except for the following 6 groups. The problem is negative for (4,26,1)
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and (4,33, 2) and is unsolved for (4,33,3), (4,33,6), (4,33,7) and (4,33,11). Here
(4,26,1) etc. is the classification number in the GAP code [1].

The linear Noether’s problem is important for constructing a generic polyno-
mial, which is defined as follows.

DErFINITION 1 ([7], [2]). A Galois extension of a field K with the Galois
group G is called a G-extension of K. A polynomial f(t1,...,t,;X) € K
(t1,...,tm)[X] is called a generic polynomial for G-extension over K if it satisfies
the following conditions:

(1) SPli(ry,....t0)f (t15 -+ tm; X) is a G-extension of K(t1,...,tm),
(2) for every G-extension of infinte fields L/M with M 2 K, L = Splyf
(a1, ..., am;X) for some ay,...,a, € M.

The explicit affirmative answer of linear Noether’s problem for (K,G) pro-
duces a generic polynomial explicitly as follows. If linear Noether’s problem is
affirmative, that is, K (z1,...,2,)¢ is rational (= purely transcendental) over K,
then we have K(z1,...,2,)¢ = K(t1,...,t,). This means that K(zy,...,2,)
is a G-extension of K(t1,...,t,). Let f(X) € K(t1,...,t,)[X] be such that
K(z1,. . s20) = Splg(r, 4. F(X).

THEOREM 2 (Kemper, Mattig [6]). f(X) = f(t1,...,tn; X) defined above
is a generic polynomial for G-extension over K.

Thus linear Noether’s problem is an effective way to construct generic poly-
nomials.

For n =4, K = @, it is known that the linear Noether’s problem is negative
for a group G which is isomorphic to the cyclic group Cs (See [4]), while affirmative
for other abelian groups [10].

So the results for non-abelian groups attract the attention of many mathe-
maticians.

THEOREM 3 (Rikuna [14], Plans [13]). Linear Noether’s problem for n =4
has affirmative answer if G belongs to the conjugacy class (4,32,5) or (4,32,11)
in the GAP code, which is isomorphic to SL(2,3) or GL(2,3) respectively.

THEOREM 4 (Kang [5]). Linear Noether’s problem forn =4, k = Q has an
affirmative answer if G is a non-abelian group of order 16.

THEOREM 5 (Kitayama [8]). Linear Noether’s problem forn =4, K = Q
has an affirmative answer if G is a 2-group which is not isomorphic to Csg.
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H. Kitayama and the present author studied on other conjugacy classes of
finite subgroups of GL(4,Q), and obtained the results of Theorem 1. Among
them, 7 complicated cases which require calculations by a computer are discussed
in this paper. The remaining cases are discussed in [8], [9].

2. Non-solvable case.

In this section, we consider the case when G is a non-solvable finite subgroup
of GL(4,Q). We use the following notations.

1.0 00 100 0 1000
L0 100 01 0 0 o100

0 0 10 00 -1 0 | 00 10|

0 0 01 00 0 —1 0001
0100 0010 000 —1
|-1000 _looon 1001
“Tloo1ol” " l1oo00|l" “Tlo10 -1
0001 0100 001 —1

There are five non-solvable subgroups, all of which contain 5.

(c5,7) = A5, (c5,meq) ~ G5, (cs5,cachymey) ~ Gs,

<05773 CQCI2> =~ Q’[5 X 027 <C5,mC4,CQC/2> ~ 65 X C2~

In the GAP notation (or the notation in [1]), these groups are (4,31,3), (4,31,4),
(4,31,5), (4,31,6), (4,31,7) respectively.

Let K = Q(x1,x2,x3, x4, 2s5). The symmetric group G5 acts naturally on K.
It is well known that K5 = Q(s1, s2, 83, 84, 55), where s; is the i-th elementary
symmetric polynomial.

Maeda proved the rationality of K%3, giving the generators {F;} of K%5 [11].

According to Maeda’s result, K% = Q(F, Fy, Fs, Fy, F5),

Yoes, o((12][13][14][15][23]1[45]*z1)

= Yoes, o([12][13][14][15][23]4[45]*)
P Yooees, o (127 [13]°[14][15][23]'0[45] ')
5 L i - e, o (12013 [14][15][23]4[45])
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Yoes, o (12 [13]°[14]°[15]°[23]'°[45]'0x1 )

BT T 0P Sace, o 12113 HTI5123 5]
py o D (1232345
| T, fid]
o Lo (12 (13 (23 [14)*[24]*[34] [15]* 25][35]")

[Licylisl?

where [i j] = z; — z;, H := ((12),(13), (45)), G5 = U1, H.
The rationality of Q(x1, 22,73, 74)¢ can be reduced to Maeda’s result. The
reduction is rather easy except for (4,31,5). As for (4,31,5), the reduction is com-

plicated, and we need the concrete expression of the change of generators of K 5.

2.1. Change of generators of K 5.

Since F, Fy, F3 are Gs-invariant and the transposition (1 2) maps F; to —F;
for i = 4 and 5, from Maeda’s result we have K5 = Q(Fy, Fy, F3, FZ, F4F5).

In this subsection, we will write each elementary symmetric polynomial s; as
a rational function of Fy, Fy, F3, F? and F,F5.

For this purpose, we define the action of GL(2, Q) on K and study the behav-
ior of F; under this action. (2%) € GL(2,Q) acts on K as z; — (ax; +b)/(cz; +d)
(1 <4 < 5). This group ¥ commutes with &j, therefore it preserves K5 and
induces an action on K5,

% is generated by the following o,, 7y, * (0 € Q, X € Q@%).

Oq i Ti—T; +«

Ty 1 T; b AT

1
* Xy = —.
T

F,, Fy, F5 are invariant under o, while F} — F) +« and F3/F> — F3/Fy+a.
If we define X3 as X3 := F| — F3/F», then we have K®5 = Q(Fy, F», X3, F?, F4IF5)
and Fy, X3, Fy, F5 are invariant under o,. Now we will write each s; as a rational
function of Fy, Fy, X3, Fy, F5.

The action of o, on s; can be written as follows.

S1 +— 81 + b
So > 89 + das + 10a?

S3 — 83 + 3ase + 6a251 + 103
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S4 > S4 + 2a83 + 30255 + 4asy + 5ot

S5 — S5 + asq4 + a283 + a352 + a4sl + ab.
Differentiating s; by « and substituting o = 0, we get

881 652 683 884 885

L5 2 —dsy, 2 =3sy, - =2, o
T ) ) A T T )

= S4.

Therefore we get

s1=5F+q
s9 = 10F? + 49, F) + go
s3=10F} + 691 F2 + 392 F) + g3
s4=bF} + 491 F2 4 392 FF + 293F + g4
s5 = FY + 91 FY + g2FF + g3Ff + gaF1 + gs
where each g; is a rational function of Fy, X3, FZ, Fy F5.
Next we determine the X3-dependence of g;. Fy, F| 427 FyF5 are invariant under
Tx, and X3 — AX3. Since 7y maps s; to A's;, we can write g; = Xghi where h; is
a rational function of Fy, F?, FyF5. Now we get
s1 = bF + Xah
sy = 10F? + 4F, X3hy 4+ X2hs
s3 = 10F} + 6F2X3hy + 3F1 X3ho + Xihs
54 = bF} +4FP X3hy + 3FEX2hg +2F Xihs + Xihy
s5 = FY + F{ Xshy + FY X3ho + FEX3hs + F1 X5ha + X5 hs.
Next we determine the Fy-dependence of h;. Let us see the action of * : x;
— 1/x;. Since [ij]* = (z; — x;)* = 1/z; — 1/x; = —[ij]/xizj, A = HK][U] is
mapped to A* = A/st. Since ([12][13][14][15][23]*[45]*)* = =1 ([12][13][14][15][23]*
[45])/s2, we see that Fy = 1/F;. Similarly we see that (F3/Fy)* = 1/(F3/Fy) =
Fy/F3. Since ([12]2[13]2[23]2[45)*)* = ([12]2[13]2[23])%[45]*)/s%, we see that F; =
Fy. Since ([12]2[13]2[23])2[14]*[24]*[34]*[15]*[25]*[35]*)* = ([12]?[13]?[23]?[14]*[24]*

[34]4[15][25]4[35]*)/si2, we see that F¥ = F.
F5 is rather complicated. Since ([12]3[13]3[14]3[15]3[23]10[45]19)* =
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21 ([12)3[13]3[14]3[15]3[23]10[45]10) /si3, Fy = F3/F;. We define Z as Z := F3/F
then K5 = Q(Fy, Fy, Z, F2, FyFs) and F = 1/Fy, Fj = Fy, Ff = Fy, Fj = Z,
Z* = Fy. X3 is written as X5 = F1(1 — Z/F>).

On the other hand s} = (z1 + z2 + 23 + 24 + x5)" = 1/a1 + 1/20 + 1/25 +
1/x4 + 1/x5 = s4/55, similarly s5 = s3/s5, 85 = s2/s5, $§ = $1/85, s = 1/s5. (If
we write sp = 1, sf = s5_;/s5 (0 < i < 5)). Therefore s; = s}/s%, s2 = s5/sk,
S3 = sg/sg, sS4 = 87/s%, s5 =1/sk.

s;/F} can be viewed as a polynomial of degree i whose indeterminate is Z
and coefficients are in Q(Fy, FZ, F4Fy).

S1

S 54 (Fy— 2y

ol + (Fy Yh

2 =10+ 4(Fy = Z)h1 + (B — 2)*hs

1

=% = 10+ 6(F, — Z)hy +3(F2 = Z)?ha + (Fy — Z)°hg
1

2 =5 A(Fy = Z)hy + 3(Fs — 2)ha + 2(F> — 2)°hs + (Fo = 2)'ha
1

s . N _ N _

Fis =1+ (Fo — Z)hy + (Fy — Z)*ha + (Fo — Z2)°hs + (Fo — Z)*hy + (F — Z)°hs,
1

where h; = h;/Fi. Since s;/Fi = Fp7ist . /FPst, we can write hi,..., hs succes-

sively as follows.

— hi —2(Fy— Z)hy +3(Fs — 2)%hs — 4(Fa — Z)*ha + 5(Fs — Z)*hs

hi = —x —x —x —x —x
1= (Fo— Z)hy + (Fa— Z)%hy — (F» — Z)3hs + (Fo — Z)*ha — (Fs — Z)5hs
-~ ha —3(Fy — Z)hs +6(Fs — Z)%hs — 10(Fs — Z)%hs
2 = —% ] ] —~% —~x
1-— (F2 — Z)hl + (F2 — Z)2h2 — (F2 — Z)3h3 + (Fz — Z)4h4 — (F2 — Z)5h5
= hs — 4(Fy — Z)ha +10(Fy — Z)?hs
3 = —k —k —k — —
1= (Fy— 2)h1 + (Fo — Z)2hy — (Fy — Z)%hs + (Fs — Z)4hs — (Fs — Z)5hs
-~ ha —5(Fy — Z)hs
4 = — —% —% —% —%
1= (Fa— Z)hy + (Fa— Z)%hy — (Fo — Z)3hs + (Fo — Z)*ha — (Fa — Z)5hs
s = s

1= (Fy— 2)hn + (Fo — Z)%hs — (Fo — Z)%hs + (Fo — Z)*hs — (Fo — Z)%hs

~ %

h; is a rational function of Z whose coefficients are in Q(F%, F4F5). Let D be
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the least common multiplier of the denominators of IZ*, and let h:* be Df:i*.

the denominator of EI =D—(F,— Z);L:* + -

the numerator of ;L\l/ = 7“71* —2(Fy — Z)ﬁ;* N

Both D and 7;1* are polynomials whose indeterminate is Z. If we substitute

Z = 0, we get the constant term. Let «; and o be the constant term of i?z* and
D respectively. As h; does not depend on Z, we get

~ o —2F2a2+3F22a3 —4F23a4—|—5F24a5

hy =

! Oéo7F20£1+F220427F23043+F240447F25045
E—’: 01273F2053+6F22044710F23045

27 a0 — Fyag + Fias — F3as + Fyas — Foas
;LV . ag —4Fa4 + 10F2~2a5

3 Oéo—F2Oél—|—F220¢2—F230¢3+F240¢4—F250¢5
’hj“ o Qg — 5FQO£5

1T ag — Fhoy —|—F22042—F23043+F24044—F25045
e

040—F2041—|—F22042—F230£3+F240¢4—F25045

Let Dj, be the common denominator of h;, i.e. Dy = ag — Faaq + Fias — Fjaz +
Fjas — Fyas, then we can write s; as follows.

S1 1

— = — (- Z

2 5+ Dh( 2 )1

52104 U — 2+ (Fa— 2)%p0)

F12 Dy, 2 ®1 2 ©2

S 1

75 =10+ 5-{6(F2 = Z)¢1 +3(F2 = 2)°pa + (Fy — 2)* 03}

1 h

S4q 1 2 3 4

ﬁ =5+ D7h{4(F2 — Z)§01 + S(FQ — Z) Y2 +2(F2 — Z) ¥3 + (F2 — Z) ()04}
1

S5

1
2 =1+ —{(F-Z F — 2)? F,—7)3
F15 +Dh{(2 Y1 + (Fo ) o2 + (Fo )73

+ (P = 2) s+ (Fo — 2)°p5}
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where

Y1 =01 — 2F2a2 + 3F22043 — 4F23a4 + 5F24a5
0o = g — 3Fa3 + 6F%ay — 10F5 s
Y3 = 3 — 4F20[4 + 10F22a5
w4 = ayg — 5Fsas
¥5 = Q5.
; is a polynomial of F? and FyF5.
The behaviors of F; under the action of GL(2,Q) are now used up, and we

need direct calculations by a computer to determine the concrete expression of «;.
The results are as follows.

ap = 23F,° + 16 F5 F} + 8452F; — 6400F5Fy + (— 6656F% + 461792) Fy
— 3518976 F5 F) + ( — 55296 F% — 43334016) F;
+ (786432F7 — 218943488F; ) F;} + (378937344 F7 + 14052788992) F;
+ (87031808 F2 + 23540633600F5 ) I
+ (- 18874368 F; + 32835076096 F% + 1907825841152)
oy = 2F,° + 2168F} + 396352F; — 6471685 F) + (— 139264 F% + 5049088) F}
— 119472128 F5 F;} + (45809664 F% + 2694478336) F;
+ (12582912F2 + 904003584 F5 ) Fy + (8465022976 F% + 612411627520)
g = 128F5 4 65024 F) — 24576 F5 F} + 5769216 F} — 14745600F F}
+ (655360F2 + 260513792) Ff — 805175296 F5 F)y
+ (696778752F% + T5769774080)

oz = 3072FY + 798720 F) — 524288 F5 F} + 35995648 F; — 96468992 F5 Iy
+ (188743682 + 4566876160)

oy = 32768 F} + 3604480 F7 — 3145728 F5 F + 135004160

as = 131072F; + 1572864.
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2.2. Affirmative answers for 5 non-solvable groups.

The set of all homogeneous rational functions of degree 0 is a subfield of
Q(z1, z2, x5, 24, 25). We denote it with Q(z1, z2, T3, 24, 25)0. We define y; := z; —
(1/5)s1 and z; = y;/s1, then Q(x1, 2, 3,24, 25)0 = Q(21, 22, 23,24) and ), z; =
0. Q(z1,22,23,24,%5)p is purely transcendental of degree 4 over Q. Gj5 acts
linearly on Q(z1, 22, 23, 24), where (12), (12345) and (13)(24) € &5 corresponds to
mecy, c5 and 7y respectively.

From Maeda’s result we get Q(z1, 22, 23,24)'") = Q(F\Fy/Fs, Fy, Fy, Fs),
Q(21, 22, 23, 24) ™) = Q(Fy Fy/F3, Fy, F§, FyF).

In order to determine the fixed fields of other 3 groups, we define a new action
prx;— (2/5)s1—z; on Q(x1,x2, X3, Tg, T5). pMADS Y; — —Yi, S1 — S1, 2i — —2;.
p acts linearly on Q(z1, 22, 23, 24) and it corresponds to cach € GL(4, Q).

F1Fy/F3 and Fy are invariant under (ij) € 65 while (ij)Fy = —F4 and
(ij)Fs = —F5. Fy, Fy, F5 are invariant under p, but the action of p on Fy Fy/Fj3 is
rather complicated.

Since px; = %81 — ;, p Maps

2 Fs 2
Fl’—>*81—F1 = =81 — —
5 " F 5 )3
Therefore
2 2 S1
FF, fsi—F  §F 1
By 2g _ P 2s _ B0
5°1 Fy 5 Fy F Fy
2s1 _ _F3
F3 5F T Fifs
2581
I, 2a 1

As we have seen in Section 2.1, s;/F) can be written as s1/F; = 5+ (1 —
(Fs/F1Fy))hy = 5+ hy — (F3/FiFy)hy, hy € Q(Fy, F2, FyF5). Let f = (2/5)hy +1
then f € Q(Fy, FZ, F4F5) and f is invariant under &5 and

F3 *gﬁ;Jrerl
P RR F
1472 7(f71)F1F2+f

Let X = Fg/FlFQ — f/(f — ].) then

fF: i _ 1 1
X _F1;2+f+1 f f+1 f-1 f—=1 _ (f—1)2

D tf -1 (D& +f —(F-DX X 7
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so that letting Y = (f — 1) X, we have

Yl—)(f—l)(fjl)z— L 1
X CX(f-1n Y

From these actions of p, we obtain the following result.
Q(F3/F1F27F27F4aF5) = Q(YaF27F47F5) and

/ 1
Q(21, 22, 23, 24)(5702%2) = Q(Y + Y,F27F47F5>7

/ 1
Q(21, 2o, 23, 24) (> meac202) — Q(Y + v Fy, F}, F4F5>-

Because p(12) maps Y — 1/Y, Fo — Fy, Fy — —Fy, F5 — —F5,

/ 1 E.
(es,c2comes) Y+ - F 4 FF- ).
Q(21322723724) Q( +Y7 27Y—1/Y’ 4145
Note that for G = (c5,7,cach) and (c5,mecy,cach), the rationality of

Q(z1, 22, 23,24)¢ is a direct result of Liiroth’s Theorem if we are not required
to give the concrete generator Y +1/Y. As for G = (c5, cachmey), the rationality
is proved only after the above calculations.

3. Reflection and related groups.

In this section, we consider the case when G is a reflection group.

DEFINITION 2. An element g of GL(n, Q) is called a reflection if and only if
the characteristic polynomial ®,(z) of g is (z —1)""!(z+1). A finite subgroup G
of GL(n,Q) is called a reflection group if and only if G is generated by reflection
elements.

If G is a reflection subgroup of GL(n,Q), then linear Noether’s problem is
true for G ([3, Chapter 7]).

THEOREM 6. Suppose G is a reflection subgroup of GL(n,Q), then there
exist basic generators fi,..., fn such that Q(z1,...,2,) = Q(f1,...,fn), each
fi is a polynomial over Q, and fi,..., fn are algebraically independent over Q.

3.1. The largest subgroup Giiss.
We will apply this theorem to the linear Noether’s problem for
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0100\ /0001 ~1000 11 1 1
G1152:<100071000’ 0100 1fL 1 —1-1
oot1o0[ |o1o0o0 o010l 21 -1 1 -1
0001 0010 0001 1 -1 -1 1

G1152 is the largest subgroup of GL(4,Q) with the order of 23", and the
gap code is (4, 33, 16).

Since G152 is a reflection group, Q(z1, 2, x3, 14)%1152 has generators consist-
ing of polynomials. The Hilbert polynomial of G1152 is

1

Hene (X) = T xoy 1 —x0) (1 - X901~ X1)°

so the degrees of generators must be 2,6,8 and 12.
A calculation by computer gives the concrete basis as follows.

=,
i
Zx 3Zx xk,

7,k
:5 x} g x} xk+6x%x§x§mi,
2 4,5,k
f4:2§ x9 735 9 xi+12§ xf xkxl+125 ' xkaE x} xk:n?.
1,5,k ,3,k1 1,5,k ,3,k,1

The conjugate elements of 1 by the action of G152 are +x1, txo, a3, x4,
1/2(+x1 29+ 234+24). We make a polynomial of degree 24 over Q(z1, xo, x3, 24)¢
whose roots are the conjugate elements of x1, then the obtained polynomial is a
generic polynomial of G1152. The coefficients of odd degrees are 0.

The coefficient of X22 through X? is as follows.

-3h
15
Ly

21 1
JUpll,
147

11 5
ﬁﬂ 6f2f1*§f3
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21 3 3
- afir) + §f2f12 + ngfl

905 . 149 .
1024f1 - ﬁfﬂ} - @fiﬂfl + ( 384f2 + f4>

2048f1 + mfﬂ} + 768f3f1 (768f2 192f4)f1 2f3f2

33 15
653671 T 4096f2f176144f3f1 ( 3072f2 128f4>f1 f?’f?fl 25675

1 5 1
65536f 4096f2f1 6144f3f1 (3072f ?,456f4)fl72f3fr"f12

f3f1+ ( f5 + ;2f4f2)

768 6912

65536f2f1 98304f3f1 ( 98304f2 73728f4)f1 6144f3f2f1

1
—f3 - 9216f4f2)f1 + (18432f3f2 12f4f3)

18432 TRaz ( 36864

1 2
196608f3f1 (196608f 49152f4)f1 12288f3f1

(24576f2 6144f4f2>f1 ( 12288f3f2—3072f4f3)f1+1536f3f2

1 3
1769472f4f1 B 589824f3f2f1 589824f3f1 <1769472f 147456f4f2)f1
+ <294912f3f2 73728f4f3>f1 - 18432f3f2f1
+ [y N (. 2
196608 2 73728 42 27648 110592 4
3.2. The second largest group Gs7g-
The derived subgroup of G152 is
0010 0100 1.0 00 11 1 -1
Gow /|1 000 1000 0 -100| 1)1 1 -1 1
=N lo1o000”]looo1l"]o0o o 10”21 -1 1 1 ’
0001 0010 0 0 01 1 -1 -1 —1
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and the gap code is (4, 33, 13).
G1152/Gags >~ Cy x Cy and we can choose representatives

1000 100 O 0100 0 100

0100 , 010 0 1000 -1 000
E, = y M = y V2 = y C4 =

0010 001 0 0010 0 010

0001 000 -1 0001 0 001

G760 = (Gags, m'), Gsrep, = (Gass, V2), Gsrec = (Gass, ca) are groups of order
576 and the gap code is (4,33,14), (4,33, 14), (4, 33,15) respectively.

Gs76a and Gsrep are conjugate in GL(4, Q), while Gs7. = G1152 N SL(4, Q).

Since the Hilbert polynomials of Gags, Gs76a, Gs76c are Hngg( ) = (1+
2X12 + X24)/((1 - X2)(1 - X6)(1 - XS)(l - X12))7 HG5760.(X) 0765(X =
(14+ X12)/((1 = X2)(1 = XO)(1 = X)(1 = X)), Hayp (X) = (14 X20)((
X2)(1 - X% (1 - X8)(1 — X'2)), we see that

1
)
1-

Q[z1, 72, 3, 24)9% = Q[f1, fo, f3, 4] ® [aQlf1, f2, 3, [4]
D foQIf1, fa, f3, fa] © feQ[f1, f2, f3, fal,

Q[r1, 72, w3, 24)7% = Q[f1, f2, f3, f4] ® FaQlf1, fo, f3, fal,
Q[x17x25x3am4]G576b = Q[f17f23f37f4} D be[f17f27f37f4}7
Q[r1, T2, 3, 74)9°7% = Q| f1, fo. f3, f4] ® feQlf1, for f3, f]

where the degrees of f,, fy, fo are 12,12, 24 respectively. By a computer calcula-
tions, we can determine them concretely. The results are as follows.

fa= Z Sgn(a)xg(l)fg(z)xg(g) = H (%2 —$?)7

0c€G, 1<i<j<4
9 7.3 5.5
= E T;TiTRT — 4 g z;rirRr; + 6 5 T TR
1,5,k,1 2,5,k,1 1,5,k,1

+4 E z? xkxl — 402333 ad
4,5,k,1

= T1T2T3T4 H H H {iEl + (—1)%2 + (—1)]$3 —|— x3},

i=0,1j=0,1 k=0,1
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fe=fafo = Z sgn(o)x},?l)m?,@)xi@)xg(@ -5 Z sgn(a)x},?zl) 7(2)x (3)To(4)

€S, €S,y

+10 Z sgn(o 5(1 (2)95 (3)To(4)
c€Gy

+3 ) sen(0)25 (1) T 2)To ) To ()
c€EG,

=55 ) sgn(0)rh )Ty ) To(3) Lo
cEeEGy

They are invariant under Gagg and the actions of m’, v, ¢4 are as follows.

7n/:jb'_’jb,fbkﬁ _j%7ﬁ3F9'_ﬁh
Y2 i fa = —fa, fo = fo, fo = —fe,
cs: farr —fa, for= —fo, fer= fe

From the relation f2 = —f7/27 + 4f3/27, we see that the linear Noether’s
problem for Gsrg, is positive, and the transcendental basis is f1, fa, f4/f3, fa/ f3-

Thus the linear Noether’s problems are affirmative for G152 and Gsrgq, the
largest and one of the second largest finite subgroups of GL(4, Q).

Appendix. Higher dimensional reflection groups.

G152 is known as the reflection group of type .%#4;. There are three more
irreducible reflection subgroups of GL(4, Q), which are <7, %, and Z;.
oy ~ (c5,mey) and

0100 0001 1000
<1000 1000 0100>
<%h’w ) )
0010 0100 0010
0001 0010 0001
0100 0001 ~1.0 00
@4N<1000 1000 0—100>_
oot1o0f o100l o 010
0001 0010 0 001

In higher dimensions, there exist three reflection subgroups of GL(n, Q) of
exceptional type, namely &, &7 and &3.
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10 000 0 00 1 0 0 0
01 000 0 00 0 -1 -1 0
é%:<001000 1-10 0 1 0
0-1-100 1] Jo1 1 1 1 -1
01 1 11 —1 0 -1 -1 -1 -1 0
01 1100 0-10 -1 0 0

& N SL(6,Q) ~ PSp(2,3) and & ~ AutPSp(2,3), where PSp(2,3) is a non-
Abelian simple group of order 25920.

-1 0 0 0 0 0 0 0-10 0 0 0 0

0 —1/2 1/2 1/2 0 0 —1/2 0 0-100 0 0

0 1/2 —1/2 1/2 0 0 —1/2 00 0-10 0 0
@@7=< 0 1/2 1/2 -1/2 0 1 —-1/2|, |0 0 0 0 -1 0 0 >

0O 0 0 0 —-10 0 00 00 0-10

O 0 0 0 0 -1 0 00 00 0 0 —1

0 —1/2 -1/2 -1/2 0 0 —1/2 -10 0 0 0 0 0

& NSL(7,Q) ~ PSp(3,2) and & ~ PSp(3,2) x Cy, where PSp(3,2) is a non-
Abelian simple group of order 1451520.
From [4, Chapters 1 and 5], the following theorem holds.

THEOREM 7. Suppose that a finite subgroup G of GL(n, Q) is a semi-direct
product of N and H, G ~ N x H. If the linear Noether’s problem for G is
affirmative, then there exists a generic polynomial of H.

From this theorem, we see that there exists a generic polynomial of PSp(3,2).
Finite non-Abelian simple groups which are known to have a generic polynomial
were s and PSL(2,7) [11], [12]. PSp(3,2) shall be the 3rd simple group that
reveals to have a generic polynomial.

&s = (Ds, F#,4) where we embed %, diagonally into GL(8, Q). &sNSL(8,Q) is
not simple, but it is a central extension of index 2 over a simple group isomorphic
to 08(1, 2)

Hopefully, these expressions of & and & may provide a clue to find generic
polynomial of PSp(2,3) and Os(1,2).
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Note added in proof. In Theorem 1 of the present paper, Noether’s problem
remains open for four groups. Recently, M. Kang and J. Zhou gave an affirmative
answer for these groups as well (The rationality problem for finite subgroups of
GL4(Q), arXiv: 1006.1156v1).
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