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Abstract. In this paper we deal with hyperbolic operators of second order
whose coefficients depend only on the time variable and give necessary conditions
and sufficient conditions for the Cauchy problem to be C* well-posed. In
particular, we give a necessary and sufficient condition (a complete character-
ization) for C* well-posedness when the space dimension is equal to 2 and the
coefficients are real analytic functions of the time variable.

1. Introduction.

The Cauchy problem for hyperbolic operators of second order has been
investigated by many authors (see, e.g., [8], [5], [1] and [2]). However, a complete
characterization of C* well-posedness of the Cauchy problem has not been
obtained even if the coefficients of the operators depend only on the time variable.
When the space dimension is equal to 1 and the coefficients are real analytic,
Nishitani obtained a necessary and sufficient condition (a complete character-
ization) for C*° well-posedness of the Cauchy problem in [8].

In [1] Colombini, Ishida and Orri studied the Cauchy problem for hyperbolic
operators of second order whose coefficients depend only on the time variable, and
they gave sufficient conditions for C*° well-posedness. However, their conditions
are not always necessary ones (see Examples 7.1 and 7.2 below). In this paper we
shall deal with the same problem and give a necessary and sufficient condition for
C™ well-posedness when the space dimension is equal to 2 and the coefficients are
real analytic functions of the time variable. Moreover, we shall also give a
necessary and sufficient condition for C* well-posedness without the restriction on
the space dimension when the coefficients are semi-algebraic functions of the time
variable (see Definition 1.6 below for the definition of semi-algebraic functions).

Let P(t,z,7,6) =7+ Z}:o Z\a|§2—j aja(t,z)T7€" be a polynomial of 7 and
£=(&,---,&) of degree 2 whose coefficients a;,(t,z) are C*° functions of
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(t,z) = (t,x1,- -+, m,) € [0,00) x R". Here a= (a1, +,a,) € (Z;)" is a multi-
index, |a|=3"7,0a; and £ =¢&", -, &, where Z, = NU{0} (={0,1,2,

3,---}). We consider the Cauchy problem
P(t,xz, Dy, Dy )u(t,x) = f(t,z) in[0,00) X R", (P)
Dju(t, z)|,—g = uj(z) in R" (j=0,1)

in the C* category, where D;=—id/0t (= —i0;), D,= (D1, --,D,) =
_i(a/axlv e ,8/6.’L‘n), f(t,.’l?) € COC([()? OO) X Rn) and UJ<LL') S COO(R”) (j = 07 1)

DEFINITION 1.1.  We say that the Cauchy problem (CP) is C*° well-posed if
the following conditions (E) and (U) are satisfied:

(E) For any fe C>([0,00) x R") and u; € C*(R") (j=0,1) there is u €
C>=(]0,00) x R") satisfying (CP).

(U) If s>0, uelC®(0,00)xR"), u(0,z)=Du(tz),_,=0 and
supp P(t,x, Dy, Dy )u(t, x) C [s,00) x R", then supp u C [s,00) X R".

We assume throughout the paper that a;. (¢, ) = a;q(t) for j€ Z and a €
(Z,)" with j+|a| =2, that is, the coefficients of the principal part of
P(t,z, Dy, D,) do not depend on x. Moreover, in studying the Cauchy problem
(CP), we may assume that a;,(t)=0 if |a]=1. Indeed, if A(t,€) =
Z\a|:1 a14(t)€%/2 does not vanish identically, we make a change of variables
from x to y:

1

t
pea—g [ amar (1<i<n),

where e; denotes the vector in (Z;)" whose k-th component is equal to &,y
(k=1,2,---,n). Therefore, we can assume without loss of generality that

P(t,x,7,€) =7 —a(t,£) + by(t,z)T + b(t, 2, &) + c(t, x),

where

n

a’(t7§) = Z aj,k(t)fjgk, b(tv €, 5) = Z bj(ta :E)é]
Jk=1

J=1

and a;x(t) = ax;(t). Taking account of the Lax-Mizohata theorem we assume that
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(H) a(t,&) >0 for (t,€) €[0,00) x R"
(see [7]). Define
V={¢eR" a(t, ) =0int € [0,00)}.

Then V is a subspace of R" since a(t,&) > 0. It follows from Theorem 4.1 of [4]
that b(t,z,&) =0 in (t,z) € [0,00) x R" for £ € V if the Cauchy problem (CP) is
C> well-posed (see, also, [12]). So we can also assume without loss of generality
that

(F) V={0}, i.e., a(t,&) Z0in ¢ for any £ € R\ {0}.
Moreover, we assume that a(t, £) satisfies the following condition (A):

(A) For any t; > 0 there are a neighborhood U of ¢, in [0,00), N € N,
Lebesgue measurable conic subsets I'; (1<j<N) of R", ¢;(t,&) €
CYU; L>(Ty)), C >0, m; € Z, ai(f) € L*(I';) (1 <k < m;) such that
w(R™\ (Uj\;l T';)) = 0, the e;(t, &) are positively homogeneous of degree 2
in ¢, the a(£) are positively homogeneous of degree 0, e;(t,&) > 0, the
ai(f) are real-valued and

atej(t’ 5) < Oej(tv g)a
a<t7£) = ej(tvf)%(t’ g)v
g;(t,€) = (t = t0)™ +al ()t — )™ " +---+af, (¢

for (¢,£) € U x I';, where p denotes the Lebesgue measure on R".

In the condition (A) we may assume that 6 > 0 satisfies § < ¢(/2 if ¢, > 0, and
U= [(to — 0),,to + 6], where a; = max{a,0} for @ € R. The condition (F) implies
that e;(¢,£) #0 in t for any £ € R"\ {0}. We remark that the condition (A) is
satisfied with inf{e;(t,£&); t € U and £ € T';} > 0 under the assumptions (H) and
(F) if the a;(t) are real analytic in [0,00) (see Lemma 2.1 below). In order to
obtain a sufficient conditon on C* well-posedness we impose the following two
conditions (B) and (L):

(B) The coefficients do not depend on z, i.e.,

bo(t, z) = bo(t), b(t,z,&) =0b(t, &), c(t,x)=c(t).
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(L) For any ty > 0 there is C' > 0 such that for each j with 1 < j < N

min) [t —7|-|b(t,&)| < Cy/a(t,§) for (t,€) € U x T,

TER(E
where
Zi(€) ={(ReX),; A€ C, ¢;(N\,§) =0 and Re\ € [ty — 26,1ty + 20}

for £ € Ty, min ey ¢ [t — 7| =1 if Z;(§) =0, and N, U, the T'; and the
g;(t,€) are as in the condition (A) and depend on t.

Put p(t,7,&) = 72 — a(t,£) and define

F(p(t7 B )519) = {(7,5) € R"+1; T> V a(t7§)}7
where 9 = (1,0,---,0) € R""'. We define

Kftwo) = {(t(s),z(s)) € [0,00) x R"; +s> 0 and {(t(s),z(s))} is
a Lipschitz continuous curve in [0,00) x R" satisfying
(d/ds)(t(s),x(s)) € T(p(t,-,-),9)" (a.e. s) and
(t(0), 2(0)) = (to,2°)},

where (tg,2°) € [0,00) x R" and T* = {(t,2) € R"™; tr+2-£>0 for any
(1,6) e T} K(i@“) are called generalized (half) flows for p. Concerning sufficiency
of C* well-posedness, we have the following

THEOREM 1.2.  Assume that the conditions (B) and (L) are satisfied (in
addition to the assumptions (H), (F) and (A)). Then the Cauchy problem (CP) is
C> well-posed. Moreover, if (ty,z°) € (0,00) x R" and u € C*([0,00) x R")
satisfies (CP), uj(xz) = 0 near {x € R"; (0,2) € K; .} (j=0,1) and f =0 near
K, 0y (in [0,00) x R"), then (to,2") & supp wu.

(to,x°

REMARK.
(i) If u € C™([0,00) x R") satisfies the Cauchy problem (CP), then

supp u C {(t,x) € [0,00) x R"; (t,x) € Ké_y) for

1

some (s,y) € (U{O} X Supp uj> Usupp f}.

j=0
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(ii) It follows from the proof given in Section 3 that one can replace Z;(§)
(1<j<N) in the condition (L) by Z)(§) satisfying Z;(§) C #,(§) and
SUPger, #%"I({) < 00, where #A denotes the number of the elements of a set A.

Let (tg,2") € [0,00) x R" and ¢ € "7 ! satisfy a(to, &) = 0. In the study on
necessity of C* well-posedness we impose the following conditions (A)zto,ﬁ‘]) which
corresponds to the condition (A):

(A)/(to,f“) There are a neighborhood U of #; in [0, 00), a conic neighborhood T

of & e(t,£) € C*(U xT), m € N, ar(€) € C=(T') (1 < k < m) such that
e(t, €) is positively homogeneous of degree 2 in &, e(¢,£) > 0, the ai(£) are
positively homogeneous of degree 0 and real-valued, a;(£°) = 0 and

a(t,§) = e(t,£)q(t, ),
q(t,€) = (t —t)" + ar(E)(t —t)" " + -+ + @ ()
for (¢,£) e U x I

Note that the condition (A)/(tq,fo) is satisfied under the assumptions (H) and (F) if
the a;;(t) are real analytic in [0, c0) (see Lemma 2.1 below). Let 6, > 0 and =;(0)
(1<j<mn) be real-valued continuous functions defined in [0,6y] such that
E;(0) € C>((0,6]), E(0) = € and the E;(#) can be expanded into formal Puiseux
series of 0, i.e., Z(0) = (E1(0),---,Z,(0)) ~ & + 372, EF0"L, where L € N and
ZF € R" (k € N). Tt is easy to see that the roots of the equation ¢(t + to,Z(0)) = 0
in t can be expanded into formal Puiseux series of 6 (see, e.g., [10] for general
results). We denote by 7;(#;Z) (1 <j < m) the real parts of the roots of the
equation q(t + t9, Z(0)) = 0 in ¢ which can be expanded into formal Puiseux series.
When ¢, >0, m is even and we can rearrange {7;(6;Z)} so that 7;(0;=) =
Tmy2+j(0;2) (1 <j<m/2). We may assume that &+ 7;(6;Z) > 0 for 0 € [0, 6]
when ty > 0, modifying 6, if necessary. Put Ordgof = v if f(0) € C([0,6y]) and
there are c € C'\ {0} and v € R satisfying f(0) = c6”(1 +o(1)) as 6 | 0. If f(0) =
O(ON) (01 0) for any N € Z,, then we define Ordgjof = o0.

THEOREM 1.3.  Assume that the condition (A)/(to.,f“) is satisfied (in addition to
the assumptions (H) and (F)). Moreover, we assume that the following condition
(C) 1,00 ¢0) 18 satisfied:

(C)ty 000y There are 6y > 0 and real-valued continuous functions T(0) and
Z;(0) (1 < j < n) defined in [0, 0] such that T'(0),Z;(8) € C*((0,60)), to +
T) >0 for 6€(0,60], T(0) and Z(0) = (E1(0), --,E.(0)) can be
ezpanded into formal Puiseuz series of 6, T(0) = 0, £(0) = £° and
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Ordyyo{ min [t +T(6) — (to + 75(6:2)).| - [bta + 7(6). 2" Z(0))]}

< OI‘del() \/a(t(] =+ T(G), E((g))

Then the Cauchy problem (CP) is not C* well-posed.

REMARK.
(i) We have
1552m [to +T'(0) = (to + 7;(0;2)) | = reH(E(8) lto +T'(8) — 71,
where
Z(€) = {(ReA),; A€ C and ¢(\, &) = 0}. (1)

(ii) The condition (C), 0 ¢y can be restated in terms of Newton polygons (see
Lemma 2.2 below).

Under the condition (A),(to.gﬂ) we define the condition (L) 0 as follows:

(L) (ty,20,0) There are a neighborhood U of ¢, in [0,00), a conic neighborhood
T of £ and C > 0 such that

min |t — 7| - [b(t,2°, )| < C\/a(t, &) for (t,£) €U xT, (1.2)

TeX(E)
where Z(&) is the set defined by (1.1).

Assume that the a;(t) are real analytic functions of ¢ on [0,00). Then, for any
T > 0 there is 67 > 0 such that the a;ji(t) are analytic in Qp = {t € C; Ret €
(=67, T+ 6r) and |Imt| < ér}. So the ajx(t) are analytic in Q. = U7, Q).
Moreover, there are a neighborhood Uy, .0y of ty in [0,00) and a conic
neighborhood T, ,0) of & such that the condition (A)zto,gﬂ) is satisfied with U =
Uty o) and T' = T'(y, 10y (see Lemma 2.1 below), and there are a neighborhood Uy, of
to in [0,00), &, -+, &Y € S"71 and conic neighborhoods T; of & (1 < j < N) such
that Ujvzl I'j = R"\ {0} and the conddition (A) with U = Uy, is satisfied. It is
obvious that the #;(£) in the condition (L) and Z(¢) in the condition (L), .0 )
can be replaced by

A(E)(= Z(§)) ={(ReA) 5 A € O and a(A,§) =0} (&€ R"\{0}).
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THEOREM 1.4.  Assume (in addition to the assumptions (H) and (F)) that
n=2, and that the a;i(t) and b;j(t,z) (j=1,2) are real analytic functions of
t € [0,00). Then the condition (L), .o ) is valid if the Cauchy problem (CP) is C*
well-posed.

From Theorems 1.2 and 1.4 we have the following main result.

THEOREM 1.5.  Assume that n =2 and the condition (B) is satisfied (in
addition to the assumptions (H) and (F)), and that the a;ji(t) and b;(t) (j = 1,2) are
real analytic functions of t in [0,00). Then the condition (L) is a necessary and
sufficient condition for the Cauchy problem (CP) to be C* well-posed.

REMARK. The condition (L) can be restated in terms of Newton polygons,
which is similar to the condition given in [8] (see Lemma 2.2 below).

DEFINITION 1.6.

(i) Let f: RY 5 X = (X1,---, Xy) — f(X) € R. We say that f(X) is a semi-
algebraic function if the graph {(X,y) € RN y = f(X)} of f is a semi-algebraic
set. For the definition of semi-algebraic sets we refer to [3], for example.

(ii) Let X° € RY, U be a neighborhood of X°, and let f: U — R. We say that
f is semi-algebraic at X? if there is ¢ > 0 such that the set {(X,y) € RV} ¢y =
f(X) and | X — X°| < ¢} is a semi-algebraic set. Moreover, we say that f is semi-
algebraic in U if f is semi-algebraic at each X € U. When f: U — C, we say that f
is semi-algebraic in U if Re f and Im f are semi-algebraic in U.

For basic properties of semi-algebraic functions we refer to [11]. In the next
theorem we impose the following conditions (A-a)y, ) and (A-b)(, Lo«

(A-a)(,.0) The condition (A)/(tq,fo) is satisfied, and the ay(§) are semi-algebraic
in I, where I' and the a;(§) are as in (A),(tmg]).

(A-b) 4,00,y There are 3(t,£) and b(t,€) in C(U x T) such that §(t,&) #0
for (¢,£) € U x T, b(t,€) is semi-algebraic in U x I" and

b(t, 2", &) = B(t,€)b(t,€) inU xT,

where U and I are as in (A);tméo).

THEOREM 1.7.  Assume that the condition (A-a)(t0,£0) and (A-b)(t0,x0,£0)
are satisfied (in addition to the assumptions (H) and (F)). Then the condition
(L)(tn,zo,gu) is satisfied if the Cauchy problem (CP) is C* well-posed.
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REMARK.

(i) If the a;,(t) and b;(t,z") (1 <j<n) are semi-algebraic at ¢y, then the
conditions (A-a) o) and (A-b)y .0« are satisfied (see Lemma 2.3 below and
11)).

(ii) Assume that the condition (B) is satisfied (in addition to the assumptions
(H) and (F)), and that the a;(¢) and b;(¢) (1 < j < n) are semi-algebraic at any
to € [0,00). Then it follows from Theorems 1.2 and 1.7 that the Cauchy problem
(CP) is C* well-posed if and only if the condition (L) is satisfied, since the a;(t)
and b;(t) (1 < j < n) are real analytic in [0,00) (see the proof of Theorem 10 of
[11]). (iii) From Theorem 1.7 one may conjecture that the condition (L) is a
necessary and sufficient condition for the Cauchy problem (CP) to be C* well-
posed under the conditions (H), (F) and (B) if the coefficients of P(t, Dy, D,,) are
real analytic in [0, 00).

The remainder of this paper is organized as follows. In Section 2 we shall give
preliminary lemmas. Theorem 1.2 (sufficiency of C* well-posedness) will be
proved in Section 3. Theorem 1.3 will be proved in Section 4. In Section 5 and
Section 6 we shall prove Theorems 1.4 and 1.7, respectively. Some examples and
remarks will be given in Section 7.

2. Preliminaries.

First let us consider the condition (A).

LEMMA 2.1.  Assume that the conditions (H) and (F) are satisfied, and that
for any (t,€) € [0,00) x S"1 there is | € Z, satisfying dla(t,&) #0. Then the
condition (A) is satisfied. In particular, the condition (A) is satisfied (under the
conditions (H) and (F)) if the a;x(t) are real analytic on [0, 00).

REMARK. In the condition (A) we can choose the I'; as open cones in
R"\ {0}, and e;(t,&) € C*(U xT'j) so that e;(¢,£) > 0 for (¢,§) € U x ', if the
hypotheses of the lemma are fulfilled.

PROOF. Let (t,&%) € [0,00) x S satisfy a(tp,&’) = 0. We may assume
that a(t, &) belongs to C*((—1,00) x R") and is real-valued. From the Malgrange
preparation theorem there are a neighborhood Uy, ¢y of ¢ in [0, 00), an open conic
neighborhood T, «0) of &, m € N, e(t,£) € C®(Uy, ) X Ty, o)) and real-valued
functions ax(§) in C*(I'y, ) (1 <k <m) such that e(t,£) and the ax(§) are
positively homogeneous of degree 2 and 0, respectively, e(t,£) > 0, ax(¢°) = 0 and

a(t, &) = e(t, ){(t — to)" + ar(E)(t —t0)" ™" + - + an(€)}
n U(to,fu) X F<t0750).
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Since S"! is compact, we can choose &', ---, &V € S"7! so that Uévzl Lty =
R"\ {0}. This proves the lemma. O

Let (tg,2°,£%) € [0,00) x R" x S ! satisfy a(ty,£") = 0, and assume that the
condition (A)/(f,o,gﬂ) is satisfied. Let Z;() (1 < j <n) be real-valued continuous
functions defined on [0, 6] such that Z;(8) € C*>((0,6]), 2(0) = (Z1(0),-- -, En(0))
can be expanded into formal Puiseux series of § and Z(0) = £°, where 6, > 0. We
denote by 7;(6;E) (1 < j <m) the real parts of the roots of the equation ¢(t +
to,=2(6)) = 0 in ¢t which can be expanded into formal Puiseux series, where m and
q(t,€) are as in (A)[, «. Let 1 <j <m.If there is [ € Z, such that

Ordgyo () ((to + 73(6; 2)).,, 2", 2(0)) < o0, (2.1)

then we can write

tb((to + 75(0;2)), +t,2°,E(0)) ~ Ztﬁj,k(t)ewk/ﬂ
k=0

Bio(t) #0,

where L € N. Indeed, we write {lo,l1,la---} ={l € Z; [ satisfies (2.1)}, where

0<ly<l <lp<--- Then, putting v;;, = Ordg(0}'d)((ty + 7;(6;E)), ,2°, E(6)),

we have v; = min{v;;; k=0,1,2,---}. Moreover, we have

=

ﬁjk(t)euﬁrk/L
0

>~
i

R S (GRS (G Mt VA CIO RS S

1!
o] <M (N) pra:

+ 06" N as 6|0,

where M;(N) is a positive integer satisfying Ordgo{((to + 75(6;Z)), —to)" x
(E) -} >vj+ N/L for p+|a] > M;(N). This implies that 3;(t) €
C>([—ty,00)). If Ordy|(0;b)((to + 7(6; E)),,2°,E(0)) = oo for every | € Z,, then
we put v; = oo. If v; < 00, we define

pir =14+ 0rdsoB3k(t) (k=0,1,2,--).

We denote by I'y j(Z) the Newton polygon of tb((ty + 7;(6; 2)), + ¢,2°,2(0)), i.e.,
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Ny@E =ch| [ (0s+k/Lut+ R,

k>0, pjp<oo

where ch[A] denotes the convex hull of A, R, = [0,00) and I'y ;(Z) = 0 if v; = oco.
We put

21 ;(2) = {(2v,2u) € R*; (v,p) € T1;(2)}.
It is easily seen that
TyE) = (Hwp) € (R
v+pp >min{v; +k/L+pu;r; k>0 and p;, < oo}}.

Denote by Ty j(Z) the Newton polygon of a((ty + 7;(6; Z)), +t,E(0)).
LEMMA 2.2.  The following two conditions (i) and (ii) are equivalent:

(i) If T(0) is a real-valued continuous function defined in [0,60], T(0) €
C>((0,60]), T(0)=0, to+T(0) >0 for 0 (0,6 and T(0) can be
expanded into a formal Puiseux series, then

Ordeio{lg}i;n lto + T(0) — (to + 75(6; ), | - [b(to + T(0),2°, 5(9))|}

> Ordgjo\/a(ty + T(0),2(0)). (2.2)

PROOF. Choose real-valued continuous functions () defined in [0, 6] and
subsets I of {1,2,---,m} (1 <k <r) so that A\;(0) € C*((0,6]) can be expanded
into formal Puiseux series, J;_, I = {1,2,---,m}, Ordgo((to + 75(6; Z)), —to —
Ai(0)) =occfor 1 <k <randjeE I,

)\1(9) < )\2(9) << )\7<9) for 0 (0,90],
ki = Ordgjo(Ak1(0) — Me(0) <00 (1 <k<r-—1)

and A (0) = 0 if OrdgjpA(0) = oo, modifying 6 if necessary. Put
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So={(t,0) € [(to — 1), to + 1] x [0,0¢]; t —to < Ai(0)},
Sap—1 = {(t,0) € [(to — 1), to + 1] x [0,60];
A(0) <t —to < (A(0) + Mt (0))/2},
Sor = {(t,0) € [(to — 1), ,to + 1] x [0, 60];
(Ae(0) + As1(0))/2 < T =t < Ay (0) 1
Sor—1 ={(t,0) € [(to — 1) ., to + 1] x [0,00]; A\(0) <t —1p <1},

where 1 < k <r—1. First assume that (i) is valid. Let 1 <j<m and p > 0.
Putting

T,(t,0) = (to+7;(0:5)) . —to + 6"t (1/2<t<1),
we have
Ordgjpa(ty + T)(t,0),2(0)) = min{v + pu; (v,p) € To,(E)}
for a generic ¢ € [1/2,1]. Moreover, we have

Ordgyo min [to + T, (t,0) — (to + m(6; =), | = p

for a generic t € [1/2,1]. By assumption we have

Ordg o {07 tb((to + 73(6; ), + 0°t,2°,2(6))}

> Ordglo\/a((to +75(6;2)), +6rt,E(0)) for a generic t € [1/2,1].

This gives
min{v + pp; (v, p) € 2I'1;(2)} > min{v + pu; (v,p) € Loy(2)},

which implies that (ii) is valid. Next assume that (ii) is valid. Let T() be a real-
valued continuous function defined in [0,6p] such that T'(0) € C*((0,6y)),
T0)=0, to+T(0) >0 for 6 € (0,0 and T'(f) can be expanded into a formal
Puiseux series. First consider the case T(0) € S for 0 < § < 1. Similarly, we can
deal with the case T'(6) € Sy,_1. Write

T(0) = (0) —ct(1+0(1)) asf 0,
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where ¢ > 0 and p > 0. We note that Sy = 0 if £y = 0 and A;(#) = 0. This implies
that ¢g + 7j(6;2) >0 for 0 < # < 1 and 1 < j < m and m is even. So we can write

m/2
at,20)) = et Z0) [[ (10 = to = 76 2)) + 03(059)),
=1
rearranging {7;(;E)} if necessary, where the o;(#;Z) are continuous functions
defined in [0, 6], expanded into formal Puiseux series and satisfying o;(6; =) €
C>((0,60]) and o;(#; =) > 0. It is obvious that
Ordy o (T(8) — 7;(0; Z)) = Ordgjo(Ai(0) — 75(60; Z) — t67)

for ¢t > 0. Therefore, we have

Ordgioa(to + T(Q), E(G)) = Ordgloa(to + /\1(9) — 6", E(@))
=min{v +pp; (v,p) €Ty;(E)} fort>0andje ;. (2.3)

We have also

Ordy)o 1r<r;1<r}n [to +T(0) — (to + 75(6;2)) .| = p. (2.4)
It follows from assumption, (2.3) and (2.4) that

20rdaso{ min [t0 +T(0) = (t0 + 75(0:2). ] - bt + T(0), 2", Z(60))]}
>2 Ordglo{eptb((to + 77(9; E))+ + 0°t, 330, E(G))}
=min{v + pu; (v,p) € 2T'1;(E)} > Ordgjpa(ty + T(0),Z(6)) (2.5)

for a generic t < 0, where [ € I. Next consider the case T(0) € Sop_1 for 0 < § < 1,
where 1 <k <r—1. Similarly, we can deal with the case T(0) € So, (1 <k <
r—1). If Ordgo(T(0) — Ax(6)) = oo, then (2.2) holds trivially. Now write

T(0) = M\.(0) + c0°(1 +0(1)) as6 |0,

where ¢ > 0 and p > k. We note that k=1, j€ I, to =0 and () =01if j € I}
and ty + 7;(6; ) < 0 for some 0 € (0,6]. For j € I;, we have
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P ift0+Tj(0 )ZO fOI‘@E(O,Ho],
Ordgo{T'(0) — 73(6; 2)} = { min{p, Ordgyo7;(6; =)}
if ty + 7;(6; =) < 0 for some 8 € (0, 6y].

This yields
Ordg o{T(8) — 7;(0; =)} = Ordgjo{ \e(0) — 7;(0; Z) + 6"t} for ¢t € (0,c].
Therefore, we have

Ordgloa(to + T( ) E( )) = Ordeloa(to + /\k(H) + 6°t, E(Q))
=min{v + pu; (v,pn) € Ty,;(E)} fort e (0,

if j € Ij.. It is obvious that (2.4) is valid in this case. Finally we see that (2.5) is
valid with [ € Ij, for a generic ¢ € (0, ], which proves the lemma. O

LEMMA 2.3.  Let (tg,2°,€°) € [0,00) x R" x S"~! satisfy a(ty,&") = 0. Then
the conditions (A-a), ¢y and (A-b)y .00 are valid if the conditions (H) and (F)
are satisfied and the aji(t) and b;(t,2°) (1 < j < n) are semi-algebraic at .

PROOF. Assume (in addition to the conditions (H) and (F)) that the a;(t)
and b;(t,2°) (1 < j < n) are semi-algebraic at tg. From Theorem 10 of [11] and its
proof we can see that the a;;(t) are real analytic at ¢, and that there are
irreducible polynomials P; (2, t) (# 0) satisfying P;x(a;%(t),t) = 0 in a neighbor-
hood of ¢;. Choose § >0 so that the a;i(t) are continued analytically to
Us={t+ise C;t,sc€ R, |t —ty| < and |s| < ¢}, and write

Pji(zw) = of ()20 4+ ol ¥ (w)2 0P o i ()

m(j,k)

= a" (W) [T (== A )),
l

Il
—

where the a'l’"k(w) are polynomials of w and ao’( ) #0. We note that

a;r(w) € {)\Jlk( ), - )\fnk] k)( w)} if we Us and 0‘0 *(w) # 0. Let us first prove that

the a;;(t + is) are semi-algebraic at (t,s) = (to,0). Put

a; . (w) = Reai(w) (= (a;x(w) + a;1(w))/2),
a; (w) = Ima;(w) (= (ajr(w) — ajr(w))/(20))
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for weUs, and Us={(t,s) € R* t+iseUs}. For a polynomial p(z,w)=
Y pup2w” we define p(z,w) =3 pu,2tw” (= p(Z,w)). Then it is obvious that
Pjr(ajp(t +is),t —is) =0 for (t,s) € Us and that

= m(JJf
Pin(z@) = af* () [] (2= N (w)
Put
Pli(zt,s) = |ag*(t + is) 0P

< [ {z— (Nt +is) + N (¢ +is)) /2.

pv=1

]5]-17,(7(2, t, s) is a polynomial of z, the a{’k(t +is) and the a{’k(t + is) and, therefore, a
polynomial of (z,t,s). Indeed, put

p(zy a0, ) = @2 4 - —aOH z— N /ag, -+, am/ag)).

Then

Q(z 00, )

m
= (a00_50)7rL H (QZ - Au(al/am MY Oém/Oé()) - )‘V(@l/@07 to 764m/0_40))
pr=1

= 546”1_[10 (22 = A(@1/ao, -+, G /a0); 0, Q)
is a polynomial of z, ag, - -, ayn, &g, @1/Q0, -+, Gy /& Similarly, Q(z; ag, -« -, )
is a polynomial of z, &y, -+, @m, @, a1/, -+, am/ap. This implies that
Q(z; a0, -, ay) is a polynomial of z, ag, -+, @m, @, -+, Q. So there is an

irreducible polynomial P\(zt,s) (# 0) satisfying P};(aj,(t +is),t,5) = 0. Sim-
ilarly, there is an irreducible polynomial Pﬁk(z,t,s) (£0) satisfying Pﬂ( Tk
(t+1is),t,s) =0. Theorem 11 of [11] implies that the a;i(t+is) are semi-
algebraic at (¢,s) = (tp,0). We define
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a(w, &) = i ajr(w)é€e for we Us and € € R,
=1

Then a(t + is,£) is semi-algebraic at (,s,£) = (to,0,£%). By the proof of Lemma
2.1 and the Weierstrass preparation theorem there are an analytic function e(w, §)
defined in UsxV; (=Usx{€€R"; €& <6}), Co>0, me N and real
analytic functions a;(§) (1 <j < m) defined in Vs such that the a;(§) are real-
valued and

C(;l S |e(w, 5)' S CO,
a(w, E) = 6((41, 5)(("‘) - tO)m +a (f) (w - tO)m_l + am(f))

in Us x Vs, with a modification of ¢ if necessary. Note that the a;(§) are uniquely
determined. We define

A={(a1,as, - ,a,) € R" x R™; £ € Vs and for any w € Us
there is ¢ € C satisfying C;' < |¢| < Cj and

a(w, &) = c((w—1to)" +ar(w—to)" 4 +ap)}.

The Tarski-Seidenberg theorem implies that A is a semi-algebraic set in R"™.
Choose & > 0 so that ¢ < 6 and

(w—10)" +ar1(E)(w—to)" '+t an(() #0 if £€Vyandwe C\Us.

Since a(w, &)/ ((w —to)™ + ar(w —to)™ ' + - - + a,,) can be regarded as an analytic
function of w in Us for (& a1, ---,a,) € A with £ € Vy, we have a; = a;(&)
(1<j<m),ie,

AN (Ve x R") ={({a1(§), -, an(§)) € R" x R™; { € Vy}.

So the a;(€) are semi-algebraic at £, which proves the lemma. O

3. Proof of Theorem 1.2.

In this section we assume that the hypotheses of Theorem 1.2 are fulfilled,
and we shall prove Theorem 1.2. Put
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Pe(taTv E) = P(t’Tv E) - 6|§|2
(=77 —a(t,&) — elé]” + bo(t)T + b(t, €) + c(t))

for ¢ € [0, 1]. We note that P.(¢, Dy, D,) is strictly hyperbolic if € > 0. Consider the

Cauchy problem

P.(t, Dy, Dy)u(t,z) = f(t,x) in[0,00) X R", (CP)
Dlu(t, z)|,_g =uj(z) in R" (j=0,1), :

where f € C*([0,00); H*(R})) and u; € H*(R") (j =0,1). Here H*(R") denotes
the Sobolev space over R" of order s and H*(R") =(\,.g H*(R"). By partial
Fourier transformation in z, the Cauchy problem (CP), is reduced to the Cauchy
problem for an ordinary differential operator with parameters &:

{PE(t’Dt’@vg(t,s) = f(1,6) for (1,6) € [0,00) x R, 51)
Djv.(t,8)],_o = 0j(z) for £ € R" (j=0,1),

where f(t,€) and 4;(§) (7 =0,1) denote the partial Fourier transforms of f(t,x)
and u;(z) with respect to z, respectively, for example, f(t,6 = S €7 f (¢, 2) da.
We note that the Cauchy problem (3.1) has a unique solution v.(¢,€) €
C>([0,00); C*(Ry)). Let to =0, and let U, N, the I';, the %;(§) and so forth be
as in the conditions (A) and (L). We may assume that U = [0, 6] with some § > 0.
Let 1 <7 < N, and put

Ot =t+ Y log(y/(t—7)* (&) + 1+ (t—7)("?)

TER;(E)

for (¢,€) € [0,6] x I'; if the equation ¢;(t,n) = 0 in ¢ does not have simple real roots
for any n € I';, and

Oi(t,€) =t+ _ log(y/(t—7)*(€) + 1+ (t— 7))
TER;(€)
+log(\/ () + 1+ 1(e)*?) (3.2)

for (¢,&) € [0,6] x I'; if the equation ¢;(¢,n) = 0 in ¢ has a simple real root for some
n € I';. We also put
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Wi(t, &) = 0,®;(t,§) for (¢,&) € [0,6] x T';.

We note that the ®;(¢,£) and the W;(t,&) are measurable, and that

A log(\/ A, &) + 14+ AL, €)) = AL, )/ At ) + 1.

For simplicity we define ®;(¢,£) by (3.2) even if the equation g¢;(¢,1) = 0 in ¢ does
not have simple real roots for any n € I';. We define, for (¢,€) € [0,6] x I';, € € [0,1]
and v > 0,

Cgs.j(ta 57 7) = EE,j (ta g) exp[—’y@j(t, g)]?
B j(t,€) = [0w-(t, O + (a(t, &) + elé* + W;(t, ) |o- (1,9 (33)

Let (¢,€) € [0,6] xT'j and € € [0,1]. A simple calculation yields

N j(t,67) = {0 E;(t, §) — YW;(t, §) E= (¢, €) } exp[—v®;(t, €],
OE-;(t,€) = 2Re{(—F(t,€) + (b(t,€) + c(t) + Wi(t,€)*)v-(t,€))O-(t,€)}
+2Tmby () - |9 (t, ) + (Bra(t, €) + 20,W;(t,€) - W;(t,€))]v-(t, ).

Noting that 9,W;(t,&) < W;(t,€)*, we have

atge,j(t7€; 7)
< [ O /Wi(t,6) — {v = 3 = (le(t)] + 2Tm by (£)) /W;(t, )}
X Wj(t, €)|0h- (1, €)|”
— (Ii(t,&7) + 7eléPW5(t, v (8, )17 /Wy (t, &)] exp[—y@;(t,&)],  (3.4)

where

Ij(t7 & '7) :’Va’(ta g)Wi(ta 6)2 + (7 - S)Wi(t7 6)4 - ‘b(t’ £)|2
= [e(®)|W;(t. ) — ralt,§) - Wj(t, €). (3.5)

Choose v > 0 so that

v —3—|e(t)] — 2Imby(t) > 0 (€ [0,8)). (3.6)
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First consider the case t(£>2/3 < 1. Then we have, with some C > 0,
(€ /V2 < Wi(t.€) < C(g)*F*

for (¢,€) € [0, 6] x I';. Therefore, we have I;(¢,&~) > 0 if

7 2 3+2v2 sup {(Qa(t, €) + [b(t, E)1*)/I€]* + le()]}. (3.7)

t€[0,6]

We choose v > 0so that (3.7) is valid. For each § € T'; there are r;(¢),7;(&) € Z,
);

vii(§) e N (1< l <), Tix& € R and aJyk(f) >0 (1<k<ri(¢) and
To,l(g) <0 (1 <1<rp;(&)) such that the v;;(§) are odd and
i(€) 70,5(§)
a(t,§) =e; tfH{t—Tjk * o€ }Ht_TO/l ”f’f) (3.8)
k=1 =1

for t € [0, 6]. We note that

mj = 2r;(£) + .‘ va(§), (3.9)

=1
(€)= {(1(9) 5 1 <k < (O} U{(rogu(©) 5 1 <1< (9},
[t = 7€) < /(= 7)) + 3(0), (3.10)
|t =m0 <t (3.11)
[t — 7040(E)] 97 < COft — 7o,1(€)[ O if yy(€) > 1 (3.12)

for (¢,€) € (0,6] x I';, where C' > 0. Next consider the case where &% > 1 and
min,cz ) [t — 7| < (&)™"%. Then we have

Wit €) > (62 +7)/V2. (3.13)

It follows from the condition (A) and (3.8) — (3.13) that there are positive
constants C' and C’ such that

dea(t,€) < Cla(t, &) + Valt, €)I€] + ¢ a(t,€))
< C'(alt, )Wj(t,€) + € /(4W1(t7€)))
(

£)
< C'(a(t, &)W;(t, ) + W;(t, €)*)
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for (¢,€) € [0,6] x T';. This, together with (3.5) and (3.13), gives I;(¢, &) > 0 if
v=3+C"+ St[(l]%]{4\b(t7£)|2/|§|2 + [e()]}- (3.14)
tel0,

Let us consider the case where t(§>2/3 > 1and min,cg ¢ [t — 7] > (£>71/2. Then by
(3.8) and (3.9) we have, with some positive constants C; and Cs,

W;(t,€) > (V2 min |t—7|) +(V2t) ™, (3.15)

TER;(E
dia(t,€) < Cra(t, &) + V2m;Wi(t, €)a(t, €) < CoW;(t,€)alt,&)  (3.16)
for (t,€) €[0,6] x T, since [t — 7;4()/{(t = 74())* + 054()} < [t — (&) <
(t— (1j:(€)),)"" and 0 < (t — 71,1,(€)) " <t~L. It follows from the condition (L),
(3.5), (3.15) and (3.16) that I;(t,&~) > 0 if

v > max{Cy + 2C?% 3 + sup |c(t)|}, (3.17)
t€[0,6]

where C' is the constant in the condition (L). Choose v > 0 so that (3.6), (3.7),

(3.14) and (3.17) are valid. Then we have I;(t,&; ) > 0. Moreover, by (3.4) we
have

K& j(t:67) < (4O expl=—1@;(t, )]/ Wj(t, €)
for (¢,£) € [0,6] xT'; and € € [0, 1]. This gives
t
Eit67) < 650.60) + [ expl—r@ (s O O Wil )ds (318)
for (t,€) € [0,6] x I'; and € € [0,1]. By definition there is C > 0 such that
—(m/2)log(€) — C < ,(t,€) < (m/2 +2/3)log(é) +C
for 1 <j< N and (t,€) € [0,6] x I';, where m = max;<j<ym;. This gives
G < exp[-(,6)] < ()" (3.19)

for 1 <j< N and (t,§) €[0,6] xT';, where k= y(m/2+ 2/3). Therefore, from
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(3.3), (3.18) and (3.19) there is C' > 0 such that

Jo- (¢, )1 + |9y (¢,€)

<o aOr +la©) + [ ©"icora)  e)

for 1 <j < N and (¢,§) €[0,6] xT';. Put

0 (©
A(t,f) = ( -1 2 > N
(€ (a(t, &) +elé]” = b(t, &) —c(t))  —bo(?)

Then v.(t,£) satisfies

6\ (€v.(t.9 0
b ( Dtvs(t7€) ) a A(t7 g) ( Dtvs(tvg) > " (f(t, §) )

and, therefore,

o (©0O) & (R ({00
o (Dtvs(tf))_z%(N)Dt Al Dt(Dtvgu,s))

=

0
. k=0,1,2,---). 3.21
(o) mora o

Put

ue(t,x) = fgl[vs(t,f)](x) for (¢t,x) € [0,6] x R" and ¢ € [0, 1],

k
Epful(t) = Y (D) Diult, @) |3,
p=0

where k€ Z,, 1€ R, u(t,x) € C®([0,8; H(RY)), |lult,z)| = ([ |ult,z)
dx)l/2 and ﬂgl denotes the inverse Fourier transformation with respect to &. It
follows from (3.20) and Plancherel’s theorem that u. (¢, z) and Ey;[uc](t) (k= 0,1,
[ € R) are well-defined and that
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1
Brafu(t) < O 3 IKDN @)l
v=0
+ [ D o) s} (3.22)

for k=0,1,1€ R, t € [0,6] and € € [0,1]. Moreover, u.(t,z) satisfies (CP)_, with
[0,00) x R™ replaced by [0, 6] x R", for € € [0, 1].

LEMMA 3.1.  Fore € [0,1] uc(t,z) € C*([0,6]; H*(RY)). Moreover, for any
ke Z, andl € R there is Cy; > 0 such that

s Bialuc () < Cia{ Z (DY () |2
+ max (D) () 2
+5I<1?<)§Z (D, )+ 2D”f(t,x)lliz} (3.23)
for e €[0,1], where ZZ;% —0ifk<2.

PROOF. By (3.22) it is obvious that (3.23) is valid for £ = 0, 1. Now suppose
that u.(t,x) € CK~1([0,6]; H*(R!)) and (3.23) is valid if k < K — 1, where K € N
and K >2. Then it follows from (3.21) with k=K —2 that (&)v.(t,€) €
CE([o, ¢]; L*(RY)), i.e, ultz)e CK([0,6]; H®(R!)). Note that Ex fu.](t)=
B [ue (t) + [(Dy) DEuc(t, ) |[3.. (3.21), with k= K — 2, yields

I(D2)' Dff e (t, )| .2
K-2

< Cic - { D Dluclt, )z + D) D et )|

p=0
1 _
+ (D) DE2 f(t, )| 2

fort € [0,6] and € € [0, 1], where C > 0. Therefore, (3.23) is valid for k = K, since
< >l+2 < <é—>l+1+K—l—/¢ and <§>l < <§>I+I+K—1—(u+1) for 0 < p< K — 92 and

(D2 D ue(t, )17
< Cld Ex—via [u)(8) + [{D2)' DI (8 2)| 2} O
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Put u(t,xz) = ug(t, x) for [0,6] x R". Since

{ Ps‘(tDt, D) (us(t, z) — u(t,x)) = —eAu(t, x),
Dj(us(t,z) —ult,2))|,.g =0 (j=0,1)

and (uc(t, z) — u(t, z)), Agu(t, z) € C*([0,6]; H(RY)), it follows from uniqueness
theorem for ordinary differential equations and Lemma 3.1 that

max Ek,l [ug — u](t)

0<t<é

< Oy’ { max Eo jyinr2(ul(t) + max Ej—942[u] (t)}

0<t<é

1
< G S D (@) + ma (D)2 p (1, )
v=0

0<t<é

k—4
+max 3 DD, 2)
n=0

forke Z,,l € Rand ¢ € [0,1], where E,;[u](t) = 0 if 1 < 0. This implies that for
any k€ Z, andl € R

Dngug(t, x) — DfDi‘u(t,:v) uniformly on [0,6] x R" ase | 0.

Denote by K:(tl‘w the generalized flows for p.(¢,7,£) = 72 — a(t, &) — g\§|2. It is
easy to see that

T(pe, (ty ), ) D T(pey(t,+,+), ) fort>0and 0<e <ep <1

and that for any ¢ > 0 and any open conic set I' with T' C T'(p(t, -, -), ) U {0} there
is €9 € (0,1] satisfying

I' c T(pe(t,-,-),¥) fore € [0,e]

So, for any (t1,z!) € (0,00) x R" and any neighborhood V of K ayn{t=0}
there is ¢y € (0,1] satisfying

Kc”_,(tl-,ml) N {t > 0} cV foree [075()] (324)
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(see, e.g., Section 3 of [14] and [13]). Since P.(t, Dy, D,) is strictly hyperbolic for
e € (0,1], we can show that (t,z') ¢ supp w if € € (0,1], (t;,2') € (0,00) x R,
w(t,z) € C*([0,00) x R"), supp P.(t, Dy, Dy)w(t, x) N K, . N{t >0} =0 and
{0} x (supp w(0,z) Usupp (Dyw)(0,2)) VK, 1) = 0 (see, e.g., [6]). Let p(t,z) €
CX(R") satisfy p(t,2) = 1 (|(t,x)| < R) and ¢(t,z) = 0 (|(t, )| > R+ 1), where
R > 1. Assume that a(t,z) € C*([0,00) x R") satisfies
{P(t,Dt,DI)ﬂ(t, z) = f(t,z) in[0,6] x R", (325)

Dli(t,z)],_y = uj(z) in R" (j=0,1).

Put g(t,2) = P(t, Di, D,)((t,2)ilt,2) (€ C([0,6] x R"). Since ¢, g € C=([0,
00); H¥(R™)) and wy(z) = ¢(0, z)up(x), wi(z) = (Dip) (0, z)ug(z) + ©(0, x)u; () €
H>(R"), it follows from uniqueness theorem for ordinary differential equations
that the Cauchy problem

P.(t, Dy, Dy)w.(t,z) = g(t,z) in [0,8] x R",
Diw.(t,z)|,_o = wi(z) in R" (j=0,1)

has a unique solution w.(t,z) € C*([0,00); H*(R")) for e € [0,1], and that
wo(t, ) = p(t,z)u(t,z). Let (t,2') €[0,8] x R", and assume that supp fN
K(;M-I) N{t>0} =0 and {0} x (supp ug Usupp u1) N K(;l,arl) = (. Then, taking
R > 1 we have supp gN K(_t],ml) N{t > 0} = 0. Therefore, by (3.24) there is g €
(0,1] such that (t,2') ¢ supp w. for € € (0,g]. Since w. — @u uniformly on
[0,6] x R" as € | 0, We have (¢;,2!) ¢ supp 4. In particular, this proves unique-
ness of the Cauchy problem (3.25) in C*([0, ] x R"). Next consider the Cauchy
problem

{P(t,Dt,DI)u(t,x) = f(t,x) in [8,00) x R",
Diu(t,)l,_s = uj(z) in R" (j=0,1),

and repeat the arguments. Finally we can prove Theorem 1.2, using finite
propagation property.

4. Proof of Theorem 1.3.

In this section we assume that the hypotheses of Theorem 1.3 are fulfilled,
and we shall prove Theorem 1.3. Define pyg, 11,6 € Q by
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Lo = Ol"dgw\/a(t() + T(@), E(Q)),
= Ordgpo{ min ftg + 7(6) = (to + 75(6:2)). | [bto + 7(6).,2°, 2(6)]}.

6= Ordglo lr<nji<I}n ‘to + T(@) — (t() + 71(9, E))+‘ ( > O)

The condition (C), .0« implies that pui < po. Write
b(ty 4+ T(6) + v8°, 2, 2(0)) = 0**(¢(v, ) + 0o(1)) as 6] 0, (4.1)

where p € Q, é(v,z) #0in (v, Jc) Then ¢é(v, ) is a polynomial of v and p < py. If
é(v,2°) =0 in v, we replace 2° € R" so that é(v,2%) Z0 in v. Let ¢y >0 be a
constant satisfying

min [ty + T(0) — (to + 7;(6; ), | > cot® for 6 € [0,6p]. (4.2)

1<j<m

If ¢(0,2°) = 0, we replace T(#) and y; by T(0) + v#° and p, respectively, choosing
vy € (0,cp/2] so that ¢(vg,2°) # 0. In fact, noting that

IT(6) = 75(6; E)|/2 < |T(6) + v — 7;(6: E)| < 3|T(0) —75(6; E)|/2
for 0 € [0, 6], we have

p — 6 = Ordgyob(to + T(0) + vo8”, 2", Z(0))
= _min_ Ordgpob(ty +7(6) + v, 2, 2(6)),

z€R", v

Lo = Ordglo\/a(to +T(0) + v, Z(0)).

Therefore, we may assume that ¢ = ¢(0,2%) # 0 and g = py in (4.1) and

w—6= Ordalob(to + T(6) {EO, 5(9))
= min Ordgb(ty + T(0) + v8°, 2, Z(0)).

zeR" vER

Let x and &' be positive rational constants satisfying 8’ < 1, and choose € = +1 so
that e¢ ¢ (—o0,0]. We shall impose further conditions on x and §'. Note that

exp|—iepx - E(p~ ") P(t, x, Dy, Dy){explicpx - E(p~")u(t, )}
= P(t,z, Dy, ep=(p~") + D,)u(t, x),
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where p > 1. We make an asymptotic change of variables:

t=t(s;p) =to+T(p ")+ p s,

v =a(y;p) =2+ p" Ny,

Put

1-8'k

P,(s,y,0,m) = P(t(s; p), x(y; p), p™" 0, epE(p~") + p* " n).

Then we have

Py(s,y,0,m) = p*0” = palt(s; p),E(p™") +ep~* ")
+ b (t(s; p), (y; ) + pbl(t (s p), 2 (y; p), Z(p ") +p~ ")
+ c(t(s; p), z(y; p))-

A simple calculation yields

exp[—ip”@(s,y; p)|Py(s,y, Dy, D)) {explip”©(s,y; p)lu(s, y)}
— [p26»s+2u<pz + p26m+u(_i<pss + 2<Pst) + pQ(SfiDg

— pPalt(s;p),Z(p~") +ep "V ,0)

— P77 " an(t(s; p)(—ip” @i + 20", Dk + D;Dy)

j.k=1

n

_ 6p275’n' Z(@{Ja) (t(S; p)’ E(p*“))Dj

+ P bo (¢(55 ), 2(y; ) ps + P (t(s3 p), x(y; ) Dy
+epb(t(s; ), x(y; p), E(p)) + p' 7 b(t(s; p), 2 (y; p), Vo)
+ 0 b (U(s; p), 2 (y; p), Dy) + elt(s; p), x(y; p))]uls, ), (43)

where v (€ Q) >0, D; =Dy, o; = 0:0(s,y;p), vj = 0y,0(s,y; p) and so on. We
choose k,¢,v € Q as follows:

{ k= (uo+ 1 +X)8)", & =po+5, 4)

(1= k(s +9))/2,

14

where X = min{1/2, (1o — 11)/(36)}. Then we have
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{O<(5’;-g<17 v>0, 20k+2v=1-—rk(u —90), (4.5)

20k 4+ v >2—2uk, 20k+20>2— 28K+ 2v.

It is easy to see that there are r € Z, continuous functions oj(6; Z) defined in
[0, 6] (1 <k <) such that 04(0; Z) € C*°((0,6¢]), 01(0; E) > 0, the o1(0; =) can be
expanded into formal Puiseux series of # and

q(t, E(0))
m—=2r

T~ to— (20 + 0x(8:2)) T~ to— mrc8:3)) (> 0),
k=1

=1

where [])_,--- =1 and {7;(6;E)} is rearranged so that 7,(6;E) = 7,,4(6; Z) for
1 <k<r and Ordgomy1i(6;E) =00 or m(0;=2) <0 for 1 <I<m—2r and
0 € [0,6y]. Note that we can take r = m/2 if ¢, > 0. By (4.2) we have

IT(p™") —7i(p™" E)|/2
<|t(s;p) = 7i(p " B) < 3|T(p™") — 75(p™ " E)| /2 if [s| < co/2.

This gives

Ordy—oc(T(p™") = 7(p™" E)) = Ord oo (t(s; p) — 75(p™"; E)),
Ord,—cca(t(s; p), E(p™ ")) = =20k (4.6)

if |s| < ¢o/2. Here o = Ord . a(p) means that, with ¢ # 0, a(p) = cp®(1 + o(1)) as
p — oo. Write

a(t(s; p),E(p™") +ep ")

= a(t(s:p),2(p™")) + o~ "(,a)(t(s: p), Elp~"))my

Jj=1

+p RN (E (s p) )y (4.7)
Ji=1

for n € C". Noting that a(¢,£) > 0, we have, with C,C" > 0,

[(0,a) (t(s; p), E(p™"))]
< Cva(t(s;p),Z(p~r)) < C'p % if |s| < ¢p/2. (4.8)
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Since &'k —1 < 0, (4.1) with g = p; and é = &(0,2°) # 0 yield
epb(t(5: p), 2(y: p), (o) = p "D (52(5,2%) + 0(1)) as p— oo (49)
if |s| < ¢p/2 and |y| < 1. Moreover, there is s9 > 0 such that sy < ¢y/2 and
{eé(s,2"); |s| < 50} N (—00,0] = 0. (4.10)
It is easy to see that

2k +2v=1—k(um —6) >2—-28k+20>2— 8K+ v — ok

=26k +v if X=1/2, (4.11)
26k +2v=1—r(u1 —6) > 20k +v>2— 8K+ v — ok '
22—2§,I€+21/>0 le:(/l,()—,ul)/(?)(S),
2-20k—v <0, 2—k(6+28)<0.
Put
70 = (26K +2v) — (2 — 28k + 2v) (= 2k(1 — X)6 > KO),
ly
e(s.yi0) =Y p " or(s,y5p), lo=—[—v/v] -1,
k=0
where [a] denotes the largest integer < a, i.e., —[—a] is equal to the smallest

integer > a. We note that Iy =0 if X = (uo — p1)/(39), i.e., if po — p1 < 36/2.
Then, by (4.3) — (4.8) and (4.11) we have

exp[—ip”@(s,y; p)|Py(s,y, Ds, Dy){explip”¢(s,y; p)|u(s,y)}
= p®" 2 004 (5,55 )7 + ep™ 7 b(t(s5 ), 2(y; ), E(p77))

ly

+ ) 7 200.4(s, 43 p)@rs (5,53 £) + RE(5, 53 500, 0r1) }

k=1
+ p L 2005(8,; p) Dy — ipo.55(5, 55 p) — p2 20T G (4 (55 p), E(p "))
n
—ep® ORI N (e ) ((s; ), Elp )0 (5, 3 p)
=1

+ 61,00" " @1 (8,95 p; ¢0)
+ p YE L (5,9, Dy, Dy pi 0o, 5 1) Huls, ),
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Where(s Y, p )GQ [ SOaSO]XVbX(O?pal]a%:{yERn; |y|§1}7L€Na

(s, v; p; o) Z a;k(t(s; p)) 00 (5, U3 )P0k (5,55 )
j,k=1

the oi(s,y;p) are bounded continuous functions of (s,y,p7') € Q and their
derivatives with respect to s and y are all bounded and continuous in
(5,9,p71) €Q, s = Ospr, Prss = 020 and so on. Here the ®%(s,y;p;po, -,
¢r—1) are functions of (s,y, p~1) € Q, which depend on ¢o(s,¥;p), =+, Pr_1(8,; p)
and their first order derivatives, and the DI DS® (s, y; p; 0, wr-1) (j € Z4 and
a € (Z,)") are bounded and continuous in (s,y,p”') € Q. Z°(s,y, Ds, Dy; p;
o, -+, ) 1s a differential operator of second order, whose coefficients are
functions of (s,y,p ') € Q and depend on ¢y(s,y;p), -+, ¢i,(s,y;p) and their
derivatives up to order 2. Moreover, the derivatives of the coefficients with respect
to s and y are all bounded and continuous in (s,y,p) € Q. It follows from (4.9)
and (4.10) that

ep™ " =0(t(s; p), (y: p), Z(p ")) # (—00,0] for (s,4,p7") €

with a modification of p; if necessary. Define

eo(s,y; p ——z/ \/Ep M 0b( (s p), 2 (y; p), E(p7)) dT

+Z|y| for (s,y,p1) € Q,

where /z for z ¢ (—o0,0] is the branch satisfying Re/z > 0. Then there is ¢; > 0
such that

Im (s, y; p) > c1(so — 5) + |yl

o.s(s,y30) = \/Ep H=0b(E(s; p), (y; p), E(p")) # 0

for (s,y,p~') € Q. So we can determine inductively (s, y; p) (1 < k < ly) so as to
satisfy the equations

20,5 (5, Y5 P) Pk, (5,43 p) + PL(s, 95 0300, -+, pr1) = 0,
SDk(So,y; P) =0
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(k=1,2,---,1y). Next, putting

o0

)~ > p s,y p),

7=0
we determine inductively {u;(s,y;p)};_o;.. S0 as to satisfy

200,5(8, Y5 p) Dswj(s, Y5 p) — ip0,ss(8, ¥; p)uj(8, Y5 p)
—pP AR g (455 p), Z(p ") Jus(s, i p)

n

—ep® ORI (9ga)(t(s: ), E(p)) 0 (5,5 )i (5,45 )
s

+61,,00" "R (5, Y5 3 o) (s, 3 p)
+$g(sa Y, Dy, Dy; P Poy ,golo)u]-,l(s, Y; P) =0,
uj(s0,y;p) =0

(j=0,1,2,--), where u_i(s,y; p) = 0. Let x(s,y) be a function in C°(R x R")
satisfying x(s,y) = 1 near (s,y) = (s0,0) and supp x C (0,00) x Vp, and put

=

uN(s,yip) =Y p I Eexplin”o(s, s p)lus(s, vi p)x (s, )

.
I
o

Then, applying the same argument as in Ivrii-Petkov [4] we can prove
Theorem 1.3.

5. Proof of Theorem 1.4.

Let n =2, and let (t,z°,&%) € [0,00) x R? x S! satisfy a(ty, &%) = 0. In this
section we assume that the hypotheses of Theorem 1.4 are fulfilled, and that the
Cauchy problem (CP) is C*™ well-posed. By assumption we take e(t,£) and the
a;j(€) in the condition (A)l(tg,fo) to be real analytic. Let e be a vector in S! satisfying
e &%, and choose 6y > 0 so that Ty = {\(£ + fe); A > 0and |0] < 6y} C ', where
is as in (A) 10,00 Since n =2, I' is a conic neighborhood of & We put

a*(t,0) = a(t, +0e), e*(t,0) = e(t, £ + Oe),
G (t,0) = (t—to))" + a1 (& £ 0e)(t — t)" " + -+ + am (&0 + Ge),
bE(t,0) = b(t,2°, 0 £ fe).
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Since the a;(£’ 4 fe) are real analytic in 6, with a modification of 6, if necessary,
there are ry € Z, and real-valued continuous functions 7(f) and oif(6)
(1<k<rs) and 759(0) (1 <1<rgs) defined in [0,60] such that 2r. =m if
to >0, the 77°(0), the oj:(f) and the 75;(f) can be expanded into convergent
Puiseux series in [0, 6], '

(O <75 (0) <

o) >0 (1<k

<7 (0), T5,0) < <7, (0) <0,
<rs

)

60 = T[( —to— 7@ + O [ to—720) ()
k=1 =1

for 0 € [0, 6], where rp =m — 2ry. Note that

7 (0)=0,(0) =75;(0) =0 (1<k<rsy, 1<I<r),

and that
() # Tj(G) for 0 € (0,60) if 7i£(0) # 73(9) in [0, 6],
r(fl(e) * T(fﬂ(ﬂ) for 6 € (0,6y] if 7'53(0) e Toi,#(ﬁ) in [0, 6.
Let us consider only the “+” case, since the “—” case can be treated similarly. Let

r € N and \;(f) (1 < j <r) be continuous functions satisfying

0 < A(0) < Aa(B) < -+ < A (),
{(to + 7 (0) —to, -+, (to + 7, (0)) . — to}

if m=2r,,
{0), - A\ (0)) = . o
{0, (to + 77 (0)) . —to, -+, (to + 7,0 (0)) . — to}
if m>2r,

for 6 € [0,6p]. We may assume that |7, (0)] <1 and |7;;(0)| <1 for 1 <k <ry,
1 <1<ry4+and @ € [0,6y], modifying 6, if necessary. It follows from Theorem 1.3
with Z(6) = &° + fe and Lemma 2.2 that

2y, Cly; (1<j5<r), (5.2)

where I'j; and T, denote the Newton polygons of a*(ty+ \;(f) +¢,0) and
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to* (to + \;(0) + t,0), respectively. We put

= Ordgypo; () ( >0) for1 <k<ry,
kjx = Ordgo(N(0) — 77 (0)) (>0) forl1<j<randl<k<r,
k0,40 = Ordgjo(Aj(0) — 75,(0)) (>0) for 1 <j<rand1<I<r.

First consider the case where 6 € [0,6] and (o — 1), <t <ty + A(#). Similarly
we can deal with the case where ty + A\ (0) <t < ¢y + 1. Note that there does not
exist (t,0) € [0,00) x [0,6)] satisfying (to — 1), <t <to+ A (0) if to+ Ai(0) = 0.
So we may assume that ¢+ A (0) >0, 1o+ =0 and ry =m/2. Write t=
to + A\ (0) — 7, and put

Qli{(T, )ERX[O 90} 0<T<A1(9)+t0*(t071)+}.

By (5.1) we have

a(to + M (0) — 7,0) =~ 721 H(T2 + 6%1+)  uniformly in Q,
kel

i.e., with C > 0,

CTen TI G +079) < a*(t + M(6) = 7.6)

kel

< O H(TQ + 0%y for (1,0) € Q,

kel

where A1, =min{2k 4,4} (>0), m=#{k€ N; k<r; and £ =00} and
I ={ke N; k<ry and Ry < oco}. Therefore, we have

r—T1

at(ty+M(0) —7,0) = " Z P2re=n=0gne yniformly in Q,
1=0

where 1g=0and 0 <vy; < oo (1 <!<ry—ry). This gives

ry—T

rm_ch[U (10,201 = D)} + (B))] (5.3)

On the other hand, we have
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oo [to +M(0) —7—(] = 12171%1, [A1(0) — T —X;(0)] = 7. (5.4)

We can assume without loss of generality that b"(¢,6) #Z 0. Then there is [ € Z
satisfying (91b%)(to + M\ (0),0) # 0 in 0. So we can write

bt (to + M (0) — 7,0) = Zﬁl,k(ﬂem%/a Bro(r) # 0, (5.5)
=0

where L€ N and (€ Q) >0. Note that the [1;(7) are analytic in a
neighborhood of (—oo,ty + A1(0)]. (5.2) gives

20 + 2pfi > min{v + py; (v,u) € Ty} if (7,4) € T and p > 0.
Tending p to oo, by (5.3) and (5.5) we have
Ord‘rioﬂl,k(T) Z r — 1 lf ﬂl,k('r) §é O (56)

Put A1 = c; R1x/2. From (5.5) and (5.6) we can write

Tt + M(0) —T,0) = Y BT By (r, )0
0<k<(h1—in)L

Here the £ 1(7) are analytic in 7 and 8, (7, 0) is continuous. For 0 < k < (4, — 1)L
we can also write

TBKT) =T D B + ()T,

0<j<ry—r

where (3 ;; € C and BM(T) is analytic. If 8y # 0, then (&, + k/L,r1 +j) € F1+,1
and, therefore, (2(21 +k/L),2(r1 + j)) € T§;. So we have, with C > 0,

FrHignk L < CVa*(to+M(0) —7,0) for (1,6) €

if 0<k<(f1 —01)L, 0<j<ry—r and By, # 0. This, together with (5.4),
yields

in [tg+ A (0) — 7 —C| - [b"(to + M (0) — 7,0
cmin [0 M (0) =7 = (] b7 (to + M (6) = 7, 0)

< Cvat(ty+ M (0) —7,0) for (1,0) € Q.
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Next consider the case where 1<j<r—1, 8€[0,6)] and A\(0) <t—ty<
(A\j(0) + Aj+1(0))/2. Similarly we can deal with the case where 6 € [0, 6] and
(Aj(6) + Aj1(0)) /2 < t — to < Aj4a(6). Put

Q= {(r,0) € Rx[0,60); 0<7<c},
where p; = Ordgo(Aj41(8) — A;(6)) and

C; = lim 207"07‘(Aj+1 (0) - )\](9))/3

—+0
Then we have
(Aj+1(0) = A(0))/2 < ;6" < 5(Aj1(6) — A;(6))/6
for 6 € [0, 6p], modifying 6y if necessary. (5.1) gives

at(to+ N(0) + 76", 0) = [] (07 +0%%) T 67

kE[L] kGIQJ

X H grik H Ovit H (0P + @™4t)  uniformly in ﬁj,

k'Efs,] lEI[),j lEIé_]

where &j; =min{2k;i, v}, Lij={ke N; k<ry, kjp=o00 and R;, <oo}U
{ke N; E<ry and 77(0) <X;(0) for 0 € (0,00]}, I;={ke N; k<r, and
l%j,k = OO}, 13,]' = {lﬂ € N; k< Ty and I{¢ Ilvj U IQJ‘}, IOA,j = {l € N; 1 < 70,4 and
Ko = 00}, and Ié’j ={le N;1<rys and kg ; < co}. Therefore, we can write

a+(t0 + )\/(9) + Tepj, 9)

'

o 720 Z(HPJT)T;LZH"J{J uniformly in ﬁj, (5.7)
1=0

where 1, = 1y + #10,j/2, 6; = pjr; + Yoper,, Rik/2, 7 = 2(#115) + #1 4, Vi =0
and 0 < V;-J <o (1< ’I“;-,). Here we have used the fact that

02772 0%k~ (6P7 + 0%+/?)2  uniformly in ﬁj.

Let fg,j be the Newton polygon of a™(ty + Aj(0) + 76"/, 6). Then we have
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N

<

I

Fo = ch {26+ i) = 1) + v} 20+ 7 = D} + (R,)?)]

1=0
= (W@ f) € R* 7+ (pj+p)ii > min{v + (p; + p); (v, ) € T ;}}-
p>0
On the other hand, we have
i to+ N;(0 ori —
(it o+ M0+ 7=

= min |\;(0) + 76" — N(0)| = 76" uniformly in Qj. (5.8)

1<l<7

We can also write

o0

b (to + Aj(0) +707,0) =Y Bia(r)0H . Bio(r) £ 0, (5.9)

k=0

where L € N, 7/(€ Q) >0 and the B,(1) are polynomials of 7. Similarly, it
follows from (5. 2) and (5.7) — (5.9) that

21—?/ (- Fo N

. " !
pj+ Vj 26+ olgr;lsejf{p'j(rj -0+ Vj,z}/Qa
Ord. o 4(T) > =1

. t (0 oPi — . b+ t (6 o 0
[t X5(0) 8% = [ b7 (0 4+ Xy(0) + 767, )

< C\Jat(to + Ai(0) +707,0) for (7,0) € €,

where F+ denotes the Newton polygon of 7671b* (ty + \;(0) + 76%7,6). Therefore,
by homogenelty the condition (L)(to,zo,i“ with I replaced by I'y is valid, which
proves Theorem 1.4.

6. Proof of Theorem 1.7.

Let (tg,2°,£%) € [0,00) x R™ x S"1 satisfy a(ty,£") =0. In this section we
assume that the hypotheses of Theorem 1.7 are fulfilled. Moreover, we assume
that the condition (L)g 0. 0) is not satisfied. Choose 6 > 0 so that (¢,£) € U x I' if
|6 — &P + |t — to]> < 6% and ¢ > 0. We put
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A={(t.&y) € R |6 =P + [t —to* < 8% t>0and y=q(t, &)},
B={(t,&y) € R"% ¢ =P + [t —to)” <& t > 0and y = |b(t,)[’},

C={(t&y) € B 6=+t~ <&, t>0and y = min |t —7),
TEX

where b(t,€) is as in (A=) 4, 0 ¢0)- It is obvious that A and B are semi-algebraic
sets. Since a; = (a+ |a])/2 for a € R and, with A; = {({,\) € R™™; A\ = a;(¢)}
(1<j<m),

C={(t;&y) € ™% [ =P + |t —t|> <&, t >0, and there are
(EA)eA(1<j<m)and 75,05, € R(1<j<m)
such that 7; > 0,

m

(t() + 7']-)2 = ?]2, s+ )\lsm,1 oA, = H(S —r— iO'j)
=1

for s € C, |t — (to + 11 +71) /21 < [t — (to + 72 + 72)/2[*
<o <t = (b + T+ Tn) /2] and y = |t — (to + 71 + 71)/2]°},

C is a semi-algebraic set. Put

A= {(p,t,£,\) € R"™; there are y,u,v,w € R satisfying
(tagay) € Aa (t,f,u) € Ba (t,g,’l}) € C, PY = ]-a
w((|€ =P + [t —to]Hpuv + 1) = 1 and X = puvw}.

Then A is a semi-algebraic set and

A= {(p’t)§7 >‘) € R”Jr?); |€_£O|2 + |t _t(l‘2 S 627 t 2 0; PQ(taé) =1
and A = p min |t — - [5(t, )

TER
x (1€ — € + [t — to|*)p min [t — 7> |b(t, &) + 1)}
TEX(E)
For p > 0 we put
K(p) = {(t,§) € B"; ¢ = &P + |t — to|> < &%, t > 0 and pq(t, €) = 1}.

Then K(p) is compact and there is py > 0 such that K(p) # 0 for p > py. Indeed,
we can take
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pot = max{q(t,£); 1§ — &) + |t — to]* <&, and t > 0},
since a(ty, ") = 0. This yields
{p€R; (p,1,&,\) € A for some (t,£,\) € R"™} D {p; p> po}.
Therefore, we can define
f(p) =sup{\; (p,t,& ) € A for some (¢,€) € R}

for p > py. Note that

pmin, g |t — 77 - [b(t, )| ,
€ — & + [t — to*) pming e |t — 7| - [b(£,€)]* + 1)

(t.¢) € K(p)} (6.1)

1 =]

since K(p) is compact. It follows from Theorem A.2.8 of [3] that there are

continuous functions T(p), Z(p) and A(p) such that T(p), Z(p) and A(p) can be
expanded into convergent Puiseux series for p > 1 and

(pto+T(p),Z(p), Ap)) €A, f(p) = Ap) (=0) (6.2)

(see, also, [9]). Since the condition (L), .00 does not hold, there is {(ty, &)} €
U x T satisfying (¢, &%) — (to,£°) and

min [t — 7] - [b(tr, €)]/1/ alti, €) — oo (6.3)
re#(6)

as k— oo. Put 6, = (|¢F — € + |t — tx|)Y* and pp = q(t, &) . Then we have
6 — 0 and pp — o0 as k — oo. (6.2), together with (6.1) and (6.3), gives

N in |t — 7 - |b(ts, &)
(Pox) _karEI%)I k= 7|7 btk )]

x (82pp min [t — 7> - [p(tr, ) + 1)
TEX(E)

— o0 as k— o0,

since 6, — 0 and ppmin gy [t — - |b(tr, €)]> — 00 as k— oo. So we have
A(p) — oo, which implies that



On the Cauchy problem for hyperbolic operators 131

min fi+7(p) 7| - 6t + 7o), (D atto + T(0), E(p)) — o0,

(T(p),E(p) — (0,£")

as p — oo. If we put T(A) = T(6~1) and Z(h) = Z(0~"), then T(9) and Z(6) satisfy
the condition (C),, ,0 «) except for to +T(6) > 0. If tg + T'(0) = 0, then, with N >
1 and T(0) replaced by T(6) + 6V, (C)ty,20,¢0) is satisfied. By Theorem 1.3 the
Cauchy problem (CP) is not C*° well-posed. This proves Theorem 1.7.

7. Some remarks and examples.

Colombini, Ishida and Orri proved in [1] that the Cauchy problem (CP) is
C*> well-posed if b(t, z,&) = b(t, &) and there are k € N and C' > 0 such that k > 2
and

k
D 1dfa(t, )] #0  for (t,€) € [0,00) x S,

7=0

b(t, &) < Ca(t,)"* V% for (t,€) € [0,00) x S™L. (7.1)

The following two examples show that (7.1) is not a necessary condition for C*
well-posedness.

EXAMPLE 7.1.  Let n =2, and let a(t,&) = t2(t& — &) and P(t,z,7,§) =
2 —a(t,&) + by(t)T + b(t, &) + c(t). Assume that b;(t) (j=1,2) are real analytic.
Let t) >0 and & = (&,&) e S! satisfy a(to,go) =0. Then we have & #0,
to = &3/€), and #(¢) = {Eg/fl} in a conic neighborhood of (t,&) = (¢4, £"), where
Z(€) is the set defined by (1.1). It is obvious that (1.2) is valid in a neighborhood
of (t,&"). Let ty =0 and £ € St If £€) # 0, then (1.2) is also valid in a conic
neighborhood of (ty,£%). Assume that & = 0. Since 2(€) = {0, (&/&).}, (1.2) is
valid in a conic neighborhood of (0, ) if and only if

b(t, &)| < C{t¢] + |té1 — &} in a conic neighborhood of (0, £0).

Therefore, by Theorem 1.5 the Cauchy problem (CP) is C* well-posed if and only
if b;(0) = 0. On the other hand, in (7.1) we can take k = 4 and (7.1) is valid if and
only if there is 8(t) € C*([0, 00)) satisfying b(t,£) = B(t)t(t&1, — &2). This implies
that (7.1) is not necessary for C* well-posedness.
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Assume that P(t,z,7,£) = P(t,7,§). Let n' € N satisfy n’ < n, and write 2/ =
(3:1, coosxy) and 7 = (xyiq, 0, @) for @ = (21, 2,). As P(t, Dy, D,) we take

P(t,Dy,Dy) = P(t,D¢, Dy, ,Dp,0,---0). Then the Cauchy problem (CP) for
ﬁ(t, Dy, D) is C* well-posed if the Cauchy problem (CP) for P(t, Dy, D,) is C*
well-posed. This implies that a necessary condition for P(t, Dy, Dy) is also a
necessary one for P(t, Dy, D,). In the next example we use this fact to obtain a

necessary and sufficient condition.

EXAMPLE 7.2.  Let m; € Z; (1<j<n), and let a(t,&) = t™& + & +
st and P(t,z,7,8) = 70 — a(t, ) + bo(t)T + b(t, &) + c(t). Let us prove that
the Cauchy problem (CP) is C* well-posed if and only if

0(0)=0 for1<j<nandk</[(m—1)/2] (7.2)

If (7.2) holds, then we have, with some C > 0,

min |t — 7] - [b(t,€)] < Cv/a(t, &) for (¢,€) €[0,1] x S"L.

TeZ(£)V{0}

Therefore, it follows from Theorem 1.2 and its remark that the Cauchy problem
(CP) is C* well-posed. Assume that the Cauchy problem (CP) is C* well-posed.
Then, for a fixed j with 1 < j <n the Cauchy problem (CP) with n =1 and
P(t,7,&) replaced by P(t,7,& ;) is also C*™ well-posed, where e; € R" and the
k-th component of ¢; is equal to 65 (1 < k < n). It follows from [4] or the proof of
Theorem 1.3 that (7.2) is valid.
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