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On algebraic Lie algebras.
. By Morikuni Got.

(Recieved Oct, 25, '1947.)

Introduction.
L )

The classical theory of linear algebraic Lie groups and -the associated
Lie algebras by I.. Maurer” has been modernized recently by C. Chevalley
and H.-F. Tuan® by using the concept of “replica’ which was invented
by the former of them®. '

Let K be a field of characteristic 0. A Lie algebra £ of matrices over
K is called linear algebraic (L-atg.)® if évery replica of each matrix Xel
belongs to L. If &K is the field of all complex numbers C, any l-alg. Lie
algebra is the Lie algebra of a linear algebraic Lie group, and vice versa.
This thegrem, due to Chevalley and Tuan’ 5 Justlﬁes the definition of
l-algebraicity. o :

The theory of l-alg.. Lie algebras has already been established by
Chevalley and Tuan. But as their proofs have been reported only in the
outline, we shall first give in this note a systematic approach to the theory ;
our methods will be somewhat different from theirs. ' )

We shall then study the *“ algebraic closure” (sce §4) of any Lie
algebra of matrices. Our Theorem 4 is an extension of a theorem of

t

Chevalley and Tuan,

Then we shall give an extension of the theory to, not necessarily
matric, aleebraic (alg.) Lie algebras. Namely we shall call a Lie algebra
alg. if its regular representation is l-alg. Then as we may easily see that
“any l-alg. Lie alﬁcbra is itself alg., our aidcblalqty is certainly an exten-
sion of l-algebraicity. Our fundamental result is vaen in our Theorem 5,
which indicates the complete connection between alg. and 1- -alg. Lie algebras.
And Theorem- 6, which is an immediate consequence of our proof of
Theorem J, gives a characterization of an a]g Lie algebra of matrices.

The present study is closely related to recent w orks of Y. Matsushlma
on the similar subject and the writer is indebted to him for various discus-
sions®. In particular Theorem 5 was proved by him independently in the -
case of Lie algebras over C by an analytical method using our
the result was used by him to give the characterization of Lie Groups
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corfesponding to alg. Lie algebras. .

In conclusion let it be mentioned that our problem is of purely alge-
braic nature and the writer has tried to treat the problem by algebraic
methods.

§ 1. Dreliminaries. l.et K be an algebraically closed” field of charac-
teristic O and M a celtam n-dimensional vector space over A’ Linear
transformations on 9)¢ and the matrices which represent them are conven-
tionally denoted by the same symbols A, ¥, ...... For simplicity we call
a nilpotent matrix an »-mafrix, a matrix with simple elementary divisors
an s-matriv, and an s-matrix whose eigenvalues are all rational numbers
(elements of the prime ficld) an 7-matriz. Then the set {X} of all
replicas of A" is given by the following lemma:

Lemma 1% 1If '

X=X+ X=X+ X"+ ... X (1),
is a decomposition of a matrix X" into an 7- matn\ X’ an s-matrix X* and
~matrices X7, ...... , X% such that ) ’

A XI=XIX" 7, 7=0, 1, 2, ......, £

and §’s are linearly independent with respect to rational numbers, then
(X} =1 X+ X"
e o ' ’ ,
= Abelian linear space spanned by X°, X7, ......; X%

hY

- Remark. . We shall call the decomposition such as (L) ““canonical’.
A canonical decmupmltxon is given by reducing X to the Jordan normal
form, denoting its diagonal part. by A7, and’ representing its eigen-values as
linear combinations of suitably chosen ¢’s. Thus X” and X* are determined

uniquely by A, while P, G , X% are not. But if we fix a Ilamel basis

(linearly independent basis with respect to rational numbers) of A, we get
uniquely a canonical decomposition such that ¢’s are 4aken from the basis
and all X7, ...... , X* do not vanish.

Lemma 2‘°>. Let W be any subspace of 9 such that X < 9)}’.
Then {X 9 < M. : ‘

Let € be a lie algebra with a finite bams over A, and for a, €% let

[x, ] denote the commutator product of 1 and 7. Let new G(n, K) be .

the Lie algebra composed 'of all matrices of degree # over K with the

!
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commutato;‘ multiplication [X, V]=XY—VYX. By a Lie algebra of matrices
we mean a I‘ie\suballgebra of a certain G (7, K).

Lemma 3. Tl.et & be a nilpotent Lie algebra of matrices. Then the
space 9 on which € operates can be decomposed into the common eigen-
spaces : M=, + N+ ...... (Ifach M, is contained in an eigen-space of X
for every \'cQ.) |

Lemma 4. If [X, ¥"]=0. then

’

HXE {VH]=0 and {X+V}S{Xj+{1}

= |

Proof. The former part follows easily from [.emma 1 and 3.
To prove the latter, we first fix a Ilamel basis & of KA. Then by the
remark above we get canonical decompositions

.

N=X 46X 4. +&.XF,
V=148 L TR
where &, oo, §05. As [{X}, {¥}]=0,
X+ V=(X"+1) +5(X'+ V") +...... + & (Xt 4+ VF)

is clearly a canonical decomposition of X+1. Hence {X+1! a{X}’
T 4T, ged. |
Lemma 5. If SpX'=0 then Sp{X | =0.
‘ Proof. Tet X=A"4+7X"+...... + £, X* be a cononical decomposition
of X. Then

SpX= Si)X“ +5SpXT ... +&:SpXE.

As SpX=SpA°=0, we have

\

ESpXT ... +ESPAF=0,

From the linear independex‘lce of &s we get SpA“=0, /=1, 2, ...... , A
Hence Sp! X }=0 by Lemma 1, q.e.d. : :

Definition. A (Lie) subalgebra € of *®(#, K) is called ““ l-alg.” if | X'}
< Q for every Xeg. o

Iet now © be any distributive algebra (associative or not) with a
finite basis over A. If a linear transformation A on D satisfies the relation

H(x xpy)=Hxrxpy e Iy for every 4;,;!(3);
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we shall call /7 a “derivation”*of D; x being the multiplication symbol
of D. Then all derivations of D form a I.ie algebra /(D).

Theorem 1.” £ (D) is lalg. for any disiributive algebra .

Proof. l.et Hc¢Z(D). We shall prove that {//} < Z(D). With
respect to the linear- transformation 7/ we may decompose D into - eigen-

spaces : . ,
D=V + D+ ... S
where (.1', N are eigen-values of 7. "Then we get’ easily
D XDy © Darn o Q)

where we put D,.:=0, in case «+J3 is not an eigen-value.  Now let
H=H'"+H'=H'"+§H'+ ...... +£./% be a canonical decomposmon of A.
By (2)° we 'may show aqlly that Z/%el: ('-3), and thelefoxe HeE(D)™,
Hence the problem is reduced to the case when /7 is an s-matrix. There-
fore by a suitably chosen basis b Ceeees » 4, of B, we may represent H as
follo“,s

Hiy,=a,x, i=1, 2, ...... , 7. (3)

Let the structure of D be given by n,xzj Zc,,ha,h That_H (D)

means-

N (2 + a;— ) "ijh=0- “4)

for all 7,7, 4=1,2, .....,. H' 1=1,2,...... , in the canonical décompos.i-
tion of // imay be defined by

S 3% — N
B H;L,-——ra-;l,- ) (/.c-—*-}_(\[ri
Z

where 7’s are rational numbers. (4) is_a trivial relation for c,j,,—-—O But,”
when ¢, #= 0 it gives a,-+uj—r/,, 0, or

}l_.‘ (45— §=0.

From 'the linear independence of §’s we get then 7{+75—7=0, or (+i+7}

~13)ei;n=0. Thus in any case the relations (5) are satisfied for ;=71
This shows nothing but that Z’cZ(D). Therefore {//} S (D), q.e.d.

- Now let D be a Lic algebra over A. Then a linear transformation
defined by

A
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xr— Yyr=[y, x] for x;,yeﬁ}

is a derivation of D by virtue of the identities of Jacobi. Such derivations
are called “iénner””  All inner derivations of ® form an ideai 7(D) of
£(D), and the correspondence 7 — ¥ is a linear representation of D, called’
(left) regular representation. 7 | . v

- Now let Xe® (%, K). We may easily see that accarding as X is an
n-, s-, or r-matrix, X, as a linear transformation of &(#,K), is also an
7=y §=, OF 7= -matrix reSpectlvely”) Hence if

X=X"+3X"+...... + & X*
is a canonical decomposition of X, then

X=X"4&6X"+..... +5,X*

is that of X. Therefore by Lemma 1 we get
(Xl={xy (%)

From we may conclude the following .

Lemma 6. Let £ be any subspace of &(», K). If [X,2] <8, then
X is an #-, s-, or r-matrix -according as X is an #-, s-, or r-matrix. We
get further [ , 8] 28, and _

={X}. ()

Here X etc. are considered as linear transformations on” .
Lemma 7. Let & be an l-alg. Lie algebra and let

L=L+ L +......

be the decomposition of & into eigen-spaces by a certain inner derivation X
of & Then g, is also l-alg - '

Proof. Let X=X°+ X* be a canonical decomposition. We may easily
see that the O-eigen-space for X* is equal to the O-eigen-space for X, and as
X* is an s-matrtx with X, (X’)”‘A =0, m=1,2,...... implies that [ X, 4]
=0.  Hence o

soe{A; fxn A1=01,

14

Then the l-algebraicity of &, follows from Lemma 4, g.e.d.
S2. L-alg. Lie algebras, I. Let § be a nilpotent l-alg. Lie algebra,
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Then the totality of s-matrices in L forms a central ideal 2, and that of
z-matrices in £ forms also an ideal B by virtue of Lemma 3. As £ is
l-alg.' € is clearly a direct sum of ideals ¥ and B.

Let now R be a solvable l-alg. Lie algebra and let

- R=Ro+Ra +...... (1)

be its decomposition by a certain regular® inner _derivation. Then as R,

is nilpotent and by l-alg. we get
| Ro=A+B.

!

- Hence

. ' m = SB + EHg + E}{ﬂ + ..... .
is the largest ideal composed of z-matrices. Therefore we gét
CR=A+R ANR=0;

here 9 is an abelian l-alg. subalgebra of R composed of s-matrices. " We
note also that 2 may be considered as {4} for some Ae3l.
Lemma 8. Let € be l-alg. Thén the radical R of £ is also l-alg.
Proof. I.et X=X°+ X* be any element of R. We decompose £ by
L=L+L+8+...... 2)

By Lemma. 7 from Xeg, follows {X} S % As XRESR we get the
decomposition of } by X as folloms:

CR=Re+ R+ R+ ... (€))
As X SR and X8,=28,, X8,=8, etc.,, me have & =NR,, 8,’,:3{5,‘ e s
whence €+ R=2. As R,=8 ~ R we get by the isomorphism theorem
' ' Lo/ Ro = 8/R

The right side being semi-simple, solvable R, must be the radical of %,.
On the other hand, we have as in the proof of [{x}, %]
=0, i.e. {X°} is contained in the centre of €. So {X,}S R, since the
centre is contained in the radical. Consequently {X} S R S R, q.ed.
Lemma 9. Let the radical R of & be l-alg. Denote by N the largest
ideal composed of n-matriées. (The existence of such M is clear, and -N,

AY
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bemor mlpotent belonO's to ER) Then there exists a semi-simple suBalgebra
& such that , '
L= +R, R=A+N, [S, Al= O
S n R=0, AN N=0,

where U is an abelian subalgebla composed of s-matrices.
Prodof. As R is solvable and l-alg.,

CR=A+N ‘at;{X}.

Suppose (1) and (2) 'represent the decom ositions by X of R and & res-
pectively. The proof of [Lemma &8 shows that R, is the radical of 80

Hence we have by a well known theorem of Tevi .
- ! . LO__—@-*-?RO)
where & is a maximal semi-simple subalgebra of €, Then it is clear that

L=C+R,

or S+ R is a Levi decompoqmon of . '
' On the other hand [Lemma 4 and [X, &,]=0 1mply [{ X , &1=0.-
Hence we get [@ ?I] =0, q.e.d. o
We shall call'a Lie algebra £(2 &(#, K)) as in “ normal.”’
Combining above lemmas we get '
Theorem 2. Any l-alg. Lie algebra is normal. :
Now, let & be a Lie alcebla over K and He E(R). If His a‘n’ n-
matrix™® : ' '
exp H=[+;L—H+~L Hi+ ...
‘ g 1! 2177 ’
a polynomial of 4, is an automorphism of € as we may easily verify. If
moreover //=Ael(8), the automorphism exp H=exp 4 is called “ inner .
Let now 8 be a subalgebra of & (%, K) and A be an 7z-matrix of L.
For any Xe® we have easily

(exp 4)X=(exp A)X(exp(—A)). O ®

‘Modifying a theorem due 'to A. Malcev, we can prove in a purely algebraic
. way the following '
Lemma 10™, Let
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-

L=G+R=C"+R

be two Levi decompositions of €. Then there exists an element 4¢R such
that 4 is an #-matrix and

- _ : \@*=exp AS L (4)
If in particular € is a subalgebra of &(n, &) we get \ ,
&*=(exp AS(exp (—4)) (=exp 48) ()

Proof. Let us call the ideal D(8)=[%, 8] of a Lie algebra. & the
“derived (Lie) algebra ” of & As any semi-simple Lie algebra is equal .
to its'derived algebra, @ and &* are both contained in /2(8). Hence we
may prove the Lemma in D(R). We note here the fact that the radical
of D(L) is composed of z-matrices in any linear representation of &, hence
of .course it ts nilpotent™. Next we note an obvious fact that if R is a
Lie algebra composed of n-matrices and X, VeR then exp X exp Y can
be written as exp Z for some ZeR. '

Then a method, similar to Malcev’s, of induction with respect to the

degree of the radical of D(8), applied to D(8), would easily establish the

lemma, q.e.d.
19)

Remark Lemma 10 (5) shows that for any Levi decomposition
~ 8=C+R of a normal Lie algebra there exists A such as in Lemma 9.
' §3. L-alg. Lie a[w’bmzs /1. In this paragraph we shall prove the
following :

Lemma 11.- Any normal Lie algebra is l-alg. :

When this lemma is proved, from the results of §2 we get immediately

Theorem 3. L is l-alg. if and only if & is normal. And the radical
R of & is lalg. if and only if 8 is lalg..

Proof of Lemma 11. Let & be an 1rreduc1ble Lie subalgebra of &
(7, K), and =G+ R be its Levi decomposition. Then by a theorem of
E. Cartan®™, either =0 or R is the one-dimensional centre composed of
scalar matrices. Since & is semi-simp e J(&)=£(&) as is well known.
As E(&) is l-alg. by Theorem 1, /(&) is of course l-alg. Then /(%)
is also l-alg. as we may see easily. ILet Xe®, Ve{X}. Then by Lemma
6 there exists ¥’ e & such that ¥— ¥'=0, or [(V—¥7), 8]=0. Since &
is irreducible Y—¥’=41, AeK, by so-called Schur’s lemma. Now if & is
not semi-simple, A1eg, hence ¥<€. For semi-simple €, we get Sp X=0,

!
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Sp¥’=0 and by Lemma 5 Sp¥V.=0 also. Therefore 2=0, or Y(=Y")eL.
Hence in any case XeQ imi)lies {X} &, in other words any irreducible
Lie algebta is l-alg. '

Next we shall show that any semi- slmple Lie algebra of matrices is
l-alg. Let £ be such a Lie algebra. By the well-known complete reduci-
‘bility of semi-simple Lie algebras the space P on which 8 operates can -
be decomposed into the direct sum of irreducible £-moduli

M=31 M,

As in the irreducible case, from Xe2, Ye{ X} follows [(¥Y—=Y"), £]=0 for
some Y’e¥. But as XIN, 2 M, we get VI, < M, by [ m Hence
" Y=Y is a scalar matrix on every ; by Schur’s lemma. ~On' the other
hand, from Spm,X=0 we get SpimiY—O by Lemma 5. Therefore

1]

- ’ Spm, (Y—-Y")=0, 7=1,2, ...... ,

which shows that V=172 Therefore € is [-alg.
Let now ¥ be a normal Lie algebra such that the largest ideal com-

posed of 7z-matrices vanishes. Then
L=+, [&,AI=0,
and & and U are both l-alg. Let X¢®. Then since

X=S+4, |S, 4]=0, S¢&, A,
(Xa{Si+{dlce+uce

by [ _ which shows that ‘8 is l-alg.

Next, let € be a general normal i.ie algebra. In qrder to establish
the lemma in this case we shall use the followmg

' Lemma 12®. Any Lie algébra composed of 7z-mdtr1ces can be defined

by its tensor invariants. ‘

Let X be an 7-, s-; or »-matrix and let & be any tensor space-allow-
able by X. Then the induced matrix X on I is #-, s-, or 7-matrix respec-
tively. . Hence we get {X}={.X}.

Now, let T be a sufficiently large space of tensor invariants of . the
largest 7z-matric ideal M such that any matrix which induces O matrix on
"% is contained in M. Then € inducesa representation on . Since S+
is l-alg,, ©+ induces an l-alg. representation on .Z; which .is identical
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" to the representation of €. TLet Xc®, Ve{X}. Then the induced matrix
of Y on £ is a replica of that of X, and it is contained in the representa-
tion because of the l-algebraicity of our representation of €.  Hence there
exists Y@ such that Y—¥” induces O matrix on €. Since ¥ is chosen
sufficiently large we get V—V’eM, or VeQ. This completes the proof of
Lemma TL. o l . :
§4. Algebraic closure-of a matric Lie algebra. Let £ be a Lie sub-
algebra of &(z, K). Then as ®&(», K) is l-alg. and the intersection of
any number of l-alg. Lie algebras is also l-alg., there exists the smallest
l-alg. Lie algebra which contains Q. We shall call it the *alyebraic
closure®™ ”’ of & and denote it by {&}. "
Lemma 13. ILet € be a nilpotent subalgebra of & (%, K). Then

181=2+3, -2NA=0,

¢

where 9 is a central ideal of {8} composed of s-matrices and & is an ideal
of {2}. o

Proof. Let X=X°+.X° be a canonical decomposition of a matrix
Xe®. Then by Lemma’ 3 the totality of such’ X¥’s forms an abelian Lie
algebra ;. Then {A;} is clearly an abelian Lie algebra composed of s-
matrices. Since for X=X+ X% and Ve®, [ X*, V]=0, we get [, 8]‘=O.‘
Then Lemma 4 implies [{2;}, 8]=0. Hence &,=8+{U;} forms a Lie
algebra. :

Let us show that &, is l-alg. If Xye@, then

Xi=X+d, Xeg,  Ae{Ui},
=X"+X°+4, [X° X'+A4]=0,
where X=X°+ X* is a canonical decomposition of X. Since X8+A€.{ Ast,
we get {X*+ A} c {U;}. Hence X%8,. As X=X+ (X°+4) is a cano-
nical decomposition of X;, we get {X;} £ &, ie & is l-alg. Therefore
clearly &,={%}. '
Putting ’ ' .
AN {211}:%[2: {%[1}'_'212‘*‘%[’ A, N A=0,
we get . : ‘ : ,
L,=2+%, L N A=0, g.e.d.
Lemma 14. If there ‘exists an element Xe§ such that &), the O-eigen-
space of X on &, is l-alg. and nilpotent™, then & is itseif l-alg..

.
[
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‘Proof., Let ,
/ ) v \8=20+2¢+.....;,

be the decompositions of € and the radical ‘R by an inner derivation X.
Suppose that € is l-alg. and nilpotent. We shall first prove that R, is
l-alg. Let ¥ be an arbitrary element of R, Then, by the nipotency of
€, the O-eigen-space &; of ¥V will contain " ¥,. Hence {' } 2% £ % Then
by a method analagous to the proof of [Lemma 3 we may easily conclude‘
that {V} S R. Hence {¥V} S Ry, i.e. R, is l-alg.

Then since R+ ...... is contained in the radical Jf D(E), it is com-
posed of #-matrices. Therefore, R= Ro+R.+...... is normal, and . by
Theorem 3 £ is l-alg., q.e.d. 7 ’ .

Theorem 4%. For any & S&(n, K),

{1=8+%A, 20 A=0,

where W is an abelian Lie alyebra composed of s-matrices. Any ideal of

is also an ideal of {R}, and »
Pr({8)=PME),  A=2,3,.... | | @)

where P %) a’e;zotes the ideal sfa;zzzed by all bracket pol;/namzal.» of degree

at least h.
It R denotes the radical of £, zf/zm {R} s the radical of L.
Proof. Let .

. 8280'{"2“"‘*‘..‘.’...
be the decomposition of € by a regular inner derivation X. Since
[{80}1 8“]2[80’ 80&]:201; (3)

we see that ‘ :
SRR W S
constitutes a Lie algebla . .

We shall first show that {530} N8=8, Since by g is an
ideal of {8}, & is also an ideal of {&}NL. But as we may see easily
that @, itself is the only subalgebra of € which contains &, as an ideal,
we get {&}NL=Y,. Since ¥, is ni_Ipoteni: we' have from Lemma 13
{8} =8+, ANL=0. Therefore ANL=0, and L ‘
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C2,=8+3

Next as [X, A]=0, {&,} is equal to the O-eigen-space of X in £, which
is of course l-alg. and nilpotent. Hence &, is also l-alg. by
Clearly {8} 2 &, and so we have that {8}=%,, or_ '

A Y

{8}=2+Y, .2 n A=O0. o 1)
Now, Lemma 13 implies |
P& =P"&), 72=2,3,.... R : (4)
From (3) and (4) we get eéls"ily by mathematical induction with respect
to 4 , . _ .
P =PNQ), /2=2,3,.5.. (@)

Next, let =S+ R be a Levi decomposition of & Then &=+ {R}
- 2D({8}) (=D(8)) constitutes a Lie algebra. Since the radical R, of
{8} is '-alg. and contains R, it must contain {R}. Hence we have 8N
R,={R}. This implies that {R} is an ideal bf & As (R) is solvable
with R it must be the radical of ¥’. Then the l-algebraicity of the radical
implies that of €. Thus we get & =18} ; ie. {R} is the radical of {€},
. q.ed. : ,

§5. Alg. Lie algebras.

Definition. Iet & be a Lie algebra over K. We shall call & ““alge-
braic” (alg.) if 7(8) .is l-alg. :

For example any Lie algebra £ such’that 7(2)=FE(8) is alg. by
Theorem 1. If a subalgebra £ of &(», K) is ’'-alg., it is also alg. by
virtue of Temma 6. Thus the algebraicity is an extension of l-algebraicity,
and any non-alg. Lie algebra has no l-alg. faithful representation. The
analogue to Theorem 2 is given by: ' C

Lemma 15. Iet £ be alg. By levi’s theorem  is a direct sum of
a semi-simple subalgebra & and its radical R: L=S+R. Let N be the
largest nilpotent ideal. There exists an abelian subalgebra A such that

R=A+N, ANN=0, [S, A]=0,

and in the regular representation of &, 3 is represented faithfully by' an
l-alg. Lie algebra composed of s-matrices.
Proof. Let 3 be the centre of & Put €+3=8&, (mod 3). Then
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as /(®) is l-alg., we obtain from Theorem 2 and Remark to Lemma 10
| 1)=&+ U+,

where ¥, is an abelian subalgebra composed of s-matrices and o, is the
largest ideal composed of xz-matrices. ILet A, N be the complete inverse
images of A;, MN;, respectively. Then N is clear]y the largest mlpotent
ideal.  Since [&,, A;]=0 we have [&, ,] 2 3, so [&, [S, ,]]=0. Hence
._considering 9, as an S-module we get a nilpotent representation of &,
which must be O-representation because & is semi- simple.  Therefore [&,
%]=0. Now since € is completely reducible into one-dimensional irre-

ducible A-submoduli we may conclude that 9, is abelian. As ‘2[2f‘|%=8,

putting Wy=3+2A, 30 A=0, we get the result, q.c.d.
Remark. "The converse of Lemma 15 is trivial ; i.e. any Lie aldebra
which allows a decomposition as in Lemma 15 is alor

Theorem 5*. Every alg. Lie algebra has a Jaihful l-alg. representa- -
- tion (and conversely).

Proof.  ILet £ be an alg. Lie algebra. If the centre 3 of € does not
belong to D(%), we put ‘

| DE)0Z=3n" 3=38:+8, BZ0Z=0

and obtain :
DE)NY = .

Since any Imear space in & containing D (L) is an ideal of &, we get a

direct decomp051t10n of € into ideals :

=g+ 5’
where 3/ is a central 1deal and & is an alg. ideal such “that D(2') con-
tains ‘its centre. As an abelian Lie"algebra clearly has a faithful Il-alg.
representation, we have only to’ prove the theorem under the condition
that the centre of belongs to D(8).

As is well-known any Lie algebra over X has a faithful representation
by finite matrices®. Hence for simplicity we shall identify the representa-
tion with the given Lie algebra. ~In other words we shall suppose & to
be a Lie subalgebra of & (7, X), wlnch is alg. and such that /7(Q) contains

its centre. We note here the fact that the centre is composed of 7zmatrices,
because the radical of D(8) is composed of z-matrices. .

L]
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Let Q=S+ A+ N be a direct decomposition of § indicated by
15. We choose a basis 4y, ...... , A, of A such that 4,’s are »-matrices, .
linearly independent with respect to K. The l-algebraicity of % on € makes
the' choice possible. For a certain Hamel basis of X }

we get uniquely canonical decompositions

A=A+ EA+EA+ .. , h=1,2, ... , 7,
Hence we have _ '

A=A+ 5 A+ 645+ ... , h=1,2, ......, n, -
where A,, A}, A5 «........ are »-matrices and Aj is an #z-matrix and
they are commutative with each other. On the other hand, if a linear
chbination Eri+Ere+...... with rational coefficients is a rational number,
then 7,=...... =0. Therefore we get

A}).:O, A}u:‘Am T %==O- ' (1)

Now since 2 is abelian implies that [A4}, 4)]=0, and from the
linear independence of 4,’s follows that of A}’s. Therefore Ai's are also
linearly independent. Thus

¥

A, — A}, =1, 2, ... , 7,

gives a faithful representation of 2 by 1-alg. A*, which is.spanned by 4],
...... , A ' ’ )

Next NV=N°+ NV’%N. Since N is nilpotent the totality of such N"s
forms a Lie algebra * and ' '

N 1V——; V%Pt
gives a/ representation of M. Since N=N"+ N’ and N is an z-matrix we
get easily from ‘
‘ | N=0. DN°=N.. @
If N°=0 for some MNet we get from (2) N=0 ie. XV belongs to the

centre, whence AV is an #z-matrix, or N=N"=0. This implies that the
representation I — N* is faithful. .

»
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Let us now consider the correspondence

55 —> S* =5
W> A, — A= ALY
RV — N = N %P+

" By this correspondence any element of D (&) is represented by itself. Hence
from (1) and (2) we may easily conclude that the correspondence gives a
faithfyl representation of € by acertain normal Lie algebra, which is l-alg.
by Theorem 3, g.e.d. ' |

‘Remark. Let € be any Lie algebla over K, and N be the lardest
nilpotent ideal. Then there exists a faithful representation of € such that
N be represented by a Lie algebra composed of #z-matrices.

Proof. For an abelian Lie algebra it is obvious.  For  such that -
the centre beloncs to D(Q) it is also valid as we may easly see flOm our -
above proof. Combining these we get the resull ged.

Now, an alg. Lie algebra of matrices is not necessarily l—alg, and
" . there arises a question what sort of matric Lie dldebra alg. is. An answer
to this question is given by the following o

Theorem 6. Let § be a subalgelra of &(n, K). S is alg. if and only
if there exists an ideal N of & suck that ' ’

18 =A+L, A 2=0 (direct sum of ideals).

Proof. Let  be an alg. subalgebra of & (7, K). From the proof of
Theorem 5 we have a direct decomposition

2=8/+8/, 2/ 0-8,‘:

where 3’ is, a central ideal of € and D (%) contains the centre of €. By
- LlLemma 4 we get easily that

(RI={¥1 {8} [¥} {gH=0.
Hence if the theorem is proved for 2’ It is also true for €. Thus the
- problem is reduced again to the case when D(8) 2 centre of L.

Now as in the proof of Theorem 5 {NV°}, NGER and A, A3, A3, ......
(h=1, 2, ...... , 72) in (1) and (2) span an abelian Lie algebra A’ such
that ' ' ' -

[, A']=0. .
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Let R be the.radical of & Then as R+A is clearly a normal Lie
‘algebra, it coincides with {R} by Theorem 3. From Theorem 5 this implies
L+W={8} and we get a desired decomposition easily.

Conversely, if

[8}=2+%  enA=0, [L AJ=0,

then 7({%}) is essentially identical with 7(2). On the other hand, as any
l-alg. Lie.algebra is also alg,, /() is l-alg. and so is /(¥), or what is
the same € is alg., q.e.d. ‘
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