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1. Let D be an arbitrary connected domain and C be its boundary.
Let £ be a closed set of capacity”? zero, included in C and z, be a point
in £ Suppose that W=f(z) is a single-valued function meromorphic in
D. We associate with z, three cluster sets S, S{? and S} as follows :

SiP is the set of all values a such that lim f(z,) =a with a sequence {z,}
Vyo :
of points tending to sz, inside D. Sk© is the intersection NJZ, where

M, denotes the closure of the union USY for all s/ belonging to the

common part of C—£ and U(z, »): |z—z,/ <r. In the particular case
when £ consists of a single point z, we denote SE© by S{2 for the sake
of simplicity. - Obviously S and Sk® are closed sets such that Si©c
SP.and S is always non-empty while SX(® becomes empty if and only
if there exists a positfve number » such that C—Z£ and U(z, ») have no
point in common. :

Concerning the cluster sets S, S and SX@ the following theorems
are known:

Theorem I. (Iversen-Beurling-Kunugi)® B(S{?) C S:i2; where B(S{

denotes the boundary of S, or, what is the same, 2=SLD — SO is an open
set. :
II. (Beurling-Kunugi)® Swuppose that =SS is not
empty and denote by 8, any connected component of . Then w=f(s) takes
every value, with two possible exceptions, belonging to 2, infinitely often in
any neighbourhood of z,.

Theorem. I* (Tsuji)? B(SP) CSX©, that is, =SSP —SE? is an
open sel. ‘ ' ' '

II*. (Kametani-Tsuji)® Swuppose that 2=S— Sk is not
empty. Then w=f(2) takes every value, eicept a possible set of w-values of
capacity zero, belonging to 8 infinitely often in amy neighbourkhood of z,.

Evidently [Theorem I* is a complete extension of [Theorem 1. It seems
however that there exists a large gap between II and IT*.
The object of the present note is to show that under the assumption that D 7s

simply connected, IT* can be written in the form of II.
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Namely, the writer proposes to prove the following

Theorem 1. Swuppose that D is szmply connected and .Q SiP—SKO 45
not empty. Let 2, be any connected comporent of 2. Then, w=f(2) takes
every wvalue, with rwo possible exceptions, belonging to 2, infiritely often in
any neighbourhood of z,. ,

2. Proof of Theoresn 1. Without loss of generality we may suppose
that £, does not contain zw=c0. Suppose, contrary to the assertion, that
there are three exceptional values w,, w, and w, in £,. Then, there exists
a positive number 7, such that | ‘

f(5) Fwy, w, Wy »
in the cdmmon part of D and U(z,, ry): |z—2| <7y. Inside £, we draw
a simple closed regular analytic curve I" which surrounds w,, w, and passes
through zv,, and whose interior consists only of interior points of £,. By
hypothesis, we can select a positive number » ( <7,), arbitrarily small,
such that, X denoting the circle |z—z,| =7, KN (C—E) #0 and the closure
M, of the union US(I” for all ' belonging to the common part of C— £

and |z—z,| 7 lies outside I. Now, by an extension of Iversen’s theorem®,
either w, is an asymptotic value of w=/f(z)at 2, or there exists a sequence
of points 2/, in E tending to z, such that w, is an asymptotic value at
each z/,. Consequently it is possible to find a point 2/, (distinct from z,
or not) belonging to £NU(z, #) sich that 7o, is an asymptotic “value of
w=f(z) at z,/. Let A be the asymptotic path with the asymptotic value
w, at z/. We may assume that the image of A by w=/(s) is a curve
lying completely in the interior of I’ Consider the set D, of points z
inside the intersection of D and U(z, #) such that w=f(z) lies in the
interior of I Then the open set D, consists of at most an enumerable
number of connected components. We shall denote by 4 the component
which contains the asymptotic path 4. It is easily seen that the boundary
of 4 consists of a finite number of arcs of the circle K| a finite’ or an
enumerable number of analytic contours inside D and a closed subset £,
of E. Further it should be noticed that 4 is simply connected. For, any
connected component of the intersection DNU(z, ») is simply connected,
as by hypothesis D is simply connected, and the frontier of 4 contains no
closed analytic contour, since every analytic contour of 4 is transformed
by w=f(s) into a curve lying on the 51mp1e closed curve I’ passmg
through an exceptional value v,.’
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Here we apply Evans’ theorem” on the logarithmic potential, to find
that there exists a distribution of positive mass du(e) entirely on Z, such
that o B

1) w()= jloo’ — } dn(a), L?'p(a)=1

is harmonic outside £, excluding z= o, and has boundary value + oo at
any point of £,. Let v(z) be its conjugate harmonic function and put

@ =g @) == ()
for the sake of convenience, we shall call the function {=yx(2) *“ Evans’ fun-
ction.” Let C, be the niveau curve p(z)=const.=1 (0 <A<+ c0). Then
() consists of a finite number of simple closed curves surrounding Z,.
Let us use the niveau curve Cy: p(s)=24 and wv-line v(2)=const.=¢ in
the same manner as the circle [z|=2 and the ray arg z=60 in the theory
of mzromorphic functions for |z| < + eo. Further, Evans’ function has the

important property

3) jcizv@) =| 2% =2

Cy 0%

where ds is the arc length of (), and » is the inner normal of C,.
Let 4, be a fixed positive number such that for 4,<2 all the niveau curves
C, intersect the asymptotic path A. For 4,4, let 6, denote the common
part of the niveau curve (, and the domain 4; 6, consists only of a
finite number of cross-cuts and does not contain any loop-cut, as 4 is
simply connected. Denote 4(2) the common part of 4 and the domain
exterior to (,. It is clear that the open set J4(4) consists of a finite
number of simply connected components:. TLet A(4) denote the area of the
Riemannian image of the open set 4(4) by the function w=f(z) and let
ZL(A) denote the total length of the image of the curve 6,. Then,

A& =II[ S (2)|’do (do : the area element on the z-plane),
A(A) _ .

2 ={f 17 @llael.

Next we prove that
“) lim AQQ) =

A

and
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o LA A(d)
5 li =0 where’ S(1) = -
) AEE S4) where’ (%) = “area of the interior of I’

To prove these, we use Evans’ function
C=x(2) =@+ (0w (2) <27).
By putting :
wO=/1=)
we have
A
A —A() = j j~ |7 (0) |2 AdA db, (C=2¢°),
xo¥ 62
where 6, denotes the image of €, on the circle |¢|=4 transformed by
I=y(s) (0Zv(z) <27), and
LO) = j | (£) |20

Denote by >0 the distance of I” from the image of 4. Then a geometrical
consideration gives

(6) L) =27 for A3,<A< + eo.
Applying Schwarz’s inequality

(2@ <5, 20 [ 1w @ [a0=20 ) [ |070) 1,

we have
(LA ’ 2 '

(7) DD gszW | xdé.
Consequently

® 2] A< @ rda=ai -4,

Ao

since

(9) 0@ ={, av@=< |, av(@)=2m.
(8) gives (4) when 2 tends to infinity. Next we obtain from (7)

A dAQ)

B@ = LHT
Hence, on denoting by M, the set of all 4 such that

L)=AMte, (>0),
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we see, by (9), that
__1_‘ dlooc 1< | 2% dA(4) dr

a2 w(z)-J [ A(})E’aj?:r;@;

<+m,

whence Z(4) <AM ¥ for all 2 not belonging to a set M, Wheref dlog
YA
A< 4 co. Thus (5) holds good.
If 2,<X4, the open set 4(A) consists of a cert in numbei of simply
connected comnonents which we will denote by :

A9 ), 42 A),......... , A7),

where m=m(A), m=>1 depends on 4. Denote by @®(4) the Riemannian

image of 4 (4) transformed by zw=f(z) in a onc-one manner, where ;=
1,2, 00iinnns qon. If we denote by @, the domain obtained by excluding two

points 7, and 7w, from the interior of I, then, by hypothesis, @@ (1) (/=
1,2,0c00eene. , m) is a finite covering surface of the basic surface @, By
Ahlfors’ principal theorem on covering surfaces®, we have
(10) SOAL? (i=1,2,......... J772)
where S® denotes the average number of sheets of @ (2),i. e., S® denotes
the ratio between the area of @ (4) and the area of @, and L® the length
of the boundary of @¥ (1) relative to @, /% being a constant dependent
only upon @,. From (10)
F‘ S® </zZ L®,
=1
that is
(a1 CSAH=ZAEZD + L),
where Z, denotes the total length of the image of arcs of K included in
the boundary of 4. Accordingly

L(2) 1
(12) o= Sw = h

It is clear that [(I2) contradicts (5), which proves our theorem.
- Remark. 1In our proof of [Theorem 1, the assumption that 4 is simply
connected plays an important role.
3. Consider a particular case that zw=f(z) is regular in the common
part of the simply connected domain /70 and a certain neighbourhood
U (2,) of z(,, that is, f(z)7 o0 in DN U (z,). Under an additional condition
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we want to show that w=f(s) takes every finite value, save one possible
exceptional value, belorging to £, in any neighbourhood of z,. Suppose,
namely, that there are two finite exceptional values zv, and o, wittin £2,,
and let [" be anv closed simple regular analytic curve, in £,, which
surrourds 7, and v, and whose irteiior consists -only of irteirior points of
£2,.. Let 4 be the domain defined in the same way as in the proof of
Theorem 1. Then, we easily see that 4 is also simply connected. If
4 were not simply connected, the boundary of 4 would contzin at least
one closed analytic contour ¢ such that ¢ be a loop-cut of D. Accordingly,
w=f(z) would take inside ¢ a value lyirg ovtside the simple closed curve
I, wtile wo=/f(s) be regular both inside ¢ and on ¢ and the image of ¢
by w=f(2) would lie on /. Repeating the same argument as in the proof
of [Theorem 1, we would ariive at a contraciction. Thus we have

Theorem 2. Suppose that D is simply connected, =S — S5O is not
empty, and furtiwr [f(s) is regular in the common part of D and a certain
neighbourfiood U (zy)) of 2z, Let 8, be any connccted componcnt of L. Then,
w=f(2) takes cvery fiuite value, with oné possible cxccption, belonging to £,
infinitcly often in any neigibouriood of z,.

As an immediate consequence, we see that under the same condi-
tion as in [Theorem 2, for any connected component £, which does not
contain w=co, w=f(z) takes every value, with one possible exception,
belonging to £, infinitely often near z,. Thus we obtain the following

Theorem 3. Suppose that D is simply connected, =S —Si s not
empty, and further that f(z) is rcgular and bounded in the common part of
D and a cortain ncighbourfiwod U(z,) (or that S does not coincide with
the whole w-plane). Let £, be any connected component of 8. Then w=f(s)
takes cuery valuc, witle one possible exccption, belonging to L, infinitcly often
in any neiglhbouriood of =,.

As another immediate consequence of [Theorem 2, we get, by using a
linear trarsformation,

Theotem 4. Under the same condition as in Theorcm 1, if there are two
exceptional values w,, w, (w,7%w,) belonging to thw same componint £,, w=
f(2) takes every w-value other than w, and w, infinitely often in any neig-
hbourficod of =z, and so S coincides with the whole w-plane.
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