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On Betti Numbers of Riemannian S paces.
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1. Recently H. Iwamoto has proved the following

Theorem. Le¢z By be the p-th Betti uwumber of an orientable compact
positive definite Riemannian space and let B'p be the maximum number of
linearly independent skew-symmetric tensors of the degree p whose covariant
derivatives vanish. Then we have a relation

We shall remark first that the proof of this theorem by H. Iwamoto,
depending on the theorem of de Rham may be simplified if we use
the following theorem of Hodge [3].

The p-th Betti number of an orientable compact positive definite Rieman-
uian space is equal to the maximum number of linearly independent harmonic
tensors of the degree p. A tensor £a,.q, is said to be harmonic if (1) it
is skew-symmetric, and (2) it satisfies the conditions

. ‘ -
(A) : Eal- ap;r:Efal--aq_,_mq+1..ap:aq
and

(B) » 5"1"“pirgapr=o’

where the semi-colon denotes the covariant derivative with regard to the’
Christoffel symbols.

By this Hodge’s therem, we can prove the above theorem as follows.
Let $e,...q, be a skew-symmetric tensor whose covariant derivative vanishes.
Then &a,...q, satisfies evidently the conditions (A) and (B).

Hence it becomes a harmonic tensor. If there exist two linearly
independent skew-symmetric tensors & a, and e...e, wWhose covariant
derivatives vanish, then their linear combinations are skew-symmetric and
their covariant derivatives vanish also. Hence they are also harmonic.

Thus we have
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BB, 0. E. D.

Let us now examine the case in which the equality B, = 5’, occurs.
‘We shall prove that the equallity holds under some restriction in the case
of the symmetric space of E. Cartan.

Theorem 1. LZLet R, be an orientable compact positive definite Riemannian
space. If R, has the properties :

(1) Ry, n=0; (spmmetric spacel)
(2) the quadratic form
{P(P—1) Riyugn +&u(2pR:jis— p Ry g u— Rugsg) 136
with respect to § is negative definite, wheve we assume
gitk— _ st

then the covariant dertvative of any harmonic tensor of the degree p vaniskes,
that is to say

B,=H,

Especially in the case p=1, the condition (2) becomes
(2) the quadratic form

(2Rij¢s - Rijg P R Rs:g i j) 33
is negative definite, where we assume
§9=5" and £ pg™.

Proof. let ¢ yentip be any harmonic tensor, put
5p=$a1...tzp; r.:.'a’]---dp;f (1 '1)
where
ea,...a,;r=ga, by “.gap&pgrsebr“ép Ny (1 .2)

and consider a scalar defined by

Azgabfpm: L8 (1 -3)
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By Green’s theorem [4] we have

jddv=o, (1-4)

n

where jdv denotes the volume integral over the whole space. On the
other hand, we have
bcm veellp 37 = By 730 ;
A=95", s E0TT N2 (1-5)

a,...ap;f, ~apir;y b

To calculate the first term in the second member, putting

. bc = Qpeeslp 3 7
D= T ag... ap;f';é;cs
we have
? . "
. bc pag..ap; 7 .
= (aj'apsé 37 :é"lR -a.,rea,...m...ap,);tg g . (1 6) :

(8

___ b pay...ap; 7
- (éal...ap;b;r, —ZR sagrb; cela, n.Gp ;—;R . a:,rbeal...”;...zzp;c )g Ea
(s) (s

from which, by virtue of the relation

Rz‘jkl;h =O,
we have
»
— . 72 ~ ] bc mye.ap 37
¢_($al...ap;5;r;c s_le -a‘,r&sa]...m...a,,;c)g f
- ) : :

= (¢ ~3R L s— R, €
ag...ap3bicir = . a,n a, .(77;...4,,;& ebrc®ay...ap s m
8,

be lps
g -a,r& Ea,‘..m ap,c) g | (1'7)

(s)

From the conditions for the harmonic tensor, we obtain

Ll Y/
= (2 Eal ..6 ..ap,a, A ER’z-aarc sa,...m...a‘,,;z} (1'8)
)

8=1 §=1

8=

»
be E‘(Z 08By 7
—R .brce ay. .ap;m—z s 7&6 CIelp € )& ! ’
®)
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96
' = ne & ’
“524-15 wboayiera, ’r_(z ca,a,c ;111...m...5...ap +R 051136 ag...m...ap )3 4
) @
” & Vo7
""E cq 7> H, m...ap;i b sbreay.apsm T ZR *as rée .m,..a,,;c}
(s) (s)

clp ;7"

-

x géc

772 fond
oday ¢ Ayl 7

_ e
D=— {—“p(p— 1) R cap [lp_lff(l]...a’p_Qélll s 7 + P
(r{')f Sy Qp 3 7

5 772 7
+ zp . ap 7t 5111...(7],A17/1 s¢ + . //rcgal‘..a], 3 72 }o s

=— {ﬁ (P=1) B & a—2R ;8 11 Sar+ 28R jp 85— R 1184 & mj}'
(1-9)

om ; £ 5(7,...11,,_‘;{;';1

o
xXs
Ay...Qp—2

There exists always a coordinate system in which the metric tensor

at a specified point. Then the quantity

d;; takes the values dy;

- ‘ 51}2;&5 ay...ap-25;7
Qyeelly-2

takes the form

g- , o, Umli kB ey
> a/...a’p-2, , Sal...aly_2
. Jotp—2 .
a’p—2

Hence, if the quadratic form of

{p(p— 1) ijib Eut Lo (Q?ijlk —ﬁijgu"" szg',,,j) femagist (1 . 10)

with the relation
£idl — __ 231
is negative definite, then @ becomes positive unless
3 =0.

ay...ap; v

On the other hand, from (1-5) we have

A=2w+2$ar_'ap;,.;&€ ay...ay3;73b (11.1)
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Therefore, if £q,...ap;~ is not identically zero, then the scalar 4 is not
negative and is positive at some point of the space. Hence we must

have

4 dv>0
RBn

But this inequality contradicts to (1-4), Hence it follows that

0. Q.E. D.

5{71...(1,, e

2. From Hodge’s theorem, we get easily the following

Theorem 2. Lot R, be an orientable compact positive definite Riemannian
space. If Ry, admits m lincarly independent parallel wvectors, then it follows
tat : '

B > m, .
B, =1, (! <m2)
Bua21, (41, 2, ...,i?f_—l), (2 even).

. Proof. By the assumption, there exist sz linearly independent parallel
vectors ' |

Putting

'Z’f:giﬂ’j (7n’=1, 2 ...... ,772)
(m?!) (m’) -

we have

. 7),;,:—‘0

(n!)
__ Therefore, these covariant vectors are harmonic. Hence, it follows
from Hodge’s theorem that -
B, = m.
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Next, we consider an 72/-vector such as

|7 g oee U Q= ).
)

@) (m/)
It is not identically zero and its covariant derivative vanishes. The-
refore they are harmonic tensors of the degree /. Hence it follows that
B, =1. (! < )

Next, we construct a skew-symmetric tensor such that

(24,

fis i iy i

A<t<5-—D,
where
A=l gty

Evidently its covariant derivative vanishes.
Hence it is a harmonic tensor of the degree 24, unless it is identically
zero. Then, if the dimension of the space is even, it follows tat
B, >>1 (é:l,Q,...,%—l). Q.E.D.
3. Let R, be an orientable compact positive definite Riemannian

space. If our R, admits a tensor "%, whose covariant derivative vanishes,
i. e.

ijk;l =O: (3'1)
then we can construct the following skew-symmetric tensors
i lél K’2 ég) il 2'2 1.3
V-ik, 8(]11 j2j3 V_ Z.:.’k]V'iak] V.il PRALERS »
é ""ém Z' 1‘2 z’m P
6(}.1”._/,"' V ey V iy eeeees Vi (7 <#),

where the symbol

5(;%;1 £\ -

.« m

is equal to 1 or —1 according as #,...4, constitutes an even or odd permu-
tation of z,...7,, and is otherwise zero. Form (3-1) it follows that these
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tensors are harmonic. Hence, if the tensor of the degree p of (3-2)
not identically zero, then the p-th Betti number of R, is not zero. Gene-

rally, if there exists a tensor ”;j/é,-.- A such that

(a) X'./é . is not symmetric with respect to any
pair of the indices 4,...4,, (3:3)
(b) A oy =0, .

then we can construct the following tensors,

z 6 mp 72.1 . \7 i:_, .
'?/»’r.-/é]) al '22/\’1..-1'])/ i 13/“?’*'] “ee k?P b
. im
XX eiylmpp s1eee ey » (W2 < 32) (3-4)

These tensors are skew-symmetric and their covariant derivatives
vanish. Therefore they are harmonic.

Hence we see that* if the tensor of the degree mp of (3-4) is not
identically zero, then the mzp-th Betti number of R, is not zero.

Example. If our R, is symmetric, i. e.

Rfjkz;hz'o, (3'5)

then we can construct the following harmonic tensors,
By Ry A
8(-/1.. j4 ’?2&]10 R 7’1%3&4, ...... 9

2 m z - \
.8 j1 - 2 )R,zzélh R by voeee R:zs/%zmégm 2m <) . (3-6)

Hence we have the ,
Theorem 3. 7/e m-th Betti number (2 S < -4 —) of an orvientable

compact positive definite symmetric Riemannian space is not zeso.

4. Moreover, if there exists a tensor I/V/z .4, with the properties :

* When m=2 and p is odd, the tensor of (3.4) becomes identically zero,
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(a) Wa..kp;»=0 ,
b is even,

©) 2 I8 cven — | (1)
(c) Whs,..# is not symmetric with respect to any pair

of the indices,

then we can construct the following hairmonic tensors
- » )
6( o Wiyoty ooe Wty i (1220 <32). (4-2)
mp

Therefore, if the tensor of degree mzp of (4-2) is not identically zero,
then the smzp-th Betti number is not zero. Further, if there exist many
tensors satisfying (4:1) or (3:3) and being linearly independent to each
other, then their products of the form

By S 4
3( ’1 'p+q>R o 2oy fi,ﬁ'p+l---’v’r+q (4'4)

10+ Jp+q

or

l’]""{)m+l
6(]’1"'jm+l Pl‘]...l’[ Q/»’l.*.]...km.;_l

become also harmonic.

5. Previously, T. Y. Thomas treated a tensor equation of the
form

s
Ta]...(z,,;r;:g =CTal...ap, (5-1)

which, for the sake of brevity, we write as
AT=cT, | (5-2)

where ¢ is a constant. We shall now generalize above equation as
follows :

(a) Ta,...ap;r;sg ay...ap by.uibp

’ 5.3
b) 7, o5 iy . (5-3)
®) - byoity T4 0

Qp 3735 ay...ap
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where K and L are given tensors. For the sake of brevity, we write

(6-3) as follows : '
(a) 4d7=K-T,

(b) AdT=K-T+17, (5-4)
If (5-4) (a) has a solution T, then we have
A(T-T)=(Tay..ap TP ); ;58" =2 (Tuy.ap; 735 Ta""dpgm)
42T ayay; 7 T3 =2 (AT T +2(87-3T),
where we have put
y AR R L LT < ap bp T 4.
T O1eeep3 7 g5 ety
0T="Ta,...cp;7
By Green’s theorem [5], we have
0=j4(7’- T)cz’v:?j(AT- T)czv+zj(ar-ar)dv, (5-6)
R B, R,

where dv denotes the volums element. From (5-4) (a) and (5-6), we

have

>

‘n

0=2j(1(. 7-7) do+2(O7-3T)av. -7

As R, is positive definite, the second term in the second member of
(6-7) is not negative. Therefore, if the quadratic form K.T.T is positive
definite, then the first term in the second member of (5-7) becomes positive
unless 7=0. Hence, if K:T-T 1is positive definite, the solution T must

vanish identically.
Next, if K. T:T is everywhere positive semi-definite, then the second

member of (5-7) must vanish. In this case we have
07T=0, (5-8)
that is to say '

Tfl,...(l,,; » =O,
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Moreover, from (5-4) (a) and (3-8), we have
K-7T=0. _ (5-9)

Next, if (5-4) (b) has two solutions T and U, then their difference
T—U must satisfy (5-4) (a). Then, if (5-4) (a) has no solution other
than zero, the equation (5-4) (b) has not two solutions. Hence we have
the

Theorem 4. [f the quadratic form K-T-T is positive definite ar cvery
point of Ry, then the cquation

(A) AT=K-T
has no solution othcr than sero. In this case the cquation
(B) AdT=K-T+L

cannot have two solutions. If K-T-T is everywhere positive semi-definite, the
solution of the equation (A) must satisfy the following relations

07=0 and K.7=0.

6. Above theorem has many interesting applications.

One of them is the problem of the infinitesimal collineation. An
infinitesimal point transformation which carries any geodesic into a geode-
sic is called infinitesimal affine collineation, provided that the change of
the parameter is linear. ILet

=1+ (x)

be an infinitesimal affine collineation. Then the covariant components of
the vector &' must satisfy

Eiigint Ripf®=0. (K. Yano and Y. Tomonaga (6-1)
Let &, be a solution of (6-1). Then we have
dE=E; i1 &%= — Ripta 8757 = — R, 7.

We:* see that if R,£%7 is negative definite at every point of &,
then the solution of (6-1) must vanish identically and if R,;£%7 is everywhere
negative semi-definite, then it follows that



On Betti Numbers of Ricmannian Spaces. 103

55;_,;:0,

that is to say §° is absolutely parallel. Hence we have the

Theorem 5. [f the quadratic jform RE%57 is everywhere negative
definite, then R, admits no infinitesimal affine collincation of the class C'.
If R,5%7 is everywhere negative semi-definite, then the vector of the trans-
Jormation, if it exists, is absolutely parallel. Especially in the case of the
infinitesimal motion we have the

Theorem. (S. Bochner. [7])

If R, 5% is cverywhere negative definite, then R, admits no infinitesimal
motion.

7. Harmonic tensors.
A skew-symmetric tensor &§s,...q, is a hrmonic tensor, if it satisfies the
conditions

A (7-1)
(b) Sal...(zp; .\‘gdps =O,

Then &q,...q, satisfies the equation of the form
£=K.§, 6-2)

where K is a complicated tensor. In this case we have

K-6-6= (pgasRap,— p(p—1) Rayuhyad) £ 702 (7-3)

Therefore, of K-§:§ is cverywhere positive definite, then it follows from
Hodge's theorem that the p-th Betti number of R, is zero. This fact
was discovered by S. Bochner [7]. Moreover, if K-£-§ is everywhere
positive semi-definite, then there exist follewing two cases:
1. The p-th Betti number B, is zero. '
2. B,><0. In this case there exists at least one harmonic tensor, say §.
Then we have ’

7=0 and AK-£=0.

Hence, there exists at least one skew-symmetric tensor whose covari-
ant derivative vanishes.
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