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On Conformal Representation of Multiply Connected
Polygonal Domain.
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It is known, that a function z(z) is schlicht and star-shaped with

respect to w(0) =0 in |z | <1, when, and only when, it can be expressed
in the form

w(z) =const. 5 +exp. QJ log < -dp(l),

—g

Igtl=1

where g denotes a positive distribution of total mass 1 on the unit circle.
This formula can also be written in the form

w(z) =const. exp. j log: L dp @,

Loy =1 V(l__;z')e

and here comes out Koebe's extremal function. The argument of this func-
tion is equal to a constant on |z |=1 except the point {, and jumps by
+27 when z passes { in positive direction on |z |=1. Then, the above for-
mula shows: The star-shaped function w(2), whose argument is non-
decreasing for # moving on |z |=1 in positive direction, can be constructed

Srom suckh (lements as a sort of geometrical mean.

We shall prove in this paper an analogue of this fact for #z-ply connected
domain, and, as an application thereof, treat the conformal representation
of 7n-ply connected polygonal domain.

In order to simplify the wording, we «call a half straight-line
Arg f=const., | £ |= const.>0 an “ infinite radial slit”’, and a segment
Arg £ =const., const. = |2|= const.> 0 a * radiaf slit”’, respectively.

§ 1.

Let D be a domain on z-plane bounded by 7 analytic closed curves
[Myeee-ee , [, whose sum we denote by [, and let 5, be a fixed point in D.
For any point ¢ on I, we denote by £(z, {) the function which satis-
fies the conditions £(z,, £)=0, &' (2, ¢)=1 and maps D conformally on
the whole £-plane cut along an infinite radial slit and (z—1) radial slits,
so that the boundary- point & of D corresponds to the bodunary point
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£ = oo. The existence, uniqueness and the continuity in ¢ of such functions are
to be proved afterwards in Lemmas 1. and 3.

We will now formulate the theorem to be proved as follows:

Theorem 1. Lot w(z) bc a function whick satisfies the following three
conditions -

1. w(2) is regular and does not vanisi in D except at z,, where it Jias
an expansion of the form

w(z) =(2—32p)° { 14+c(z—2z) + - } («=0).

2. |w(2)| is one-valued in .

3. Any branck of Arg w(z) ts bounded in t/ze neighbourhood of I', and
the limiting value

lim Arg w(z)=0(*)
z-»C¥

exists for eack C* on I’ except at most an enumsevable infinity of points and is
of bounded variation, as function of {* on I, on the set where it exists.

A wnecessary and sufficient condition jfor this, is that w(g) can be
expressed in the form

(1) 'w(z)=exp.jplog 2@, ¢) da(0),

where ¢ is a distribution of bounded variation of total mass a on I', determined

by the function of bounded variation Qiﬂ(g*).
T

We shall make some preparations and prove some lemmas.

Definition of the Riemann surface @. Let D be another sheet of 2.
We put D! on D and identify the corresponding boundary points of D and D.
This closed surface can be regarded as a closed Riemann surface @ of
genus #—1, since we can define a local parameter #(p) for each point p

on @: for a point of D by taking conjugate complex, and for a point on
I” by reflection in I

By interchanging the two sheets D and D, we obtain a transformation
p-»]) which transforms @ into itself conformally with inversion of angles.
Besides, we denote by ®,,,,(#) the elementary integral of third kind
on @, which has the singularities log #(¢,) at ¢, and —log #(g,) at ¢,, and
whose real part is one-valued on @. And by «’,, () we denote the ele-
mentary integral of third kind, which has the singularities —7 log #(g,) at
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¢; and 7 log #(g,) at ¢, and whose real part is one-valued on @ cut along
a curve connecting ¢, with g,". '
. Lemma 1. For each ¢ on I, there exists one and only ome function
L(z, &) with the mentioned properties.

Proof. We put . ‘

W, (2) + 0z (p) =u( p) +iv (f)'

~and

2 £2(z, £) =const. exp. {u (2) +iv(s) } .

- Since the one-valued potential function #(p) has on @ the same sin-
gularities as #(p), and takes on [I' the same value as #( p), we have

u(p)=u(P),

i.e. #(p) takes the same value at % as at p. Hence we have at each
point on I' except (,
ou _

—_— = consequentl v =0,
ov d Y or

where v and 7 denote the normal and tangent to [’ Therefore, v takes a
constant value on each' I,.. It follows from this, that £2(z, ¢) is one-
valued in D. _ )

On the other hand, # is finite at each point of I" except £, where «
is positively infinite. ~Hence, the image of I' by £(z, {) consists of an
infinite radial slit and »—1 radial slits.

Let £, be a point of £-plane, which does not belong to these # slits.
Since

remains unchanged when z moves on [’ once around and returns to the
original value, and since 1/£(z, ) has one and only one pole in D,
2(z, ) takes each value £, once and only once in D. Therefore, £(z, &)
provides the required mapping, when the constant factor in (2) is deter-
mined by the condition £'(z, {)=1. .

The uniqueness of the mapping function can be proved as follows. Let
. £,(2, {) be another mapping function with the mentioned properties. When
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we continue £2,(z, ¢) analytically across I' on @ by the principle of reflec-
tion, we obtain a one-valued potential function log |2,(p, )| on @,
since |#,| remains unchanged by reflection in a radial slit. - Moreover
log |2,(p, £)| has the same singularities as #(p). Therefore, by the
normalisation £;(z,, £)=1, £,(2z, ) must be identical with 2(z, {).
Remark. By the same idea as in the above proof, we can construct
the function £(z, 2*) for z* € D, which maps D conformally on the whole
L-plane cut along 7 radial slits and satisfies £2(z, 2*) =0, £'(z, z*)=1, -
£(z*, s¥)=-co. For this purpose, we have only to put

(3) 2(z, %) =const. exp. {wz“* (=) +w;,,,,~*(z)}.

We cut the domain D by 7 curves, each of which connects z, respec-
tively with an arbitrarily fixed point { on [}, and which do not cross each
others. We denote by D, the resulting simply connected domain, in which
Arg 2(z, ¢) is one-valued. We can assume that D, contains wholly in it
a line element dx at z, with direction of positive real axis. We take the
branch of Arg £(z, {) which vanishes at z,+dx and put

0(z, {)=Arg 2(s, {)
for =z € D,. . :
As function of z with fixed £, €(z, ) has the following properties.
Lemma 2. 6(z, {) is bounded in D,, aud the limiting value

lim 8(z, {)=6(L* )
[ 24 .

exists for eack {* on I" except L. 6(L*, {) is equal to a constant on eack arc
of I" which contains neither & nor L+ Cus and jumps by 42w ar § when £*
moves on I in pocitive direction. |

Proof. This is obvious from the shape of the image of D by £2(z, ).

As function of ¢ with fixed z, log £(z, ) and 6(z, ) have the following
properties. '

Lemma 3. log 2(z, {) is one-valued and continuous, and its imaginary
part 0(z, £) is uniformly bounded for the parameter z in D,.

Proof. The constant factor in (2), which is to be determined by the
condition £’ (z,, &) =1, depends naturally on . When we write (2) in
the form

log 2G5, O = dwye+ | doztc(Q),

where z,* denotes an arbitrarily fixed point in D, the condition &' (z,, {) =1
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is given by

c(Q) = lim{_.jndwzc’t _ Snf?wwt +log (z1—2,) ,},

2120

and we obtain the following definite form of log £(z, {),

log 2(z, O)= lim{‘r AW o1 +r AW .+ log (2,—2,) }

Z1-»%0
We assume that ¢ lies on [}, and consider the difference

log 2(z, &) —log £(z, &)

2 4 2z z
=11m{J dw z°”¢—j d(uzo,.;k +s dw ,o,.;-—-j dwm,-;,c }
z1 21 2z1 z1

21»Z0

z 2

=lim 2( dwtk,§=2§ de .
21> 20 J 2L 20

By the #heorem of interchange of avgument and parameter,? we can write this

in the form '

< %
log 2(z, {)—log £(z, C,J:Q{iﬁj dw ,o,,+z'§ﬁj A’ o5, }
. Sk %k

This proves the mentioned prdperty of log £(z, ¢).
While taking the imaginary part of this formula, we have

é(z, C)—"O(z: Ck)szj:dw’ 20,2 * ‘

Since the right-hand side is certainly uniformly bounded for z in D, and
since 6(z, &) is, by Lemma 2, bounded in D,, €(z, ) is uniformly bound-
ed for z in D,.
Lemma 4. et f(2) be a function one-valued and regular in D, whose
imaginary part is bounded. If the limiting value
lim & A2)

2>T
extsts for eack { on I’ except at most an enumerable infinity of points, and
if this limiting value is equal respectively to a constant on eack I, then f(2)
is identically equal to a constant.
‘Proof. In the first place, since & f(2) is bounded, there exist in fact
no exceptional points. Then, we can continue f(z) analytically on @ across
each [}, by the principle of reflection. Since Rf(z) remains unchanged by



192 : A. MoriI.

reflection in a straight-line parallel to the real axis, we obtain, by this

continuation, a one-valued potential function Rf(p) everywhere regular on
@, which must be identically a constant.

0. E. D.
Now we will prove Theorem 1.

Proof of Theorem 1.

Sufficiency. Since log £(z, ) is continuous as function of { by Lemma
3,

w(@)=exp.| 2z, Oao (@)

represents an analytic function of z, which obviously satisfies the conditions
1 and 2 The property 3 can be proved as follows.
For a branch of Arg w(2) one-valued in J,, we have

Arg w (2) =L'9(‘3, {da(0)

By Lemma 3, this function of # is bounded in D,. When z approaches to
a point £* on [, which is a point of continuity of the distribution o, we
have, by Lemmas 2, 3 and by Lebesgue’s theorem,

6(c") =lim Arg w()=lim| 6C, )ain(0) = | (%, o (@)
23 2T 1 r

Therefore, the limiting value #(¢*) certainly exists for a point of continuity
of a.

Let C be an arc of positive direction on [}, which does not contain

the point £, and whose starting and ending points £,*, {,* are both points
of continuity of o.

Then, we have
6 —0® =] {6@r 0—-6@r Ola@).

On the other hand, we have by Lemma 2,

6(¢C.*, &) — (L™, C)={ 3” E 2 g

Therefore we obtain

0(¢,*) —0(F) =2ma (C).
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This proves the last part of 3 and the mentioned relation between 6
and o.

Necessity. Let w(s ) be a-function which satisfies the condltlons 1, 2
and 3. We define by —0((*) a distribution ¢ of bounded varlatlon on I

Obviously ¢ has the total mass «. We put

w,(:) =exp.[ log @G, ¢) do (),
01(5*)=1im Arg w(2)
2) = c,W( 7).
and f(2) =log 8 (o)

J(2) is one-valued and regular in D.

Let C be such an arc of I}, as mentioned in the first part of this proof.
Then we have

lim /(=) —lim /(=)

z»G2¥

= {0 =0, |~ {0 = 0.(e)}

= {0(52*) —0((1*)‘ } — {01(5_'2*) '—'01(C1*)}

=270(C) — 270 (C) =0.

Therefore, }f(z) has a constant limiting value on each I, respectively.
Further, f(2) is bounded in D, since Arg w(z) and Arg w,(z) are both
bounded in D),. Consequently by Lemma 4 we obtain

JS(z)==const.,
and the normalisation in condition 1 gives
w(z)=w,(z).
: Q. E. D.
Remare 2 Making use of conformal representation, Theorem 1 finds
itself valid, in the form as it stands, for any 7-ply connected Jordan domain.

4

§ 2.

If D is the. interior of a circle or a circular ring-shaped domain, we
can write down the explicit forms of £(z, ) and £(z, z*).
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Te case where D is the interior of the unit circle 2| <1 and 2, is the origin
z=0.

By reflection in | z |=1, the Riemann surface & represents itself con-
formally on the whole z-plane. And the elem:ntary integral zv,,,, is
given by -

z

Wao,m (2‘)=10g—2—— 2
<1

+ const..

While giving suitable values to #; and combining them, we obtain by (2)
and (3)

2(z, c>=—22—
1—2)2
=2

(1 — ;;)(1 —5%2)

under consideration of the normalisation £'(0)=1.

"and .Q(s’, 2’*).—_"

The case where D is the ring-shaped domain g <|z | <1 and z, is real
and positive.
By repeated reflections in the boundary curves, and by the transforma-
tion ' '
u=u(z)=—:i log =z
0
the universal covering surface of @ is mapped conformally on the whole
finite z-plane. Then, putting »,=u(z,), w,,, is given by

(]

ozr = ]og—ﬂ‘L —( 7 Ro,+ z'-vl,\c}ul)u +const.,
o(u—uwu,) @, w; :

where o denotes the Weierstrass’ o-function with primitive periods
2(01=27T, 2w3=—2i log q
and 7, and 7, have the ordinary significations.
While giving suitable values to z; and combiniag them, we obtain by
(3), after simple calculations,

2(z, 2%)=
ofi log 2 ) 6(i log 2*2,)  ofilog = a(z log z%) 2 71 Arg 2*
g
ok . . Zy e

PR T N ()
o(2i log %) a(z' log%) o(ilogz*z) %0
z
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under consideration of the normalisation #’(z,)=1.

When we replace z* by ¢ in the above formula, we obtain the ex-
pression for £(z, ¢). But it can be a little simplified by separating the
two cases | ¢ |=1 and |{|=g¢. In fact, we have

2z, )=
. . 2 2: I
— ) . 0(i log 2,+¢)° -o(i logz->a(z' loczoe)'(i) i 7
a(2i log z,) o(i log z+¢)* 2, s 2,
and :
Q(z, ¢et?)=
. . 2 22'@59
08 50 (i Y (2)
(2¢ log z,) o5(¢ log z+¢)? 2, , 2, -

Remart. If D is the domain |z | <1, or if D is ¢<|# | <1 and «=0,
while differentiating the logarithm of (1) and multiplying it by 2, we
obtain by the above expressions for 2(z, ) the Poisson-Stieltjes’ or the
Villat-Sticltjes’® expression for zw'/w. TFurther, it is easy to prove fiom
Theorem 1 these two formulae in their perfect forms.

$ 3.

As an application of Theorem 1, we shall give an expression for the
mapping function of #-ply connected polygonal domain, an analogue of
Schwarz-Christoffel’s formula. Here, by the word ¢ #-ply connected polygonal
domain”, we mean an n-ply connected Riemann surface P of planar character
(schlichtartig), whose boundary consists of a finite number of segments or half
straight-lines. P may contain in it a finite number of points of ramification,
and may cover the point at infinity a finite number of times.

We assume that » is greater than 1. Let D be a concentric circular
ring R, <| 2z | <R, with n—2 concentric circular slits, whose 2(z—2) end
points we denote by s, (£=1,---:-- ). And we fix a point 2, in D arbitrarily.

Let f(2) be the function which maps D conformally on P. We denote
by ¢, the boundary point of D, which corresponds by this function to a
vertex of P with the interior angle «,m. If the vertex lies on the point
at infinity, we agree to give «, negative sign.

A In the first place, we assume that P’contains in it neither points of rami-
Sfication nor points lying at infinity.
Then, zf'(2) is regular and does not vanish in D, and when z moves
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on ths boundary of D in positive direction, the variations of its argument
are as follows:

dArg zf'(2) =d Arg di'{(i)—=a’ Arg df(2)—d Arg d log z,
og 2

dArg df(z)=(1—a)m at {, and =0 elsewhere,
dArg dlog z=—m at s, and =0 elsewhere.
Therefore, while defining the distribution ¢ by

a(C)= 1_2"‘" , o(s,c)=% and o=0 elsewhere,

we obtain by theorem 1.
A—ar R
F() =2/ () N9z C) 7 119z, 5)

Thus, we have the following expression for the mapping function.

- 1-a ~
F@) =201 () [ 12, 8 5195, 502 415

In the general case, we denote by z, the point of D which corresponds
to a point of ramification of ,-th order (#,>0) on P lying in the finite
part of the plane, and by 2z, the point which corresponds to a point of
ramification of »,/-th order (2’ =0 ) lying at infinity.

Then, z'(2) has a zero of my-th order at z, and a pole of (#2,/+2)-th
order at z;/. We can apply Theorem 1 to the function

712(z, 2)™

. ’ . k
}:4 f (z) [I.Q (2’ ,?,'k’) m’lc +2
%

and, since we have
d Arg £(z, z*)=0

on the boundary of D, the distribution & can be so determined as before.
Therefore, we have

1-a, ”.Q(g, zkl)mkl+2
zf(2)=C 112 (=, 7 .k
f (Z) ]k ( Clt) ”.Q(Z’, zk)m"
. k

-ﬂ!)(g, Slc)% ’
®

C, being a suitable constant.
Thus, we obtain the following
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Theorem 2. T function whick maps D conformally on P is given by

’ P 1-a, H.Q(Z’, zk’)mk”'z 1
f(i/?'):C]S n2(=,8) = = -IZ.Q(Z, D)2 % 4G,
* z

”!J (2’, 2'1c)mk
k

where Cy and C, are constants depending on position and magnitude of P and
on the lower bound of the integration.

Remark 1. If one of the points 2, or 2,/ coincides with z, ‘we have
to understand £(z, z,) to be=1 in the above formula.

Remark 2. Though we have deduced Theorem 2 under the assump-
tion » = 2, it is also valid for »=1, as can be seen easily, if D is the
domain |2 | <R and z, is the origin z=0. E

By the expressions for £(z, {) given in §2., we can easily see that,
in case P is schlicht, the formula of Theorem 2 coincides for n»=1 with
the ordinary Schwarz-Christoffel’s formula, and for =2 with the formula
given by Mr. Y. Komatu®.

Mathematical Institute,

Tokyo University.
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