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On the change of variables in the
multiple integrals.

By Setsuya SEKI
(Received July 25, 1952)

The well-known formula on the change of variables in the multi-
ple integrals

$(*)$ $\int_{f(D)^{t}}r0’$) $dy=\int_{D}g(f(x))abs|\frac{\partial f}{\partial x}|dx$

has been proved by H. Rademacher and M. Tsuji under very general
assumptions. They have shown that the functions $f$ satisfying certain
conditions are totally differentiable almost everywhere and consequently

the Jacobian $\left|\begin{array}{lll} & & \partial f\\ & & \partial X\end{array}\right|$ can be defined almost everywhere. They have pro-

ved further that the above formula $(*)$ holds for integrable functions
$g$, and $f$ satisfying these conditions. We shall give in the following
lines another proof of the last fact. Namely we suppose $f$ as $a.e$.
totally differentiable, $g$ as integrable and show the validity of $(*)$ . (For
the exact formulation see below.) We treat further the case where $f$

is not necessarily univalent.
Throughout this paper, we shall concern ourselves with subsets

and mappings of the euclidean n-space $E^{n}$ . $f$ represents always a
mapping defined on a certain subset of $E^{n}$ . Letters like $x,$ $y,$ $a,$ $b$

represent points of $E^{n}$ . $||x-y||$ denotes the distance between $x$ and $y$ .

\S 1. Preliminaries.

DEFINITION 1. A mapping $f(x)$ defined on a bounded domain
$D(\subset E^{n})$ is called an $\mathfrak{A}$ -function on $D$, if it satisfies the followzng three
conditions.

$(\mathfrak{A}_{1})f$ maps $D$ homeomorphically onto $f(D)$ .
$(?1_{2})$ If $\mu(E)=0(E\subset D)$ , then $\mu(f(E))=0$ .
$(\mathfrak{A}_{3})$ $f(x)$ is totally differentiable almost everywhere.
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We can easily see that the set of all $\mathfrak{A}$ -functions on $D-we$ shall
write this set by $\mathfrak{A}[D]$ –has the following properties.

(1) If $D\supset D^{\prime}$, then $\mathfrak{A}[D]\supset \mathfrak{A}[D$
‘

$]$ .
(2) $\mathfrak{A}[D]$ contains all non-singular linear transformations.
(3) If $\mathfrak{A}[D]\ni f(x),$ $\mathfrak{A}[f(D)]\ni g(x)$ and $\mathfrak{A}[f(D)]\ni f^{-1}(x)$ , then

we have $gf(x)\in \mathfrak{A}[D]$.
DEFINITION 2. For $f(x)\in \mathfrak{A}[D]$ , we define a measure $\mu[f]$ by the

formula:
$\mu[f](E)=\mu(f(E))$ .

When $E$ is measurable, then $f(E)$ is also measurable by $(\mathfrak{A}_{1})$ and
$(\mathfrak{A}_{2})$ . So $\mu(f(E))$ has a sense for every $\mathfrak{A}$ -functions $f(x)$ and every
measurable sets $E$ . Furthermore, we can easily see that

(i) $\mu=\mu[x]$ ( $x$ is the identity mapping),
(ii) $\mu[f]$ is absolutely continuous with respect to $\mu=\mu[x]$ .
By (ii) $\mu[f]$ has the density with respect to $\mu=\mu[x]$ . Let us de-

note it by

$D(f/x)=\frac{d\mu}{d\mu}[f][x]$

Then we have clearly the following
THEOREM 1. If $\mathfrak{A}[D]\ni f(x),$ $\mathfrak{A}[f(D)]- og(x)$ and the one of the

next two conditions is satisfied:
(i) $g(x)$ is totally differentiable,
(ii) $\mathfrak{A}[f(D)]\ni f^{-1}(x)$ ,

then we have

$D(gf/,x)=D(gf/f)D(f/x)$ .

\S 2. Linear functions.

As we have remarked above, every non-singular linear transforma-
tion is an $\mathfrak{A}$-function for every domain $D$ . We shall prove

THEOREM 2. For a non-singular linear $\mathfrak{A}$ function:
$f(x)=Ax+b$ $(|A|\neq 0)$ ,

$D(f/x)$ is equal to abs $|A|$ . (abs $|A|$ means the absolute value of the
determinant $|A|$ of the $n\times n$ matrix $A$ ).



220 S. SEKI

Let us first prove the
LEMMA. An absolutely continuous measure $\nu(E)$ on Borel family

$\mathfrak{B}$ of $E^{n}$ is invariant under any translation in $E^{n}$ . if and only if
$\nu(E)=c\mu(E)$ for some constant $c$.

PROOF OF LEMMA. ” If”.part is clear. We have only to show
the ” only if”.part. The unit cube $E_{0}$ is measurable by $\nu$ , as $E_{0}\in \mathfrak{B}$ .
Put $\nu(E_{0})=c$. Any rational interval, for example,

$I=\{(x_{1}, x_{2}, \ldots\ldots, x_{n});- m^{i}n<x_{i}<n^{\prime}m^{i}$ , $i=1,2,$ $\ldots\ldots,$
$n\}$ ,

where $m,$ $n_{i},$
$n_{i}^{\prime}$ are integers, is built up by cutting $E_{0}$ in $m^{n}$ equal

parts, and then arranging 1 $I_{i=1}^{n}(n^{;_{j}}-n_{i})$ small pieces together in a good
form by translations. Thus we see easily $\nu(I)=c\mu(I)$ and so $\nu(E)=c\mu(E)$

by the absolute continuity of $\nu$ .
PROOF OF THEOREM 2. For $f(x)=Ax+b$ , we shall take $f_{1}=x+b$

and $f_{2}=Ax$, so that
$f=f_{1}f_{2}$

$D(f/x)=D(f_{1}f_{2}/f_{2})D(f_{j}/x)=D(f_{i}/x)$

So we can assume $b=0$ without loss of generality. Let $T_{a}$ denote
the translation: $x\rightarrow x+a$. Then we have

$\mu(f(T_{a}(E)))=\mu(T_{Aa}(f(E)))=\mu(f(E))$ .
So $\mu[f]$ is invariant under any translation in $E^{n}$ . From our lemma
follows then that there exists a constant $c(A)$ depending solely on the
matrix $A$ , such that

$\mu[f]=c(A)\mu$ .
Obviously we have

$c(AB)=c(A)\cdot c(B)$ ,

and we have $c(U)=1$ for any orthogonal matrix $U$, since any sphere
is invariant under rotation around the centre. (The invariance of
Lebesgue measure under motions of rigid bodies !)

Now any matrix $A$ can be brought into the form: $UA_{0}A_{1}\cdots A_{n}$ ,
where $U$ is an orthogonal matrix and $A_{i}(i=0,1,2, ’\cdots\cdot\cdot, n)$ have
the following forms:
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$A_{0}=\left(\begin{array}{llll}1 & & 0 & \\0 & 1 & & a_{nn}\end{array}\right)$ ,

$A_{1}=\left(\begin{array}{lllll}1 & 0\cdot & \cdots & 0 & a_{0^{1n}}\\ & & 0 & & \vdots\\ & 0 & & & 0\\ & & & & 1\end{array}\right),$

$\cdots\ldots,$
$A_{n-1}=\left(\begin{array}{lllll}1 & 0\cdot & \cdots & 0 & 0\\ & & 0 & & \vdots\\ & & & & 0\\ & 0 & & & a_{n_{1}- 1n}\end{array}\right)$ ,

$A_{n}=\left(\begin{array}{llll}a_{11} & \cdots & a_{1n- 1} & 0\\\cdots & \cdots & \cdots & \vdots\\ a_{n- 11}\cdot & \cdots & a_{n- 1n- 1} & 0\\0 & \cdots & 0 & 1\end{array}\right)$

In fact, we can find a $U$ such that

$U^{-1}A=\left(\begin{array}{llll}a_{11} & \cdots & a_{1n- 1} & a_{1n}\\\cdots & \cdots & \cdots & \cdots\\ & & & n- 1an- 1n\\a_{n- 11}0 & \cdots & a_{n_{0^{-}}1} & \cdots a_{nn}\end{array}\right)$ $(a_{nn}\neq 0)$ .

$A_{i}$ are then defined by these $a_{jk}$ . Let us denote the rotation with the
matrix $U$ by $\rho$ , and the linear transformation with the matrix $A_{i}$ by

$f_{i}$ . Then we have $f=\rho f_{0}f_{1}\cdots f_{n}$ and
$D(f/x)=D(\rho/x)D(fdx)\cdots D(f_{n}/x)$ .

Now we have $D(\rho/x)=1,$ $D(f_{\mathfrak{a}}/x)=|a_{nn}|$ and $D(f_{i}/x)=1$ for $i=1,2,$ $\cdots$ ,
$n-1$ , as these $f_{i}$ are essentially 1 or 2 dimensional transformations
and in these cases the theorem is almost evident. We may proceed by
induction with respect to $n$ and assume

$D(f_{n}/x)=asb|A_{n}|$ .
Then we have

$D(f/x)=|a_{nn}|abs|A_{n}|$

$=abs|A$ .
This completes the proof.

\S 3. $\mathfrak{A}$-functions.

In this section we shall prove that for any $\mathfrak{A}$-function $f$

$D(f/x)=abs|\frac{\partial f}{\partial x}|$
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holds. First we shall prove some lemmas.
LEMMA 1. The functions
$\epsilon_{n}(x)=\sup||f(x^{\prime})\cdot-f(x)-(gradf(x)||x-x||<1/nx^{\prime}-x)||/||x^{t}-x||$

$(n=1,2, 3, )$

are all measurable, and have finite values almost everywhere.
PROOF. Since the function under sup.symbol is continuous with

respect to $x^{\prime}$ , we obtain the same $\sup$ .value, when we make $x^{\prime}$ vary
only the points such that $x^{\prime}-x$ have rational coordinates. So we have

$\epsilon_{n}(x)=\sup_{a}f_{a^{n)}}^{(}(x)$ ,

where
$f_{a}^{(n)}(x)=||f(x+a)-f(x)-(gradf(x), a)||/||a||$

and $a$ is a rational point whose norm is less than $1/n$ . But $f_{a}^{(n)}(x)$ is
a measurable function and $\{f_{a}^{(n)}(x)\}$ is a countable set for any fixed
$n$ . So $e_{ll}(x)$ is a measurable function for any $n$ . The latter assertion
on $e_{n}(x)$ follows from the total-differentiability of $f(x)$ .

LEMMA 2. If $f(x)$ is an $\mathfrak{A}$ -function on $D,$ $i$. $e$. $\mathfrak{A}[D]\ni f(x)$ , and
there exist two numbers $K,$ $k$ such that

$K\geqq abs_{\partial x}^{1\partial f(x)}|\geqq k$

for $x\in E$ , where $E$ is a measurable $set\subset D$, then $K\geqq D(f/x)\geqq k$ almost
everywhere on $E$ .

PROOF. If $\mu(E)=0$ , the lemma is trivial. So we can assume that
$\mu(E)>0$. We shall consider separately the cases: (i) $k>0$ and
(ii) $k>0$ .

(i) $k>0$ . By the absolute continuity of $\mu[f]$ , there exists for
any given positive number $\epsilon$ a positive number $\delta$ such that,

$\mu[f](E)<e$

for any measurable set $E$ whose Lebesgue measure is less than $\delta$ .
As $\{\epsilon_{n}(x)\}$ is a sequence of measurable functions converging to zero
almost everywhere, we can find by Egoroff’s theorem an open set $A$

whose measure is less than $\delta$ such that $\{e_{n}(x)\}$ converges uniformly to
zero on $D-A$ . On the other hand, we can also find, since the partial
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derivatives of $f$ are all measurable on $D$ , an open set $B$ whose measure
is less than $\delta$ such that these partial derivatives are all continuous on
$D-B$. Furthermore, we can find a closed set $F$ such that

(i) $E-A_{\cup}B\supset F$,
(ii) $\mu((E-A\cup B)-F)<e$ .

For a sufficiently large natural number $n_{0}$ , we obtain
$e_{n}(X)<e$ $(n>n_{0})$

on $D-A$ . Now we cover $F$ by a countable number of closed cubic
intervals $I_{i}$ with the side length $s_{i}$ such that $\mu(I_{i}\cap I_{j})=0(i\neq j)$ and

$\mu(\bigcup_{i=1}^{\infty}I_{i}-F)<\delta$ .
In each $I_{i}$ we select a point $x_{0}$ of $F$ and define

$\overline{f}(x)=f(x_{0})+(gradf(x_{0}), x-x_{0})$ .
Construct now two intervals $K_{i}^{1}$ and $K_{i}^{2}$ for each $I_{i}$ , such that

$K_{i}^{1}\supset I_{i}\supset K_{i}^{2}$ .
Since $\overline{f}(x)$ is a linear function, the image of these intervals are all
parallelograms with parallel faces, and we have

$\overline{f}(K_{i}^{1})\supset\overline{f}(I_{i})\supset\overline{f}(K_{i}^{2})$ .
We adjust the size of the intervals so that the distances $b_{-}etween$ the
corresponding faces of $f^{-}(K_{i}^{I})$ and $\overline{f}(I_{i})$ , resp. of $\overline{f}(I_{i})$ and $f(K^{2_{i}})$ are all
equal to $2es_{i}$ (supposing $e$ not too large).

Then there exists a constant $M$ such that
$\mu(\overline{f}(K_{i}^{1})-\overline{f}(K^{1_{i}}))\leqq es_{i}^{n}M$.

Honceforth we obtain
$\mu(f(I_{i}))\geqq\mu(\overline{f}(K_{i}^{1}))=\mu(\overline{f}(I_{i}-(I_{i}-K_{i}^{2})))$

$=\mu(\overline{f}(I_{i}))-\mu(\overline{f}(I_{i}-K^{1_{i}}))$

$\geqq\mu(\overline{f}(I_{i}))-es^{n}M$

$\geqq k\mu(I_{i})-es^{n}M$,

$\mu(f(I_{i}))\leqq K\mu(I_{i})+es^{n}M$.
So we obtain the inequalities
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$k_{\mu}(\cup\infty I)-eM_{\mu}(\cup i\infty-1I_{i})\leqq\mu(f(\bigcup_{i=1}^{\infty}I_{i}))$

$\leqq K_{\mu}(\bigcup_{i=1}^{\infty}I_{i})+eM_{\mu}(\bigcup_{i=1}^{\infty}I_{i})$ .
On the other hand, from our assumption follows

$|\mu(f(\bigcup_{i=1}^{\infty}I_{i}))-\mu(f(E))|\leqq|\mu(f(E))-\mu(f(E-A\cup B))^{1}|$

$+|\mu(f(E-A_{\cup}B))-\mu(f(F))^{1}|+|\mu(f(F))-\mu(f(\bigcup_{i=1}^{\wedge}I_{i}))|<4e$

and
$|\mu(\bigcup_{i=1}^{\infty}I_{i})-\mu(E)|\leqq|\mu(E)-\mu(E-A_{\cup}B)|$

$+|\mu(E-A_{\cup}B)-\mu(F)|+|\mu(F)-\mu(\bigcup_{i^{\infty_{=}}1}I_{i})|<4\delta$ .
Therefore we have

$k\mu(E)-4\cdot(eM+e+\delta)\leqq\mu(f(E))$

$\leqq k\mu(E)+4\cdot(eM+e+\delta)$ .
So we obtain

$k_{\mu}(E)\leqq\mu(f(E))_{--\leq K_{\mu}(E)}$ ,

since $e$ and $\delta$ are arbitrary. Similarly we have
$k_{\mu}(F)\leqq\mu(f(F))\leqq K_{\mu}(F)$

for any measurable subset $F$ in $E$. This is the required result.
(ii) $k=0$. First we shall assume that $K=0$ . We form $I_{i}$ by the

same construction as above. Then $\overline{f}(I_{i})$ is mapped into a hyperplane
in this case, and there exists a constant $M$ such that

$\mu(\overline{f}(K_{i}^{I}))<es_{i}^{n}M$.
So we obtain

$\mu(f(I_{i}))\leqq\mu(f(K_{i}^{1}))<es_{i}^{n}M$ ,

whence follows
$\mu(f(\bigcup_{i=1}^{\infty}I_{i}))<e\mu(U_{i=1}^{\infty}I_{i})M$ ,

and finally

$\mu[f](E)=0$

by the same argument as above. Similarly we have $\mu[f](F)=0$ for
any subset $F$ in $E$, so $D(f/x)=0(x\in E)$ almost everywhere. When
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$K>0$, we subdivide the interval $[K, 0]$ into a countable number of
intervals as follows:

$[K, 0]=U_{i=1}^{\infty}[K/2^{i-1}, K/2^{i}]\cup\{0\}$ .
As we have already proved the lemma for any of the subintervals
$[K/2^{i-1}, K/2^{i}]$ or $\{0\}$ , we see that the lemma is true also in this case.

THEOREM 3. If $f(x)$ is an $\mathfrak{A}$-function on $D$, then we have

$D(f/x)=abs|\frac{\partial f}{\partial x}|$

almost everywhere.
PROOF. If the proposition is false, then either

$\mu\{x;D(f/x)>abs|_{\partial^{\frac{f}{x}}}^{\partial}-|\}>0$

or

$\mu\{x;D(f/x)<abs|\frac{\partial f}{\partial x}|\}>0$

should hold. Since we may proceed in a similar way in either case,
we shall assume that

$\mu\{x;D(f/x)>abs|\frac{\partial f}{\partial x}|\}>0$ .
We can further assume that

$\mu\{x;abs|\frac{\partial f}{\partial x}|>0\}>0$,

as the theorem is trivial when $|\frac{\partial f}{\partial x}|=0$. In fact, we have then $D(f/x)$

$=0$ almost everywhere from the above lemma. Under these assump.
tions, there exists some natural number $m$ such that the measure of
the set

$E_{1}=\{x;D(f/x)-abs|\frac{\partial f}{\partial x}|>\frac{1}{m}\}$

is positive. Then we can take an interval $[a_{1}, a_{2}]$ such that

(1) $a_{1}$ and $a_{2}$ are rational numbers,
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(2) $a_{2}-a_{1}<\frac{1}{m}$ ,

(3) $\mu\{x;abs\left|\begin{array}{l}\partial\underline{f}\\\partial X\end{array}\right|\in[a_{1}, a_{2}],$ $xeE_{1}\}>0$ .

From the above lemma follows
$D(f/x)\in[a_{1}, a_{2}]$

almost everywhere in

$E_{2}=\{x;abs|\frac{\partial f}{\partial x}|\in[a_{1}, a_{2}],$ $x\in E_{1}\}$ ,

in contradiction to our assumption. So the theorem’ is proved.
$CoROLLARY$ . If $f(x)$ is an $\mathfrak{A}$ -function on $D$ and $g(x)$ is integrable

on $f(D)$ , then we have

$\int_{f(F)}g(x)dx=\int_{F},g(f(x))\cdot abs|\frac{\partial f}{\partial x}|dx$ ,

where $E$ is any measurable set.

\S 4. Generalized $\mathfrak{A}$-functions.

Now we shall examine the case, where transformation is not ne-
cessarily a homeomorphism.

DEFINITION 3. A transformation $f(x)$ from a compact domain $D$

into $E^{n}$ is called a generalized $\mathfrak{A}$ function on $D$ , if the following con-
ditions are satisfied:

$(\mathfrak{A}_{1^{\prime}})f(x)$ is a continuous mapping, locally homeomorphic in $D$ ex.
cept on a null-set $E$ .

(9l) If $\mu(F)=0(F\subset D)$ , then $\mu(f(F))=0$ .
$(\mathfrak{A}_{3})$ $f(x)$ is totally differentiable in $D$ almost everywhere.
We shall consider in the following a fixed generalized $\mathfrak{A}\cdot function$

$f(x)$ on a compact set $D$ , with a possible exceptional null.set $E$ . We
shall now proceed to evaluate the integral

$\int_{D}|\frac{\partial f}{\partial^{X}}|dx$ .

First, we shall prove some lemmas.
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LEMMA 1. Denote with $D^{r}$ the boundary of $D$. The inverse
image of $x_{0}$ contains at most a finite number of points, if

(1) $f(E)_{\overline{3}}x_{0}$ (see $(?I_{1}^{\prime})$ ),
(2) $f(D^{r})\ni x_{0}$ .

We shall denote with $m(x_{0})$ the number of points contained in the in-
verse image of such $x_{0}$ .

PROOF. Since $D$ is compact, so $f^{-1}(x_{0})$ must have a cluster point
$x_{1}$ , if it contains an infinite number of points. But as $x_{1}$ does not be-
long to $E\cup D^{r}$ , so $f(x)$ is homeomorphic on some neighbourhood of
$x_{1},$–which is clearly a contradiction.

LEMMA 2. For a point $x_{0}$ such that
(i) $f(E)\overline{\ni}x_{0}$,
(ii) $f(D^{r})\overline{\ni}x_{0}$,
(iii) $f(D)\ni x_{0}$,

there exists a neighbourhood $U$ of $x_{0}$ which satisfies:
(1) $f^{-1}(U)$ is a direct sum of neighbourhoods $V_{i}(i=1,2, \cdots, m)$

of points $x_{1},$ $\cdots,$ $x_{m}$ , where $f^{-1}(x_{0})=\{x_{1}, \cdots, x_{m}\}$ and $m=m(x_{0})$ ,
(2) $V_{i}(i=1,2, \cdots, m)$ is mapped onto $U$ by $f(x)$ homeomorphically.
PROOF. If we take a sufficiently small neighbourhood $U$ of $x_{0}$ ,

there exist clearly the open sets $V_{1},$
$\cdots,$

$V_{m}$ in $D$, each of which is
mapped onto $U$ by $f(x)$ homeomorphically.

If $f^{-I}(U)\neq\sum_{i=1}^{m}V_{i}$ , then we can find points $x^{\prime}$ in $U$, such that
$f^{-1}(x^{\prime})\subset[\sum_{i=1}^{m}V_{i}$ . We shall call such points “ exceptional ) If there are
only a finite number of exceptional points, then we may substitute $U$

by a small neighbourhood $U^{\prime}$ , not containing these exceptional points,
and obtain a neighbourhood of required nature. Even if there are an
infinite number of exceptional points, we can attain our purpose in
the same way, if they do not accumulate around $x_{0}$ . Assume now
there exists a sequence of exceptional points $x_{1^{\prime}},$ $x_{2^{\prime}},$

$\cdots,$
$x_{n}^{\prime}$, $\cdot$ .. con-

verging to $x_{0}$ . Let $a_{i}$ be a point in $D$, such that $a_{i}\overline{\in}\sum_{i=1}^{m}V_{i}$ and
$f(a_{i})=x_{i^{\prime}}$ . $\{a_{i}\}$ has a cluster point $a$ in the compact set $(D-\sum_{i=1}^{m}V_{i})$.
Then we must have $f(a)=x_{0}$ and $a\in f^{-1}(x_{0})$ , which is a contradiction.

LEMMA 3. If we put $f^{-1}f(E)=\overline{E}$, then

$\int_{\overline{F}}\left|\begin{array}{l}\partial f\\-\\\partial x\end{array}\right|dx=0$.

PROOF. We shall prove that
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$\int_{\overline{E}}abs|\frac{\partial f}{\partial x}|dx=0$ .

Since $\mu(E)=0$, this equation is equivalent to

$\int_{\overline{l\backslash _{;}^{\backslash }}-F}abs|\frac{\partial f}{\partial x}|dx=0$ .

If $\mu(\overline{E}-E)=0$, then our proposition is trivial. So we assume $\mu(\overline{E}-E)>0$.
Under this assumption, we have only to prove that for any closed subset
$F$ of $\overline{E}-E$

$\int_{F}abs|\frac{\partial f}{\partial x}|dx=0$ .

Now, every point of $F$ has a neighbourhood, on which $f(x)$ is a homeo-
morphism, and as $F$ is compact, $F$ is covered by a finite number of
such neighbourhoods as follows:

$\bigcup_{i=1}^{k}U_{i}\supset F$ .
In each $U_{i}$ , we have from the result of the last section,

$0=\mu(f(F\cap U_{i}))=\int_{F\cap U_{i}}abs|\frac{\partial f}{\partial x}|dx$ .

Thus we obtain

$0\leqq\int_{F}abs\left|\begin{array}{l}\partial f\\\partial x\end{array}\right|dx\leqq\sum_{i=1}^{k}\int_{\Gamma_{\cap}U_{i}}abs|\frac{\partial f}{\partial x}|dx=0$ .

This completes the proof.
Now denote with A $(x, f, D)$ the degree of mapping on $D$ at $x$,

and put

$f(D)_{m}=$ { $x$ ; A $(x,$ $f,$ $D)=m$} $(m=0, \pm 1, \pm 2, )$ .
Then we have

$\bigcup_{m=-\infty}^{+\infty}f(D)_{m}=f(D)-f(D^{r})$ .

THEOREM 4. If $\mu(D^{r})=0$ , and $abs|\frac{\partial f}{\partial x}|$ is integrable on $D$ , then we
have

$\int_{D}|\frac{\partial f}{\partial x}|dx=\sum_{m=-\infty}^{+\infty}m\int_{J^{(D)}}mdx$ .
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PROOF. Let us represent $f(D)_{m}-f(E)$ as the union of closed cubes

$I_{i}(i=1, 2, )$ such that
(i) $\mu(I_{i}\cap I_{j})=0$ if $i\neq j$,
(ii) $f^{-1}(I_{i})$ is the union of a finite number of disjoint closed do-

mains $J_{j}^{i}(j=1,2, \cdots, \alpha_{i})$ ,
(iii) $J_{j}^{i}s$ are mapped homeomorphically onto $I_{i}$ by $f(x)$ .

The existence of such $J^{i_{j}}’ s$ is assured by lemma 2. For $x\in I_{i}$ we have
obviously

$A(x, f, J_{j}^{i})=sgn|\frac{\partial f}{\partial x}|$

and
$A(x, f, (D-\sum_{j^{i}=1}^{\alpha}J_{j}^{i}))=0$ .

Furthermore, since we have
$m=A(x, f, D)=\sum_{j=1}^{a_{i}}A(x, f, J_{j}^{i})+A(x, f, (D-\sum_{j=1}^{\alpha_{i}}J_{j}^{i}))$ ,

we can easily see that

$m\int_{I_{i}}dx=\Sigma_{j^{i}=1}^{\alpha}\int_{J_{j}^{i}}|\frac{\partial f}{\partial x}|dx$

by theorem 3 of the last section. Thus

$m\int_{f(D)}mdx=m\int_{J^{(D)}m^{-f(E)}}dx=m\int_{\Sigma^{\infty}}dxi=1^{I}$

;

$=\sum_{i=1}^{\infty}m\int_{I_{i}}dx=\sum_{i=1}^{\infty}\Sigma_{j=1}^{\alpha_{i}}\int_{J_{j}^{i}}|\partial^{\frac{f}{x}1dx}\partial$

$=\int_{f^{-1}(f(D)_{m})-f^{-1}f(E)}|\frac{\partial f}{\partial x}|dx$ .

Now, as abs $|\frac{\partial f}{\partial x}|$ is integrable,

$S=\sum_{m=-\infty\int_{f^{-1_{(f\omega))-f^{-1_{f(E)}}}}}}^{+\infty}m|\frac{\partial f}{\partial x}|dx$

is finite. From the equation just proved follows then that

$\sum_{m=-\infty}^{+\infty}m\int_{f(D)_{m}}dx$



230 S. SEKI

is also finite and equal to $S$. The last sum is equal to

$\int_{D-f^{-1}j(E)-f^{-1}f(Dr)}|\frac{\partial f}{\partial x}|dx=\int_{D}\left|\begin{array}{l}\partial f\\\partial x\end{array}\right|dx$ .

Thus our proposition is proved.
The following theorem can be proved in the same way.
THEOREM 5. If one of the integrals:

$\int_{D}g(f(x))|\frac{\partial f}{\partial x}|dx$ and $\sum_{m=-\propto}^{+\infty}m\int_{J^{(D)}m}g(y)dx$

is finite, then the other is also finite and they are equal to each other.
$CoROLLARY$ . Let $f(x)$ be a generalized $\mathfrak{A}\cdot function$ on $D$ and $S$ a

hypersphere in D. If $f(x)$ maps $S$ homeomorphically onto $f(S)$ and

abs $|\frac{\partial f}{\partial X}|$ is integrable on $D$, then we have

$\int_{[ftS)]}g(y)dy=sgn$ A $[x, f, D]\int_{[s]}g(f(x))||\frac{\partial f}{\partial x}|dx$,

where $[*]$ represents the interior $of*$ .
This corollary may be regarded as a direct generalization of the

well-known formula in the integral calculus:

$\int_{f^{(b)}}^{f_{(a)}}()(y)dy=\int_{a^{(}}^{b}/(f(x))f^{\prime}(x)dx$ .

St. Paul’s University, Tokyo.
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