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1. Preliminaries.

In the present paper, we shall derive Mazur’s theorem on convex
sets and the known regularity of some Banach spaces from a minimax
theorem which we shall state and prove by a procedure due, in essen-
tial, to N. Georgescu-Roegen [1], H.F. Bohnenblust, S. Karlin and L.S.
Shapley [2].

In what follows, all the linear spaces to be considered are the
ones on the field of real numbers.

A linear space $E$ is said to be topological, if a separative topology
is given in it so that the mappings

$E\times E\ni(x,y)\rightarrow x+y\in E$ ,

$R\times E\ni(\alpha, x)\rightarrow\alpha xeE$

may be continuous, where $E\times E$ is the topological product of $E$ by
itself and $R\times E$ is that of $E$ by $R$ : namely, the set of all real numbers
in the usual topology.

In case of a normed space $E$ , the conjugate space of it will be
denoted by $E^{*}$ . We understand under $w^{*}$ -topology the weak topology
of $E^{*}$ as the conjugate space of $E$ . On the other hand, the adjective
“ weak” will be used for the weak topology of $E$ or $E$“ by its bounded
linear functionals. The unit spheres of $E$ and $E^{*}$ will be denoted by
$S$ and $S^{*}$ respectively. In this paper, we shall often make use of the
well-known $w^{*}\cdot compactness$ of $S^{*}$

2. Minimax Theorems.

Let $E$ be a topological linear space and $F$ a (not necessarily
topological) linear space. Let further $X$ and $Y$ be convex sets of $E$
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and $F$ respectively, and $X$ is assumed to be compact.
Let $K(x,y)$ be a real valued function, which will be called later

a pay.off, defined on the product space of $X$ by Y. $K(x,y)$ is assumed
to satisfy the following conditions:
(I) $K(x,y)$ is continuous in $xeX$ for each fixed $y\in Y$.
(II) $K(\alpha_{1}x_{i}+\alpha_{2}x_{2}, y)\geqq\alpha_{1}K(x_{1},y)+\alpha_{2}K(x_{2},y)$ for $\alpha_{1}\geqq 0,$ $\alpha_{2}\geqq 0,$ $\alpha_{1}+\alpha_{2}$

$=1,$ $x_{1},$ $x_{2}\in X$ and $y\in Y$.
(II1) $K(x, \beta_{1}y_{1}+\beta_{2}y_{\dot{6}})\leqq\beta_{1}K(x,y_{1})+\beta_{2}K(x,y_{2})$ for $\beta_{1}\geqq 0,$ $\beta_{2}\geqq 0,$ $\beta_{1}+\beta_{2}$

$=1,y_{1},y_{2}eY$ and $x\in X$.
Under these conditions we shall prove:
THEOREM 1. If $\sup_{x\epsilon X}\inf_{yeY}K(x, y)$ is finite, then we have the deter-

minateness of the game: i.e.,

$\sup_{x\epsilon X}\inf_{y\epsilon Y}K(x,y)=\inf_{y\epsilon Y}\sup_{xeX}K(x,y)$ .

PROOF. Put
(1)

$\sup_{x\epsilon X}\inf_{yeY}K(x, y)=\sigma$ .

Let $e>0$ be an arbitrary positive number, then we have, by definition,

(2)
$\sup_{xeX}\inf_{y\epsilon Y}K(x,y)<\sigma+e$ ,

which implies t.hat for every $x\in X$ there exists some $y\underline{c}Y$ such that

(3) $K(x,y)<\sigma+e$ .
In consequence, by virtue of the compactness of $X$, we can find a
finite number of points $b_{j}\in Y,$ $(j=1,2, \cdots, n)$ , so that

(4) ${\rm Min}_{j}K(x, b_{j})<\sigma+e$

for any $x\in X$. Consider then the continuous mapping

$X\ni x\rightarrow\varphi(x)=(\varphi_{1}(x), \varphi_{2}(x),$
$\cdots,$

$\varphi_{\hslash}(x))eR^{n}$ ,

where

$\varphi_{j}(x)=K(x, b_{j})-(\sigma+e)$ .
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Let $\varphi(\iota_{1}^{r})$ and $\varphi(x_{-})$ be any two points of $\varphi(X)$ , then for $\alpha_{I_{-=}^{\backslash }}>0,$ $\alpha_{2}\geqq 0$ ,
and $\alpha_{1}+\alpha_{2}=1$ , wc have, by (II)

(5) $\iota_{1}^{\prime}\varphi_{j}(x_{1})+l_{\underline{J}}^{(/r_{j}}(X))_{\backslash \varphi_{j}((\iota_{1}^{\prime}X_{1}-\vdash.x_{\dot{c}})}^{\prime}-\sim(\gamma.)$’

and $\alpha_{1}x_{1_{-}^{+X}}(f_{)},\chi_{a^{)}}\prime r$ because of the convexity of $X$.
Thus, by virtue of (4) and (5), the convex closure of $’/J(X)$ does

not intersect thc positive orthant $Q$ of $R^{n}$ : namely, the set of all
points $eR^{\iota}$ whoso coordinates are non-negative. And in addition,
$\varphi(X)$ is compact. Consequently, there exists a hyperplane of $R^{n}$

$\hat{j}^{ff}1\backslash _{-}\urcorner\beta_{J^{L_{j}}}\prime\prime=0$

with $/s_{j_{-}^{\mathscr{J}}}^{\sim}o_{j^{\frac{\backslash ^{\prime}1}{1}}}.\beta_{j}=1$ , in wliosc ncgative side $’/$ )$(X)$ lies. Hence we

have

$\frac{\backslash \backslash J:}{j}1/\theta_{j}\varphi_{j}(,\backslash ’)’/0$

for any $x_{t}- X$. But, this $m^{1}ans$ , by virtue of (III), that

(6) $ K(.\frac{\backslash ^{\prime f}}{j};1-\epsilon$

for any $x$ ( X. $r_{1’ h_{\llcorner^{\backslash }}rc^{1}for()}$ since $Y$ contains $\dot{j}\overline{1}\backslash ^{\prime\prime}l^{\prime}d_{j}b_{j}$ owing to its con-
vexity, (6) implies that

$\inf_{\iota_{t}k^{\prime}}\sup_{\Lambda 1(},$

$ K(x,y)_{\sigma\dashv}^{s}’.-\epsilon$ .

Thus the arbitrarincss of $\epsilon 3^{\prime\cdot i_{(}1ds}$

$\inf_{yY}\sup_{r\iota\Lambda},$
$K(\lambda\cdot, y)$ ’, $\sigma^{=}su]_{\backslash }J,\mathfrak{r}\iota..\inf_{\backslash c1^{r}}K(x, y)$ .

This proves the determinateness of the $\backslash \sigma;a\ln$ (} since we have always

$x\iota\Lambda su\iota)\inf_{Y}l\{(x,y)$ $1’\iota lint$. $\sup_{\mathfrak{r}\epsilon X}K(x,y)$ .

$T’\underline{)}$ $ Snpp_{\iota}\cdot$) $.\backslash \cdot ei_{-\prime}^{tVt}$ that $E$ is a ( $/\iota ot$ neccssarily topological)
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linear space and $F$ is a topological $li/\iota_{\iota^{\prime}}c,^{\prime\prime}/\backslash \backslash ^{\backslash }pt^{\prime}lC^{\cdot}C^{\prime}$ , and that, in addition,
$Y\subset F$ is compact. If the $p$ ’ is $c_{t}ynti/\iota;t$ ozts in $\int c$ Yfor each fixed
$x\in X$ and satisfies (II) and $(I^{r}I)$ as bcfore, the finiteness of $\inf_{y\epsilon Y}\sup_{\iota\epsilon X}$

$K(x, y)$ irnplies the dctcrminateness of $t/lCg(\prime l/llC$ .
The proof would be a mere repetition of the preceding one, $t1_{1}\prime_{\vee^{\backslash }}re-$

fore it should be omittcd here.

3. Mazur’s $theo1^{\cdot}-1\iota n$ .
Let $E$ be a normed linear space and $llI$ a strongly closed convex

subset in it. As is well-known, $M’\subset!_{d}^{l}\prime u\iota\cdot s$ theorem savs that for any
point $a\not\in M$ there exists a bounded $1i(1^{\prime}\iota f\iota_{a}^{1}$ }$1ctiona1f_{r}E$ ‘ such that

(7)
$\sup_{\iota\iota rt/}f(\lambda^{\prime})$

. $-/(/!)$ .

We shall give a proof of this $thcot$.$(1m |)-$ $t$ } $\iota$ ( a id of the preceding
minimax theorcms.

A point $a\Leftarrow E$ is said to be $quasi- w_{()}?klyadhc^{Y}\iota\cdot c^{Y}\iota 7t$ to a subset $A$ ,
if for every $f\in S^{*}$ and cvery $e\nearrow 0$ there exists a point $ x\epsilon$ $A$ such that

(8) $|f^{\vee}(x)-f(a)|\nearrow\epsilon$ .
It is easily seen that Mazur’s $t$ ] $\backslash $ is $cquiva1_{(}\backslash nt$ to the fol-

lowing
$\uparrow It\Gamma ORbl\backslash 13$ . If a point ex $tE$ is $q//(l\backslash \cdot i- it)e$a $/^{t}.’ lyad/lC^{\prime}\iota^{7}/\iota tt$ ) a sub. $(^{\prime t}$

$A$ of $E$ , then $a$ is also strongly $a_{t}/l_{l(\gamma Cj\prime\iota t}^{t}$ to $th’$)
$\vee$ convex closnrc $C^{\tau}(A)$

of $A$ .
In order to prove this theorem, we consider the game with thc

pay-off $f(x-a)$ , where the $maximizi_{t}\urcorner$ ff player chooses his strategy $f$

from $S^{*}$ and thc minimizing playcr $c11oos_{\dot{\iota}^{t}}s$ his strategy $x$ from $C(A)$ .
The pay.off function is $w^{*}$ -continuous in the variable $f\epsilon- s^{1}$

’ for
each fixcd $x$ and satisfies obviously (II) and (III), $w1_{1}ile$ $S^{r}$ is
$\iota v^{*}\cdot compact$ .

Next, let us see thc finitencss of $f\iota\backslash \sup_{\prime}\inf_{L\backslash c_{\iota_{\wedge}}\iota_{1}^{J^{\prime}(,\}_{\vee^{\prime}}-a)}}$ . First, it is obvi-

ous that $\sup_{f}\inf_{x}f(x-a)\geq 0$ , because the maximizing player $cal$

choose $f=0$ as his strategy. On the other })$and$ , let $e$ bc an arbitrary
positive number. Since, by assumption, $a$ is quasiweakly adherent to
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$A$ , for every $feS^{*}$ there exists a point $x\in A\subseteq C(A)$ such that

$ f(x)-f(a)<\epsilon$ ,

which implies that

(7)
$r_{\epsilon\backslash ^{-\wedge}\cdot x(t}Supi_{11_{(}}f_{4^{1}}]_{\backslash }^{-}x-a$

) $\leqq\epsilon$ .

Thus the arbitrariness of $\epsilon$ yields

(8) $\sup_{J\epsilon 5\star_{J}}\inf_{(eCA)}f(x-a)=0$ .

Therefore, all the conditions of our minimax theorem 1 are satisfied,
and, in consequence, the game is determined: i.e.,

$\sup_{feS*}\inf_{1x\epsilon CA\rangle}f(\backslash -a)=C=\inf_{x\epsilon\iota^{-}(A)}\sup_{f\epsilon S\#}f(x-- a)$ .

Now, since

(9) $\sup_{f\epsilon S\star}f(x-a)=||x-a||$ ,

we obtain

(10) $\inf_{x\epsilon CA}||x-a||=0$ .

This proves the theorem.

4. Regularity of Banach spaces.

Let $E$ be a Banach space. The conjugate space of $E^{*}$ will be
denoted by $E^{**}$ and its unit sphere will be denoted by $S^{**}$ . As is
known, $E$ is called regular, if $E=E^{**};$ i.e., for every $\Phi\in E^{*}‘‘$ there
exists an $x^{e}E$ such that (11) $\Phi(\int)=\int(x)$ for any $f\in E^{*}$ .

The following is a game-theoretic approach to the well.cstablished
regularily of some Banach spaces.

First, we shall prove: If the unit sphere $S$ of $E$ is weakly compact,
then $E$ is rcgular. For this aim, let $\Phi$ be an arbitrary element of
$S^{**}$ , and consider the game with the $pay\cdot 0ff$
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(12) $\Psi(f, x)=\Phi(f)-f(x)$ ,

where the maximizing player uses strategies $f_{e}S^{*}$ and the minimizing
player uses strategies $x\in S$.

This pay.off function is continuous with respect to the variable
$xeS$ in the sense of the weak topology of $E$, and satisfies (II) and
(III). Moreover, $S$ is, by assumption, compact in this topology.
Next, we have

$\inf_{x\epsilon S}\sup_{f\epsilon S*}\Psi(f, x)\leqq 1$ ,

because

$|\Psi(f, 0)|=|\Phi(f)|\leq||\Phi||||f||\leqq 1$ .

And, we obtain also

$\sup_{f\epsilon S*}\inf_{x\epsilon_{\backslash }9}\Psi(f, x)\geqq 0$ ,

because $\Psi(0, x)=0$ for any $x\in S$. Hence it follows that

(13) $0\leqq\sup_{f\epsilon S*}\inf_{x\epsilon S}\Psi(f, x)\leqq\inf_{x\epsilon S}\sup_{f\epsilon S*}\Psi(f, x)\leqq 1$ .

Thus our minimax theorem 2 applies to this game. We have therefore

(14)
$\sup_{f\epsilon S\star}\inf_{x\epsilon S}\Psi(f, x)=\inf_{x\epsilon S}\sup_{f\epsilon S^{*}}\Psi(f, x)$ .

We shall finally show that the value of (14) is just zero. Indeed,
suppose that the maximizing player chooses an $f\in S^{*}$ . Since, by
definition, $||f||=\sup_{x\epsilon S}f(x)$ , for every $e>0$ there exists an $x\in S$ such

that $||f||<f(x)+e$ . Then, we have immediately

$\Phi(f)\leqq|\Phi(f)|\leqq||\Phi||||f||\leqq||f||<f(x)+e$ ;

that is to say, $\Phi(f)-f(x)<e$ . Hence, taking (13) together in consid.
eration, we have

(15) $\sup_{f\epsilon S*}\inf_{x\epsilon S}\Psi(f, x)=0$ .
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Thercforc the value of the $b$
) $am_{t^{\backslash }}$ is just zero. (Notice that (15) is

always $tru(\backslash $ whether the ganie utld( $r$ consideration is determined or
not.) Thus from

(16)
$f\backslash su|)_{:=}$.

$i_{\backslash }nt_{\backslash }\lfloor ct$
) $(j)-\int(,\iota^{\prime})|$

$0---\inf_{\mathfrak{r}(\backslash }.\sup_{f\iota 3^{\backslash }}$

.
$[(\prime p(f)-J(x)]$ ,

we obtain

$\inf_{c\backslash }!|(l)-.\backslash ’||=0$ .

This provcs that $S=S$ bccause of the $C(m1^{1_{t}\rangle})\backslash t\iota^{1}11(ss$ of $\mathcal{B}$ .
Another known criterion for $t1_{11^{1}}$ regularity is as follows: $a$

Banach space $1\prec^{\neg}\vee$ is $/\cdot$
)

$\backslash \ell 1_{c^{\prime}}n’,$ $i_{J^{\prime}}$ ( $a/\iota cl$ oniy if) $t^{t_{l}}ct(((l[ilo/)ology$ of Il’
is $cqni_{l^{1}},ale/\iota t$ to the il [)$pot’’$)$gy$ of it.

Let us again $c^{\backslash }onsi_{(}1_{t1}\cdot tt_{1(}\iota$ game $discus^{c\backslash }\backslash ’()d$ alcove. If we succee( $1$ to
show the determinatencss of this ($ f\neg amt\cdot$ , we $obt^{r}(\iota$ iii at once the regu-
larity of $E$ by the final part of the $\mathfrak{l}$ ) $rt^{\prime}C\llcorner^{\prime ding}alk^{J}u\iota n\iota^{1}11t$ . This game
meets all the $cond_{t}\sim tions$ of our minimax $th_{1^{\backslash }}or(\ln 1$ exccpt that of the
compactness of $S$ ‘. providcd that we consider thu maximizing player’s
strategy space $\backslash S^{\backslash }$

}. from the stan( $1_{[)(}i_{111}$ of th $()$ weak topology of $E^{*}$ .
But, as, by assumption, $tl_{1}\iota\cdot w(\prime lk$ topology of $\Gamma_{d}$’ “ is equivalent to the
$\iota 0^{1^{\wedge}}$ -topology $oI$ it, and as $S^{\prime}$ is always compact in the scnse of thc
latter, $S^{*}$ is compact in $t1l(b^{\backslash }(tlSt\cdot$ of the $fo1^{\cdot}11t^{t}r$ , too. Hcnce we have,
by virtue of our minimax $th_{t^{\prime}O1}\cdot c^{\tau}m1$ , thc desirud determinateness of
this game.

5. Regularity of uniformly convex Banach spaces.

NVe end this work by presentin,$\zeta^{r}$ a gamo $ 1h\iota^{\iota}01^{-}(\iota$ { ic approach to thc
regularity of uniformly convex 13;; nacli $\backslash \backslash |$ ) $ac_{(}\backslash \backslash \neg$, ; this might be ragarded
as a modification of the usual approach to this fact.
For this aim, we begin with

LEMMA. Let $E$ be a $ no/^{\prime}/jl()dli;\iota(ors/)/\iota_{t}\cdot$ . For $a/lyf_{1},$ $f_{\underline{\prime y}}\not\subset S^{r}$

$\Phi\in S^{t\cdot\}^{\prime}}$ and $\epsilon>0$ thcrc exis $ts$ cln $\iota_{t}S$ such $t/lat(p(f_{i})-f_{i}(x)<\epsilon^{\backslash }$

$(i=1,2)$ .
PROOF. If ${\rm Max}_{l}L\Phi(f_{i})-f_{i}(x)|$

’ $e$ for any $x$ . $L^{\backslash }\backslash $ , the image of $S$,
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which is convex and bounded, by thc continuous mapping

$ S)x-\rangle(\Phi(f_{1})-f_{1}(x)-\epsilon^{\iota}, \phi(f))-f_{-})(x)-\epsilon)\epsilon^{\backslash }R^{Q}\rightarrow$

would lie in the positive side of a strai.ght \’iine $\alpha_{11}^{r_{d}}/^{\gamma}+(1_{\sim}^{\prime},Z)=0$ with
$\alpha_{1}\geqq 0,$ $\alpha\underline{)}\geqq 0,$ $c\downarrow^{\prime}1^{-\vdash)}(\iota_{\leftarrow}^{\prime}=1$ . Hence we have

$||\alpha_{1}\int_{1^{+}}(\downarrow_{\wedge}^{\prime},f_{:}||\geqq rp(c\gamma_{1}f_{1}+|^{\prime}.)f,)>(\forall_{1}\int_{1}(\tau^{\prime})\dashv\iota_{)}f_{\sim}(x)+\epsilon$

for any $x\in S$, which is a contradiction.
Let $E$ be now a uniformly convex Banach space; namely its

norm satisfics the following condition: fcr (1very $\epsilon_{/^{>}}0$ there exists a
$\delta>0$ such that $x,$ $y\in S$ and $||x+y||>2(1_{t)}-\}^{\backslash })$ yiOld $||.x-y||<\epsilon$ .

Let $\Phi$ be a point of$\cdot$ $S$ } $|$
. such tiiat $||\emptyset||=1$ . We shall show the

detcrminateness of the $\sigma_{\backslash ^{t}}^{r\prime}\dagger mc\iota vitll$ the pay-of{ ($p(f)-f(x)$ , xvhiclt player
1 $maximizt^{Y}S$ by choosing $\int\zeta S$

” and plaver $\rightarrow 91ninimiz_{(}1s$ by choosing
$f\in S$.

In fact, let $\epsilon$: be an arbitrary positiv number, and choose a $\delta>0$

such that $x,$ $y\epsilon S$ and $||x+.y||$
$,$

$>2(1-\delta)$ imply $||x-y||<\epsilon/2$ . Next
let $\gamma>0$ bc $cllos(Yn$ in such a way that $\gamma<{\rm Min}(\epsilon/2, \delta^{/}2)$ . Since
$||\Phi||=1$ , there exists an $h\in S^{*}$ which meets the condition:
$1-\gamma\leqq\Phi(/\iota)$ . For this $ l\iota$ , put

$H_{\epsilon}=\{x;x_{\iota^{\sim}}S, \Phi(h)-h(x)\leq\gamma\}$ .

The set $H_{\epsilon}$ is clearly non-empty. A point in $H_{\epsilon}$ will be called an
$\epsilon- opt\dot{U}$nal strategy of the minimizing player.

Let $x$ and $ yb_{(}\iota$ any two points in $H_{\epsilon}$ . Then, we have

$|Ix+3^{\prime}$ I $\geq|I$ $h$ I I $x+y$ I
$\geq h(x)+h(y)\geq 2(\Phi(h)-\gamma)$

$=>2(1-2\gamma)>2(1-\delta)$ .
Hence it follows that $||x-y||<\epsilon/2$ for $x,$ $y^{c}H_{g}$ .

Suppose now that the minimizing player chooses an e-optimal
strategy $a$ . Then, for every $f\vdash’\backslash S$ “, by virtue of the prcceding lemma,
thcre exists a point $x$ in $H_{\epsilon}$ such that $\Phi(f)-f(x)\leq\gamma$ . Thus
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$\Phi(f)-f(a)=\Phi(f)-\int(x)+f(x)-f(a)$ .
$\leqq\gamma+||x-a||<\epsilon/2+e/2=e$

for any $f\in S^{*}$ . This proves

$\inf_{z\epsilon S}\sup_{feS*}[\Phi(f)-f(x)]=0$ .

Tokyo College of Science.

Notes and References

As is well.known, Helly’s theorem plays an important r\^ole in discussions on the
regularity of Banach spaces. lt may be said that our approach to the regularity is in
essential a game.theoretic rearrangement of Helly’s theorem. As to Mazur’s theorem, our
approach is clearly roundabout, since we are based upon the $w^{*}\cdot compactness$ of $s*$ and, in
addition, Hahn.Banach’s extension theorem, while the usual one need not be aided by the
former fact.
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