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1. Preliminaries.

In the present paper, we shall derive Mazur’s theorem on convex
sets and the known regularity of some Banach spaces from a minimax
theorem which we shall state and prove by a procedure due, in essen-
tial, to N. Georgescu-Roegen H.F. Bohnenblust, S. Karlin and L.S.
Shapley |

In what follows, all the linear spaces to be considered are the
ones on the field of real numbers.

A linear space E is said to be topological, if a separatlve topology
is given in it so that the mappings

ExE3>(x,y)—x+yeE,
RxE3a,x)— axekE

may be continuous, where E x E is the topological product of E by
itself and R x E is that of E by R : namely, the set of all real numbers
in the usual topology.

In case of a normed space E, the conjugate space of it will be
denoted by E*. We understand under w*-topology the weak topology
of E* as the conjugate space of E£. On the other hand, the adjective -
“ weak ” will be used for the weak topology of £ or E* by its bounded
linear functionals. The unit spheres of £ and E* will be denoted by
S and S* respectively. In this paper, we shall often make use of the
well-known w*-compactness of S*.

2. Minimax Theorems.

Let E be a topological linear space and F a (not necessarily
topological) linear space. Let further X and Y be convex sets of E

4



On a minimax theorem and its applications 87

and F respectively, and X is assumed to be compact.
Let K(x,y) be a real valued function, which will be called later
a pay-off, defined on the product space of X by Y. K(x,y) is assumed
to satisfy the following conditions :
(I) K(x,y) is continuous in xe X for each fixed ye Y.
(II) K(ayt1+ o, ¥) = ay K(x1, y) + 2K (%, ¥) for a; >0, a, >0, ay+a,
=1, x,xe¢X and ye Y.
(D) K(x, Biy1+B2:) < By K(x, )+ B, K(x, ;) for 8,=>0, 8, =0, B,+ B>
=1,y,¥eY and xe X.
Under these conditions we shall prove :

THEOREM 1. If sup mf K(x,y) is finite, then we have the deter-
xe X YeY

minaleness of the game: ie.,

sup mf K(x,y)—lnf sup K(x,y).

x¢e X yeY

Proor. Put

(1) sup inf K(x,y)=o.
xeX YeY

Let ¢ >0 be an arbitrary positive number, then we have, by definition,

(2) sup inf K(x,y) <o+e,

xe X yeY

which implies that for every x ¢ X there exists some y< Y such that

(3) K(x,y) < o+e.

In consequence, by virtue of the compactness of X, we can find a
finite number of points bj¢ Y, (7=1,2, ---, n), so that

(4) Min K (%,b;) <o-+e

for any xe X. Consider then the continuous mapping

X 9 x — p(x)=(px), %), -+, Pa(x)) € R",
where

P (x)=K(x,b;)—(c+e¢).
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Let o(x;) and ¢(x:) be any two points of ¢{X), then for a; =2 0, ;= 0,
and a;+«,=1, we have, by (II)

(5) ay g i (x1) o () T (e X F WX)

.« X because of the convexity of X.

Thus, by virtue of (4) and (5), the convex closure of ¢(X) does
not intersect the positive orthant © of KA»: namely, the set of all
points e R* whos: coordinates are non-negative. And in addition,
¢(X) is compact. Consequently, there exists a hyperplane of R

and « x;+ 6 X

72
DBy 2;=0
71
2
with 2, >20,>)4;-=1, in whosc negative side ¢(X) lics. Hence we
i
have

n
i) 0
!

for any xc¢ X. But, this means, by virtuce of (liI), that

”

(6) K(x, X1 8;0,) "ote
J

n
for any x ¢ X. Therefore, since Y contains M) 3 b, owing to its con-
71

vexity, (6) implies that

inf sup K(x,y) = o+4¢.
Yo¥Y o ack

Thus the arbitrariness of ¢ yiclds

inf sup K(x,y) ~ o=sup inf K(x, ).
\

YooY xelX XON Ve

This proves the determinatencss of the game, since we have always

sup inf K(x,v) " inf sup K(x,v).
xeN MY rMed oxe X

THEOREM 2. Suppose nexi that I is a (not necessarily topological)
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linecar space and I° is a topological lincar space, and that, in addition,
Y F is compact. If the pay-off is continuvus in ye Y for cach fixed

xe X and satisfies (1) and (1I1) as bcfore, the finiteness of inf sup
yeY e X

K(x,v) implies the determinatencss of lhe game.
The proof would be a mere repetition of the preceding one, there-
fore it should be omitted here.

3. Mazur’s theorem.

Let £ be a normed linear space and M a strongly closed convex
subset in it. As is well-known, Mazur’s theorem says that for any
point @ ¢ M there cxists a bounded lincar functional fe E* such that
(7) sup j(x) - ).

xe¢ M
We shall give a proof of this thecorem by the aid of the preceding
minimax theorems.

A point @ e E is said to be quasi-weakly adherent to a subset A,
if for every fe S*™ and cvery e > 0 there exists a point x ¢ 4 such that

(8) | f(x)—fl@) | e

It is casily seen that Mazur's thcorem is cquivalent to the fol-
lowing

THEOREM 3. If a point ac E is quasi-weakly adherciit ty a subsct
A of E, then a is also strongly adherent to the convex closure C(A)
of A.

In order to prove this theorem, we consider the game with the
pay-off f(x—a), where the maximizing player chooses his strategy f
from S* and the minimizing player chooscs his strategy x from C(A).

The pay-off function is w*-continuous in the variable feS¥ for
ecach fixed x and satisfies obviously (II) and (III), while S* is
w™*-compact.

Next, let us see the finiteness of sup inf j{x—a@). First, it is obvi-
SfeS¥® i

ous that sup inf f(x—a) >0, because the maximizing plaver can
f x

choose f=0.as his strategy. On the other hand, Ict ¢ be an arbitrary
positive number. Since, by assumption, @ is quasiwcakly adherent to
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A, for every fe S* there exists a point xe A © C(A) such that
F-fa)<e,

which implies that

(7) sup inf ja—a) e,

FeS¥ x4
Thus the arbitrariness of ¢ yields

(8) sup inf fix—a)=0.
JeS* aeCA)

Therefore, all the conditions of our minimax theorem 1 are satisfied,
and, in consequence, the game is determined: i.e.,

sup inf jia—a)=0=inf sup fx-a).
feS* xe G A xeClA) feS™

Now, since

(9) sup flx—a)=|lx—all,
feS*
we obtain
(10) inf || x—aij]=0.
x2e¢CA

This proves the theorem.

4. Regularity of Banach spaces.

Let E be a Banach space. The conjugate space of E* will be
denoted by E** and its unit sphere will be denoted by S**. As is
known, E is called regular, if E=FE**; ie., for every @ e E** there
exists an x€ E such that (11) @¢(f)=/f(x) for any fe E*.

The following is a game-theoretic approach to the well-established
regularily of some Banach spaces.

First, we shall prove: If the unit sphere S of E is weakly compact,
then E is rcgular. For this aim, let ¢ be an arbitrary element of
S**, and consider the game with the pay-off
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(12) v(f, )=¢(f)—f(x),

where the maximizing player uses strategies fe S* and the minimizing
player uses strategies xe S.

This pay-off function is continuous with respect to the variable
x e S in the sense of the weak topology of £, and satisfies (II) and
(III). Moreover, S is, by assumption, compact in this topology.
Next, we have

inf sup 7(f,x) <1,
xeS feS¥

because

le(f,0)I=loNI<NolllIfl<T.

And, we obtain also

sup inf »(f,x) =0,

feS* xeS

because (0, x)=0 for any xe S. Hence it follows that

(13) | 0 <sup inf w(f, x) < mf sup, v(f,x)<1.

feS* xeS

Thus our minimax theorem 2 applies to this game. We have therefore

(14) sup inf #(f, x)—lnf sup v(f, x).
feS¥ x¢S

We shall finally show that the wvalue of is just zero. Indeed,

suppose that the maximizing player chooses an fe S™*. Since, by

definition, || f H=sug f(x), for every ¢ >0 there exists an x ¢S such
X €

that || f|l <f(x)+e. Then, we have immediately

N =loNI<liollfISINAIN<f(x)+e;

that is to say, @¢(f)—f(x) <e. Hence, taking together in consid-
eration, we have

(15) ' sup inf #(f, x)=0.

feS* xeS
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Therefore the value of the game is just zero. (Notice that is
always true, whether the game under consideration is determined or
not.) Thus from

(16) sup inf [@(j)~/f(x)] Om{ sup Lp( )1 ()],

SOSE xS

we obtain

inf lgp—x4=0.
xS .
This proves that §=S"" because of the completeness of E.

Another known criterion for the regularity is as follows: «
Banach space IX is regrlar, if (and ondy i) the weak topology of EF
is equivalent to the wi-topology of it.

Let us again consider the game discussed above.  If we succeed to
show the determinateness of this game, we obtain at once the regu-
larity of I by the final part of the preceding argument.  This game
meets all the conditions of our minimax theorem 1 except that of the
compactness of S*, provided that we consider the maximizing player’s
strategy space S from the standpoint of the weak topology of E*.
But, as, by assumption, the weak topology of E* is equivalent to the
w-topology of it, and as S7 is always compact in the scnse of the
latter, S* is compact in the sense of the former, too. Hence we have,
by virtue of our minimax thcorem 1, the desired determinateness of
this game.

5. Regularity of uniformly convex Banach spaces.

We end this work by presenting a came theoretic approach to the
regularity of uniformly convex Banach spaces; this might be ragarded
as a modification of the usual approach to this fact.

For this aim, we begin with

LEMMA. Let E be a nornwed lincar space. For any fi, f.eS,*
PeS* and ¢ >0 there cxists an xS such that ¢(f;)—fi(x) "¢
(=1, 2).

Proor. If Max[@p(fi)—fi(x)| -e for any xS, the image of S,
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which is convex and bounded, by the continuous mapping

Sax— (@) —Six)—e, P(f2)—Sx)~¢) e R*

would lie in the positive side of a straight iine «Z;+«.Z.=0 with
a1 =20,0,20, a;+a,=1. Hence we have

oo it ol 2 @ (0 i+ f) 2> 1) 4, fx)+e

for any xe S, which is a contradiction.

Let £ be now a uniformly convex Banach space; namely its
norm satisfies the following condition: for cvery ¢ _» 0 there exists a
8 >0 such that x, ye S and [|x+y ] >2(1—38) yield [j x—v || < .

~Let ¢ be a point of S** such that |[@{l=1. We shall show the
determinateness of the game with the pay-off P(f)—f(x), which player
1 maximizes by choosing f¢ S* and player 2 minimizes by choosing
feS.

In fact, let ¢ be an arbitrary positive number, and choose a § >0
such that x, ve S and |[fx+y | >2(1--8) imply jx—v | < /2. Next
let v -0 be chosen in such a way that < Min (¢/2, 8/2). Since
i| @ |l==1, therc cxists an 7e¢ S* which meets the condition :

1—v < @(h). For this 72, put

He={x; xS, ¢(h)—h(x) <vy}.

The set H. is clearly non-empty. A point in H. will be called an
e-optimal strategy of the minimizing player.
Let x and y be any two points in H,. Then, we have

Hx+s izl 2l x+yl]
= h(x)+ h(y) = 2(p(h)—7)

= 2(1-2v) > 2(1-3).

Hence it follows that ||x—y || <" ¢/2 for x, y = H..

Suppose now that the minimizing player chooses an e-optimal
strategy a. Then, for every fe S*, by virtue of the preceding lemma,
there exists a point x in H, such that ¢(f)—f(x) <~. Thus
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() —Ra)=o(f)—f(x)+f(x)—f(a).
Sotllxa—all <e/2+e/l2=e

for any f e S*. This proves

inf sup [@(f)—f(x)]=0.
xeS feS*®

Tokyo College of Science.

Notes and References

As is well.known, Helly’s theorem plays an important rdle in discussions on the
regularity of Banach spaces. It may be said that our approach to the regularity is in
essential a game-theoretic rearrangement of Helly’s theorem. As to Mazur’s theorem, our
approach is clearly roundabout, since we are based upon the w*-compactness of S* and, in
addition, Hahn-Banach’s extension theorem, while the usual one need not be aided by the
former fact.
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