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On criteria for the regularity of Dirichlet problem.

By Masatsugu Tsuji

(Received July 16, 1953)

In I, we shall deduce some consequences from Wiener’s criterion
for the regularity of Dirichlet problem in space. For Newtonian
potentials the following maximum principle is used frequently: Let }
u1(P), u.(P) be two Newtonian potentials definded by a positive mass
distribution on a bounded closed set E. If #,(P)<u,(P) on E, except
a set of Newtonian capacity zero, then the same relation holds in the
complement of E. Since an analogous theorem does not hold for
logarithmic potentials, the proof for Newtonian potentials must be
modified for logarithmic potentials. Hence in II, we shall prove an
analogue of de la Vallée-Poussin’s criterion of regularity for a planar

region and from it deduce Wiener’s criterion and some consequences
of it.

I. Regularity for a spatial domain.

1. Let D be an infinite domain in space and I" be its boundary,
which we assume a bounded closed set' and P, be a boundary point of
D. Let E be the complement of D with respect to the whole space.
We denote the part of D, which lies in a sphere S, of radius p about
P, by D, and I',, E, be that of I, E respectively, which lies in and
on S,.

We denote the Newtonian capacity of a set M by C(M). In I,
“ capacity ” means “ Newtonian capacity ”.

Let
— 1_.;
W,= CE) (1)
and
w(py=| 22Q A 4,Q=1, (2)
E, 7pg E,
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be the equilibrium potential of E,, such that w,(P)< W, for any P and
w,(P)=W, on E,, except a set of capacity zero.
Let

=1 . ~{ dn@ —
u(P)= )= 9| du@=C(E) 3)

be the capacity potential of E,, such that #,(P)<1 for any P and
#,(P)=1 on E,, except a set of capacity zero.
Let 0<o<p and E,,, be the part of E, which is contained in a ring

domain : ¢ <r<p, r=PP, and u, ,(P) be its capacity potential. Then
THEOREM 1. lirrg 4o, o (Po)=12,(Py) .
ProoF. By the maximum principle,

Uo,o(P) o (P) (1)

in the complement of E,. Since %, ,(P)<X1 and «,(P)=1on E,, except
a set of capacity zero, (1) holds in the inside 4, of S,, except a set of
capacity zero. Let dv(P) be the volume element, then since #,, ,(P) is
harmonic and #,(P) is superharmonic in 4.,

U dB= —As | w PP | (PP SuP,
so that
Tim 4y, o (Po) << 4o (P) @)
Let
w"(P)ZSEF d?;;@ : jE de,=1, Maxw,(P)=W,,
@)

woP=] Ao [

Ezr. p ¥pg Y Fa,p

do,,=1, Maxw,.(P)=W..,

be the equilibrium potential of E, and E,, réspéctively.
We take o,>o;>->0,—>0 for o, then we can find a partial
sequence from z, which we denote again 7, such that

oo (now), |, de=1. (4)
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We put
w(P)= . ig%’?- : (5)
Then from w,, ,(P)<W, , and Fatou’s lemma, we have
w(P)<lim w,,.(P) < W,, 6)

hence
W= wdo=| wdo=w,,

so that w(P)=W, on E,, except a set of capacity zero, hence by the
uniqueness of w,, w=w,, so that w(P)=w,(P), hence by (6),

W, (PO)él}‘r_r! wcr.p(PO) y Or

o0

o (Po) < lim u,, ,(F) . (7)

o0

Hence from (2), (7), we have

up(Po)=1i_’tno 4o, (Py) . (8)

THEOREM 2. The necessary and suﬁicz’ent'condition, that P, is a
regular point, is that :

u,(Py)=1.

Proor. (i) If «,(P;)=1, then by the lower semi-continuity of
u,(P), we have

lim #,(P)=1. (1)

PP,

Hence v(P)=1—#,(P)>>0 tends to zero, when P tends to P, from the

inside of D, so that by Lebesgue-Brelot’s theorem”, P, is a regular
point.

(ii) Next suppose that P, is a regular point.
Let I" be contained in Sz. We solve the Dirichlet problem for Dy,

with the boundary value f(Q)=P,Q, where @ is a boundary point of

1) M. Brelot: Familles de Perron et probléme de Dirichlet. Acta de Szeged 9 (1938).
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Dg.  Let v(P) be its solution. Then lim v(P)=0 and »(P) takes the

P~+P,
boundary value f(®), except a set of capacity zero. Since r=PF,P is
subharmonic,

v(P)\>PP, in Dy. (2)

Let #,(P) be the capacity potential of E,(p<R), then by (2) and the
maximum principle,

1 y(P>1—u,(P)>0 in D,,
P
so that

lim «,(P)=1. (3)

P—+P,
Let 4, be the inside of S,(»<p) and dv(P) be the volume element,
then since #%,(P) is superharmonic,

1
v(4,)

Since #,(P)=1 on E,, except a set of capacity zero, if we make »—0,
we have by (3),

[ w@ P <uPy=<1.

u,(Py)=1. (4)

2. Let 0<a<1 and E, (n=0,1,2,---) be the part of E, which is

contained in a ring domain: A" 1<»<A*, »=PP, and v,=C(E,) be its
capacity and ,(P) be its capacity potential:

u(P)=| «~d';;iQ)—, | dmm=a. (1)

Then de la Vallée-Poussin® proved :

THEOREM 3. The necessary and sufficient condition, that P, is a
regular point, is that

”i::.:l]un (P0)=°° .
Since by (1)

Tn Yn
YJ——<"“"(P°) = 75"”1 ’

. 2) C.de la Vallée-Poussin: Points irréguliers. Détermination des masses par potentiels.
Bulletin de la classe des sciences. Académie royale de Belgique. 24 (1938).
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we have Wiener’s criterion® :
THEOREM 4. The necessary and sufficient condition, that P, is a
regular point, is that

Y __
P R

3. We shall deduce some consequences from First we
shall prove a lemma.

LEMMA 1. Let E be a bounded closed set in space, y=C(E) be
its capacity and v=v(E) be its spatial measure. We project E on the
xy-plane and let E. be the projection and w=w(E,) be its surface
measure. Then

() v<27 4

5 ’ (i) o <472,

Proor. (i) Let
w(p).—.jp_d/:}f&, Ld’“zl (1)
S :

be the equilibrium potential of E, then

v _ _ dv (P)
2= wBd(P)=] du@)| S

Since
[ a2y (3010,
E 7pg T 47
we have

9
Ug T'Ys. (2)

(ii) Let M be a bounded closed set in space. We take # points
P, (n=1,2,---,n) on M and put '

_ L n 1.2,:;.11 1
VasVa0n=Max ()2 5p, ®

3) N. Wiener: The Dirichlet problem. Journ. of Math. and Phys. Massachusetts
Institute of Technology. 1924.
4) W. Sternberg: Potentialtheorie, I. Sammlung Goschen.
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then as Polya and Szego® proved,
limV,=C(M). (4)

We take n points P, (n=1,2,---,7) on E, and let P, be the projection
of P.eE, then P, P, < P.P,, so that V,(E)>V,(E,), hence

C(B) = C(E.). (5)
Let
w=| B, qu=1 (6)

be the equilibrium potential of £, and dw(P) be the surface element
on the xy-plane, then

=], wP de®=| du@], 2B, g=ceE.
Since
dw 6)
L;z a?’p(f)A = 277-‘/‘:’:—
we have by (5)
0 < 4dmoi < 4wt (7)

4. With the same notation as [Theorem 4, let », be the spatial
measure of F,.

THEOREM 5. If

; R_,.;n-

Z
n=
then P, is a regular point.

1 oo
Proor. By Lemma 1, v,3 < const. vy,, so that >} Z’; = oo, hence
n-0

P, is a regular point, q.e.d.
Let v(») be the spatial measure of E,, which is the part of E
contained in S,.

5) G. Polya und G Szego: Uber die transfiniten Durchmesser (Kapazitdtskonstante)
von ebenen und raiimlichen Mengen. Journ. f. reine und angewante Math. 165 (1931).
6) W. Sternberg: l.c. 4).
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THEOREM 6. If

o e

;,4 V b

then P, is a regular point.
Proofr. For p >0,

Fon) g e L 1 (T du(n) 1 du(r)
| 7 ar—| 204 LN —oa) : [t )
hence
L dv(r) _
“0 7% (1)
Now

(‘A% dl)(i’r) < 1 j-,\n 1 (IU(’I’)Z Uy
A

Lanin 3 T w3 A3 A3 T

1 1
Since Y < ‘4"5, we have Y» <K VUn? , K=( 437" )2, so that

A T3 A A
M du(r) 2,3
antl 3 __<: K 3 ’ ' (2)
J r A3

1

hence ?:,: z:‘: =oo, so that P, is a regular point.

ReEMARK. If the surface measure of the part of E, which lies on
S, is >=7n7%(»>0), then v(7) > const. 3, so that P, is a regular point.
This is proved by Raynor.”

Let E® be the projection of E, on the xy-plane and w, be its
surface measure.

THEOREM 7. If

then P, is a regular point.

7) G.E. Raynor: Dirichlet problem. Ann. of Math. 23 (1924).
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L oo
PROOF. By Lemma 1, w,2=<  const.y,, so that S %:—= o, hence
n=0

P, is a regular point, q.e. d.

Let E, be the part of E, which lies in S, and E%® be its projection
on the xy-plane and (7)) be its surface measure.

THEOREM 8. If -

sl w(r) dr: (o o]
0o o3 ’
then P, is a regular point.

PROOF. Similarly as Theorem 6, we have

ﬁ _‘,lf‘;gl’)_ =0 ,

(1)

Sx" dw(r) n

antl 72 A2

. ey 2
Since -2* < 7, we have 7‘:’;; < ‘/”;:‘” , so that

A =

(o de) V. ont

antl 2 = A2 A"

1
hence 3] “’;: = o0, so that P, is a regular point.

7=0

REMARK. If w(7)=572(»>>0), then P, is a regular point. This
is proved by Philips and Wiener.?

5. Let y=e*®(0x<x<1), where #(x)>0 is a continuous de-
creasing function of x, such that lim @(x)= .

x>+0
We rotate the part of the plane defined by 0<y<e*®, 0<x<1
about the x-axis, then we obtain a domain 4. Let D be the comple-
ment of 4 with respect to the inside of a cube, whose center is the
origin O and whose one face is the plane x=1.

8) Phillips and Wiener: Nets and the Dirichlet problem. Journ. Math. and Phys.
Massachusetts Institute of Techanology. 1923.
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THEOREM 9. (i) If

Sl dx _
0 xp(x) ’
then O is a regular point for D.
(i) If
Y _dx
0 xp(x) ’

then O is an irregular point for D.
A similar theorem is proved by Wiener.”

329

Proor. The capacity K of an ellipsoid £, whose semi-axes are a,

b, c is given by
1 1 j i dt 10

K 2 W V(@+) @+ (@+b)
Hence if 6=c<a, then

14+-
K=2ak/log -7 |
? /og 1—-%

where

_ [ &

=15
Since

1 _ & A
1-% ﬁ@“/l %)

we have

a? 1 a?

@ <.t <24

=1k S
so that

T <1tk 4@ pa

» T 1-k 7 B T b
Hence by (2),

ak ak

<K< —° b .
Titog @8) =K Tog@p 2<%

9) N. Wiener: lL.c. 3)
10) Frank v. Mises: Differentialgleichungen der Physik, I, Braunschweig.

(1)

(2)

3)

(4)

(1930), S. 611.
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(i) Suppose that

T dx
— 5)
jo X9 (x) (
First we assume that
o< x, 0<x<1. (6)

Let 4, be the part of 4, which lies between two planes: x—x”"'! and
x=x* (0~ a-. 1) and v, be its capacity. Since ¢ “® < x, we can
prove similarly as [Theorem 4, that the necessary and sufficient condi-
tion, that O is a regular point, is that

v Yn — o
n%o p ) (7)

We choose A >>0 so small that
=u>0. (8)

Let M be the middle point of two points (A”'10,0), (A*,0,0) on the
x-axis and £ be the cllipsoid of rotation about the x-axis with M as
its center and whose semi-axes arc

a= l ('7\7: — 2 l) , b——-C-'-"(" ‘,,(An'l,’ (9)

=

then £ is contained in 4,. Then by (6)

b _ 2™ gy 22
= -2l =20 .1, 10
a A% -\l AL 1= < (10)
p=y1 81 b e 11
N a’ v a N 1—x K (11)
Since 0<_e@<1, we have by (4),
n=C(2) = @K - const. A" ’
a2 C2) 2 1+log(1/b) P

so that
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ST 7" > const. S 1 (12)
n=0 n=0 ¢l(7\.”)
Since
A" dx 1
X ———1log1/n,
jwl xp(x) T @)
i} =oco, so that Z‘ Y% — o, hence O is a regular point.
=0 qz(h") n=0 A"

If the condition e ** <x, 0<x<{1 is not satisfied, we define
‘Pl(x) by

e~ =Min. (e **®, x), (13)

then ¢1(x) is a continuous decreasmg function of x, such that

We shall prove that
f dx__ o | (14)
0 xy(%)

Let E, be the set of x, such that e *® <x and E, be that e @ >,
then

21(x)=@(x) on Ej,

(15)
=log 1 on E,,
x
so that |
' dx dx dx
= . + _ax 1
L x 1 (x) jEl x P (x) L?a x log (1/x) (16)
dx — o L dx .
i L xlog (Uz) > them ) pp(my o+ Now E consists of at

most a countable number of open intervals. Let (x, x,) be one of them.

dx
f < oo, th
S E: xlog (1/x) < o

X dx qu (1/x1) N
L* x log (1/x) log(log(l/xz)) 0, m%—0,



332 M. Tsuil

or
log (1/21)
log (1/x) -1, X, X—0. 17
. 1 1 1 1 1
Since T —e.. — < e, . < . S
nce W = wm)  log () * log (m) = log (1/x)
1 .
ol o m<x<m,
log (Vx)

- log (xo/x1) - S”“ dx - log (x:/x1)
log (1/x) — J= xp(x) 7 log (1/x2) ~

log (x/) (™ __dx__ _ lomlr/x)

Tog¥(V/x) T Jm xlog (1/x) T log (1/x,)

so that by [17),
s *  dx

i =

= xlog (1/x) ’

SO thatj dx - o0, consequentlyf e _ o, hence Sl ax__ _
7 29 (%) Er X (%) 0 xy(x)

Hence in any case holds.

Let 4, and D, be defined for y=¢ ** as 4 and D are defined for
y=e °® then O is a regular point for D;,. Since D < D,, O is a regular
point for D.

(i) Next Suppose that

Sl dx

0 xp(x) (18)

Then
Y dx 1
> log (1/x)—0, x—0,
L xp(x) 7 29(x) R (1/)
so that for a small x,,
e~ < x? 0<x<x), (19)

hence e ** <{x in a neighbourhood of x=0.

Let » be an ellipse on the xy-plane, whose center is (A%, 0) and
whose one principal axis coincides with the x-axis and whose semi-axis,
which lies on the x-axis, is

a=2\" (20)
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and passes through a point (0, e-**™), then we can prove easily that
another semi-axis is '

b=_'/§ e v™ , - (21)
so that by (19),
2 n— ,,w._]r__._
bg]/sw =5 a, (22)

hence 6<a for a large .

We rotate » about the x-axis, then we obtain an ellipsoid of rota-
tion 2. 2 contains 4, in its inside.

Hence by (4), since k<1, we have in virtue of

2 C(L2 —~— < const,. < const. A ,
4 (@)= log( alb) log (1/1/ b) @ (A7)
so that by [(18)
i} V5. <const. S 1 < oo, (23)

7n-0 AP 7=0 (/)(7\,")

Hence O is an irregular point.
REMARK. If the rotating curve is y=Ax* («>0), then O is a

regular point!” and if y=e = (¢>>0), then O is an irregular point'?,
which is the well-known I.ebesgue’s example.

II. Regularity for a planar domain.

1. Let D be an infinite domain on the z=x-+¢y-plane and I’ be its
boundary, which we assume a bounded closed set and z, be a boundary
point of D. Let E be the complement of D with respect to the whole
z-plane. We denote the part of D, which lies in |z—2z,|<p by D,, and
let 7',, E, be that of /', E, which lies in |z—z,|<p respectively.

We denote the logarithmic capacity of a set M by C(M). In II,

capacxty ” means ‘‘ logarithmic capacity ”.

11) E. Hopf: Bemerkungen zum ersten Randwertprob]em der Potentialtheorie im
Raume. Sitzungsberichte d. Berliner Math. Gesellschaft (1927).

12) Cf. R. Ceurant-D. Hilbert: Methoden der mathematischen Physik. 1I. Berlin (1937),
S. 272. '
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Let
_ 1
W,=log C(E) (1)
and
_ 1 _
w, (2)= Lp og 1 doa), Lpdw~1 (2)

be the equilibrium potential of E,, such that w,(z)<<W, for any z and

w,(2)=W, on E,, except a set of capacity zero.
Let

_ 1 _ 1 ( _ 1 _ 1
(@)= () jﬁplog o @ |, dn= =1l L)

be the capacity potential of E,, such that u,(z)=1 on E,, except a set
of capacity zero.

If p<1, then C(E,)<1, so that W,>0, hence #,(z)<<1. Hence
if p<71,
W, >0 and #,(z)<<1 for any z. (4)

Let 0<Co<{p and E, , be the part of E, which lies in o <{|z—2z|<p
and u, ,(z) be its capacity potential. Then

THEOREM 10. lim «, .(z)) =1, (2)).
a ()
PrROOF. Let w,(2) be the cquilibrium potential of E, and 1w, ,(2)
be that of E, ,. If we put
2(D=Wo—10,(2),  00.s(2)=W,,—w,,(2), (1)
then by the maximum principle,

0:(2) < v,, ,(2) (2)

in the complement of £,. Since »,=0 on E,, except a set of capacity
zero and v,,, >0 on E_, (2) holdsin adisc 4,: |z—z)| <o, except a set
of capacity zero.

Let dw(z) be the surface element, then since v, is subharmonic and
¥,,, 1S harmonic in 4,,
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n@= |, a@de@s Lol nu@de@=0.,,
or
OS W — W, (zo) < Wo- p— Wo, p(zo) ’
hence
li}n Wea, p (Z()) < W, (Z()) (3)

Similarly as [Theorem 1, we can prove
wo(20) <1lim w,,, ,(2y) , (4)

o0

so that lim w. ,(z))=w,(z,), hence

o0

lim %, ,(20)=u, (2) , q.e.d.
o0
Similarly as [Theorem 2, we can prove

THEOREM 11. The necessary and sufficient condition, that 2 1S a
regular point, is that

up(zo):]- .

2. Let 0<A<1 and E,(2=0,1,2,---) be the part of E, which is
contained in a**!<|z—z,|<A" and v,=C(E),) be its capacity and u,(z)
be its capacity potential:

un(2)=| log ! dpn(@), | dun=pn=1/l0g *-. (1)
E, lz—al E, Tn

By de la Vallée-Poussin’s method, we shall prove
THEOREM 12. The nccessary and sufficiecnt condition, that z, is a
regular point, is that
zbun (ZO): o .

ProOOF. (i) Suppose that 37 #,(z)< . We put
n-0

Mn :(ZO)+ i‘ En (2)

n=mnog
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and let #(z) be its capacity potential :

u@=| g1 - de(@)=S 0.2, @)
M, |z—a| n=no
where
_ 1 _
Un (Z)—jEn log T‘;_“a’, dd'(a) ’ jEﬂdO'—O'n . (4)

Since for a large n,, M, is contained in | z—zﬂé% , 0Zu(2)<1 on

M,,, hence 0<v,(2)<1 on E,. Since u,(z)=1 on E,, except a set of
capacity zero,

o’,f-‘—-‘j undo'zj Vndpn =i, .
En En

Since
va(z)<(n+1)log1/n-0,,  u,(z0)=nmlog 1/r- p,,
we have

vs(20) < const. #,(z,) , ' (5)
so that for a large #,,
#(20)= 33 va(2) < const. > ua(2) <1, (6)

hence by Theorem 11, z, is an irregular point.
(ii) Next suppose that i})un(zo)=oo and 2, is an irregular point.
=
We put

M=(z)+ 3 E, (7)
and let #(z) be its capacity potential :
_ 1 1
w@=|Jog 1 du@, [ du=1. (8)

Since z, is an irregular point, by Theorem 11,
u(z)=a<1. (9)

For a positive integer %k, we put
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Ey=En+Ep.+ - +Euin-1, (10)
then
M=(Zo)+ \%E@) . » (11)
Let »,(z) be the capacity potential of E,:
- )
(D)= lodn@, [ de=a. 12
v (Z) gleog |z_a| o (a) SE(\,) (o2 o ( )
Then we shall prove tnat
STo(z0)= . | (13)

v=0

Let kv <n<Ek(@+1)—1, then E,ZE,).
Since »,=1 on E,, except a set of capacity zero and #, <1 on Eq)
we have

I~"n=§ ”vd#n:j U dov=a,.

” E.(v)

From this we have as (5),

sn(20) <const. v,(2), (kv=n=<k@+1)—1).

Hence ivv(zo)=oo, so that Z(‘,)vzy(zo)zoo, or Zovzvu(zo):oo.
. v=0 VY= Y=

We assume that

Son@)=w, (14)
in the other case our can be proved similarly.
We put
M'=(2)+ 3 Ea (15)
and let #'(z) be its capacity potential :
W@)=( g 1 @, | dw=—, (16)

then

w (2) =% un(2) , (17)
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where

w@=| lg 1 aw, | aw=um. (18)

Leav) |z—al Evy

be the maximum of its equiliblium potential and #”(z) be its capacity
potential. Similarly we define M'®, W™, 4'®(z) for M'.
Then, by the maximum principle,

W® (1= (2)) < W' (1— '™ (z,)) .
If we make p— 0, then by [Theorem 10,
W(1—u(z) <W' (1—u' (),
so that by (9), since W >0,

w
WI

Let M be the part of M, which lies in 0<p=<lz—z]|<1 and W™

w(z)<1— (1—a). (19)

We choose % so large that
1

.Iogl—xk <l—«, (20)
then
_ i 1, , 11— Wil 1 1

Let a,eEqy, a,eEqy, (nFv).

If 4u<<v, then | P "% < A%, hence
a“—ZO
Ia“—a\, —_2_ la,b~zo'—lav_zol _;‘>~1__7“k.
| a.—2 Iau-_zol
If p>>v, then | %% | <pa | B2 > 1 o pa
a,—2z, a,—2 | k

la,—al > la—znl=-la.—al - 1 151 4
lay._zo | ) T
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Hence in any case,

11 o1

l_xk Iap._zOl : lau—a'“l

so that

log 1 _lxk j

du'@+| tog 1 du@=| log—L _aua).

Fiouy Egu) la—z| Eow la—a,|
Summing up for x=0,1,2,--, #=+v, we have since jM’d,u’=1/W’,

B=log

1 _}xk ) WI// +u' (20) > o (a,) —us, (@) .

Since #'(a,)=1 on E(,, except a set of capacity zero, we have

#3,(2)>1—8>0 on Eg,,

except a set of capacity zero. Since v,=1 on E,, except a set of
capacity zero,

Pév=jl, Uzy d/"‘,zj‘E ugv d0'2v_~>:(1_3) o2y .

*(2v) 2w

From this we have as (5),

#3,(2y) > const. U5 (20) , (23)
so that

1>u' (z)= i;ué\, (z9) = const. Z“i)vz\, (zg)=o0,

which is absurd. Hence z, is a regular point.
3. Since by (1) of the proof of the last theorem,

nlogl/n s (20) << (z+1)log 1/a
log /v = = log 1/y,

b

we have

THEOREM 13. The necessary and sufficient condition, that z, is a
regular point, is that
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oc

_;nA — = OO .

n=1 IOg 1/'}):

Wiener’s criterion’® is somewhat different from this.

Since x log 1/x is an increasing function of x in a neighbourhood
of x=0 and v,= A", we have

valog lys <arlogl/a, or Yr < nlogli
AP log 1/,
hence

THEOREM 14. If

oo

In — o

’
n=0 A%

then z, is a regular point.
Let E, be the part of E, which is contained in |z—2z,| <7 and v(#)
be its capacity and #,(z) be its capacity potential:

_“ 1 = 1
w@=, tog | 1y dm@. [ dn= v

Suppose that z, is an irregular point and =Y. Then as (6) of the

proof of Theorem 12, we have #, (z,) < const. i}vun (20), hence lirrol u,(29)=0.
Since by (1),

log 1/»
> _ 57

we have

. log 1/»
139% log1/y(») @)
Hence
THeoreM 15. If lim —I—M>O, especially, if lim L"ﬁ')—>0,
70 log 1/ (7) 0 7
then z, is a regular point.
4. We shall prove a lemma.
LEMMA 2. Let E be a bounded closed set on a plane, y=C(E) be

its capacity and o=w(E) be its surface measure.

13) N. Wiener: Lc. 3).
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Let ze E and E™ be the set of |z| (zeE) on the positive real axis
and L=L(E®) be its linear measure. Then
(1) w<ewvy? (1) L=<4y.
Proor. (i). Let

w.(z)zj log 1 dula), {dy=1 (1)
E fz—al JE

be the equilibrium potential of £ and dw(z) be the surface element,
then

wlog1/y=j'E w(z)dw(z)—j d,u,(a)J log 1 do(2).
We define R by 7 R?°=w, then

2 'R
f log 1 dw(z)_gj j log 1 ardo= log 7 + “_,
E 0o Jo Ly 2 w 2

lz—al
' 1 o 1
so that log 1/ < log - + , Or
’ 2 w 2
wgewfyz . » (2)

(ii) By comparing transfinite diameters, we have C(E)>>C(E™).
First suppose that E* consists of a finite number of closed intervals,
which is contained in [a,b]. Let t=L(x) be the linear measure of the
part of E®, which is contained in the interval [a@, x] and M be the
interval 0<{¢{<{L on the #-axis. Let 0<{t,<t,<---<t,< L and t,=L(x,),
then |£.—4,|<|x.—x ], so that C(E®)>C(M)=L/4. Hence C(E)>L/4.
In the general case, we approximate E® by a finite sum of closed
intervals and we obtain the same relation.

5. With the same -notation as ML] let w, be the surface
measure of FE,.

THEOREM 16. If

then z, is a regular point.

ProoF. By [Lemma 2, log 1/v,< const. log 1/w,, so that
n

nz=1 log 1/,

oo

= oo, hence z, is a regular point.
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Let E, be the part of E, which is contained in |z—z)| <7 and o (»)
be its surface measure.

THEOREM 17. If

o) arme.

then z, is a regular point.
PrROOF. Similarly as Theorem 6, we have

(! -QEQ.S_’_’)_ =0, (1)
o 7

so that there exists #, (»=1,2,---), such that

ARy d(u (7) > ‘:’L—
Jamyr1 2 T 2
A 7.
Since S P deln) o 0 * , we have
APyl 72 7\2" +
o >const.”50 (»=1,2,), )
g L, ZIEOMSETE0(r=1,2,)

so that i ”_ —-=o0, hence z, is a regular point, q.e.d.
n=1 log 1/w,
Let z,)=0 be a boundary point of a domain D. We define E{¥ for

E, as Lemma 2 and w(r) be linear measure.

THEOREM 18%. If

s

[ om0

then 20=0 is a regular point.
7

A
ProOF. If we put Ly=| du(r), then

Lo [ dut) o Ly
AR == Jantl 7 = 7\‘71+1 ’

14) A. Beurling: KEtude sur un probléme de majoration. Theése Uppsala (1933).
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so that > Ly =0, Since by Lemma 2, L, 4y, we have S] 7" = oo,

n-0 A® n-0 AB
so that by [Theorem 14, z)=0 is a regular point.
6. To prove an extension of Theorem 18, we¢ need a lemma.
Let D be an infinite domain on the z-plane and /' be its boundary
and z=0 be an inner point or a boundary point of D.

We define 6(#) as follows. If a circle |z|=» is contained ecntirely
in D, then we put (y)=c. If |z|=r meets /’, then the part of |z]=7,
which lies in D consists of at most a countable number of circular
arcs ¢;(i=1,2,--) and lct »0;(») be its arc length. Then we put

i‘_)'(r) =sup ; (7).
2

Let z=0 be an inner point of D. The part of D, which lies in |z|< R
consists of connected domains. Let Dy be such one, which contains
z=0 and /’p, v; be the part of 7' and l|z|=R, which belong to the
boundary of D, respectively, so that 7 ' +vr 1s the whole boundary of
Dy, Let v4(2) be the harmonic measure of v With respect to Dy, such
that v,(z) is harmonic in Dy, v,(z)=1 on v and vg(2)=0 on /', ex-
cept a set of capacity zero. Then I have proved in the former paper!® ;
o R

LEMMA 3. 0,(0) <X Ce 0 Yoo , (0<<a<l),

;o
where C= /) 2¢
\/1—a
e being the basc of the natural logarithm.
Let z,=0 be a boundary point of D and we define ©(7) as Theo-

rem 18.
THEOREM 19.® [f

L dr 3‘1 dp(7) . ey
LS00, oy oade=co o @(r)=Min (27, 6(r)) ,
So r0(7) o 78(7) ) ( ™, 6 ))

S then 20=0 is a regular point for D.
PROOF. Let E be the complement of D with respect to the whole
15) M. Tsuji: A theorem on the majoration of harmonic measure and its applications.

Toéhoku Math. Journ. 3 (1951).
16) Tsuji: Lc. 15).
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z-plane and E, be its part, which is contained in 0<{p<|z|=<R.
" The complement of E,  with respect to |z|< R consists of connected
domains. Let D, be such one, that contains z=0 and v, be the part
of |z|=R, which belongs to the boundary of D, g.
Let v, z(z) be the harmonic measure of yr with respect to D, g,

then by [Lemma 3,

o R
v, r(0)<Ce 5;

dr
e (0<a<),
so that
lirgl v,, g (0)=0.
Let #, r(2) be the capacity potential of E, g, then if we take R <1/2,
then #, r(2)>>0 in D, g, so that by the maximum principle,

1“UP,R(O)§“p.R(O)§1 ’

hence lirgl #, r(0)=1, so that by Theorem 10| and 11, 2=0 is a regular
p>
point.

Mathematical Institute, Tokyo University.
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