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On some systems of regular functions.

By Toshio UMEzZAWA
(Received March 4, 1954)

1. Introduction. Recently E. Peschl and F. Erwe have
studied systems of »# functions which are regular in a circle |z|<7.
They called such a system a regular function vector (Funktionenspalte)
and wrote it as follows

- f1(2)
f2(2)

S (2)

where A,, A;, As,---are n-column vectors. Their researches are con-
fined within bounded function vectors.

The main object of the present paper is to study function vectors
from the view-point of multivalence, and extend many known results
on a single function.

In attempt to obtain more general results we consider first function
vectors of m complex variables, and shall establish thereby an interest-
ing generalization of Newton’s interpolation formula. As for the multiv-
alency, however, we shall obtain in this paper only few results other
than those on univalency, so long as we deal with several variables.
The existence of zero-factor (Nullteiler) in matrix space is an obstacle
to our success along this line.

Thus in the latter half part of this paper we shall deal mostly
with function vectors of one variable.

At the beginning of our study, it is useful to note that even when
a function vector is univalent (or p-valent) in D, the component func-
tions are not neccessarily univalent (or p-valent) in D.

(1.1) F(z)= =A+A 2+ A, 22+ - for |z| <7,

2. Preliminaries.

[A] Differential and Integral.
DEFINITION 1. Let W=(wy, ws, -+, ws) and Z==(zy, 2z, **,2,) be
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n-column and m-column vectors respectively. We shall call W=W|(Z)
an analytic function of Z, if the components w; (i=1,2,---,n) are
analytic functions of all the components z; (i=1, 2, ---, m) of Z.

When W=W/(Z) is an analytic function of Z, we put symbolically

wo_d*W _ d  d d

dzv =az X az X az W
rere _d (03 8 8\,
where — denotes oz oz, bz, and the symbol x denotes the so-

called “ Kronecker’s product.” The type of W is (7, m?).
Then we have the following equalities :

2.1) d? (AF,(2)+BF,(2)) _ 4 &F(2) , g d*FyZ)
' dz? Tdzr 7 dze

where A and B are constant matrices of type (I, »n),

(2.2) vdf(f;lZ’; E?)A =F"P x Fz+(f’) FP VO FOL(2YF 2D F,® 4

"+F1XF2('p)
(Leibniz’s theorem)
which may be proved by induction.
If the independent variable Z is a function of another variable ¢,

then we have the following property which is important for our
investigation in §3:

(2.3) 4L d r(zw) - A={ L F(z@)} - (ax

A being an m?-column constant vector.
The integral in a matrix space of type (#, m) is defined as follows

sWdt=(Sw,-,~ dt), i=1,--,n; j=1, -, m.

In this paper we denote vectors by capital letters unless otherwise stated.
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Then we can see immediately

(2.4) (awa=a(wa,

(2.5) X(F1 + Fy) dt= jFl dt + jFZ dt

where A is an z-rowed constant matrix and F; and F, are matrices
of type (n, m).

[B] The norm of vectors and matrices.

We define the norm of a vector A=(a,, a, -+, a,)’ as usual

lAll=vA*A=v 3 ,a; a

where the symbol * denotes the transposed and conjugate vector.
Let A=(a;;) be a matrix of type (n,m). The norm of A is defined
as follows: ~

| All=ub || AX ||
KX 2-1

where X ranges over all unit vectors.

Now we recall the following properties concerning the norm:

Let A and B be two matrices of type (7, m,) and (s,, m,) respect-
ively. Then we have

D i S lesef<ians{¥ a0,

it) leAll=lcl 1 Al (c: a complex number),
i) IA+BI<IAl+]BI (m=m, and m=m),
iv)  NABIZIANNBI  (m=m),

v IlAxBI=IlAll IIBI,

) 1 1
vi) ||j0AdtngjonAudt.
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3. Newton’s formula.

Let Z,, Z,, -+, Zy, --- be points (vectors) in a domain D, in which
F(Z) is defined, and put [Z;]=F(Z;). If there exist matrices A of
type (n, m) satisfying A(Z;,—Z,)=[Z;]1—[Z,] we write any one of such

A as [Z; Z,]; thus we have
F(z)
(Z; Z,)1(Z,— Zv)=]Z;]1—[Z,] .
F(z
Inductively we define [£, Z; --- Z,] l;y the equality

(202 Zy] A Zy—Z) X (Zp—Z0) % - x (Zp— Zp.1)} =
F(2) F(2)
{[Zo Zp—z Zp]—[Zo"'Zp—l]} . {(Zﬁ_ZO) X (Zp—ZJ) XX (Zb_Zp—z)}-

F(2
The type of [ZO Zl te Zp] is (n, mi’) .
From our definition we have

(3.1) F(Z) =SV [ZoZi] ~ (Z—Zg) x -+ x (Z—Zi1)}
V2o Zs - Zn Z] - A Z—Z) % - x (Z—Zn)} .

THEOREM 1. Let F(Z) be regular in the smallest convex polygon
containing the points Z,, Zy, -+, Zp. Then we can adopt

1 ) 1y

(32 QeZz - Z)=| at( a7 FD (1—t) Zot(ti—t) Zuk -
ot (Epo1—1tp) Zp-1ttp Zp) dty

as our [ZyZy - ZpJF® where t; (i=1, ---, p) are real numbers satisfying

the conditions : t; =0 (i1=1,2, ---, p).
PrOOF. It is easy to see that this theorem holds for p=1 since

Qr(2,2) Zo—2Z)=| F' ((1~1) Zo+t,Z) dty - (Zi—2Z)

- S: ‘zl F(U—t) Z+t,Z) dt (by (2.3))
=F(Z)—F (Z)).
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Now let us assume that the theorem holds for p=7, namely Q(Z,--Z,)
are adoptable as our [Z)---Z,]F® for any P;, 1=0,1, ---, ».
Then it follows, by making use of that

Qr(Zy-Z,.1) - {(Z,:1—2Z) X (Zpi1—2Z1) % -+ X (Z,1—2,)}

= [ anf aty TP ((A=t) Zot ot —t,10) 24 (2 10)
0 0 0

Zr+tr+IZr+1)dtr+1 : {(Zr+1“Zo) X (Zys1—2Zy) X -0 X (Zr+1_Zr)}

:5: dtlg;ldth;r dtf+1F(r)((1—t1)Zo+ +tr+IZr+1)dfr+1

N2 % =2 % % (Zen—2,) |
=[lat (" Fro(-0) Zt o+ by —t)Zy 1+, Zy11)
—FO((1—8) Zy+ - +(t,_1—tr)Z,~1+trZr)}dt,
N @ =2 Za=2)x - x(Z,1-2,)
= (@22, )~ Qul2 - Z)} - {2 a2 % - X (Zp1~ 2,9}

Thus the theorem holds for any positive integral values of p. q.e.d.
Accordingly we have an explicit representation of Newton’s
interpolation formula as follows.
THEOREM 2. Let F(Z) be regular in the smallest convex polygon
D containing the points Z,, Z,,---. Then we have ,

(3.3) F(Z)=Qp(Z)+ Qr(ZyZ)) (Z—Zo)+ Qp(ZsZ,2,) - {(Z—Zy) x
(Z=2)}+ -+ QuZy--Z,) - {(Z—2Z))x (Z—2Z) x -+ x (Z—Z,, )} + R 11
where

Ryn1=Qp (ZyZ, Z) - {Z—Zy) x(Z—2Z)) x -+ x (Z—Z)}.
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If || F**Y™(Z) || is bounded and if the diameter of D is also bounded,
then lim R,.,=0.

n>eo

As special cases of Theorems 1 and 2, we have
COROLLARY 1. Let F(Z) be regular at Z=0. Then

(3.4) el 2= ) FOZ).

COROLLARY 2. (Taylor’s expansion) Let F(Z) be regular for
WZ—ANlZ». Then

(3.5) F)=3 L P ((z-a)x . x(z-4).

Corollary 2 has been obtained by S. Ozaki and I. Ono [14] for
functions defined in a polycylinder.

4. Case n = mo.

In this paragraph we confine ourselves to somewhat special cases
when n>m?, where n and m are numbers of functions and variables
respectively and p is a certain positive integer.

We need the following lemma which is well-known.

LEMMA 1. Let A==(a;;) be a matrix of type (n, q) for which rankA
=min (n, q)=q and further let N be the minimum of the characteristic

values of a Hermitian matrix A*A, A* denoting the adjoint matrix of
A. Then we have

IAX P2 X >0

for any q-dimensional vector X (30).

Concerning Qp(Zy,--Z,) we have the following

THEOREM 3. Let F(Z) be rvegular in a convex domain D. If there
exists a matrix A of type (n, m?) for which rank A=m? where p is a
Dositive integer and n = m?, and such that
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|2 a| <

for all variables Z in D, where A\ denotes the minimum of the
characteristic values of A*A, them for every pair of Z; (i=0, ---, p)
satisfying (Z,— Zy) X (Zy—2Zy) X -+ x (Zpy—Zp-1)7E0, we have

(4.2) Qr(Zy-Zp) « (Zp—2Zy) x(Zp—2) % -+ x(Zpy—Zp-1)}7F0,
(4.3) Qr(Zy--Zp) 70,
(4.4) Qr(Zy - Zp ) FQr(ZyZp 2 Zyp) .

PrOOF. Since n>m?, A >0 by Lemma 1.
Since D is a convex domain, we have

| Qe(Zo-+Zy) - ((Zp—20) x(Zp—2Z3) % -+ x (Zp—Zp-1)} ]|
=| A{Z=2) % (2= 20 < - x (2o Zp) b - [P HFO (1=

Zyt 4 1,7,) ~p 1 Aldty - {(Zy= Z) % oo (Zo—Zp-)) H

=22 (Z=2) % - x (Zp=Zp)

_S:dtj:...S:-’H”F(m((l__tl)ZO_,_

0 Z,) D1 A dty | (Zo— )% X (Zo—Zp )

by using Lemma 1 and the properties of norm,

=(an[ [N 1= (=1 2t 4 1,2,) 11 A |at, (20— 2)

x o X (Zy—Zp) | >0 by (4.1),

whence we have and consequently we have (4.3) and (4.4) by our
definition, q.e. d.
It is evident that in the special case when p=1, yields the



144 T. UMEzAWA

univalency of F(Z), which is a generalization of S. Takahashi’s theorem
given by S. Ozaki and others [3] Moreover it is easily seen that
when #>1 and m=1, (4.2) yields the p-valency of F(z). This special
case will be studied in detail in the following paragraphs. For general
p, m, n(n = m?), however, we can say nothing about the number of the
valency of F(Z).

As for the univalency, however, we have more generally the
following .

THEOREM 4. Let K be a convex domain which contatns the origin

Z=0, and let
F(Z)=A , +G(Z)

14
where A is a constant matrix of type (n, m), éz(wla, l, el —1—> and
zl z2 zm
G(Z) is regular in K. Suppose that theve exists a matvix B for which

rank B=wm and such that

(4.5) (AGZ) _pl<yn -V R

W dZ p*
where N is the minimum of the characteristic values of B*B and p is
the maximum of the characteristic values of A*A, then F(Z) is uni-
valent in the common part of K and |z;|>p (i=1,2, -, m).

This theorem iS a generalizaiion of T. Sato’s theorem [4] and can
be proved analogously to referring to the method of together
with Lemma 1. The detail may be omitted here.

Using the above theorem we obtain the following

THEOREM 5. Let

”

(4.6) F(Z)=A—IZ— + G(Z)=A—1—Z~ FAgF A Z A Ay L o X Do,

where G(Z) is regular for|| Z|| < r. Suppose that there exisls the
relation

47y vV'a - ‘%7 =20 Al 7+3 1l Asll 72+ -+ || Agll 77 -

between its coefficient matrices, where N is the minimum of the charac-
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teristic values of AfA, and u the maximum of the characteristic values
of A*A. Then F(Z) is univalent in the common part of || Z|| < r and
|z; | >p(i=1,2, -, m).

Proor. By (2.1) and (2.2) we have

G(Z2)=A1V+ A (EXZ+ZXE)+ -+ A, (ExZx -
oo X ZV+IZxExZx L+ -+ ILx o xX L X E)_l,....’

where E is the m-rowed unit matrix.
Hence by the property of norm

NG P)—A <2l ANr+3 1Al 72+ +nll Axll 77714

for|| Z||<». By virtue of (4.7), we have
|1G'(Z>—A1||</T—Vf;gfli for || ZI| <7,

which shows that F(Z) is univalent in the common part of || Z|| <7

and |2;| >p (i=1,2,---m) by

5. Case n>2, m=1.

Now let us consider function vectors of one variable. In this case
there is no obstacle due to zero-factor anymore and we obtain directly

from the following
THEOREM 6. Let F(2) be regular in a convex domain D. If there
exists a vector A such that

(5.1) | F@R)—AI<IAI
for all z in D, then F(z) is p-valent in D.

COROLLARY 3. Let F(z)=i A, z* be a function vector regular
n=90
for {z| < » and suppose that

(5.2) 1A= Sy (R Anll et in 2] <7
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then F(z) is absolutely k-valent in |z | < 7.

REMARK. The concept of absolute k-valence may be understood
analogously as in the case n=1. Cf. S. Ozaki [5]. Namely, F(z) is
absolutely p-valent if not only F(z) but also

Co+Ciz+ - +Cp 1221+ F(2)
are p-valent in D for arbitrary constant vectors C, Ci, -+, Cp_; .
Now Corollary 3 is a generalization of Itihara’s theorem and

moreover can be extended as follows.
THEOREM 7. Let

(5.3) F@=A b+ A oyt + gt Ayt oot Ay 2nt o

be a function vector regular for 0 < |z | < » and suppose that

6 A= G A 2 () (P
p+k=1>0, 1k,
Then F(2) is at most (k+ p)-valent in 0<|z|<7.
Proor. If F(z) is at least (k+p+1)-valent in 0<|z|< 7, then we
have p+k+1 points which satisfy the following conditions
F(z)=F(2))="=F(25.0)=C,
z;i=F2;, 0<lz;|<]7,
,7=0,1, -, p+Fk.
Namely

Ap gt + A 754+ A= C+ 33 Ay 20 =0,
=

t=0,1, -, p+k.
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Hence
A—k+A-k+lzo+"'+(A0_C)Z0k+i;‘1An 26“'/2:0 ............... (0),
(©) | At Acpzit - +(A—C) zlk+,%An 2R e 1),

Ayt A g Zpent o +(A0——C)z’§,+k+n2;A,, 2th=0-- (p+k).

Let us employ the notation

k
zko zgl ............ zop+k
ko gk e DR
z z]. ......... Zl
(5.5) V (ko Rpsr)=
)
25 n2hhn 2

and let 4(2)) (3,7=0, ---, p-+ k) be the cofactor of z; (i, /=0, -, p+ k) in
V(,1, -, p+ k).

To eliminate the values A_,, ---, A; from (C), except A-;.; where
0<I<p+k, 5k, we calculate
(0) x 4(26) + (1) x 4(2])+ (2) x 4(25)+ -+ (p+ k) < A(2lp+2) -
Then we obtain
(—1)2**1A_,,,V(0,1, -, p+E)+ %j AV(0,1, -,
I—1,1+1, -, p+k, n+k)=0

and hence

(—1)2 1A, + _élA”V(O’ 1, -, 0—1,1+1, -,
p+R,unt+k)/V(O,1,- -, p+k)=0.
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Now it has long been known that when the non-negative integers k;
are arranged in an increasing sequence, V(ky, ks, ---, k,)/ V (0,1, ---, p—1)
is a positive polynomial (i.e. the coefficient of every term of the
polynomial has the sign +), [6], [13].

From this fact it follows immediately that

Vo,1,-,1—-1,1+1,---,p+k,n+k)/ V0,1, -, p+k), n=p+1,

takes its maximum values for |z|<7 at z;,=» (j=1, ---, p+ k).
So we have by Mitchell’s theorem [6],

' V(O» 1) Ty l—lx l+]~r '”yp_*_k’ n+k)/V(O, 1’ :p+k)|

<2 (G (59

Therefore we obtain
< n—p n+k DPHER\ aip
HA-w 1< SN AN 252 () (P F)pmrems,

And hence F(z) is at most (k+p)-valent in |z|<» if we have [(5.4).
REMARK. The above theorem is a generalization of the result in

6. Radii of p-valence of some function vectors.

In the case m=n=1 the radii of univalence have been obtained
under certain conditions, for example, | f(z) |[<Mor |f' (z2) |[< M. We
are going to extend these results by determining the radii of p valence
for the analogous families of function vectors of one variable.

For this purpose we need the following results due to [1]:

Let A be a vector with || A]|<1, and define a matrix I'(4) by

1

(6.1) I'(A)= 14 0(A)

AA*+v(A)E

where E is the z-rowed unit matrix and
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(6.2) v(A)=v 1-[AlF -
I'(A) has the foliowing properties
(6.3) IrA*=r), rltA)A=A, A*r(A)y=A4*,
(6.4) v(A) I BlIl<IIr(A)BI<IIBIl.

An analytical transformation of ||Z]| <1 onto || W|] <1 such that
W(A)=0 are written as follows

. Z—A
(6.5) W=r(4) Z S
and inversely
— 7 W+ 44
(6.6) Z=I"(A) 1 gy

For this transformation holds the inequality

LAI-IZ) < 11411+12)
62) 1= lal iz =115

+All I Z]I”

Let F(z) be regular and || F(z)||<1 for |2|<1. Suppose that F'(z)
takes a value W, at 2,2, ---,2,, in |z|< 1. Then according to [1], we
have the inequality

> F(z)—W,
(6.8) » ‘I (Wo) 1= W;\?(g)* ' <l h(z)l
where | h(z)‘ n 1%);:?
and
H Woll—1h(2)] || Woll+1 h(2) |
(6.9) =Wl Thia] — " ON= 10w Th@r

Now we extend a theorem due to K. Noshiro [8].
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THEOREM 8. Let F(2) be regular for |2|<1 and let F®(0)=A,==0,
F®0)=As be given. If ||F®(2)||<1 for |z|<1, then F(z) is
absolutely k-valent for

l2l<R=—{ I BIl A~IICI)++/ [ BIF A~ CIF+4IICll}

2
where
A A
B=TI(A,) 5%l __ and C= k )
(4e) 1—[ Al ¢ | ArlP+ 11 I"(Ar) (E— A A
PROOF. Since || F®@) | <1, Il Fw(0) |l =11 A 11<1.

Let us put

_ria.y FP@)— A A1 o
610 W)=r(d) F Bl =1 | ez =Bat .

Then W(z) is regular and ||W(z)||<1 for |z|<1 by (6.5), and by (6.6)

B — I W)+ A
F* (Z)-—-I (Ak) 1+A*W(:)
Hence
FO@) = Al =11 A0 Y Sk — I (A0Ad=I1T(4s)
(E—AADW (@) W@l
1+ ;W) 1= 1= 1Al 1 W

Hence, by Theorem 6, F'(z) is absolutely k-valent for |z|<R, provided
that

4l _
©1) MW a4, 4+ 174, B—a, )~ CI Tor 1I<E.

On the other hand, putting G(z) = Wz(z) we have G(0)=B and ||G()||
<1 for |z|<]1.
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, Bl +]z]

and hence

o<  NBIF7 o 1<)
“W(”)H“rl-HIBllr for |z|<7»

It is seen that the inequality (6.11) holds good, because R is the
root between 0 and 1 of the equation

AIBll+7r _
71+HBH7,_||C||. a.e.d.

ReEMARK. If we put =1 and =1 in the above theorem referring
to (6.3), we have Noshiro’s theorem.

LEMMA 2. Let F(z)=>1.2A, 2"

be a functihn vector rvegular for 0<|z| <1 and let

1
5

(|1 FEras ] <m.

Then we have the inequality
(6.12) S--o || An[F= M.

Proof of this lemma is analogous to the case where #=1 and may
be omitted.

THEOREM 9. Let F(2)=Ay+ A 2+ -+ A, 2%+ --- be regular for|z|
<1 and '

L[ @e dof' <m.

Then F(2) is at most p-valent in |z2|<_R where R is a root between 0
and 1 of the equation, putting ¢= Re*
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1 é"’ M1 d’ k 1
(E) 27 L’l =R dé?
— —(AolP+ - + L Ap-1 112+ 1| Ap |2+ - ~+IIAs1P)
M2—(|| Aot - +11A,1F) ’
PROOF.

,,_iJ'An“%iii (2) (2 )f”

)
</M2 S5l Al /ﬂ;ﬂ( PY (2Y (B) rr<iidu

for r<R. Here R satisfies

SR (B () Bt gl i

that is the equation (E). Hence F(z) is at most p-valent in |z|<<R
by in the case k=0.

In the same manner we can derive the following
THEOREM 10. Let F(z)=io Ay 2% be regular in |2]<1 and let

{ 217r .&m 1

Then F(z) is at most p-valent in |z2|<r where » is a root between 0
and 1 of the equation

2Pkl ok Rk (z) 2

B (P—k)1 dz>-* }<M z=e’.

(MZ—{| ARlP) ¥ 250 + || Apl|? 72— || ArlP=0

REMARK. If we put in Theorems 9 and 10, k=p and =1 we
have K. Nabetani’s theorems [9]. If we consider a meromorphic
function vector in the form (5.3) and use Theorem 7, we can obtain
more general results, which may be omitted here.
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7. On absolutely p-valent function vectors.

The main object of this paragraph is to obtain the generalization
of the results given by S. Ozaki [10].

THEOREM 11. In order that a function F(2) be absolutely p-valent
in D, it is necessary and sufficient that the function

Co+Ciz+ - +Cp 2271+ F(2)

(71) d0+d1 Z+"'+dp-1 Zp_l

should be absolutely p-valent in D, where C, Cy, ---, Cp_1 are arbitrary
constant vectors and dy, dy, ++*, dp-1 are arbitrary constant numbers.

Proor. For a given vector W, the equation

Co+Ciz+ - +Cp1 22+ F2) _yy
dotdyz+ -+ +dpgz?! ’

can be written as follows: (Cy—dy Wy)+(Ci—dy Wy) z+ - +(Cp_1—dp-
Wy) 2271+ F(2)=0,

(7.2) Co+Ciz+ -+ Clh_ 12271+ F(2)=0.

Hence, if F(z) is absolutely p-valent in D the equation (7.2) has at
most p roots in D, namely the function (7.1) is at most p-valent, and
inversely, if the function (7.1) is at most p-valent in D we know the
p-valency of Cy+Ciz+ -+ Cp_1 2271+ F(2) by putting dy=1,di=d,="--
=ds.;=0 in (7.1), namely, F(z) is absolutely p-valent in D.
For the special case C;=C,=---=C,-;=0 we obtain the following
COROLLARY. If F(2) is absolutely p-valent in D,

F(2) F(z) F(z)

z—a,’ (z—a)) (z—ay)’ o j:[; (z—ay)

-t

—

are also at most p-valent in D, where oy« -+, ap-1 are arbitrary
constant numbers.

The specia] case a;=a,=:-=a,-;=0 in the above corollary is
important, namely, if F(z) is absolutely p-valent in D,
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F(z) F(z) F(z)
z 2’ T

are also at most p-valent.

By the above [Theorem 11 we know that a sufficient condition for
absolutely p-valency of F(z) is also a sufficient condition for at most
p-valency of infinite numbers of function vectors of the form [7.1).
Making use of the above theorem we obtain the following

THEOREM 12. Let F(z) be mevemorphic in a convex domain D
and suppose that there exists a vector A for which

k—1=p=>0,

(7.3) | Z e Pa)}-a <

for any z in D. Then F(2) is absolutely k-valent of the class p in D.

REMARK. We say, after S. Ozaki, that F(z) is absolutely k-valent
of the class p in D if not only F(z) but also F(z)+ P(z) is meromorphic
and at most k-valent in D, where

P)=1%21Cu2% (C-p, C-piy, -, Chop-1: arbitrary vectors).

COROLLARY 1. Let F(2)= _ZA z2» be meyromorphic in |z|<r and
suppose that
"—{
dz* F(z)}

(7.4) E—1>p>0,

<],

\
i
i

for any z in |z|<v. Then F(z) is absolutely k-valent of the class p
in |z|<r.
COROLLARY 2. Let F(2)= Z A, z¢ and suppose that

(7.5) ‘\Ak_,‘gnzl(“")”m pinllrm, B—1>p>0.

Then F(z2) is meromorphic and absolutely k-valent of the class p in D.
LEMMA. 3. The necessary and sufficient condition that the function
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f(2)=iﬁanz" where a,-»<0, (k—1=p=0), Gr-p.n=0 (=12, )

should be meromorphic and absolutely k-valent of the class p in |z|<r
is that there should exist the relation

(7.6) ; | ak—ﬁ]gg (k-]: n) lak—puzl r*

between its coefficients.

This lemma is due to S. Ozaki [10]. Using this lemma we obtain
the following

THEOREM 13. If
G(2)=— | Ap-pl12" 2 + X5 p-psall Anll 2*, k—1=p =20

is meromorphic and absolutely k-valent of the class p in |z|<», then

F(Z):,,i";‘ln z* is also absolutely k-valent of the class p in |z|<r.

COROLLARY. If

C@=—larp|2*+ 3 |aslz, k—=12p20,

n~k-Db+
is meromorphic and absolutely k-valent of the class p in |z|<», then
H(Z)=E;‘1n 2" where || Ap-51 = G5 |, | Ap-piall 2| @p-5.4| (n=1,2---),

n=—

is also absolutely Ek-valent of the class p in |z|< 7.

8. Another extension of Theorem 6 and its application.

THEOREM 14. Suppose that ¢(z) is a convex function in D. If F(z2)
is rvegular in D and if there exists a vector A such that

[552 -al<la

for any z in D, then F(z) is at most k-valent in D.
PrOOF. By our hypothesis ¢=¢(z) maps D onto a convex domain
T on the ¢-plane one-to-one and conformally. Accordingly F'(z)
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=F{¢ (&)} is a regular function of ¢ in T. Now since

[ =l —al<lal

F{¢7Y¢)} is k-valent in T. Namely F(z) is k-valent in D.
Making use of the following convex functions for ¢(z) in

14,

() —log (1—2), (i) (1—2)", (iii) +-log 1+,

we obtain the following theorems :
THEOREM 15. Let F(z2)=A,z2+ A 22+ -+ A, 2*+---be regular for

|z1<1 and put
A,=AP, nAY—(n—-1) A2, =A72,
(n—1) AP —(n—2) A2, =A2,
(n—k+1) AP—(n—k) AP, =AF .
If NAP> S enll(n—k) APy —(n—k+1) AP |,

then F(2) is k-valent in |z|<1.
THEOREM 16. Let F(z2)=A,z+ Ay 2+ ---+ Ay 2"+ --- be regular for

|z21<<1 and put

A,=BP, nBP —2(n—1) BL+(n—2) BL,=BY,
(n—1) B? —2 (n—2) B2,+(n—3) B2,=B;>,

......................................................

(n—k+1) BP —2 (n—F) B+ (n—k—1) B, =B,

If IBP | >3 mepiill (n—k+1) BP—2 (n—k) B+ (n—k—1) B, |,
then F(z) is k-valent in |z|<1.
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THEOREM 17. Let F(2)=A;z+ Ay 22+ -+
be regular for |z| <1 and put

A,=CP, pCP—(n—2)CL,=C?,

(n—1) CP —(n—3) C;22, =C3?,

.......................................

(n—k+1)CP—(n—k—1) CPy, =C§*P,

IfF|CPIN>Zmsnill (n—k+1) CP—(n—k—1) C;2, || ,
then F(2) is k-valent in |z | < 1.

REMARK. These theorems are generalizations of the results
obtained in author’s previous paper [11].

9. Some inequalities.

As the consequence of [Theorem 1, we can easily obtain the fol-
lowing
LEmMMA 4. If H(z2) is regular in a convex domain D, we obtain
(i) 1\z/feaDX H®P@) || 0! Qe (2021 - 25) |

= [l Ajl=Max [| H?(z)— A |

for arbitrary constant vector A. In particular, if H(z)=§0} A,z" is

rvegular in |z | < R, for arbitvary values of z in |z| < R we obtain

@ 33 (%) 1Al R =1 Qualzo 2129) I

n=p

=14 1-Max [F52 —azla]- 5 (7))

LEMMA 5. If G(z2) is regular in a wveciprocally convex domain*

* If the image of a domain E mapped by the function w=1/z is a convex domain,
then we shall call, after S. Osaki [10], the original domain E reciprocally convex.
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E, then for arbitrary valuss of z; in the common part of E and
r=<|z| < R we obtain

(1) Max H( i) P+ G (Z)H—Z"p [202 - 2,] 6@

zeE

= pr{ll 4 11-Max|| 221 6G2()- A ||}

for arbitrary constant vector A. In particular, if G(z) --2":"” is regular

n=1

in |z| =7, for arbitrary values of z; in » < |z| < R we obtain

o 57 flen s = ol 4| i
et GO

PrOOF. In order to prove this lemma we need the following two
equalities

O [oa-z10= T eyt 1) (=1),

202, z1 T2, z

d?  (G@)\_(_1yp o1 (¢
9.2) ) <zl>p( Cla)=(—1)p 216 (2)

which are the generalizations of S. Ozaki’s results and can be
proved analogously.
By (9.1) and we obtain

o 1 dr__(G(z))]
(20, 21, * Zp]G()<1§/£5}:X' p+1 1\2/{313{,"01 (iy»(zp 1)!
z
=Max 1+1‘Max »~( 1) z#*1 G(ﬂ’(z)"
ze E z? .
v L (2 oot
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for arbitrary values of z; in the common part of E and |z|=7.

Analogously we obtain for arbitrary values of z; in the common part
of £ and |z| <R,

1220, 20000 = L

4] -ae| =52 - 4]

Let F(z) be the sum of G(z2) and H(z), namely,
F(z)=G(z)+ H(z)
then evidently
(20, 21, =+, 2517 P =[20, 21, -+, 2 1° @+ [2y, 21, -+, 2, 5P .
Hence
[ [20, 21, o=, 22152 I Z I [20, 21 575 251°P Il ~ || [201 21, -+, 2,17? ]|

and, as the consequence of the above lemma, we obtain the following
result :
LEmMMA 6. Let

FR)=G(2)+H(z2)=>\".. A, 2"

be regular for y<|z|< R, where

G(z)-—"i A, and H(z)=§}’An zn

n=1 R&”

Then, for arbitrary values of z; in r="|z2| <R we obtain for arbitrary
constant vector A

(i) IIP![Zo,Zl,--',Zp]F(z’IILZHAIl—llVIalXHH(?)(Z)—AIl—l\l/fajcllG(f”(Z)H,

1020, 2, -+, 21 = | Al —Max| 200 — 4, —Max

tzl=r |

G(ﬁ)(z) H

:_ZJ’Ap _Z < )fA R i:JK ) l r}uﬁ;

I n=p+1 If
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) 11510202 1 21721 Z oy { | All - Max |22 G2()— Al

—Max || HO2) ],

[z]=R

z 1 ZPHH(NZ
”[zo;zh'”’ZP]F()HzRﬁ”{ A"lf ,1:43,’;,( - p! ()‘.

—Max 276G ) _ (-*1)1514_1‘f }> : { A Z(;?);A";Rnﬂ

(zl-7 p! R#*1 nep
-5 (%) 4 )

10. Sufficient conditions for absolutely p-valency
in a multiply connected domain.

THEOREM 18. Let

F(z)=G(Rz)+H((2)= > A,z

where G(z):i1 ‘2;” and H(Z):z“(]]A,, 2%,

If F(z) satisfies one of the following conditions

(1) !IAllgMagllH‘p’(Z)—All+M§X|IG"”(Z)H
(A: a certain constant vector),
. H®?®(z) . | G? (z)
(ii) HApIIZI}Vng;MPT— Api+1}’£1a=>§ 1
= /n n— " | I
(i) 14,12 53 (7)) Ax Bro w5 (0) Al s

(iv) | Al|=Max]||z?+* H“”(z)li+1'\/Ilax‘fzi"‘lG"’)(z)—A I,
lzl=R Z|=y
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) | Az Max | #5 HPE oy pax |[2C 0 (—1p04.4,
. 1 ( = n n+l ‘ 1¥
vi) Axz3(5) A RS (1) Al

then F(2) is regular and absolutely p-valent in r<|z|<R.
ProoF. The regularity of F(z) in »<|z|< R is evident from the
inequality of hypothesis. In these cases it is also evident that

J’ [ [z(b 21y "y ZP]F(Z) 1 \[> 0 ’
namely (20, 21, *+5 25172 =0

by lemma 6, hence F(z) is absolutely p-valent in »<jz|<R.
It is evident that the above theorem can be extended as follows;
THEOREM 19. Let F(2)=G(z)+ H(z), where H(2) is regular in a
convex domain D and G(z) is regular in a reciprocally convex domain
E. If F(z) satisfies the condition

() [A|=>Max| H®(z)—A 1+Max‘<>
vzeD

A : a constant vector,
then F(2) is absolutely p-valent in the common part of three domains
D, E and 'z| >r. And if

(i) |AlI=Max]| 22! GP(2)~ A |+ Max |[R*" H®(z)|]

then F(2) is absolutely p-valent in the common part of D, E and
z|<R. :
COROLLARY. Let F(2)=G(2)+H(z) where H(z) is regular in a

A-n

convex domain D and G(z2)= Z is rvegular in |z|=>r. If

Gq - Max‘\H‘f”(z) Al LA —ﬁ'2{|<p> _,,{,,,1”5}

n=1
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then F(z) is absolutely p-valent in the common part of D and |z|>r.
And if

) Max |HP@) <P a3 (4. L)

then (F(z) is absolutely p-valent in the common part of D and r< z <R.

REMARK. These results are considered to be generalizations of S.
Ozaki’s results [12].

11. On the multivalency of function vectors

with known zero-points.

Let p(z2)=dy+d,z+ ---+dy z?”1 be an arbitrary polynomial of degree
at most p—1. If F(2) is regular in a convex domain D and if

FP(2y—A </'A , A: a certain constant vector,

for all z in D, then F(z)/p(z) is also at most p-valent in D by
Theorems 6 and 11. In particular, however, if F(z) and p(z) have
k common roots in D, we can prove that F(z)/p(z) is at most p—Fk
valent in D. In this paragraph the proof of this fact and its generali-
zation are stated which are again the extensions of S. Ozaki’s results
[12]. We need the following

LEMMA 7. Let ay, a, -, a be the zero-points of F(z). Put

F(2)=(z—a;) (z2—ay)---(2— ;) O(2)
then
(11-1) [ah g, =y Opy 20,2y *° 7, zi’-k]F<Z):[20! 21y "y zﬁ'k]‘b(z) .

PRrROOF. By a simple calculation, we know that [z, a;, oz, -+, @ ]F®
=¢@(z). Hence we easily obtain (11.1).

By Theorem 6 and Lemma 7 we obtain the following

THEOREM 20. Let F(z2) be regular in a convex domain D and let
ay, &, -, be k zero-points in D. If in D



On some systems of regular functions 163

IFP(z)—A||<|I|A|!, A: a certain constant vector,

k
then F(z)/ Ul (z—a;) is absolutely (p—k)-valent in D.

COROLLARY. Let F(2) be regular in a convex domain D and let
NFP(2)—All<||All, A: a certain constant vector.

Suppose that p(z)=d\+dyz+---+d,2" be an arbitrary polynomial of
degree at most p—1 and that F(z) and p(z) have k common rootls in
D. Then F(2)/p(z) is at most (p—Ek)-valent in D.

The above corollary can be proved by making use of Theorems 1l
and

can be extended in the form of Namely
we obtain the following

THEOREM 21. Let F(2)=G(2)+ H(2) wherve H(z) is regular in a
convex domain D and G(z) is regular in a domain E whose image E,
mapped by the function w=1/z is a convex domain. Further let

p(z)zlji(z—a,-) and q(z)=13 (z2—RBi) be polynomials of degree k and I

respectively and whose zero-points arve all in D and E, respectively. If
F(2) satisfies the condition, A being a certain constant vector,

. bk
0 v Ly, £ oo a!
“\z{ag’f\(mz)l' B di*j 2 I‘J(Z)G( )‘

then F(2) is absolutely p-valent in the common part of three domain
D, E and |z| >r. And if

0 142M e w00 (1)) 4)

+Max H (bRt derr (PAOHA

then F(z) is absolutely p-valent in the common part of D, E and
z|<R.
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To prove this theorem we may use Lemmas 6 and 7.

COROLLARY. Let F(z):i Apz® be regular in v < z' < R. Let
p(z)=[kIl(z—a,-) and q(z)=[lll(z—,(9;) be polynomials of degree k and !

respectively, whose zero-points ave all in |z|< R and |z' < 1/r respec-
tively. If F(z) satisfies one of the following conditions :

. dr+k .
M 4, =Max| 1o 40T 605 A |

+Max‘; zptl gPt! [.q(z)iA zn+1’—1:|‘~;
izi=17 (D+ 1) dz?*! a1 i

p+1 p+k

- djh ! < n+p-1 l
+,£\“a},’5 (o1 s »J 16 F Az

then F(z) is absolutely p-valent in r < z' < R.

REMARK. If we put #=1 in the above theorems, namely if we
consider one function of one variable, we have S. Ozaki’s results [12].

Gumma University.
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