On the Poisson distribution.

By Hisao WATANABE

(Receivd Nov. 25, 1955)

Let $\dots, x_{-1}, x_0, x_1, \dots$ be the points on the real line such that $\dots x_{-1} < x_0 < x_1 \dots (x_0 \equiv 0)$. Then if $\{x_j - x_{j-1}\}$ $(j = 0, 1, 2, \dots)$ are independent random variables with common distribution function F(x), where F(x) is the distribution function of a non-negative random variable with F(-0) = 0, $F(\infty) = 1$, we shall say that these points are distributed at random according to F(x).

Now consider a system of particles $P_n(n=0,\pm 1,\pm 2,\cdots)$ which start from the above stated random positions $x_n(n=0,\pm 1,\pm 2,\cdots)$. When we denote by $X_n(t)$ the displacement of the *n*-th particle P_n up to the time t, the coordinate $Y_n(t)$ of the particle at the time t is

$$Y_n(t) = x_n + X_n(t)$$
, $X_n(0) = 0$, $t \ge 0$.

In the following, let us confine ourselves to the discrete time parameter $t=0,1,2,\cdots$, and we shall impose the following conditions on the movement of the particles. The random variables $X_n(t)-X_n(t-1)$ are mutually independent for each $n,t,-\infty< n<\infty$, $t\geq 0$, and obey the same distribution function G(x) for all n,t, moreover, for each t>0 the classes of random variables

$$\{X_n(t), n=0, \pm 1, \pm 2, \cdots\}$$
 $\{x_n, n=0, \pm 1, \pm 2, \cdots\}$

are mutually independent.

By the Fourier analytical method [2], Prof. Maruyama [3] investigated the limiting distribution of the number $N_I(t)$ of particles lying in an interval I=[a, b] at t under the condition that G(x) is a non-lattice distribution function. In this note, we shall discuss the problem when G(x) is a lattice distribution function with maximum span d>0.

THEOREM. If
$$0 < m = \int_{-\infty}^{+\infty} x dF(x) < \infty$$
, then we have

$$\lim_{t\to\infty} \Pr\{N_I(t) = k\} = e^{-\lambda} \frac{\lambda^k}{k!} \qquad k = 0, 1, 2, \dots,$$

with

$$\lambda = \begin{pmatrix} (b-a) & \text{if } F(x) \text{ is non-lattice and if } F(x) \text{ is lattice} \\ m & \text{with maximum span } d' \text{ and } d/d' \text{ is irrational,} \\ \frac{1}{mp} \sum_{r=-\infty}^{\infty} I \begin{pmatrix} r \\ p \end{pmatrix} & \text{if } F(x) \text{ is lattice with maximum span } d' \text{ and} \\ d/d' = q/p, \end{pmatrix}$$

where

(1)
$$I(x) = \begin{cases} 1 & x \in [a, b] \\ 0 & x \in [a, b]. \end{cases}$$

PROOF. Our discussion proceeds analogously to [3]. By (1), we can write

(2)
$$N_I(t) = \sum_{n=-\infty}^{\infty} I(Y_n(t)).$$

As in [2], we introduce a non-negative smooth function H(x) satisfying the following conditions (i), (ii).

(i) Fourier transformations

$$\int_{-\infty}^{\infty} H(x) e^{-itx} dx = h(t) ,$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} h(t) e^{itx} dx = H(x)$$

are absolutely convergent and the equalities hold for all t and x.

(ii) h(t) vanishes outside a finite interval [-c,c].

Let us put

$$N_H(t) = \sum_{n=-\infty}^{\infty} H(Y_n(t))$$
.

We shall begin with proving the existence of $E\{N_I(t)\}$ for all $t \ge 0$ and $\lim_{t \to \infty} E\{N_I(t)\}$. If we denote the characteristic functions of F(x) and G(x) by $\varphi(u)$ and $\psi(u)$ respectively, we have

$$E\{H(Y_n(t)) = E\left\{\frac{1}{2\pi}\int_{-\infty}^{\infty} e^{iu(x_n+X_n(t))}h(u)du\right\}$$

$$= \begin{cases} \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi^n(u) \psi^l(u) h(u) du & n \geq 0 \\ \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi^n(-u) \psi^l(u) h(u) du & n \leq 0. \end{cases}$$

If we write for $0 < \rho < 1$,

$$N_{H,
ho}(t) = \sum_{n=-\infty}^{\infty}
ho^{|n|} H(Y_n(t))$$
 ,

then

$$\lim_{a \to 1} N_{H,\rho}(t) = N_H(t)$$
 ,

and in view of (3) we get

$$E\{N_{H,\rho}(t)\} = I(\rho, t) + J(\rho, t) + K(t)$$
,

where

$$I(\rho,t) = rac{1}{\pi} \int_{-e}^{c} rac{1-
ho}{Q(
ho,u)} h(u) \psi^{t}(u) du ,$$
 $J(
ho,t) = rac{
ho}{\pi} \int_{-c}^{e} rac{1-a(u)}{Q(
ho,u)} h(u) \psi^{t}(u) du ,$
 $K(t) = -rac{1}{2\pi} \int_{-e}^{c} h(u) \psi^{t}(u) du ,$
 $a(u) = \int_{0}^{\infty} \cos ux \, dF(x) \quad ext{and} \quad Q(
ho,u) = |1-
ho \varphi(u)|^{2} .$

First suppose that F(x) is a non-lattice distribution function. Then, by the same analysis as in [3] p. 3, we have

$$\lim_{\rho\to 1-0}I(\rho,t)=\frac{h(0)}{m}$$

and also

$$\lim_{\rho \to 1-0} J(\rho, t) = \frac{1}{\pi} \int_{-c}^{c} \frac{1-a(u)}{Q(1, u)} h(u) \psi^{t}(u) du.$$

Since $|\psi(u)| < 1$ except for $u = 2\nu\pi/d$ ($\nu = 0, \pm 1, \pm 2, \cdots$), we have by the convergence theorem of Lebesgue

$$\lim_{t\to\infty}\lim_{\rho\to 1-0}J(\rho,t)=0\;,\quad \lim_{t\to\infty}K(t)=0\;.$$

Combining these we obtain

$$\lim_{t\to\infty} \lim_{\rho\to 1-0} E\{N_{\rho,H}(t)\} = \lim_{t\to\infty} E\{N_H(t)\} = \frac{h(0)}{m} = \frac{1}{m} \int_{-\infty}^{\infty} H(x) dx.$$

Next suppose that F(x) is a lattice distribution with maximum span d', in which case the situation is different. We may suppose without loss of generality that $d' \equiv 1$ by changing the scale. Then, $I(\rho, t)$ can be written as

$$I(\rho, t) = \frac{1}{\pi} \sum_{\nu=-\infty}^{\infty} \int_{(2\nu-1)\pi}^{(2\nu+1)\pi} h(u) \psi^{t}(u) \frac{1-\rho}{Q(\rho, u)} du$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{\nu=-\infty}^{\infty} h(u+2\nu\pi) \psi^{t}(u+2\nu\pi) \frac{1-\rho}{Q(\rho, u)} du.$$

Since $S(u) = \sum_{\nu=-\infty}^{\infty} h(u+2\nu\pi)\psi^t(u+2\pi)$ is continuous with respect to u, the analysis in [3] p. 5 gives

$$\lim_{\rho \to 1-0} I(\rho, t) = \frac{S(0)}{m} = \frac{1}{m} \sum_{\nu=-\infty}^{\infty} h(2\nu\pi) \psi^{\nu}(2\nu\pi).$$

Firstly, let d be irrational. Then, since j/d cannot be an integer for any j ($j=\pm 1, \pm 2,\cdots$), we have $|\psi(2\nu\pi)|<1$ for any $\nu(\nu=\pm 1, \pm 2,\cdots)$ and

$$\lim_{t\to\infty} \lim_{\rho\to 1-0} I(\rho, t) = \lim_{t\to\infty} \frac{1}{m} \sum_{\nu=-\infty}^{\infty} h(2\nu\pi) \psi^{\ell}(2\nu\pi) = \frac{h(0)}{m}.$$

On the other hand, when d is rational, we can write d=q/p with relatively prime positive integers p,q. But j/d can be an integer when and only when j=kq $(k=0,\pm 1,\pm 2,\cdots)$, and $\psi(u)$ has $2\pi/d$ as a period. Hence

$$\lim_{t\to\infty} \lim_{\rho\to 1-0} I(\rho, t) = \lim_{t\to\infty} \frac{1}{m} \sum_{\nu=-\infty}^{\infty} h(2\nu\pi) \psi^{t}(2\nu\pi)$$

$$= \frac{1}{m} \sum_{k=-\infty}^{\infty} h\left(2kq \frac{\pi}{d}\right) = \frac{1}{m} \sum_{k=-\infty}^{\infty} h(2\pi kp).$$

Poisson's summation formula [1]

¹⁾ Since h(u) vanishes outside (-c,c), Σ is essentially a summation over a finite number of ν .

$$\sum_{k=-\infty}^{\infty} h(2\pi kp) = \sum_{r=-\infty}^{\infty} \frac{r}{p} H\left(\frac{r}{p}\right)$$

applied to the last term gives us

$$\lim_{t\to\infty} \lim_{\rho\to 1-0} I(\rho, t) = \frac{1}{m} \sum_{r=-\infty}^{\infty} \frac{1}{p} H\left(\frac{r}{p}\right).$$

Next we observe that

$$\lim_{\rho \to 1-0} J(\rho, t) = \frac{1}{\pi} \int_{-\pi}^{\pi} \sum_{r=\infty}^{\infty} h(u + 2\nu\pi) \psi^{t}(u + 2\nu\pi) \frac{1 - a(u)}{Q(1, u)} du.$$

Then, since $\lim_{t\to\infty}\sum_{\nu=-\infty}^{\infty}h(u+2\nu\pi)\psi^t(u+2\nu\pi)=0$ except at most for a finite number of u in $(-\pi,\pi)$ and 1-a(u)/Q(1,u) is integrable in that interval, we get

$$\lim_{t\to\infty} \lim_{\rho\to 1-0} J(\rho, t) = 0,$$

and also

$$\lim_{t\to\infty} K(t) = \lim_{t\to\infty} \frac{-1}{\pi} \int_{-c}^{c} h(u) \psi^{t}(u) du = 0.$$

Thus, we have established:

(A) If F(x) is a non lattice distribution,

$$\lim_{t\to\infty} E\{N_H(t)\} = \frac{1}{m} \int_{-\infty}^{\infty} H(x) dx.$$

(B) If F(x) is a lattice distribution,

$$\lim_{t\to\infty} E\{N_H(t)\} = \begin{cases} \frac{1}{m} \int_{-\infty}^{\infty} H(x) dx & \text{if } d \text{ is irrational} \\ \\ \frac{1}{mp} \sum_{r=-\infty}^{\infty} H\left(\frac{r}{p}\right) & \text{if } d = q/p. \end{cases}$$

In the case of (A) and (B) with irrational d, we obtain by the argument in [3]

$$\lim_{t o\infty} E\{\exp\left(izN_I(t)
ight)\} = \exp\left\{rac{(b-a)}{m}\left(e^{iz}-1
ight)
ight\}$$
 ,

and therefore

$$\lim_{t\to\infty} Pr\{N_I(t)=k\} = e^{-\lambda} \frac{\lambda^k}{k!} \qquad (k=0, 1, 2, \cdots)$$

$$\lambda = \frac{(b-a)}{m}.$$

In the remaining case of (\mathbf{B}) , we proceed as in [2], with modifications of the approximation procedures used there. We define a continuous non-negative function $H_0(x)$ which vanishes outside a finite interval (-k, k) and satisfies

$$0 < H_0(x) - I(x)$$
 for $x \in I$

and for sufficiently small $\eta > 0$

$$\sum_{r=-\infty}^{\infty} \left(H_0 \left(-\frac{r}{p} \right) - I \left(-\frac{r}{p} \right) \right) < \eta$$
 .

Let us write

$$H_0^*(x) = \int_{-\infty}^{\infty} H_0(x-y) K_{\lambda}(y) dy$$
, $K_{\lambda} = \frac{\sin^2 \lambda x/2}{\pi \lambda x^2/2}$.

Next take an interval $J \supset I$ and define

(4)
$$H_{1}(x) = 0 \quad \text{if} \quad x \in J$$

$$= H_{0}^{*}(x) - I(x) \quad \text{if} \quad x \notin J,$$

$$H_{0}^{*}(x) - I(x) = H_{1}(x) + H_{2}(x), \quad -\infty < x < \infty.$$

Then for sufficiently large $\lambda > 0$ and with a constant c it holds that

$$H_2(x) \leq \frac{c}{\lambda} \int_{-\infty}^{\infty} \frac{1}{1+y^2} K_{\lambda'}(x-y) dy = \overline{H}_2(x)$$
.

Further, we define a continuous function $H_3(x)$ such that it vanishes outside a finite interval and

$$0\!<\!H_{\scriptscriptstyle 3}(x)\!-\!H_{\scriptscriptstyle 1}(x)$$
 for $x\!\!\in\!\! J$,
$$\sum_{-\infty}^{\infty} \left(\!H_{\scriptscriptstyle 3}\left(\!\!\begin{array}{c} r \\ p \end{array}\!\!\right)\!-\!H_{\scriptscriptstyle 1}\left(\!\!\begin{array}{c} r \\ p \end{array}\!\!\right)\!\!\right)\!\!<\!\!\eta$$
 for a sufficiently small $\eta\!>\!0$,

and let

$$H_3^*(x) = \int_{-\infty}^{\infty} H_3(x-y) K_{\lambda}(y) dy.$$

Then, since $H_0^*(x)$, $H_3^*(x)$ converge uniformly to $H_0(x)$, $H_3(x)$ respectively in any finite interval as $\lambda \to \infty$, there exists λ_0 such that for any $\lambda > \lambda_0$ and $\eta > 0$

$$\left|\sum_{r=-\infty}^{\infty} \left(H_0 \left(\frac{r}{p} \right) - H_0^* \left(\frac{r}{p} \right) \right) \right| < \eta,$$

$$I(x) \leq H_0^*(x), \quad -\infty < x < \infty,$$

$$\left|\sum_{r=-\infty}^{\infty} \left(H_3 \left(\frac{r}{p} \right) - H_3^* \left(\frac{r}{p} \right) \right) \right| < \eta$$

and

(6)
$$H_1(x) \leq H_3^*(x)$$
.

Now (4), (5), (6) give us

$$0 < N_I(t) \le N_{H_0}^*(t)$$
 ,
$$0 < N_{H_0}^*(t) - N_I(t) = N_{H_0-I}^*(t)$$

$$= N_{H_0}(t) + N_{H_1}(t) \le N_{\overline{H}_2}(t) + N_{H_3}^*(t)$$
 .

Remembering that $H_0^*(x)$, $\overline{H}_2(x)$, $H_3^*(x)$ and their Fourier transformations $h_0^*(t)$, $\overline{h}_2(t)$, (h_3^*t) satisfy (i), (ii), we get

(7)
$$\lim_{t\to\infty} (N_{H_3}(t) + N_{H_3}^*(t)) \leq 0(\lambda^{-1}) + \frac{4\eta}{mb},$$

(8)
$$\lim_{t\to\infty} N_{H_0^*}(t) \leq \frac{1}{mp} \sum_{r=-\infty}^{\infty} I\left(\frac{r}{p}\right) + \frac{2\eta}{mp}.$$

Hence

(9)
$$0 < \overline{\lim}_{t \to \infty} N_I(t) - \underline{\lim}_{t \to \infty} N_I(t) < 0(\lambda^{-1}) + \frac{4\eta}{mp}.$$

Taking $\lambda^{-1} + \eta$ sufficiently small and taking into account of (7)-(9), we finally obtain

$$E\{N_I(t)\} < \infty$$
 for all $t \ge 0$

and

(10)
$$\lim_{t\to\infty} E\{N_I(t)\} = \frac{1}{mp} \sum_{r=-\infty}^{\infty} I\left(\frac{r}{p}\right).$$

By using (10), in the same way as in [3], we can show that

$$\lim_{t\to\infty} \Pr\{N_I(t)=k\} = e^{-\lambda} \frac{\lambda^k}{k!} \qquad k=0, 1, 2, \dots$$

$$\lambda = \frac{1}{mp} \sum_{r=-\infty}^{\infty} I\left(\frac{r}{p}\right).$$

I express my sincerest thanks to Professor G. Maruyama who has suggested this investigation and given valuable advices.

Deffence Academy.

Reference

- [1] S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932.
- [2] G. Maruyama, Fourier analytic treatment of some prblems on the sums of random variables, Natural Sci. Rep. Ochanomizu Univer, 6 (1955).
- [3] G. Maruyama, On the Poisson distribution derived from independent random walks, ibid. 6 (1955).