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A remark on the unique factorization theorem.

By Masayoshi NAGATA

(Received July 11, 1956)

It is well known that the ring $K[x_{1}, x_{7},\cdots, x_{l}]/(\sum_{i=1}^{n}x_{i}^{9})$ is a unique
factorization ring if $K$ is a field of characteristic different from 2
and if $n\geqq 5^{\star)}$ . But it seems to the writer that the known proofs are
not so simple. Theorems 1 and 2 in the present note cover the fact
and our proof is simpler than the known proofs.

LEMMA 1. Let $x$ be a non-zero element of a Noetherian integral
domain $0$. If $xo$ is a prime ideal and if $0[1/x]$ is a unique factorization
ring, then $0$ is also a unique factorization ring.

PROOF. We have only to show that every prime ideal $\mathfrak{p}$ of rank
1 in $0$ is principal. If $x\in \mathfrak{p}$ , then $P=xo$ and we assume that $x\not\in \mathfrak{p}$ .
Let $f$ be an element of $\mathfrak{p}$ such that $fo[1/x]=\mathfrak{p}0[1/x]$ . Since $x\frac{r\dagger^{-}}{\backslash \vdash}\mathfrak{p}$ , we
may assume that $f\not\in xo$. Let $p$ be an element of $\mathfrak{p}$ . Let $r$ be the
smallest integer such that $x^{r}p\in f\mathfrak{o}$. If $\gamma$ is positive, then the element
$y\in \mathfrak{o}$ such that $x^{r}p=fy$ must be in $xo$ (because $xo$ is a prime ideal) and
$x^{r-1}p\in fo$, which is a contradiction. Thus we have $p\in f\mathfrak{o}$ and $\mathfrak{p}=fo$ ,
which proves the assertion.

THEOREM 1. Let $K$ be a Noetherian unique factorization ring and
let $x_{1},\cdots,$ $x_{n}$ be indeterminates. If $g_{0},$ $g_{1}\cdots,$ $g_{r}$ are in $K[x_{3},\cdots, x_{n}]$ and if
$g_{0}$ is irreducible, then the ring $0=K[x_{1},\ldots, x_{Jl}]/(x_{J}^{\wedge}x_{2}-\sum_{i=0}^{r}g_{j}x_{1}^{i})$ is a unique
factorization ring.

PROOF. $\mathfrak{v}/x_{1}0=K[x_{2},\cdots, x_{n}]/(g_{0})$ and $g_{0}$ is irreducible, which shows
that $x_{1}o$ is a prime ideal. $0[1/x_{1}]=K[x_{1},1/x_{1}, x_{3}, x_{4},\cdots, x_{n}]$ , which is a
ring of quotients of the polynomial ring $K[x_{1}, x_{3},\cdots, x_{n}]$ and is a unique
factorization ring. Thus $0$ is a unique factorization ring by Lemma 1.

If a field $K$ is not of characteristic 2 and if $\sim-1\in K$, then
$K[x_{1},\ldots, x_{n}]/(\sum x_{i}^{9})\cong K[x_{1},\cdots, x_{n}]/(x_{1}x_{2}-\sum_{i\Leftrightarrow 3}^{n}x_{i}^{o})$ . Therefore in order to
prove the unique factorization in the ring $K[x_{1},\cdots, x_{n}]/(\sum x_{i}^{2})$ $(n\geqq 5)$ ,
it will be sufficient to prove the following

$*)$ See, for example, van der Waerden, Einftihrung in die algebraische Geometrie,
Berlin, 1939.
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THEOREM 2. Let $K$ be a field and let $x_{1},\cdots,$ $x_{n}$ be indeterminates.
Let $\mathfrak{a}$ be a homogeneous ideal of $K[x_{1},\cdots, x_{7l}]$ . If there exists a field $L$

containing $K$ such that $L[x_{1},\cdots, x_{r\iota}]/(\mathfrak{a})$ is a unique factorizafion ring,
then $K[x_{1},\cdots, x_{n}]/\mathfrak{a}$ is also a unique factorization ring.

PROOF. Let $\mathfrak{p}$ be a prime ideal of rank 1 in $K[x_{I},\cdots, x_{n}]/\mathfrak{a}$ . Then
$\mathfrak{p}L[x_{1},\cdots, x,,]/(\mathfrak{a})$ has no imbedded prime divisor and is purely of rank
1, hence it is a principal ideal. Let $\sum_{j=0}^{\prime n}p_{i}a_{j}$ be a generator of
$\mathfrak{p}L[x_{1},\cdots, x_{n}]/(\mathfrak{c}\iota)$ , where $p_{i}\in \mathfrak{p}$ and $a_{0},\cdots,$ $a_{m}$ are linearly independent over
$K$. Let $f_{i}$ be the element such that $p_{j}=(\sum p_{j}a_{j})f_{i}$. Since $\mathfrak{c}\iota$ is homo-
geneous, $\deg p_{j}=\deg(\sum p_{j}a_{j})+\deg f_{i}$. Since $a_{0},\cdots,$ $a_{m}$ are linearly in-
dependent over $K,$ $\deg(\sum p_{j}a_{j})\geqq\max(\deg p_{j})$ . Therefore $\deg f_{i}=0,$ $i$ . $e.$ ,
$f_{i}\in L$. Therefore $p_{i}/p_{j}\in L$ for every pair $(i,j)$ . Hence $p_{i}/p_{j}\in L$ and $p_{0}$

generates $\mathfrak{p}L[x_{I},\cdots, x_{n}]/(\mathfrak{a})$ . It follows that $\mathfrak{p}$ is generated by $p_{0}$ .
REMARK. We have proved here that if $\mathfrak{p}L[x_{1},\cdots, x_{n}]/(\mathfrak{a})$ is principal,

then $\mathfrak{p}$ is principal, without assuming that $\mathfrak{p}$ is prime or that $L[x_{1},\cdots,x_{n}]/(\mathfrak{a})$

is a unique factorization ring (but assumed that $L[x_{1},\cdots, x_{l}]/(\mathfrak{a})$ is an
integral domain).

By the way we shall give a remark that Lemma 1 stated above
can be generalized as follows (by a similar proof):

LEMMA 2. Let $S$ be a multiplicatively closed subset of a Noetherian
integral domain $0$ . If every element of $S$ is the product of a finite
number of prime elements ( $=generators$ of principal prime ideals) and
if $0_{s}$ is a unique factorization ring, then $0$ is also a unique factorization
ring.

If we apply the above Lemma 2 then Theorem 2 can be gener-
alized as follows:

Let $K$ be a Noetherian integral domain and let $x_{1},\cdots,$ $x_{n}$ be indeter-
minates. Let $a$ be a homogeneous prime ideal in $K[x_{1},\cdots, x_{n}]$ and let $L$ be a
field containing K. Set $0=K[x_{1},\cdots, x_{n}]/\mathfrak{a}$ and $0^{\prime}=L[x_{1},\cdots, x_{n}]/(\mathfrak{a})$ . If every
prime ideal $\mathfrak{p}$ of rank 1 in $0$ containing elements of $K$ is principal and
if $0^{\prime}$ is a unique factorization ring, then $0$ is also a unique factorization
ring.

We shall give another remark that $t\dot{h}e$ assumption that $\mathfrak{a}$ is
homogeneous in Theorem 2 is important.

For example, let $K$ be the field of real numbers and let $C$ be the
field of complex numbers. Set $0=K[x, y]/(y^{2}+x^{2}-x),$ $0^{\prime}=C[x, y]/(y^{2}+x^{2}$

$-x)$ . Then
$0^{\prime}$ is a unique factorization ring. But $0$ is not a unique factoriza-

$tion_{A}ring$.
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PROOF. Set $x^{\prime}=x+\mapsto-1y,$ $y^{\prime}=x-\sqrt{-1}y$. Then $0^{\prime}=C[x^{\prime}, y^{\prime}]/$

$(2x^{f}y^{\prime}-x^{f}-y^{\prime})$ . Let $\mathfrak{p}^{f}$ be a maximal ideal of $0^{\prime}$ . Then there exists a
$c\in C$ such that $x^{f}-c\in \mathfrak{p}^{r}$ . $0^{\prime}/(x^{f}-c)=L[y^{\prime}]/((2c-1)y^{\prime}-c)$ , which shows
that $\mathfrak{p}^{\prime}$ is generated by $x^{\prime}-c$ . Thus $0^{\prime}$ is a unique factorization ring.
Next we show that $0$ is not a unique factorization ring. (This is
obvious if we make use of geometric intuition; for, $x^{2}+y^{2}=x$ defines
a circle going through the origin. If a curve goes through the origin
and if it intersects with the circle transversally, then there must be
another common point.) The ideal $\mathfrak{p}=xo+yo$ is a prime ideal of rank
1. We shall show that $\mathfrak{p}$ is not principal. Assume the contrary.
Then $\mathfrak{p}=fo$ with an $f\in 0$ . Every element of $0$ is expressed as $f_{1}(x)+$

$f_{2}(x)y$ and therefore we assume that $f=f_{1}^{\gamma}+f_{2}y(f_{1}^{\prime},f_{2}\in K[x])$ . Since $f\in \mathfrak{p}$ ,
$y\in \mathfrak{p}$ we see that $f_{1}^{\prime}\in \mathfrak{p}$ and therefore $f_{1}^{\prime}=f_{1}x$ with $f_{1}\in K[x]$ . Let $v$ be
a valuation whose valuation ring is $0_{\mathfrak{p}}$ . Then $v(y)$ may be assumed
to be 1. Then $v(x)=2$. Then $v(f)=1$ and $ f_{\Delta}\rangle$ (0) $\neq 0$ . Since $x\in \mathfrak{p}$ , there
must be a relation such that

$x=(f_{1}x+f_{2}y)(h+ky)(h, k\in K[x])$ .
Then $x=f_{1}hx+kf_{2}x(1-x),$ $hf_{2}+hf_{1}x=0$ because 1, $y$ are linearly in-
dependent over $K[x]$ . We have

(1) $1=hf_{1}+(1-x)kf_{2}$

Therefore $f_{1}$ and $f_{2}$ have no common factors and there exists $g\in K[x]$

such that
$h=gf_{1}x$ , $k=-gf_{2}$

(because $hf_{2}=-kxf_{1}$ and $f_{2}(0)\neq 0.$ )
Therefore (1) shows that
(2) $1=g(f_{1}^{2}x+(x-1)f_{2}^{2})$

Therefore $g$ must be a non-zero element of $K$.
Setting $x=0$ , we have from (2) that

$1=-gf_{2}(0)^{2}$ and therefore $g$ is a negative number.

Setting $x=1$ , we have from (2) that
$1=gf_{1}(0)^{2}$ and therefore $g$ is a positive number.

Thus we have a contradiction and $\mathfrak{p}$ cannot be a principal ideal.
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