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Lang [3] has defined the congruence L-series $L(u, \chi, U/V)$ for a Galois
covering $f:U\rightarrow V$ of an algebraic variety $V$ defined over a finite field with
$q$ elements, associated with simple characters $\chi$ of the Galois group. Expres-
sing their logarithmic derivatives as follows:

$\frac{d}{du}\log L(u, \chi, U/V)=\sum_{\mu=1}^{\infty}c_{\mu}(\chi)u^{t^{\ell-I}}$ ,

Lang proved that the coefficients $c_{\mu}(\chi)$ satisfy some inequalities and explained
the behavior of $L(u, \chi, U/V)$ in the disk $|u|<q^{-(r-1/)}4$ where $r$ is the dimen-
sion of $V$ (also of $U$). Moreover he gave a conjecture concerning the zeros
of $L(u, \chi, U/V)$ on the circle $|u|=q^{-(r-1/2)}$ . In the present paper, we shall
prove that this conjecture holds under some assumption.

We shall first give another definition of $L(u, \chi, U/V)$ . It can be shown
that our definition is equivalent to Lang’s, in the case where $f:U\rightarrow V$ is
unramified and $U$ is non-singular, after some cumbersome but not difficult
calculations. Both definitions are not equivalent in general; but the L-series
which we shall define will have the same behavior as Lang’s L-series in the
disk $|u|<q^{-(r-\lrcorner)}$ in all cases, as will be shown by the birational nature of
Corollary of Theorem 1 below. (We shall omit here the proof of equivalence
of definitions for the unramified, non-singular case. Hereafter the notations
$L(u, \chi, U/V)$ and $c_{1}(\chi)$ will be used to mean our L-series and their coefficients.)

Our definition of L-series will be given by the formulas (8) and (9) below,
where $N_{\mu}(U, T_{\sigma})$ is the number of certain points on $U$, defined at the begin-
ning of \S 1. Theorem 1 concerns a fundamental inequality on $N_{\mu}(U, T_{\sigma})$ ,
which has important consequences on $c_{\mu}(\chi)$ , as will be given as Corollary.

In view of the “ birational equivalence “ (in the sense above explained)
of our definition with Lang’s, the content of Corollary of Theorem 1 is
covered by the result of [3]. So Theorem 1 could be also derived from the
result of [3] simply by applying the orthogonality relations of group-charac-
ters. We prefer however to prove directly Theorem 1 by the same principle
as in [3], since the method of this proof will be applied to a more general
case in \S 2.
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In \S 2, we shall show that the analogue of the ” trace formula “ for
$N_{\mu}(U, T_{\sigma})$ and the conjecture of Lang explained above follow from the
assumption $(*)$ . If the covering is trivial $i$ . $e$ . $U=V$, then our result is
already obtained in Taniyama [9] under a weaker assumption than ours.
(On an explicit form of the conjecture of Lang, see Ishida [I].)

In the following, we shall use the results of Lang [3] and Serre [8]

often without references.

\S 1. A fundamental inequality.

1. Let $U$ be a normal, projective variety of dimension $r$, defined over a
finite field $k$ with $q$ elements; let $T$ be a birational transformation of $U$ into
itself also defined over $k$ . We suppose that $T$ is everywhere defined on $U$

and has a finite order $n,$
$i$ . $e$ . $T^{n}$ is the identity transformation of $U$. Let $G$

be a cyclic group of biregular, birational transformations of $U$ generated by
$T$. Then, since $U$ is projective and $G$ is a finite group regularly operating
on $U$, we can define the quotient variety $U_{0}=U/G$ , which is also irreducible,
normal, projective and of dimension $r$. Moreover we can construct $U_{0}$ and
the canonical mapping $f$ of $U$ onto $U_{0}$ to be defined over the algebraic closure
of $k$ . Hence we may assume, by replacing $k$ by a finite extension of $k$ if
necessary, that $U_{0}$ and $f$ are also defined over $k$ .

Let $I_{\mu}$ be the rational transformation of the ambient projective space of
$U$ given by the endomorphism of the universal domain: $\xi\rightarrow\xi^{q^{\mu}}$.

We denote by $N_{\mu}(U, T)$ the number of the points $P$ on $U$ such that $ T(P\rangle$

$=I_{\mu}(P)$ .
THEOREM 1. Let the notations be as explained above. Then there exist

constants $\gamma$ and $\delta$ such that, for any positive rational integer $\mu$ , we have the
following inequality:

(1) $|N_{\mu}(U, T)-q^{\mu r}|\leqq\gamma q^{fJ(r-1/-)}+\delta q^{\prime/(r-1)}$ ,

and the set of such constants $\gamma$ is a birational invariant of $U$.
In \S 2, we shall show that this constant $\gamma$ is deeply related to the charac-

tersitic roots of the l-adic representation of the automorphism of an Albanese
variety of $U$ given by $T$.

2. Now we prove Theorem 1. Let $Z_{0}$ be a k-closed algebraic subset of
$U_{0}$ containing every point $P_{0}$ on $U_{0}$ which either ramifies in the Galois
covering $f:U\rightarrow U_{0}$ or is multiple on $U_{0}$ ; then the dimension of $Z_{0}$ is less
than $r$.

If $P$ is a point on $U$ such that $T(P)=\Gamma_{\mu}(P)$ , then we have $f\cdot T(P)=f\cdot I_{\mu}(P)$ ;
and so, as $f\cdot T=f$ and $f$ is defined over $k$ , we see that $P_{0}=f(P)$ is a rational
point on $U_{0}$ over $k_{\mu}$ , the unique extension over $k$ of degree $\mu$ .
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REMARK. Therefore, even in the case where $U$ is not necessarily ir-
reducible, we have

$N_{\mu}(U, T)\leqq[U:U_{0}]\cdot N_{\mu}(U_{0})$ ,

where $N_{\mu}(U_{0})$ denotes the number of rational points on $U_{0}$ over $k_{\mu}$ . Hence
we have, by Lang-Weil [6],

$N_{\mu}(U, T)=O(q^{\mu r})$ .
In our proof, we shall first construct a suitable system of algebraic

curves on $U$, each member of which is T-invariant.
Let $p*$ be the dual space of the ambient space $P$ of $U_{0}$ and $\Gamma$ the $(r-1)-$

fold product of $P^{*}$. Denoting the number of rational points on $P$ over $k$ by
$\kappa_{R+1}$ , we have

$\kappa_{M+1}=\frac{q^{M+1}-1}{q-1}$ ,

where $M$ is the dimension of $P$. Clearly $\Gamma$ has $\kappa_{M+1}^{r-1}$ rational points over $k$ .
We need the following inequalities afterwards:

$|(\frac{\kappa_{M+1}}{\kappa_{M}})^{r-1}-q^{r-1}|\leqq c_{1}q^{r-2}$ ,
$1\langle 2)$

$q^{(M-l)(r-1)}\leqq\kappa_{M}^{r-1}$ ,

with a constant $c_{1}$ , independent of $q$.
Any point $v$ on $\Gamma$ defines a linear variety $L_{v}$ in $P$. For a rational point

$P_{0}$ on $U_{0}$ over $k$, there are exactly $\kappa_{M}^{r-1}$ rational points $a$ on $\Gamma$ over $k$ such
that $L_{a}$ contains $P_{0}$ .

By Lang [3], there is a k-closed algebraic subset $F$ of $\Gamma$ such that, if a
point $v$ on $\Gamma$ does not belong to $F$, the following three conditions are satisfied.

1) The intersection product $U_{0}$ . $L$. $=C_{v}$ is defined and is a non-singular
irreducible curve on $U_{0}$ .

2) The inverse image $f^{-1}(C_{v})=W_{v}$ is an irreducible curve on $U$ and
simple on U. $f_{v}$ (the restriction of $f$ to $W_{v}$) $:W_{v}\rightarrow C_{v}$ is a Galois covering
with Galois group also generated by the restriction $T_{v}$ of $T$ to $W_{v}$ and [ $W_{v}$ :
$C_{v}]=[U:U_{0}]$ . (Here $W_{v}$ is not always normal, but we generalize the defini-
tion of Galois coverings.)

3) The intersection product $Z_{0}$ . C. is defined and is an O-cycle on C.. If
a point $P_{0}$ on $C_{v}$ does not belong to $Z_{0}$ . C., then $f^{-1}(P_{0})$ consists of $n=[W_{v}$ :
$C_{v}]$ different points on $W_{v}$ , which are simple on $W_{v}$ .

For a point $v$ in $F$, we also denote $U_{0\cap}L_{v}$ and $f^{-1}(U_{0\cap}L_{v})$ by $C_{v}$ and $W_{v}$

respectively. Those $W_{v}’ s$ form a system of T-invariant curves on $U$, which
we are looking for.

Denoting by $N(F)$ the number of rational points on $F$ over $k$ , we have,
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by Lang-Weil [6] and by the above inequality (2),

(3) $N(F)\leqq c_{2}q^{M(r-1)-1}\leqq c_{2}\kappa_{M}^{r-1}q^{r-2}$ ,

with a constant $c_{2}$ , independent of $q$.
As shown above, for any point $P$ on $U$ such that $T(P)=I_{1}(P)$ , there are

$\kappa_{M}^{r-1}$ linear varieties $L_{a}$ which contain $P_{0}=f(P)$ and are defined over $k$ . Hence
there are $\kappa_{M}^{r-1}$ curves $C_{a}$ containing $P_{0}$ and defined over $k$ ; and so there are
also $\kappa_{M}^{r-1}$ curves $W_{a}$ containing the given $P$ and defined over $k$ .

Therefore we have

$|(4)$
$N_{1}(U, T)=\frac{1}{\kappa_{M}^{r-1}}\sum_{a\in(\Gamma-F)_{k}}N_{1}(W_{a}, T_{a})+\frac{1}{\kappa_{M}^{r-1}}\sum_{a\in F_{k}}N_{1}(W_{a}, T_{a})$

,

where the first and second sums range over all rational points on $\Gamma-F$ and
$F$ over $k$ respectively.

3. Let $a$ belong to $F$ and be rational over $k$ . Then we have, by the
remark given above,

$N_{1}(W_{a}, T_{a})\leqq n\cdot N_{1}(C_{a})$ ,

where $N_{1}(C_{a})$ denotes the number of rational points on $C_{a}$ over $k$ . On the
other hand, by Lang [3], we have

$|\frac{1}{\kappa_{M}^{r-1}}\sum_{a\in F_{k}}N_{1}(C_{a})|\leqq c_{3}q^{r-1f2}$
,

with a constant $c_{3}$ , independent of $q$. Therefore we have

\langle 5) $|\frac{1}{\kappa_{M}^{r-1}}\sum_{a\in\Gamma_{k}},N_{1}(W_{a}, T_{a})|\leqq n\cdot c_{3}q^{r-1/2}$ .

Let $a$ belong to $\Gamma-F$ and be rational over $k$ . Let $W_{a^{*}}$ be a non-singular
irreducible curve, birationally equivalent to $W_{a}$ over $k$ . Then the number
of points, at which the birational transformation between $W_{\alpha}$ and $W_{a}$ is
not biregular, is less than $[W_{a} : C_{a}]\deg(C_{a}\cdot Z_{0})$ , by the condition 3); hence
it is uniformly bounded. The genus $g_{a^{*}}$ of $W_{a^{*}}$ is also uniformly bounded.
Moreover $T_{a}$ induces naturally a biregular, birational transformation $T_{a^{*}}$ of
$W_{a^{*}}$ , which has also a finite order. Clearly we have

$|N_{1}(W_{a}, T_{a})-N_{1}(W_{a^{*}}, T_{a^{*}})|\leqq c_{4}$ ,

with a constant $c_{4}$ , independent of $a$ . On the other hand, since the degree
of the automorphism $T_{a}^{*}$ is 1, we have, by Weil (or more explicitly by
Mattuck-Tate [7]),

$|N_{1}(W_{a^{*}}, T_{a^{*}})-q|\leqq 2g_{a^{*}}q^{1/2}+1\leqq c_{6}q^{1/2}$ ,

with a constant $c_{5}$ , independent of $q$ and $a$ . H\’ence we have

\langle 6) $|N_{1}(W_{a}, T_{a})-q|\leqq c_{6}q^{1/2}$ ,
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with a constant $c_{6}$ , independent of $q$ and $a$ . On the other hand, we have, by
(2) and (3),

(7)
$|\frac{1}{\mathcal{K}_{M}^{r-1}a}\sum_{\in(\Gamma-F)_{k}}1-q^{r-1}|=|_{\overline{\kappa_{M}^{r-1}}}^{\underline{\kappa}_{M+1}^{r-1}-N\underline{(F)}}-q^{r-1}|\leqq c_{7}q^{r-2}$ ,

with a constant $c_{7}$ , independent of $q$ .
Therefore we have, by (4), (5), (6) and (7),

$|N_{1}(U, T)-q^{\gamma}|\leqq\gamma q^{r-1/2}+\delta q^{r-1}$ ,

with constants $\gamma$ and $\delta$ , independent of $q$ .
If we extend the ground field $k$ to its finite extension $k_{1}$ with $q^{\mu}$ ele-

ments, we have also an estimation of $N_{\mu}(U, T)$ as stated in Theorem 1.
Moreover if $X$ is a T-invariant k-closed algebraic subset of $U$, then it is

clear that we have, by the remark in 2,

$|N_{\mu}(U, T)-N_{\mu}(U-X, T)|\leqq c_{8}q^{\mu(r-1)}$ ,

with a constant $c_{8}$ , independent of $\mu$ . Therefore the set of such constants $\gamma$

is a birational invariant of $U$.
Thus the proof of Theorem 1 is completed.

4. Let $f:U\rightarrow V$ be a Galois covering of degree $n$ , defined over a finite
field $k$ with $q$ elements, where $U$ and $V$ are normal, projective varieties of
dimension $r$. The elements of the Galois group $G$ will be denoted by $T_{\sigma}$ ,
$T_{\tau},$ $\cdots$ . Then, by the definition of Galois coverings, the numbers $N_{J}(U, T_{\sigma})$ ,
$N_{\mu}(U, T_{\tau}),$ $\cdots$ are well defined.

For a simple character $\chi$ of $G$ , we define the congruence L-series $L(u,$ $\chi_{\succ}$

$U/V)$ by the following logarithmic derivative:

(8) $\frac{d}{du}\log L(u, \chi, U/V)=\sum_{\mu=1}^{\infty}c_{\mu}(\chi)u^{\mu-I}$ ,

and by the condition $L(O, \chi, U/V)=1$ , where the coefficients $c_{p}(\chi)$ are given
by

(9) $c_{\mu}(\chi)=-1$ $\nwarrow\urcorner\chi(T_{\sigma})N_{\mu}(U, T_{\sigma})$ .
$\uparrow\iota\tau_{\sigma\subset}^{A_{(\tau}}$

Then, by the orthogonality relations of group-characters and Theorem 1, we
have the following

$CoROLLARY$ . We have, for every positive rational integer /1,

$|c_{\mu}(\chi)|\leqq\gamma_{\chi}q^{\mu(r-1/)}4+\delta_{\chi}q^{\mu(r-\rfloor)}$ , if $\chi$ is not principa1,
(10)

$|c_{\mu}(\chi_{0})-q^{n}|\leqq\gamma_{\chi_{0}}q^{\beta(r-1f_{-})}+\delta_{\chi_{0}}q^{\mu(r-1)}$ , if $\chi_{0}$ is principal,

where $\gamma_{\chi}$ and $\delta_{\chi}$ are constants, independent of $l$ . Therefore $L(u, \chi, U/V)$ with
$\chi\neq \mathcal{X}0$ have neither zero nor pole in the disk $|u|<q^{-(r-1/.)}$ .
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\S 2. The conjecture of Lang.

5. Let the notations be as explained in 1. By Theorem 1, we can write
(11) $N_{\mu}(U, T)=F^{r}+\gamma_{\mu}q^{;x(r-1/2)}+O(q^{\mu(r-1)})$ ,

for each $/\ell$ , where $\gamma_{\mu}$ are constants bounded in absolute value by a fixed
constant $\gamma$ .

Let $U(m)$ be the m-fold symmetric product of $U$ ; we may assume that
$U(m)$ is also defined over $k$ . Then $T$ induces naturally a biregular, birational
transformation of $U(m)$ into itself, which has the same order $n$ . Let $h$ be
the canonical mapping of the m-fold product $U\times U\times\cdots\times U$ of $U$ onto $U(m)$

and let $\Delta$ be the diagonal of $U\times U$. Then $X=h(\Delta\times U\times\cdots\times U)$ is a subvariety
of $U(m)$ and has the dimension $(m-1)r$. Clearly $X$ is invariant by $T$ and $I_{\mu}$

for all $\mu$ . Any point $\mathfrak{a}$ on $U(rn)-X$ has a representative $(P_{1}, P_{2}, \cdots, P_{m})$ with
points P. on $U$, where any two of the points $P_{\rfloor},$

$\cdots,$
$P_{m}$ are different from

each other.
Let $\mathfrak{a}$ be a point on $U(m)-X$ such that $T((\iota)=I_{\mu}(\mathfrak{a})$ , where $I_{\mu}$ denotes also

the q’-th power transformation of the ambient space of $U(m)$ . If $(P_{1}, \cdots, P_{m})$

is a representative of $\mathfrak{a}$ , then, by a suitable change of indices, the points
$P_{1},$

$\cdots,$
$P_{m}$ are divided into several sets as follows:

$T(P_{1})=I_{\mu}(P_{2}),$ $T(P_{2})=I_{\mu}(P_{r}o),$ $\cdots,$ $T(P_{\rho_{1}})=I_{\mu}(P_{1})$ ;

$T(P_{\rho_{1}+1})=I_{\mu}(P_{\rho_{1+2}}),$ $\cdots,$ $T(P_{\rho_{1+\beta_{S}}})=l_{\mu}(P_{\rho_{1+1}})$ ;

............................................................... ,

where $\Sigma\rho_{i}$ equals to $m$ and $\rho_{i}$ is a positive rational integer. Then $\mathfrak{a}$ is
called to be ” of type $(\rho_{1}, \rho_{2}, \cdots)$

” and $(P_{1}, \cdots, P_{\rho_{1}}),$ $(P_{\beta_{1}+1}, \cdots, P_{\rho_{1+}\rho_{2}}),\cdots$ are called
‘ cycles of length $\rho_{1},$ $\rho_{2},\cdots$ of a ” respectively. We denote by [ $\mathfrak{a}\rfloor$ the number
of cycles of $\mathfrak{a}$ .

Let $(P_{1}, \cdots, P_{\rho})$ be a cycle of length $\rho$ of some point $\mathfrak{a}$ on $U(m)-X$ such
that $T(0)=I_{\mu}(a)$ . As $T$ is defined over $k$ , we have T. $I_{\mu}=I_{1^{J}}\cdot T$ and so
(12) $T^{\rho}(P_{1})=I_{\rho_{\mu}}(P_{1})$

and $P_{\rho}=T^{-1}I_{\mu}(P_{1}),$ $\cdots,$ $P_{2}=(T^{-1}I_{\mu})^{0-1}(P_{1})$ are uniquely determined by $P_{1}$ . More-
over, as $a$ is in $U(m)-X$, any two of $P_{1},$

$\cdots,$
$P_{\rho}$ are different from each other.

Hence $\rho$ is the smallest value with which $P_{1}$ satisfies (12).

It is easily verified, by Theorem 1, that the number of points on $U$,
which satisfy (12) with $\rho$ as the smallest value, is given by

(13) $N_{\rho\mu}(U, T^{\rho})+O(q^{\mu(\rho-1)r})$ .
Conversely if a point $P$ on $U$ satisfies (12) with $\rho$ as the smallest value,

then any two of $(T^{-1}I_{\mu})^{\nu}(P)$ with $\nu=0,1,$ $\cdots,$ $\rho-1$ are different from each other.
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Hence, by (13), $(P, (T^{-1}I_{\mu})^{\rho-1}(P),$ $\cdots,$ $(T^{-1}I_{\mu})(P))$ appears as a cycle of length $\rho$

of some point $\mathfrak{a}$ on $U(m)-X$ such that $T(\mathfrak{a})=I_{\mu}(a)$ and $[\mathfrak{a}]=s$ , where $s$ is any
positive rational integer not larger than $m-\rho+1$ .

Hence the number of points $\mathfrak{a}$ on $U(m)-X$, such that $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$ and
$[\mathfrak{a}]=s$ , is given by

(14) $\frac{1}{s!}$

$\sum_{\rho_{1}+\cdot+\rho_{S^{\$}}=m(\rho_{1}.’.\cdots.\rho)}$

$\frac{N_{\rho_{1}\mu}(U,T^{\rho_{1}})}{\rho_{1}}$ ... $\frac{N_{\rho_{s^{\mu}}}(U,T^{\rho_{s}})}{\rho_{s}}+O(q^{\mu(m-1)^{r}})$ .

Here the sum
($\rho_{1}.’.\cdots\rho_{s_{=m}^{)}}\sum_{\rho_{1}+\cdot+\rho_{S}}$.

ranges over all the s-permutations $(\rho_{1}, \cdots, \rho_{s})$ of positive

rational integers with $\sum_{i=1}^{\epsilon}\rho_{i}=m$ , where each of the $s$ integers may be repeated.

Moreover the error term of (14) is due to that of (13) and the fact that our
consideration is restricted to points on $U(m)-X$

Therefore, by the above arguments and the remark in 2, we have the
following formula (cf. Taniyama [9]):

(15) $N_{\mu}(U(m), T)=N_{\mu}(U(m)-X, T)+O(q^{\mu_{(}m-1)^{r}})$

$=\frac{N_{m_{f1}}(U,T^{m})}{m}+2^{\frac{1}{!}\sum_{\rho_{1^{\gamma}}\rho_{2}}}(\rho_{1},\rho_{=^{2}})_{m}\frac{N_{\rho_{1}\mu}(U,T^{\rho_{1}})}{\rho_{1}}$

. $\frac{N_{\rho_{2}\mu}(U,T^{\rho_{g}})}{\rho_{2}}$

$\dashv-\frac{1}{3!}$

$\sum_{(\rho_{1}.\rho\rho_{3}),\rho_{1}+\rho_{2}+^{2}\rho_{3}=m}.\frac{N_{\rho_{1}\mu}(U,T^{\rho_{1}})}{\rho_{1}}$

. $ N_{\rho_{2}\mu}(U_{2}, T^{\rho_{B}})\rho$ . $\frac{N_{\rho_{3}\mu}(U,T^{\rho_{1}})}{\rho_{3}}$

$+$ $+\frac{N_{\mu}(U,T)^{m}}{m!}+O(q^{\mu(m-1)r})$ .

We note that, as $r$ is larger than $0$ , we have $(m-1)r\leqq mr-1$ .
On the other hand, by Theorem 1, we have

$|N_{\mu}(U(m), T)-q^{\mu mr}|\leqq\gamma^{*}q^{\mu(mr-1/2)}$ ,

with a constant $\gamma^{*}$ , independent of /1. Hence, comparing the coefficients of
$q^{\mu mr}$ in the both sides of the above expression (15) of $N_{\mu}(U(m), T)$ , we have

(16) $1=-m^{-}1+\frac{1}{2!}$

$\sum_{(\rho_{1},\rho_{2}),\rho_{1}+\rho_{2}=m}\frac{1}{\rho_{1}}\frac{1}{\rho_{2}}+\frac{1}{3!}(\rho.\rho\rho_{s_{=}})_{m}\sum_{\rho_{1}*\rho_{2}+^{2}\rho_{3}},\rho_{1}^{1_{-\frac{1}{\rho_{2}}\frac{1}{\rho_{3}}}}+\cdots\dashv-\frac{1}{m!}$

.

As $\mu((m-\rho_{i})r+\rho_{i}r-\frac{1}{2}\rho_{i})=\mu(mr-\frac{1}{2}\rho_{i})$ , a term of order $q^{\prime\prime}(mr-1/2)$ appears

in $N_{\rho_{1}\mu}(U, T^{0_{1}})\cdot N_{\beta_{2}\mu}(U, T^{\rho}\cdot)\cdots N_{\rho_{s^{\mu}}}(U, T^{\rho_{s}})$ with $\sum_{i=1}^{s}\rho_{i}=m$ if and only if some
$\rho_{i}$ is equal to 1. Hence, if $m$ is larger than 1, the sum of the terms of order
$q^{\mu(mr-1/2)}$ in the right side of (15) is given by
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$\frac{2}{2!}\frac{1}{m-1}\gamma_{l^{\ell}}q^{\mu(r-1/2)+\mu(m-1)r}+\frac{3}{3!}$

$\sum_{(\rho_{1}.\rho,\rho_{1}+\rho_{l}=\tau^{*}n^{)}-I}\frac{1}{\rho_{1}}\frac{1}{\rho_{2}}\gamma_{\rho r}q^{\mu(r-1/2)+\mu(m-1)r}$

$+\cdots+\frac{m}{m!}\gamma_{\mu}q^{fJ(r-\iota/2)+\mu(m-1)r}$

$=\{\frac{1}{m-1}+\frac{1}{2!}$

$\sum_{(\rho_{1_{l}}.\rho,\rho 1+p=m^{)}-1},\frac{1}{\rho_{1}}\frac{1}{\rho_{2}}+\cdots+\frac{1}{(m-1)!}\}\gamma_{\mu}q^{t/(mr-1/2)}$

$=\gamma_{\mu}q^{l^{1}(mr-1/2)}$

by the formula (16) for $m-1$ .
Therefore we have also

$N_{\mu}(U(\prime n), T)=q^{\mu mr}+\gamma_{\mu}q^{\mu(mr-1/2)}-]- O(q^{\mu(mr-1)})$ .
6. Now we shall restrict ourselves to the case where $U$ is non-singular

and $T$ satisfies the following condition: If the a-th power $T^{a}$ of $T$ leaves at
least one point on $U$ fixed, then $a$ is divisible by the order $n$ of $T$. This
condition imposed on $T$ is always satisfied when $T$ is an element of the
Galois group of some unramified Galois covering. However, in order to study
the constant $\gamma$ in Theorem 1, these assumptions are not essential, because of
the birationality of the constants $\gamma$ .

We choose $m$ to be prime to $n$ . We suppose that, for a positive rational
integer $a$ not divisible by $n$ , there exists a point $a$ on $U(m)$ which is fixed
by $T^{a}$ . Let $(P_{1}, P_{2}, \cdots, P_{m})$ be a representative of $\mathfrak{a}$ ; then we may assume that
the points $P_{1},$

$\cdots,$ $P_{m}$ are divided into several sets as follows:
$T^{a}(P_{1})=P_{2}$ , $T^{a}(P_{2})=P_{3}$ , $\cdots$ $T^{a}(P_{\rho_{1}})=P_{1}$ ;

$T^{a}(P_{\rho_{1+1}})=P_{\rho_{1+2}}$ , , $T^{a}(P_{\rho_{1}+\rho_{*}})=P_{\rho_{1+1}}$ ;

...................................................... ,

where $\Sigma\rho_{i}$ equals to $m$ and $\rho_{i}$ is a positive rational integer. Then we have
$T^{a\rho_{1}}(P_{1})=P_{1}$ , $T^{a\rho_{2}}(P_{\rho_{1+1}})=P_{\rho_{1+1}},$ $\cdots$ .

Hence, by the assumption of $T$, each $a\rho_{i}$ must be divisible by $n$ ; so $am=$
$\sum a\rho_{i}$ is divisible by $n$ , which contradicts to our choice of $m$ . Therefore we
can choose $m$ so that if $a$ is not divisible by $n$ then $T^{\alpha}$ has no fixed point
on $U(m)$ .

Let $A$ be an Albanese variety attached to $U$ and $\alpha$ a canonical mapping
of $U$ into $A$ . As $k$ is finite, $A$ and $\alpha$ may be assumed to be defined over $k$ .
$A$ is also an Albanese variety attached to $U(m)$ and $\alpha$ induces naturally a
canonical mapping $\alpha_{m}$ of $U(m)$ into $A$ . For a generic point $P$ on $U$ over $k$,
we have, by the universal mapping property of Albanese varieties,

$\alpha\cdot T(P)=\eta\cdot\alpha(P)+t$ ,
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where $\eta$ is an automorphism of $A$ defined over $k$ and $t$ is a rational point
on $A$ over $k$ , which are independent of the choice of $P$. So, for a generic
point $u$ on $U(m)$ over $k$, we have

$\alpha_{m}\cdot T(\mathfrak{u})=\eta\cdot\alpha_{m}(\mathfrak{u})+mt$ .
We note that $\alpha$ and $\alpha_{m}$ are everywhere defined on $U$ and $U(m)$ respectively
because $U$ is non-singular by our assumption.

If a point $\mathfrak{a}$ on $U(m)$ satisfies $T(\mathfrak{a})=I_{\mu}(\mathfrak{a})$ , then we have $\alpha_{m}\cdot T(\mathfrak{a})=\alpha_{m}\cdot I_{\mu}(\mathfrak{a})$ .
As $\alpha_{m}$ is defined over $k$, we have

$\eta\cdot\alpha_{m}(a)+mt=\pi^{g\ell}\alpha_{m}(\mathfrak{a})$ ,

where $\pi$ is the endomorphism of $A$ given by the endomorphism of the uni-
versal domain: $\xi\rightarrow\xi^{q}$ .

Now we choose $m$ to be prime to $n$ and sufficiently larger than $2g+2$ ,
where $g$ is the dimension of $A$ . For a point $a$ on $A,$ $W(m, a)$ denotes the
subvariety of $U(m)$ consisting of all points $a$ such that $\alpha_{m}(\mathfrak{a})=a$ . Then, for
our choice of $m,$ $W(m, a)$ is irreducible and of dimension $mr-g$, by Taniyama
[9].

We denote also by $N_{\mu}(W(m, a),$ $T$ ) the number of points $\mathfrak{a}$ on $W(m, a)$ such
that $T(\mathfrak{a})=I_{\mu}(0)$ . Since $T$ does not generally map $W(m, a)$ into itself and also
$W(m, a)$ is not generally defined over $k$ , we can not apply Theorem 1 to this
case. However, for such a point $a$ on $A$ that $\eta(a)+mt=\pi^{\mu}(a)$ , we have an
analogous inequality as we shall show afterwards.

By the above arguments and the fact that $T$ and $\alpha_{m}$ are everywhere
defined on $U(m)$ , we have
(17) $N_{\mu}(U(m), T)=\sum_{a}N_{\mu}(W(m, a),$

$T$ ) ,

where the sum ranges over all points $a$ on $A$ such that
$\eta(a)+mt=\pi^{\mu}(a)$ .

We note that there are exactly $\det 1\psi_{\iota}(\pi^{\mu}-\eta)$ such points $a$ on $A$ , where $1\psi_{l}$

denotes the l-adic representation of the ring of endomorphisms of $A$ with a
rational prime $l$ different from the characteristic of the universal domain.
In fact, if $x$ is a generic point on $A$ over $k$, we have $k(\eta(x))=k(x)$ and so $k(\pi^{\mu}(x)$ ,
$(\pi^{\mu}-\eta)(x))=k(x)$ ; hence we have $\nu_{i}(\pi^{\mu}-\eta)=1$ and so $\nu_{s}(\pi^{\mu}-\eta)=\det M_{l}(\pi^{\mu}-\eta)$ .

7. Now we shall calculate the number $N_{\mu}(W(m, a),$ $T$ ) for a point $a$ on
$A$ such that $\eta(a)+mt=\pi^{\mu}(a)$ .

Since $U(m)$ is projective and the cyclic group generated by $T$ is a finite
group of biregular, birational transformations of $U(m)$ into itself, we can
define the quotient variety; and then, by our choice of $m$ , we have an un-
ramified Galois covering and we may assume that this covering is $d^{\circ}.fined$
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over $k$ . $W_{0}$ denotes the image of $W(m, a)$ by the canonical projection $f$ of
this covering.

By the definition, $T(W(m, a))$ coincides with $W(m, \eta(a)+mt)=W(m, \pi^{\mu}(a))$ ;
and, as $\alpha_{m}$ is defined over $k,$ $I_{\mu}(W(m, a))$ coincides with $W(m, \pi^{\mu}(a))$ and con-
sequently with $T(W(m, a))$ . It is clear, by considering the dimensions, $W(m, a)$

and $T(W(m, a))=I.(W(m, a))$ are irreducible components of the inverse image
$f^{-l}(W_{0})$ . Hence, as $f$ is defined over $k$ and $f\cdot T=f$, it is easily verified that
$W_{0}$ is defined over $k_{\mu}$ . Moreover, let $W_{1}=W(m, a),$ $W_{2}=T(W(m, a)),$ $W_{3}$ , $\cdot$ .. be
all the irreducible components of the inverse image $f^{-1}(W_{0})$ . Since each $W_{i}$

is written as $W(m, b_{i})$ with some point $b_{i}$ on $A$ and so the intersection $W_{i\cap}$

$W_{j}$ is empty for distinct $b_{i}$ and $b_{j}$ , any two of $W_{i}’ s$ have no point in common.
Then, by Lang-Serre [4] and [5], we have $\sum_{i}[W_{i} : W_{0}]_{s}\leqq n$ , where $n$ is the

degree of the covering and the symbol $[W_{i} : W_{0}]_{s}$ denotes the separable part
of the degree $[W_{i} : W_{0}]$ . We note that $[W_{i} : W_{0}]_{s}$ is equal to the number of
points on W. lying over a generic point of $W_{0}$ . As $W_{\dot{t}}\cap W_{j}$ is empty and
the covering is unramified, we have $n=\sum_{i}[W_{i} : W_{0}]_{s}$ and so, by the remark

in [5], we have $[W_{i} : W_{0}]_{s}=[W_{i} : W_{0}]$ . Especially it follows that the func-
tion fields of $W(m, a)$ and of $T(W(m, a))$ are separable over that of $W_{0}$ . Hence
we can conclude that $f_{1}$ : $W(m, a)\rightarrow W_{0}$ and $f_{2}$ : $T(W(m, a))\rightarrow W_{0}$ are unramified
coverings, where $f_{1}$ and $f_{2}$ are the restrictions of $f$ on $W(m, a)$ and $T(W(m, a))$

respectively. (If necessary, we may replace $W(m, a),$ $T(W(m, a))$ and $W_{0}$ by
their normalizations, because of the birational nature of the following state-
ments.) Let $C_{u^{\prime}}$ be a generic hyperplane section curve on $W_{0}$ over $k_{\mu}$ with
defining coefficients $(u)$ and $W_{u^{\prime}}$ the inverse image $f_{1}^{-1}(C_{u^{\prime}})$ contained in
$W(m, a)$ . Then $T(W_{u^{\prime}})$ coincides with the inverse image $f_{2}^{-1}(C_{u^{\prime}})$ contained
in $T(W(m, a))$ . Let $C_{b^{\prime}}$ be a specialization of $C_{u^{\prime}}$ over a specialization $(u)\rightarrow$

$(b)$ with reference to $k_{4}$ and be rational over $k_{\mu}$ . For almost all such $C_{b^{\prime}}$ ,
by similar arguments as in 2, $W_{b}^{\prime}=f_{1}^{-1}(C_{b^{\prime}})$ and $T(W_{b^{\prime}})=f_{2}^{-1}(C_{b^{\prime}})$ are ir-
reducible curves on $W(m, a)$ and $T(W(m, a))$ respectively. As $f$ and $C_{b^{\prime}}$ are
defined over $k_{\mu},$ $I_{l}(W_{b^{\prime}})$ is contained in $I_{\mu}(W(m, a))=T(W(m, a))$ and has the
projection $C_{b^{\prime}}$ on $W_{0}$ ; so $I_{\mu}(W_{b}^{\prime})$ must coincide with $T(W_{b^{\prime}})$ . Also, by Weil
or by Mattuck-Tate [7], we have, for almost all such $W_{b^{\prime}}$ ,

$|N_{\mu}(W_{b}^{\prime}, T)-q^{\mu}|\leqq c_{9}q^{\mu/2}+1$ ,

with a constant $c_{9}$ , independent of $q$ and $(b)$ . Therefore, by the same prin-
ciple as in the proof of Theorem 1, we have

(18) $|N_{\mu}(W(m, a),$ $T$ ) $-q^{\mu s}|\leqq\gamma_{a^{\prime}}q^{\mu(S-1f^{\gamma)}}\lrcorner+\delta_{a}^{\prime}q^{fJ(S-1)}$ ,

with constants $\gamma_{a}^{\prime}$ and $\delta_{a}^{\prime}$ , independent of $q$, where $s=mr-g$ is the dimension
of $W(m, a)$ .
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It is known that $W(m, a)$ is a regular variety, $i.e$ . an Albanese variety
attached to $W(m, a)$ is trivial (cf. Koizumi [2]). So, as a special case of
analogues of the conjecture of Lang, we assume that the following conjecture
holds.

We have, for every $a$ on $A$ such that $\eta(a)+mt=\pi^{\mu}(a)$ ,

$(*)$ $|N_{\mu}(W(m, a),$ $T$ ) $-q^{\mu s}|\leqq\gamma_{0}q^{\mu(s-1)}$ ,

where $\gamma_{0}$ is a constant, inedependent of $\mu$ and $a$ .
Let $\pi_{1},$ $\pi_{2},$ $\cdots,$ $\pi_{2g}$ and $\zeta_{1},$ $\zeta_{2},$

$\cdots,$
$\zeta_{2g}$ be the characteristic roots of $M_{\iota}(\pi)$ and

$M_{l}(\eta)$ respectively, where $|\pi_{i}|=q^{1f2}$ and $\zeta_{i}$ is a n-th root of unity. Then, as
$\eta\pi^{\mu}=\pi^{\mu}\eta$ for all $\mu$ , it is easily verified that, by a suitable change of indices,
$\pi_{1}^{\mu}-\zeta_{1},$ $\pi_{2}^{\mu}-\zeta_{2},$

$\cdots,$ $\pi_{2g^{\mu}}-\zeta_{2g}$ are the characteristic roots of $M_{l}(\pi^{\mu}-\eta)$ . Then,
by (17) in the end of 6 and by the fact that $\pi_{1}\pi_{2}\cdots\pi_{2g}=\det M_{\iota}(\pi)=q^{g}$ , we
have, under the assumption $(*)$ ,

$N_{\mu}(U(m), T)=q^{\mu mr}-\sum_{i=1}^{2g}(q^{mr}\pi_{i^{-1}})^{l^{l}}\zeta_{i}+O(q^{\mu(mr-1)})$ .

Therefore, using the notations and results in 5, we have, for each $\mu$ ,

$\gamma_{\mu}q^{\beta(mr-1/2)}=-\sum_{i=1}^{2g}(q^{mr}\pi_{i}^{-1})^{\mu}\zeta_{i}+O(q^{\mu(mr-1)})$ ,

and so
$\gamma_{\mu}q^{\mu(r-\iota/2)}=-\sum_{i=1}^{2g}(q^{r}\pi_{i^{-1}})^{\mu}\zeta_{i}+O(q^{l4(r-1)})$ .

Hence we have the following
THEOREM 2. The notations be as explained above. Then we have, under the

assumption $(*)$ ,

(19) $N_{\mu}(U, T)=q^{\mu r}-\sum_{i=1}^{2g}(q^{r}\pi_{i}^{-1})^{\mu}\zeta_{i}+O(q^{\mu(r-1)})$ .

Repeating the same calculations of $\det M_{l}(\pi^{\mu}-\eta)$ as in Ishida [1], we
have also the following

$CoROLLARY$ . Let $f:U\rightarrow V$ be an unramified Galois covering defined over a
finite field $k$ with $q$ elements, where $U$ and also $V$ are non-sigular, projective
varieties of dimension $r$. Then, concerning $lheze_{M}ros$ of $L(u, \chi, U/V)$ on the
circle $|u|=q^{-(r-1/2)}$ , the conjecture of Lang holds under the assumption $(*)$ on $U$.
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