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Lang has defined the congruence L-series L(, y, U/V) for a Galois
covering f: U— V of an algebraic variety V defined over a finite field with
g elements, associated with simple characters y of the Galois group. Expres-
sing their logarithmic derivatives as follows:

714— log L(u, 1, U/ V) = 3 c /()1
U /1=l

Lang proved that the coefficients ¢,(x) satisfy some inequalities and explained
the behavior of L(u, x, U/ V) in the disk || < g “~?, where 7 is the dimen-
sion of V (also of U). Moreover he gave a conjecture concerning the zeros
of L(u, x, U/V') on the circle [u|=¢ "%, In the present paper, we shall
prove that this conjecture holds under some assumption.

We shall first give another definition of L(x, x, U/V). It can be shown
that our definition is equivalent to Lang’s, in the case where f: U—V is
unramified and U is non-singular, after some cumbersome but not difficult
calculations. Both definitions are not equivalent in general; but the L-series
which we shall define will have the same behavior as Lang’s L-series in the
disk |#| < g ¢~V in all cases, as will be shown by the birational nature of
Corollary of below. (We shall omit here the proof of equivalence
of definitions for the unramified, non-singular case. Hereafter the notations
L(u, x, U/ V) and c,(x) will be used to mean our L-series and their coefficients.)

Our definition of L-series will be given by the formulas (8) and (9) below,
where N, (U, T,) is the number of certain points on U, defined at the begin-
ning of §1. concerns a fundamental inequality on N(U, T,),
which has important consequences on c¢,(x), as will be given as Corollary.

In view of the “birational equivalence” (in the sense above explained)
of our definition with Lang’s, the content of Corollary of is
covered by the result of [3]. So could be also derived from the
result of simply by applying the orthogonality relations of group-charac-
ters. We prefer however to prove directly by the same principle
as in [3], since the method of this proof will be applied to a more general
case in § 2.
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In §2, we shall show that the analogue of the “trace formula” for
N, (U, T,) and the conjecture of Lang explained above follow from the
assumption (x). If the covering is trivial i.e. U=V, then our result is
already obtained in Taniyama [9] under a weaker assumption than ours.
(On an explicit form of the conjecture of Lang, see Ishida [1].)

In the following, we shall use the results of Lang and Serre
often without references.

§1. A fundamental inequality.

1. Let U be a normal, projective variety of dimension 7, defined over a
finite field £ with ¢ elements; let 7" be a birational transformation of U into
itself also defined over k. We suppose that T is everywhere defined on U
and has a finite order #, i.e. 7" is the identity transformation of U. Let G
be a cyclic group of biregular, birational transformations of U generated by
T. Then, since U is projective and G is a finite group regularly operating
on U, we can define the quotient variety U, = U/G, which is also irreducible,
normal, projective and of dimension . Moreover we can construct U, and
the canonical mapping f of U onto U, to be defined over the algebraic closure
of k. Hence we may assume, by replacing £ by a finite extension of % if
necessary, that U, and f are also defined over k.

Let 7, be the rational transformation of the ambient projective space of
U given by the endomorphism of the universal domain: &— &%

We denote by N,(U, T) the number of the points P on U such that T(P)
= L(P).

TureoreMm 1. Let the notations be as explained above. Then there exist
constants v and 0 such that, for any positive rational integer pn, we have the
following inequality :

(1) lN,u(U, T)——qllr] é rqlx(r—l/.)+5qu(r_1) ,

and the set of such constants r is a birational invarviant of U.

In §2, we shall show that this constant 7 is deeply related to the charac-
tersitic roots of the /-adic representation of the automorphism of an Albanese
variety of U given by T.

2. Now we prove [Theorem 1. Let Z, be a k-closed algebraic subset of
U, containing every point P, on U, which either ramifies in the Galois
covering f: U— U, or is multiple on U,; then the dimension of Z, is less
than 7.

If Pis a point on U such that T(P) = [,(P), then we have /- T(P) =f - I(P);
and so,as - T'=f and f is defined over &k, we see that P,=f(P) is a rational
point on U, over k, the unique extension over & of degree u.
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Remark. Therefore, even in the case where U is not necessarily ir-
reducible, we have

NU, T)=[U: Up]- NUy),

where N,(U;) denotes the number of rational points on U, over k, Hence
we have, by Lang-Weil [6],

NLU, T)=0(g"").

In our proof, we shall first construct a suitable system of algebraic
curves on U, each member of which is 7-invariant.

Let P* be the dual space of the ambient space P of U, and I" the (r—1)-
fold product of P*. Denoting the number of rational points on P over %k by

Kmi1, We have
qM+1_1

Ky = ’

qg—1

where M is the dimension of P. Clearly I has %}, rational points over k.
We need the following inequalities afterwards:

(/CM—!—I >7_1_q7'—-1 , < c qr—z
Ky = ’

@)

(M—-1)(r—-1) -1
q =cyt,

with a constant ¢;, independent of q.

Any point » on I' defines a linear variety L, in P. For a rational point
P, on U, over &, there are exactly «% ! rational points ¢ on I' over k such
that L, contains P,.

By Lang [3], there is a k-closed algebraic subset F of I' such that, if a
point » on I' does not belong to F, the following three conditions are satisfied.

1) The intersection product U,-L,=C, is defined and is a non-singular
irreducible curve on U,.

2) The inverse image f~Y(C,)= W, is an irreducible curve on U and
simple on U. f, (the restriction of f to W,): W,—C, is a Galois covering
with Galois group also generated by the restriction 7, of T to W, and [W,:
Col=[U: U,]. (Here W, is not always normal, but we generalize the defini-
tion of Galois coverings.)

3). The intersection product Z, - C, is defined and is an O-cycle on C,. If
a point P, on C, does not belong to Z,-C,, then f~Y(P,) consists of n=[W,:
C,] different points on W,, which are simple on W,.

For a point » in F, we also denote U,nL, and f~Y(U,nL,) by C, and W,
respectively. Those W,’s form a system of 7-invariant curves on U, which
we are looking for.

Denoting by N(F') the number of rational points on F over k, we have,
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by Lang-Weil and by the above inequality (2),
(3) N(F) S cogM" P < cpky'q 2,

with a constant ¢, independent of ¢.

As shown above, for any point P on U such that T(P)=I,(P), there are
k%! linear varieties L, which contain P, = f(P) and are defined over k. Hence
there are «%! curves C, containing P, and defined over £; and so there are
also k37! curves W, containing the given P and defined over k.

Therefore we have

1 1
= Ni(Wey T) + o >, MW ),
" as(I'~-F)g M aEFy

) N, T) =

where the first and second sums range over all rational points on I'—F and
F over k respectively.
3. Let a belong to F and be rational over k. Then we have, by the
remark given above,
N(Weo, To) =n - Ni(Co)

where N,(C,) denotes the number of rational points on C, over k. On the
other hand, by Lang [3], we have

(1 U —
J;ﬁf >J Nl(ca) §C3q 1/2’

acsFy

with a constant ¢;, independent of q. Therefore we have

1 [ -
_ICT_1 z Nl(Wa: Ta)\ é n- C3q7 vz,
M |
aElg

®)

Let @ belong to I'—F and be rational over 2 Let W,* be a non-singular
irreducible curve, birationally equivalent to W, over k. Then the number
of points, at which the birational transformation between W, and W,* is
not biregular, is less than [W,: C,]deg(C,-Z,), by the condition 3); hence
it is uniformly bounded. The genus g,* of W,* is also uniformly bounded.
Moreover T, induces naturally a biregular, birational transformation T,* of
W.*, which has also a finite order. Clearly we have

INI(W(L’ Ta)_Nl(Wa.*» Ta*)l §C4 ’

with a constant ¢,, independent of a. On the other hand, since the degree
of the automorphism 7,* is 1, we have, by Weil (or more explicitly by
Mattuck-Tate [7]),

| N(Wo*, To*)—ql = 2g.%¢"*+1 = c;q'?,
with a constant c;, independent of ¢ and . Hénce we have

(6) l Z\fl(ch Ta)—_QI § qul/z ’
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with a constant ¢, independent of ¢ and @. On the other hand, we have, by

(2) and (3),
1 .
kit E 1=¢™ =

@ Ky —NEF)
ac(I'-Fg

-1
Knm

g =cq?,

with a constant ¢,, independent of gq.
Therefore we have, by (4), (5), (6) and (7),
INU, T)—q" | =rqg~ "+,
with constants y and ¢, independent of gq.
If we extend the ground field & to its finite extension k&, with ¢ ele-
ments, we have also an estimation of N,(U, T) as stated in [Theorem 1.

Moreover if X is a T-invariant k-closed algebraic subset of U, then it is
clear that we have, by the remark in 2,

|N#(U’ T)—NQ(U“‘X, T)l < qu”(?’—l) ,

with a constant ¢, independent of x#. Therefore the set of such constants r
is a birational invariant of U.

Thus the proof of is completed.

4. Let f: U— V be a Galois covering of degree n, defined over a finite
field £ with ¢ elements, where U and ¥ are normal, projective varieties of
dimension 7. The elements of the Galois group G will be denoted by 7,
Te -~ Then, by the definition of Galois coverings, the numbers N, (U, T,),
NU, Ty, are well defined.

For a simple character y of G, we define the congruence L-series L(w, ¥,
U/V) by the following logarithmic derivative:

¥ 57 log L(u, x, U/ V) = i c {)u"t,
=1

and by the condition L(O, x, U/ V) =1, where the coefficients ¢,(¥) are given
by

1
© el) =, O 2 TINLU, T)).

e
Tos 6

Then, by the orthogonality relations of group-characters and [Theorem 1, we
have the following

CoroLLArY. We have, for every positive rational integer v,

(10 e OV = 120"V 409", if x is not principal,
)

e x0)—q" | S 12,q" V2 4+8,,4"V, if x, is principal,

where vy and 0y ave constants, independent of un. Therefore L(u, x, U/V) with
X # Xo have neither zero mor pole in the disk |u| <q V9.
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§ 2. The conjecture of Lang.

5. Let the notations be as explained in 1. By [Theorem 1, we can write
(11) Nﬂ((], T) — qﬂr+r#q/1(r—1/2)+0(qﬂ(r~1)) ,

for each 4, where r, are constants bounded in absolute value by a fixed
constant 7.

Let U(m) be the m-fold symmetric product of U; we may assume that
U(m) is also defined over k.. Then T induces naturally a biregular, birational
transformation of U(m) into itself, which has the same order n. Let 4 be
the canonical mapping of the m-fold product Ux Ux---xU of U onto U(m)
and let 4 be the diagonal of Ux U. Then X=Aa(dx Ux - x U) is a subvariety
of U(m) and has the dimension (m—1)r. Clearly X is invariant by 7T and [,
for all 4. Any point a on U(m)—X has a representative (P,, P, +--, P,) with
points P; on U, where any two of the points P, ---, P, are different from
each other.

Let a be a point on U(m)—X such that T(a) = I,(a), where [, denotes also
the ¢”-th power transformation of the ambient space of U(m). If (P, -, Py)
is a representative of a, then, by a suitable change of indices, the points
Py, -, P, are divided into several sets as follows:

T(Py) = 1Py, T(Py) = 1,(Ps), -+, T(Pp,) = I(P));
T(Pp,s1) = I/A(PI)1+2)’ ooy T(Pp,s0,) = Ip(PPx-l—l);

...............................................................

where > p, equals to m and p; is a positive rational integer. Then q is
called to be “of type (o,, 0y --)” and (P, -+, Po,)y (Po, 115 ***» Poir,),-++ are called
“cycles of length p,, 0,,-- of a” respectively. We denote by [a] the number
of cycles of a.

Let (P, -+, P,) be a cycle of length o of some point a on U(m)—X such
that 7(a)=17,(a). As T is defined over %, we have T-/,=1,-T and so

(12) T°(Py) = Lou(P))

and P, =TI, (P), -, P,=(T"'[,)°"'(P,) are uniquely determined by P;. More-
over, as a is in Uim)—X, any two of P, ---, P, are different from each other.
Hence p is the smallest value with which P, satisfies

It is easily verified, by [Theorem 1, that the number of points on U,
which satisfy with p as the smallest value, is given by

(13) No U, T?) 4 O(@"77) .

Conversely if a point P on U satisfies with p as the smallest value,
then any two of (77',)"(P) withv =0, 1, ---, p—1 are different from each other.
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Hence, by (P, (TL,)P~Y(P), ---, (T~ )(P)) appears as a cycle of length p
of some point a on U(m)—X such that 7(a)=1I,(a) and [a]=s, where s is any
positive rational integer not larger than m—p-1.

Hence the number of points a on U(n)—X, such that T(a)=I,(a) and
[a]=s, is given by

LN N0 T Nyl U, T%)

s! «~ 01 0
(01271 05)
1t pg=m

14

+O0(@* ™).

Here the sum > ranges over all the s-permutations (o4, -+, 0,) of positive

(01;"'vps)
puttpg=m

rational integers with 33 p, =m, where each of the s integers may be repeated.
i=1

Moreover the error term of is due to that of and the fact that our
consideration is restricted to points on U(m)—X.

Therefore, by the above arguments and the remark in 2, we have the
following formula (cf. Taniyama [9]):

(15) N, (U(m), T) = N, (Uim) — X, T) - O(g"™-br)
= N0 T) 1N NelT, T?) | Nowu(U, T

m 21 4 01 05
(pnpa)
P1T p3=m
_{_ _l_ S‘ NIA/I(U» Tpl) . ,NP:II(U; Tp’)A . "NIJLI{( [],’fo);
3! ._J ,01 Pz 103
(p1,p3.05)

P1T Pt Ps=M

I ]7\/’&(%'71_ + O(gtom=ory

We note that, as » is larger than 0, we have (m—1)r <mr—1.

On the other hand, by [Theorem 1, we have
| NLUm), T)—q"™" | < p*q =12,

with a constant 7*, independent of x. Hence, comparing the coefficients of
g"™" in the both sides of the above expression [I5) of N, (U(m), T), we have

ap 1= L S Loy L1 L

e ‘ .
21 or py = 3! L pp Py o m!
(p1,02) (P1.0a,p0s)
Pr1tps=m P17 01t pg=mm

As u((m — p)r + oy — % pi> =4 (mr — ~21~ pi), a term of order g’ ~¥/2 appears

in Ny (U, T*)+ Np,,(U, T?)-+-Np,(U, T?) with Zs]pi:m if and only if some
i=1

0; is equal to 1. Hence, if m is larger than 1, the sum of the terms of order
g“™=1/2 in the right side of is given by
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2 1 pL(r— m—1)r 3 11 r— m—1)r
_._7%,_7 Tﬂq/( 1/2)+#(m—1) 4 ,3,{ E ﬁhr#q#( 1/2)+H#(m—1)

2! O1 P
(p1,p19)
pr1tps=m-—1

m 2(r—1/2)+2(m—1)T
tor o T

— *1‘_ ,l Rlﬁ__]‘“ cee ‘_—1 H(mr—1/2)
={m=1 + o E o o, T (m—l)!}r"q

(Pz-pr‘)
pr+py=m=~1

— mHmr—1/2
=7 ug" ™y

by the formula (16) for m—1.
Therefore we have also

N (Um), T) = q"™ + 1 ,g"™ VD 4- O(g"™ ) .

6. Now we shall restrict ourselves to the case where U is non-singular
and 7T satisfies the following condition: If the @-th power 7 of T leaves at
least one point on U fixed, then « is divisible by the order » of 7. This
condition imposed on T is always satisfied when 7 is an element of the
Galois group of some unramified Galois covering. However, in order to study
the constant 7 in [Theorem 1, these assumptions are not essential, because of
the birationality of the constants 7.

We choose m to be prime to . We suppose that, for a positive rational
integer ¢ not divisible by #, there exists a point a on U(n) which is fixed
by T* Let (P, P, -, P,) be a representative of a; then we may assume that
the points P, ---, P, are divided into several sets as follows:

Ta(Pl)=P2, Ta(P2)=P31 M) Ta(Pp,):-'Pl;
Ta(PP;-H) = Pp.+2: Tty Ta(Pthw.) = Ppl+1;

......................................................

where I p, equals to m and p; is a positive rational integer. Then we have
T(P) =P, T"(Ppsr1)=Pps1, -

Hence, by the assumption of T, each ap; must be divisible by #; so gm=
3 ap; is divisible by », which contradicts to our choice of m. Therefore we
can choose #m so that if @ is not divisible by » then 7'® has no fixed point
on U(m).

Let A be an Albanese variety attached to U and a a canonical mapping
of U into A. As % is finite, A and a may be assumed to be defined over k.
A is also an Albanese variety attached to U(m) and « induces naturally a
canonical mapping «a, of U(m) into A. For a generic point P on U over &,
we have, by the universal mapping property of Albanese varieties,

a-T(P)=7n-a(P)+1,
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where 7 is an automorphism of A defined over 2 and ¢ is a rational point
on A over k, which are independent of the choice of P. So, for a generic
point u on U(m) over k, we have

Ay - T() =7 - ay(u)-+mt .

We note that a and «, are everywhere defined on U and U(m) respectively
because U is non-singular by our assumption.

If a point a on U(wm) satisfies T(a) = I ,(a), then we have «,, - T(a) = a,, - 1.(a).
As a,, is defined over k, we have

7- am(a)+mt - nﬂam(C‘) ’

where = is the endomorphism of A given by the endomorphism of the uni-
versal domain: &— &%

Now we choose m to be prime to » and sufficiently larger than 2g-2,
where g is the dimension of A. For a point ¢ on A, Wim, a) denotes the
subvariety of U(m) consisting of all points a such that «,(a)=a. Then, for
our choice of m, W(m, @) is irreducible and of dimension mr—g, by Taniyama
97

We denote also by N, (W(m, a), T) the number of points a on W(m, ) such
that 7(a) =1,(a). Since T does not generally map Wim, a) into itself and also
Wim, @) is not generally defined over %, we can not apply to this
case. However, for such a point ¢ on A that y(e)+mt=r"(a), we have an
analogous inequality as we shall show afterwards.

By the above arguments and the fact that 7T and «, are everywhere
defined on U(m), we have

17) N (Um), T) = 2 NW(m, a), T),

where the sum ranges over all points ¢ on A such that
n(@)+mt =n"(a) .

We note that there are exactly det M,(z*—2») such points ¢ on A, where M,
denotes the [l-adic representation of the ring of endomorphisms of A with a
rational prime / different from the characteristic of the universal domain.
In fact, if x is a generic point on A over k, we have k(7(x)) = k(x) and so k(z*(x),
(z"*—n)(x)) = k(x); hence we have y,(z”"—7) =1 and so v (z"—2») = det M,(z*—n).

7. Now we shall calculate the number N, (W(m,a), T) for a point a on
A such that n(a)+mt = n*(a).

Since U(m) is projective and the cyclic group generated by 7' is a finite
group of biregular, birational transformations of U(m) into itself, we can
define the quotient variety; and then, by our choice of m, we have an un-
ramified Galois covering and we may assume that this covering is defined
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over k. W, denotes the image of W(m, ) by the canonical projection f of
this covering.

By the definition, 7(W(m, @)) coincides with W(m, n(a)+mt) = Wim, z*(a));
and, as «,, is defined over k, I,(W(m,a)) coincides with W(m, n*(@)) and con-
sequently with T(W(m, a)). It is clear, by considering the dimensions, W(m, @)
and T(W(m, a)) = I,(W(m, a)) are irreducible components of the inverse image
F~Y(W,). Hence, as f is defined over k£ and f-T =/, it is easily verified that
W, is defined over k,. Moreover, let W, = W(m, a), W, = T(W(m, a)), W, --- be
all the irreducible components of the inverse image f~Y(W,). Since each W;
is written as W(m, b;) with some point »; on A and so the intersection W;N
W, is empty for distinct b, and b;, any two of W;’s have no point in common.
Then, by Lang-Serre and [5], we have ; [W;: Wy1,=<n, where n is the

degree of the covering and the symbol [ W;: W,], denotes the separable part
of the degree [W;: W,]. We note that [ W;: W,], is equal to the number of
points on W, lying over a generic point of W,. As W;A\W, is empty and
the covering is unramified, we have n = ; [W,: W,l, and so, by the remark

in [6], we have [W,: W ],=[W,;: W,]. Especially it follows that the func-
tion fields of Wm, a) and of T(W(mn, a)) are separable over that of W,. Hence
we can conclude that f,: Wim, a)— W, and f,: T(W(m, a))— W, are unramified
coverings, where f, and f, are the restrictions of f on Wim, a) and T(W(m, a))
respectively. (If necessary, we may replace Wim,a), T(W(m,a)) and W, by
their normalizations, because of the birational nature of the following state-
ments.) Let C,/ be a generic hyperplane section curve on W, over k, with
defining coefficients (#) and W,’ the inverse image f,"*C,’) contained in
Wim,a). Then T(W,') coincides with the inverse image f,”(C,’) contained
in T(W(im, @)). Let C,/ be a specialization of C,” over a specialization (#)—
(b) with reference to k, and be rational over k,. For almost all such C,
by similar arguments as in 2, W, =f,"%(C,) and T(W,)=f,"C)) are ir-
reducible curves on Wim,a) and T(W(m, a)) respectively. As f and C,/ are
defined over k,, I,(W,) is contained in I,(W(m,a))= T(W(m, a)) and has the
projection C,’ on W,; so I, (W,) must coincide with 7(W,’). Also, by Weil
or by Mattuck-Tate [7], we have, for almost all such W/,

| N, T)—q*| < cog”?+1,

with a constant ¢, independent of ¢ and (b). Therefore, by the same prin-
ciple as in the proof of [Theorem 1, we have

18 | NWim, @), T)—q"| S71a'q"7* +8a"¢"7",

with constants r,” and 0./, independent of ¢, where s =mr—g is the dimension
of Wim, a).
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It is known that W(im, ) is a regular variety, i.e. an Albanese variety
attached to Wim,a) is trivial (cf. Koizumi [2]). So, as a special case of
analogues of the conjecture of Lang, we assume that the following conjecture:
holds.

We have, for every a on A such that n(a)+mt = n"(a),

(*) | N(W(m, a), T)—q™| < reg"¢?,

where 1, is a constant, inedependent of pn and a.

Let 7, 7y, -+, Typ and (1 Cyy ooty (o be the characteristic roots of M(r) and
M(n) respectively, where |z;|=¢'? and {, is a n-th root of unity. Then, as
gr* =n"y for all u, it is easily verified that, by a suitable change of indices,
T *—{y, m" =Ly, -y Mg —{,, are the characteristic roots of M(z“—n). Then,
by (17) in the end of 6 and by the fact that =z,--7m,, =det M(z)=¢q%, we
have, under the assumption (¥),

2g
N”(U(m), T) — ql‘mr__ ;_11 (qmrzi—l)llgi_}_O(q#(mr—D) .

Therefore, using the notations and results in 5, we have, for each g,

g = — 3 (@R A0 ),

and so

Tug T =— ,275‘1 (@Y 40" ).
=

Hence we have the following
TueoreMm 2. The notations be as explained above. Then we have, under the
assumption (%),

2g
(19 N,,(U, T)=q""— ?;\‘1 (qrni—l)llci_‘_o(qu(r-;)) .

Repeating the same calculations of det M(z”—7) as in Ishida we
have also the following

CoroLLaRrY. Let f: U— V be an unramified Galois covering defined over a
finite field k with q elements, where U and also V are non-sigular, projective
varieties of dimension r. Then, concerning the zeros of L(u,x,U/V) on the
circle \u| = q~ "V, the conjecture of Lang holds under the assumption (x) on U.

Department of Mathematics
University of Tokyo.
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