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With respect to affinely connected manifolds admitting groups of affine
motions of various types and with respect to the groups themselves, especially
on their dimensions, there are many papers, for instance, by I. P. Egorov,
H. C. Wang and K. Yano [5], Y. Muto [6] and the others.

In this paper, we study affinely connected manifolds admitting groups of
affine motions of some types with complex reducible linear isotropy groups,
that is, with linear isotropy groups which are real representations of complex
linear homogeneous groups.

The main purpose is to prove Theorems 4.1, 4.2 and 4.3 in \S 4, as applica-
tions of Theorem 3.1 and Corollary 3.1 in \S 3.

\S 1. Preliminary remarks.

The notations $GL(n, R),$ $GL(m, C),$ $SL(n, R),$ $SL(m, C)$ are as usual and
furthermore we denote the real representations of $GL(m, C)$ and $SL(m, C)$ by
$RGL(m, C)$ and $RSL(m, C)$ respectively. The other notations are as follows.

$E_{N}$ unit martrix of degree $N$.
$H^{1}$ real one dimensional homothetic group: $x\rightarrow rx$ ($x,$ $r$ : real; $r>0$).
$H_{N}$ : real one dimensional group composed of all $(N\times N)$-matirces $aE_{N}$

( $a$ : positive real).
$T^{1}$ one dimensional torus group: $z\rightarrow\sigma z$ ( $\sigma,$ $z$ : complex; $|\sigma|=1$).
$T_{m}$ one dimensional group composed of all complex $(m\times m)$-matrices

$\sigma E_{m}$ ( $\sigma$ : complex; $|\sigma|=1$).
$R(T_{m})$ : real representation of $T_{m}$ .
$A_{2m}$ : $2m$-dimensional affinely connected manifold of class $C^{\infty}$ .
$G$ : Lie group of affine motions of $A_{2m}$ .
$G(P)$ : isotropy group of $G$ leaving invariant a generic point $P$ of $A_{2\tau n}$.
$G_{0}(P)$ : linear isotropy group of $G$ at a generic point $P$, which is the

faithful linear representation of $G(P)$ . We mean the connected
component of the identity.
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Under the above notations we give several remarks.
I. $RGL(m, C)$ and $RSL(m, C)$ . The matrices $M_{2m}$ of $RGL(m, C)$ are of the

form (with respect to suitable bases):

(1.1) $1\psi_{2m}=\left(\begin{array}{ll}A_{m} & -B_{m}\\B_{m} & A_{m}\end{array}\right)$ ,

where $A_{m}$ and $B_{m}$ are real matrices of degree $m$ . (1.1) is equivalent to the

fact that $1\psi_{2m}$ leaves invariant a matrix $\left(\begin{array}{ll}0 & E_{m}\\-E_{m} & 0\end{array}\right)$ . If we consider a matrix

$P=\frac{1}{\sqrt 2^{-}}($ $-\sqrt{-1}^{E_{m}}E_{m}$ $\sqrt{-1}^{E_{m}}E_{m}$ ),
then we see that

(1.2) $P^{-1}1\psi_{2}{}_{m}P=(A_{m_{0}}+\sqrt{-1}B_{m}A_{m}-\sqrt{-1}B_{m}0)$ ,

which gives a transformation of $RSL(m, C)$ with respect to complex bases.
If $M_{2m}\in RSL(m, C)$ , then $\det|A_{m}+\sqrt{-1}B_{m}|=de^{\perp}\llcorner|A_{m}-\sqrt{-1}B_{m}|=1$ . The real
$\iota epresentationR(T_{m})$ of $T_{m}$ is given by the matrices of the form

$\left(\begin{array}{ll}aE_{m} & -bE_{m}\\bE & aE\end{array}\right)$ ( $a,$
$b$ : real; $a^{2}+b^{2}=1$).

II. Decomposition of $GL(m, C)$ and $RGL(m, C)$ . It is easily seen that
$GL(m, C)=H^{1}\otimes T^{1}\otimes SL(m, C)$ ,

where $\otimes$ denotes the Kronecker products of the groups. Then, a matrix of
$RGL(m, C)$ is given by the form: $h\cdot t\cdot s$ , where

$h=aE_{2m}\in H_{2m}$ ($a$ : positive real) ,

$t=\left(\begin{array}{ll}aE_{m} & -bE_{m}\\bE & aE_{m}\end{array}\right)\in R(T_{m})$ ( $a,$
$b$ : real; $a^{2}+b^{2}=1$ )

and $s\in RSL(m, C)$ . $h,$ $t$ and $s$ are mutually commutative.
III. Groups of affine motions and linear isotropy groups. Let

(1.3) $x^{\gamma A}=f^{A}(x^{1}, \cdots, x^{N} ; a^{1}, \cdots, a^{r})$ $(A, B, C, \cdots=1, \cdots, N)$

be a transformation of a local group of affine motions in an N-dimensional
affinely connected manifold $A_{N}$ , where $(x^{A})$ is the coordinate neighborhood of
$A_{N}$ and $a^{1},$ $\cdots$ , $a^{r}$ are the parameters of $G$ , then we have
(1.4) $\Gamma_{B^{A}C}(x^{\prime})=\Gamma_{B^{A}C}^{\prime}(x^{\prime})$ ,
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where $\Gamma_{B^{A}C}^{\prime}(x^{\prime})$ are the quantities obtained from $\Gamma_{B^{A}C}(x)$ by considering (1.3) as
a coordinate transformation. Conversely, a transformation $(x)\rightarrow(x^{\prime})$ satisfying
(1.4) is an affine motion of $A_{N}$ .

We have from (1.4),

(1.5) $T_{BC}^{A}(x^{\prime})=T_{BC}^{\prime A}(x^{\prime})$ ,

(1.6) $R_{BCD}^{A}(x^{\prime})=R_{BCD}^{\prime A}(x^{\prime})$ ,

where $T_{BC}^{A}$ and $R^{A_{BCD}}$ are torsion and curvature tensors respectively, $i.e.$ ,

$\left\{\begin{array}{l}T^{A_{BC}}=\frac{1}{2}(\Gamma_{B^{A}C}-\Gamma_{B^{A}C}),\\R^{A_{BCD}}=\partial\Gamma_{B}^{A_{C}}/\partial x^{D}-\partial\Gamma_{B}^{A_{D}}/\partial x^{c}+\Gamma_{B^{E}C}\Gamma_{E^{A}D}-\Gamma_{B^{E}D}\Gamma_{E^{A}C}.\end{array}\right.$

Now, let
(1.7) $x^{\prime A}=g^{A}(x^{1}, \cdots, x^{N} ; b^{1}, \cdots , b^{r^{J}})$

be a transformation of the isotropy group $G(P_{0})$ leaving invariant a point
$P_{0}$ $(x_{0}^{1}$ , $\cdot$ .. , $x_{0^{N}})$ , where $b^{1}$ , $\cdot$ .. , $b^{r!}(r^{\prime}\leqq r)$ are the parameters of $G(P_{0})$ and satisfy

(1.8) $x_{0}^{A}=g^{A}(x_{0}^{1}, \cdots , x_{0}^{N} ; b^{1}, \cdots, b^{r^{\prime}})$ .
If we consider a transfomation (1.7), we have

$T_{BC}^{A}(x^{\prime})=\frac{\partial x^{\prime A}}{\partial x^{P}}\frac{\partial x^{Q}}{\partial x’ B}\frac{\partial x^{R}}{\partial x^{c}}T^{p_{QR}}(x)$ ,

and at the point $P_{0}$ $(x_{0}^{1}, \cdots , x_{0}^{N})$ , these become

(1.9) $T_{BC}^{A}(x_{0})=(\frac{\partial x^{\prime A}}{\partial x^{P}})_{0}(\frac{\partial x^{Q}}{\partial x^{B}})_{0}(\frac{\partial x^{R}}{\partial xc})_{0}v^{\prime}$

’

where $($ $)_{0}$ denotes the value at $P_{0}$ , and similarly we have

(1.10) $R^{A_{BCD}}(x_{0})=(\frac{\partial x^{\prime A}}{\partial x^{P}})_{0}(\frac{\partial x^{Q}}{\partial x’ B})_{0}(\frac{\partial x^{R}}{\partial x’ c})_{0}(\frac{\partial x^{s}}{\partial x’ D})_{0}R^{P_{QRS}}(x_{0})$ .

The matrices $(\partial x^{\prime A}/\partial x^{P})_{0}$ appearing in (1.9) and (1.10) give the matrices of
the linear isotropy group $G_{0}(P_{0})$ .

IV. $H_{N}$ denotes, as mentioned in the above, the (real) one dimensional
group whose matrices are given by $aE_{N}$ ( $a$ : positive real). If $G_{0}(P)$ contains
this $H_{N}$, then whether it is a real representation of a complex linear group
or not, we see that at any generic point of $A_{N},$ $T^{A_{BC}}=0,$ $R^{A_{BCD}}=0(A,$ $B,$ $C,$ $ D,\cdots$

$=1,$ $\cdots,$
$N$), which is already known (Ishihara and Obata [7, Theorem 2 and

3]). The outline of the proof is as follows.
At any generic point $P_{0}$ $(x_{0}^{1}, \cdots , x_{0}^{N})$ , (1.9) hold good, where the matrices

$(\partial x^{\prime A}/\partial x^{P})_{0}$ give transformations of the linear isotropy group $G_{0}(P_{0})$ . When
$G_{0}(P_{0})$ contains $H_{N}$ , we can consider a transformation $(\partial x^{\prime A}/\partial x^{P})_{0}=a\delta_{P}^{A}(a$ :
positive real $\neq 1$ ). If we apply this transformation to $T_{BC}^{A}$ , we have from (1.9)
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$T_{BC}^{A}(x_{0})=aT_{B0}^{A}(x_{0})$ $(a\neq 1)$

and therefore $T^{A_{BC}}(j\iota_{0})=0$ . Consequently, at any generic point of $A_{N}$ , we have
$T_{BC}^{A}=0$ and similarlv $R_{BCD}^{A}=0$ . If $A_{N}$ is connected, these hold true all over
the $A_{N}$ .

Throughout this paper, if otherwise stated, the ranges of indices are as
follows:

$i,j,$ $k,$ $i_{1},j_{1},$ $\cdots$ , $i_{p},j_{p},$ $\cdots,$ $a,$ $b,$ $c,$ $\cdots=1,$ $\cdots\cdots\cdots\cdots,$ $2m$ ;

$\alpha,$ $\beta,$
$\gamma,$ $\cdots,$

$\lambda_{Y}\mu,$
$\nu,$

$\lambda_{1},$
$\mu_{1},$ $\cdots,$

$\lambda_{p},$
$\mu_{p},$ $\cdots=1,$ $\cdots\cdots,$ $m$ ;

$\overline{\alpha},\overline{\beta},\overline{\gamma},$

$\cdots,$
$\overline{\lambda}_{f^{\overline{J}\overline{1)}}}f$

”
$\overline{\lambda}_{1},\overline{\mu}_{1},$

$\cdots,$
$\overline{\lambda}_{p},\overline{\mu}_{p},$ $\cdots=\alpha+m,$ $\beta+m,$ $\gamma+m,$ $\cdots\cdots\cdots\cdots$ .

And we adopt the summation convention.

\S 2. Remarks on the dimension of subgroups of $RSL(m, C)$ and $RGL(m, C)$ .
Let \S l(m, R) and $BI(m, C)$ be the Lie algebra of $SL(m, R)$ and $SL(m, C)$

respectively, and we consider $e\wedge’\{(m, C)$ in its real representation. We have the
following lemma.

LEMMA 2.1. Let $\mathfrak{g}$ be a real Lie subalgebra of $a\sim\downarrow(m, C)(m>1)$ and let $r$ be
the (real) dimension of $\mathfrak{g}$ . If $r>2m^{2}-m-1$ , then

$\mathfrak{g}=@I(m, C)$ .

PROOF. If we put $\Xi I(m, R)=\S$ , then we can put $6\wedge[(’ 7\iota, C)=@+\sqrt{-1}a$ (direct
sum) up to an isomorphism. Let

$\pi:BI(m, C)\rightarrow\sqrt{}\overline{-1}$ @

be a projection from @I(m, $C$ ) to $\sqrt{-1}$ @ such that

$\pi(X)=Z$

where
$X=Y+Z$ $(Y\in a\wedge’ Z\in\sqrt{}\overline{-1}@)$ .

If we consider $\pi$ on $\mathfrak{g}$ , then the kernel of $\pi$ in $\mathfrak{g}$ is g\cap @. Since $\pi(\mathfrak{g})$ is in
$\sqrt{-1}$ \S , we have

$\dim\sqrt{-1}$ \S \geqq dim $\pi(\mathfrak{g})=\dim$ g–dim $(\mathfrak{g}\cap 8)$ ,
from which

$\dim$ (g\cap @)\geqq dim $\mathfrak{g}-\dim\sqrt{}\overline{-1}@=r-(m^{2}-1)$

$>(2m^{2}-m-1)-(m^{2}-1)=m^{2}-m$ .
Hence g\cap \S is a Lie subalgebra of \S whose dimension is $>m^{2}-m$ and by
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virtue of the well known results1) on @ (=@I(m, $R$ )), we have g\cap @ $=8\wedge$ that is,
$0\supset@$ .

Next, put $\mathfrak{g}_{I}=\sqrt{-1}\mathfrak{g}\cap^{8}\wedge$

’ then $\mathfrak{g}_{1}\neq\{0\}$ , since dimg $>2m^{2}-m-1>m^{2}-1$

$=\dim\underline{i}^{l}$, (Note that $m>1$ ). Furthermore, $\mathfrak{g}_{1}$ is an ideal of $B$ , for
$[\mathfrak{g}_{1}, @]\subset[\sqrt{-1}\mathfrak{g},\sim^{\backslash }P]_{\cap}$ $[$@, $S]\subset\sqrt{-1}\mathfrak{g}\cap 8=\mathfrak{g}_{1}$ ,

taking account of
$[\sqrt{-1}\mathfrak{g}, @]=\sqrt{-1}[\mathfrak{g},\wedge a]\subset\sqrt{-1}\mathfrak{g}$ .

Since $P_{2}$ is a simple Lie algebra, we have $\mathfrak{g}_{1}=8\wedge$ from which and from the fact
that $\mathfrak{g}\supset\wedge s$ , we get

$\mathfrak{g}\supset\S+\sqrt{-1}$ @=\wedge \partial ((m, $C$ ),

that is
$\mathfrak{g}=@I(m, C)$ . Q. E. D.

This Lemma tells us that if the dimension of a Lie subgroup $g$ of
$RSL(m, C)$ is $>2m^{2}-m-1$ , then $g=RSL(m, C)$ .

LEMMA 2.2. Let $g$ be a subgroup of the real representation $RGL(m, C)$ of
the complex general linear group $GL(m, C)$ . If (real) $\dim g>2m^{2}-m+1$ , then
necessarily $\dim g\geqq 2m^{2}-2$ and $g$ is one of the follou ings (for $m>3$):

(I) $g=RGL(m, C)$ $(\dim g=2m^{\gamma}-)$ ,
(II) $g=R(H^{1}\otimes SL(m, C))^{2}$ ‘ $(\dim g=2^{\cap}m^{\lrcorner}-l)$ ,
(III) $g=R(T^{1}\Theta SL(m, C))$ $(\dim g=2m^{2}-1)$ ,
(IV) $g=RSL(m, C)$ $(mg=\underline{9}^{\neg}m-2)$ .
For $m=3$ , the case (IV) and for $m=2$ , the cases (II), (III), (IV) drop

down respectively.
PROOF. Let $g_{1}$ be the subgroup of $g$ contained in $RSL(m, C)$ , that is, let

$g_{1}=g\cap RSL(m, C)$ . Then,

$\dim g_{1}>(2m^{2}-m+1)-2=2m^{A}\cap-m-1$ ,

and hence for $m>3$ we have $g_{1}=RSL(m, C)$ by virtue of Lemma 2.1, from
which the conclusion of the Lemma follows immediateiy, omitting the cases
(IV) for $m=3$ . The case $m=2$ is trivial. Q. E. D.

\S 3. An algebraic theorem.

LEMMA 3.1. Let $T_{\mu^{1_{1}}\mu_{2}^{2}\ldots\mu}^{\lambda\lambda\cdots\lambda_{p_{q}}}$ be $m^{p}\times m^{q}$ quantities, $n’ l\iota erep\underline{\neq}q(mod m)$ . If

1) The proof is at first given by S. Lie: Theorie der Transformationsgruppen,
I, p. 564, Theorem 100. A refined proof is recently given by T. Sat6 in his paper
which will shortly appear.

2) In general, we denote the real representation of a group $g$ with complex
variables by $R(g)$ .
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$T_{\rho\ell^{1_{1}}}^{\lambda\cdot.\cdot.\cdot\lambda_{u_{q}^{\mathcal{D}}}}$ satisfy

(3.1) $\sum_{a=1}^{l}\delta_{\beta}^{\lambda a}T_{\mu_{1^{\wedge}}^{1}.\mu_{q}^{\theta}}^{\lambda\cdot\cdot.\cdot.\alpha\ldots\lambda}-\sum_{b=1}^{q}a\ldots\delta_{\alpha_{b}}^{a}T_{\mu_{1}^{1}\beta_{b}\cdot\mu^{p}}^{\lambda\cdot.\cdot.\cdot.\cdot\cdot.\cdot.\cdot\lambda_{q}}=\frac{p-q}{m}\delta_{\beta}^{a}T_{\mu_{1}^{1}\mu_{q}^{p}}^{\lambda.\cdot.\cdot.\cdot\lambda 3)}$ ,

then $T_{\mu_{1}^{1}\cdot\mu_{q}^{p}}^{\lambda\cdot.\cdot.\cdot\lambda}\equiv 0$ .
PROOF. Put $\alpha=\beta$ in (3.1), not applying the summation convention. If

any of $\lambda_{1}$ , , $\lambda_{p}$ and $\mu_{1}$ , $\cdot$ .. , $\mu_{q}$ are not equal to $\alpha(=\beta)$ , then the left hand
side of (3.1) vanishes, to obtain

$T_{\mu_{1}^{1}\mu_{q}}^{\lambda.\cdot.\cdot.\cdot\lambda p}=0$ ,

since $p-q\neq 0$ . If some of $\lambda_{1}$ , $\cdot$ .. $\lambda_{p}$ and some of $\mu_{1}$ , $\cdot$ ..
$\mu_{q}$ are equal to $\alpha(=\beta)$ ,

for instance, if $\lambda_{1}=\alpha;\mu\underline{)},$ $\mu_{3}=\alpha$ and the other $\lambda’ s$ and $\mu’ s$ are not equal to
$\alpha$ , then we have

$T_{\mu_{1}\alpha\alpha\mu_{q^{)}}}^{\iota\ell\lambda_{2}\cdots.\cdot.\cdot.\cdot\lambda)}-T_{x_{1}\alpha/J}^{\alpha\lambda_{\alpha}\cdots..\cdot.\cdot\cdot\lambda_{q^{o}}}-T_{\mu_{1}\alpha\alpha\cdot\mu_{q}^{p}}^{a\lambda_{2}\cdots\cdot.\cdot.\cdot\lambda}=\frac{p-}{m}qT_{\mu_{1}\alpha\alpha\mu_{q}^{p}}^{\alpha\lambda_{\sim}\cdots..\cdot.\cdot\cdot\lambda}$ ,

from which we get $T_{\mu_{1}aa\mu_{q}^{J}}^{\alpha\lambda_{2}\cdots.\cdot.\cdot.\cdot\lambda}=0$ . The other cases can be proved similarly,

since $(p-q)/m$ is not an integer.
Let $SL(m, R)\underline{\times}SL(m, R)$ be the diagonal product of $SL(m, R)$ , the repre-

sentative matrix being of the form

$\left(\begin{array}{ll}A & 0\\0 & A\end{array}\right)$ , $\det|A|=1$ ,

where $A$ is a real $(m\times?n)$-matrix. This is of course a Lie subgroup of
$GL(2m, R)$ and conjugate to a subgroup of $RSL(m, C)$ in $GL(2m, R)$ , since a
matrix of $RSL(m, C)$ is of the form (1.1) (the determinant $=1$ ) with respect
to suitable bases. Then we have the following

THEOREM 3.1. Let $T_{j_{1}^{1}\cdots jq}^{i\cdots ip}$ be a tensor with respect to $GL(2m, R)$ invarianf
under a subgroup $g$ of $GL(2m, R)$ containing $SL(m, R)\underline{\times}SL(m, R)$ . If $p\cong Eq$

$(mod m)$ , then $T^{i_{1}\cdot\cdot ip}\equiv 0$ .
$j_{1}\cdots jq$

PROOF. With respect to suitable bases, the infinitesimal transformations
of $SL(m, R)XSL(m, R)$ are given by $\delta_{j}^{i}+\epsilon_{j}^{i}$ satisfying

(3.2) $\epsilon_{\beta}^{\alpha}=\epsilon_{\beta}^{\acute{a}}$ , $\epsilon_{\alpha}^{\alpha}(=\epsilon_{\overline{a}}^{\overline{a}})=0$ , $\epsilon_{\overline{\beta}}^{a}=\mathfrak{B}=0$ ,

$\epsilon_{j}^{i}$ being arbitrary infinitesimal except the above restrictions. Since $T^{i_{1}\cdot\cdot 4p}$ is
$j_{1}\cdots jq$

invariant under $g$, it is of course invariant under the infinitesimal transfor-
mations of $SL(m, R)\underline{\times}SL(J/d:, R)$ satisfying (3.2), which is expressed by

(3.3) $\sum_{a=1}^{p}\epsilon_{j_{\vee}}^{t_{t_{v}}}T_{j^{1_{1}}\cdots\cdot jq}^{i^{\bigwedge,}}-\sum_{b=1}^{q}\epsilon_{j_{b}}^{k}T_{j^{1_{1}}\cdots k\cdots j_{4}}^{i\cdots\cdots ip}a_{h\cdot,.\cdot.\cdot ip}b=0$ .

$a$

$ 3_{\cup}c\iota\wedge$ means that the $\alpha$ is in the a-th position from $\text{{\it \‘{A}}}_{1}$ .
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Putting in this equation $i_{1}=\lambda_{1},$
$\cdots,$ $i_{p}=\lambda_{p}$ ; $j_{1}=\mu_{1},$ $\cdots,j_{q}=\mu_{q}$ and taking account

of (3.2), we have

$\sum_{a=1}^{p}\epsilon_{\alpha}^{\lambda a}T_{\mu_{1^{\wedge}}^{1}\cdot\mu_{q}}^{\lambda\cdot\cdot.\cdot.\alpha\cdots\lambda_{\mathcal{D}-\sum_{b=1}^{q}}}a\ldots\epsilon_{\mu_{b}}^{\beta}T_{\mu_{1}^{1}\cdots\beta\mu_{q}}^{\lambda\cdots\cdot\cdot\cdot.\cdot.\cdot\lambda p}=0$ .

This equation being consistent for any $\epsilon_{\alpha}^{\lambda a}’ s$ satisfying $\epsilon_{\alpha}^{\alpha}=0$ , there exist
quantities $X_{u^{1_{1}}\mu_{q}}^{\lambda.\cdot.\cdot.\cdot\lambda p}$ such that

$\sum_{a=1}^{p}\epsilon_{a}^{\lambda a}T_{l}^{\lambda_{u^{1}\cdot\cdot\mu_{q}}}.a_{\alpha\cdot.\cdot.\cdot\lambda p-\sum_{b=1}^{q}}\wedge.\epsilon_{\mu_{b}}^{\beta}T_{\mu^{1_{1}^{\cdot}}\beta\mu_{q}^{p}}^{\lambda.\cdot.\cdot.\cdots.\cdot..\cdot\cdot\lambda}=\epsilon_{\alpha}^{\alpha}X_{\mu^{1_{1}}\mu_{q}}^{\lambda\cdot.\cdot.\cdot.\lambda p}$

or

$\epsilon_{\alpha}^{\beta}(\sum_{a=1}^{p}\delta_{\beta}^{\lambda a}T_{\mu\cdot\mu_{q}}^{\lambda_{1_{1}}\cdot\cdot.\cdot.\alpha\ldots\lambda p}a\wedge\ldots-\sum_{b=1}^{q}\delta_{\mu}^{\alpha}bT_{\alpha_{1}^{1}\ldots\beta\cdot\mu_{q}}^{\lambda\cdots\cdots\cdot.\cdot.\cdot\lambda p})=\epsilon_{a}^{\beta}\delta_{\beta}^{\alpha}X_{t^{1_{1}}\cdot\cdot\mu_{q}}^{\lambda\cdot\cdot.\cdot\lambda p}b$

are identically satisfied for quite arbitrary $\epsilon_{\alpha}^{\rho}$ . Therefore we have

(3.4) $\sum_{a\Leftarrow 1}^{p}\delta_{\beta}^{\lambda a}T_{u_{1^{\wedge}}^{1}\mu_{q}}^{\lambda\cdot\cdot.\cdot.\alpha\ldots\lambda 0}-\sum_{b=1}^{q}a\ldots\delta_{\mu_{b}}^{\alpha}T_{\rho\beta\cdot\mu_{q}^{p}}^{\lambda_{l_{1}^{1}}\cdot.\cdot.\cdot.\cdots\cdot.\cdot.\cdot\lambda}=\delta_{\beta}^{\alpha}X_{\mu_{1}^{1}\cdots\mu_{q}^{p}}^{\lambda\cdots\lambda}$ .

Contracting with respect to $\alpha$ and $\beta$ , we get

$X_{\mu_{1}^{1}\mu_{q}^{p}}^{\lambda.\cdot.\cdot.\cdot\lambda}=\frac{p-q}{m}T_{\mu_{1}^{1}.\mu_{q}}^{\lambda\cdot.\cdot.\cdot\lambda p}$ ,

and substituting this in (3.4), we obtain

$\sum_{a=1}^{p}\delta_{\beta}^{\lambda a}T_{\mu^{1_{1^{\wedge}}^{\cdot}}\mu_{q}^{p}}^{\lambda\cdot.\cdot.\alpha.\lambda}-\sum_{b\leftarrow 1}^{q}a..\cdot.\cdot\delta_{\mu_{b}}^{\alpha}T_{\mu_{1}^{1}\ldots\beta\cdot\rho_{q}}^{\lambda\cdots\cdots\cdot.\cdot.\cdot\lambda p}=\frac{p-q}{m}\delta_{\beta}^{\alpha}T_{\mu_{1}^{1}\mu_{q}}^{\lambda.\cdot.\cdot.\cdot\lambda p}$ .

Since $p\not\equiv q(mod m)$ , the Lemma 3.1 is applicable, to obtain
$T_{lz^{1_{10}}.u_{q}^{p}}^{\lambda\cdot.\cdot.\cdot\lambda}=0$ .

Next, putting in (3.3) $i_{1}=\lambda_{1},$ $i_{2}=\lambda_{2},$
$\cdots,$ $i_{p}=\lambda_{p}$ ; $j_{1}=\mu_{1},$ $\cdots$ , $j_{q}=\mu_{q}$ , and taking

account of (3.2), we have

$\epsilon_{\alpha}^{\lambda_{1}}T_{\mu_{1}\mu_{q}^{\lambda p}}^{\overline{\alpha}\lambda_{l}}+\sum_{a=2}^{p}\epsilon_{\alpha}^{\lambda a}T_{\mu_{1}^{1}\mu_{q}}^{\overline{\lambda}\cdot.\cdot.\cdot\alpha\lambda p-\sum_{b\Rightarrow 1}^{q}}a\wedge..\cdot.\cdot\epsilon_{\mu_{b}}^{\beta}T_{\mu_{1}^{1}\beta\cdots\mu_{q}^{\lambda p}}^{\overline{\lambda}\lambda_{r_{b}}}=0^{4)}$ .
If we put

$T_{\mu_{1}^{1}}^{\overline{\lambda}\lambda_{2}.\cdot.\cdot.\cdot\lambda_{\mu_{q}^{p}}}=T_{\mu_{1}^{1}}^{\lambda\lambda_{2}.\cdot.\cdot.\cdot\lambda_{\mu_{q}^{p}}}*..$.

for simplicity, then the above equation is written as

$\sum_{a=1}^{p}\epsilon_{\alpha^{\alpha}\mu_{1^{\wedge}}^{1}\mu^{p-\sum_{b=1}^{q}}}^{\lambda^{*}}T^{\lambda\cdot\cdot.\cdot.\alpha\cdot.\cdot.\cdot\lambda_{q}}a.\epsilon_{\mu}\rho_{b}^{*}T_{\mu^{1_{1}}\beta\mu_{q}}^{\lambda\cdot.\cdot.\cdot.\cdots.\cdot.\cdot.\cdot\lambda p}=0$ .

4) We adopt a new summation convention such that
$u_{\lambda}v^{\overline{\lambda}}=u_{1}v^{1}+\cdots+u_{m}v^{\overline{m}}-$ .



380 H. WAKAKUWA

Therefore by means of the same process as in the above we get
$\prime l_{\mu_{1}^{1}\mu_{q}}^{\lambda\lambda_{2}.\cdot\cdot.\cdot.\lambda p}\equiv 0*.$. that is $T_{\mu_{1}^{1}\cdot\cdot\mu_{q}^{p}}^{\overline{\lambda}\lambda_{2}.\cdot.\cdot.\cdot.\lambda}\equiv 0$ .

Analogously we can see that the other components of $T_{j_{1^{1}}\cdots jq}^{i\cdots ip}$ all vanish.
Q. E. D.

Since $RSL(m, C)$ contains a subgroup conjugate to $SL(m, R)\underline{\times}SL(m, R)$ in
$GL(2m, R)$ , we have

COROLLARY 3.1. Let $T^{i_{1}\cdots ip}$ be a tensor with respect to $GL(2m, R)$ invariant
$j_{1}\cdots jq$

under a subgroup $g$ of $GL(2m, R)$ containing $RSL(m, C)$ . If $p\not\equiv q(mod m)$ , then
$T|_{1}\cdots ip\equiv 0$ .

$j_{1}\cdots jq$

REMARK. The Theorem 3.1 and Corollary 3.1 are valid for a tensor
$T_{jjq}^{i_{1}.\cdot.\cdot.\cdot ip}$ in general with respect to $GL(2m, R)$ . It means that those are applic-
able for affinely connected manifolds even if we do not know, for instance,
whether they are complex analytic or not.

EXAMPLE. Let $T_{jk}^{i}$ and $R_{jkh}^{i}$ be tensors with respect to $GL(2m, R)$ in-
variant under $RSL(m, C)$ . Whether there are tensorial relations among the
components of $T_{jl}^{i},$. or $R_{jkh}^{i}$ , or not, we have $T_{jk}^{i}=0$ if $m>1$ and $R_{jkh}^{i}=0$ if
$m>2$ by virtue of Corollary 3.1.

\S 4. Applications.

From Theorem 3.1 and Corollary 3.1, we have immediately
THEOREM 4.1. Let $A_{2m}$ be an $aJfinely$ connected manifold admitting a group

of affine motions. If the linear isotropy group $G_{0}(P)$ of $G$ contains $SL(m, R)\underline{\times}$

$SL(m, R)$ , or if it contains $RSL(m, C)$ , then we have $T_{jk}^{i}=0,$ $R_{jkh}^{i}=0$ for $m>2$ .
REMARK. If $m=2$ , we can easily see that $T_{jk}^{i}=0,$ $\nabla_{\iota}R_{jkh}^{i}=0^{5)}$ since $G_{0}(P)$

contains a transformation given by $-\delta_{j}^{i}$ . For $m=1$ , the assumptions of the
Theorem are meaningless.

THEOREM 4.2. Let $A_{2m}$ be an affinely connecled manifold admitting an
almost complex structure and let $G$ be a group of affine motions of $A_{2m}$ leaving
invariant the almost complex structure. If $\dim G>2m^{2}+m+1$ , then only one of
the following cases can occur (for $m>3$):

(I) $\dim G=2m^{2}+2m$ , $G_{0}(P)=RGL(m, C)$ ;
(II) $\dim G=2m^{2}+2m-1$ , $G_{0}(P)=R(H’ \otimes SL(m, C))$ ;
(III) $\dim G=2m^{2}+2m-1$ , $G_{0}(P)=R(T^{1}\otimes SL(m, C))$ ;
(IV) $\dim G=2m^{2}+2m-2$ , $G_{0}(P)=RSL(m, C)$ .
In each case, $T_{jk}^{i}=0$ and $R_{jkh}^{i}=0$ at each generic point of $A_{\sim}?m$

’ where $T_{jk}^{i}$

and $R_{jkh}^{i}$ are the torsion and the curvature tensors of $A_{2m}$ .

5) $\nabla_{l}$ denotes the covariant differentiation with respect to the affine connection
of $A_{2m}$.
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PROOF. Put $\dim G=r$ and $\dim G_{0}(P)=r_{0}$ and let

$X_{\theta}=\xi_{\theta^{i}}(x)\frac{\partial}{\partial x^{i}}$ $(\theta=1, \cdots, r)$

be the bases of the Lie algebra of $G$ . If the rank of $\Vert\xi_{\theta^{i}}\Vert$ is $q,$ $therlq\leqq 2m$

and we have
$r_{0}=r-q>(2m^{2}+m+1)-2m=2m^{2}-m+1$ .

Since $G_{0}(P)$ is a linear homogeneous group leaving invariant the almost com-
plex structure at the tangent space of $P$, it is a subgroup of $RGL(m, C)$ . Hence,
by virtue of Lemma 2.2, $G_{0}(P)$ is one of the followings:

$G_{0}(P)=RGL(m, C)$ ,
$G_{0}(P)=R(H^{1}\otimes SL(m, C))$ ,
$G_{0}(P)=R(T^{1}\otimes SL(m, C))$ ,
$G_{0}(P)=RSL(m, C)$ .

In each case $G_{0}(P)$ contains $RSL(m, C)$ and hence we have $T_{BC}^{A}=0$ and $R_{BCD}^{A}=0$

by virtue of Theorem 4.1. Q. E. D.
REMARK. In the former two cases $G_{0}(P)$ contains $H_{2m}$ and we get also

the same conclusion by virtue of the remark IV of \S 1.
To consider the cases $m\leqq 3$ , we state the following Lemma.
LEMMA 4.1. Let $A_{2m}$ be a $2m$-dimensional affinely connected manifold admit-

ting a group of affine motions $G$ and assume that the linear isotropy groztp $G_{0}(P)$

of $G$ contains $R(T_{m})$ . Then $A_{2m}$ is an affine symmetric space, that is,

$T_{jk}^{i}=0$ , $\nabla_{\iota}R_{jkh}^{i}=0$ ,

and $G$ is transitive.
PROOF. Since $G_{0}(P)$ contains $R(T_{m})$ , there is in $G_{0}(P)$ a transformation

given by $-\delta_{j}^{i}$ since the matrices of the transformation of $R(T_{m})$ are of the
form $\left(\begin{array}{ll}aE_{m} & -bE_{7n}\\bE_{m} & aE_{m}\end{array}\right)(a^{2}+b^{2}=1)$ . Then we can easily see that $T_{BC}^{A}=0$ (cf.

Fukami [3, Lemma 3]). And further, since $R_{jkh}^{i}$ is invariant under $G,$ $\nabla_{l}R_{jkh}^{i}$

is also invariant under $G$ , hence we have $\nabla_{l}R_{jkh}^{i}=0$ . The transitivity of $G$

easily follows.
For $m\leqq 3,2m^{2}+m+1\geqq 2m^{2}+2m-2$ and we get
THEOREM 4.2. Let $A_{2m}(m\geqq 3)$ be an affinely connected manifold admitting

an almost complex structure and let $G$ be a group of affine motions leaving
invariant the almost complex structure and assume that $\dim G\geqq 2m^{2}+2m-2$ .
Then,

(I) For $m=3$ , we have $T_{jk}^{i}=0$ and $R^{i_{jkh}}=0$ .
(II) For $m=2,$ $A_{2m}(=A_{4})$ is an affine symmetric space, the almost complex

structure being necessarily a complex analytic structure parallel with respect to
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$lhe$ affine $co_{J^{\prime}}mection$ ; or $T_{jk}^{i}=0,$ $R_{jkh}^{i}=0$ .
(III) $Fr$}$rm=1,$ $G$ is simply transitive; or $T_{jk}^{i}=0,$ $R_{jkh}^{i}=0$ ; or $A_{2}$ is a

Riemannia $ff7?’\iota a\wedge fifold$ with constant curvature.
PROOF. (I) $m=3$ . If $\dim G=2m^{2}+2m$ , then we can easily see that $G$ is

transitive and $G_{0}(P)=GL(2m, R)$ , and hence $T_{jk}^{i}=0,$ $R_{jkh}^{i}=0$ (cf. IV of \S 1).
If $\dim G=2m^{2}+2\eta\iota-1$ , then

$d_{\perp}imG_{0}(P)=r-q\geqq(2m^{2}+2m-1)-2m=2m^{2}-1$ ,

where $q$ has the same meaning as in the proof of Theorem 4.2, and hence we
have

$G_{0}(P)=RGL(’\prime n, C)$ , $R(H ’ \otimes SL(m, C))$ or $R(T^{1}\otimes SL(7?, C))$ .
In each cace, since $G_{0}(P)$ contains $RSL(m, C)$ , we have $T_{jk}^{i}=C$ and $R_{jkh}^{i}=0$

by virtue of Corollary 3.1.
If $\dim G=2m^{o}\sim+2m-2$ , then we have $\dim G_{0}(P)\geqq(2m^{2}+2m-2)-2m=2m^{2}-2$

$(=16)$ . Hence din $G_{c}(P)=2m^{2},2m^{2}-1$ or $2m^{2}-2$ . If $\dim G_{0}(P)=2m^{2}$ , which
is the maximal dimension, $G_{0}(P)$ contains $R(T_{m})$ and it is transitive $(q=2m)$

by Lemma 4.1. Hence $\dim G=2m^{2}+2m$ , which is impossible. If $\dim G_{0}(P)=$

$2m^{2}-1$ , it is necessarily one of the followings:

$R(H’ \otimes SL(m, C))$ , $R(T^{1}\otimes SL(m, C))$ , $H_{2m}\times R(T_{m})\times g$ ,

where $g$ is a subgroup of $RSL(m, C)$ of dimension $2m^{2}-3$ . In the former two
cases, $G_{0}(P)$ ccntains $RSL(\eta fC)$ and hence $G$ is transitive. For, if otherwise
$G_{0}(P)$ leaves invariant a sublinear space tangent to the trajectory of $G$

passing through $P$, which is impossible. Therefore $\dim G=2m^{o}-+2m-1$ , but
it is a contradiction. In the last case $G_{0}(P)$ contains $R(T_{m})$ and $\tilde{\dot{1}}^{\urcorner_{\perp}}enceG_{0}(P)$

is also $tran\cap$.-itive by virtue of Lemma 4.1, which is also a contradiction.
Consequently, the only one possible case is that $\dim G_{0}(P)=2m^{2}-2$ and $G$ is
transitive. In this case $G_{0}(P)$ is one of the following types:

(4.1) $H_{2m}\times g_{1}$ , $R(T_{m})\times g_{2}$ , $H_{2m}\times R(T_{m})\times g_{3}$ , $RSL(m, C)$ ,

where $g_{1},$ $g_{2}$ and $g_{3}$ are subgroups of $RSL(m, C)$ of dimensicn $2m^{Q}--3,2m^{2}-3$

and $2m^{2}-4$ respectively. But in the former two cases we must have $g_{I},$ $g_{2}=$

$RSL(m, C)$ by Lemma 2.1 (for $m=3$), which is a contradiction. In the last
two cases, we have $T_{jk}^{i}=0$ and $R_{jkh}^{i}=0$ by virtue of IV of \S 1 and Corollary
3.1 respectively.

(II) $m=2$ . If $\dim G=2m^{2}+2m$ , then $T_{jk}^{i}=0_{j}R^{x_{jkh}}=0$ as in the case $m=3$ .
If $\dim G=2m^{2}+2m-1$ , then

$\dim G_{0}(P)\geqq(2m^{2}+2m-1)-2m=2m^{2}-1(=7)$ ;

we have $\dim G_{0}(P)=2m^{2}(=8)$ or $2m^{2}-1(=7)$ . If $\dim G_{0}(P)=2m^{2}$ , it is of
the maximal dimension and contains $R(T_{m})$ , from which we see that $G$ is
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transitive by Lemma 4.1. Hence $\dim G=2m^{2}+2m(=12)$ , but this contradicts
to the assumption that $\dim G=2m^{2}+2m-1(=11)$ . Consequently, it gives rise
the only one case: $\dim G_{0}(P)=2m^{2}-1$ and $G$ is transitive $(q=2m)$ . Then,
$G_{0}(P)$ is one of the following three types:

$R(H’ \otimes SL(m, C))$ , $R(T^{1}\otimes SL(m, C))$ , $H_{2m}\times R(T_{m})\times g$ ,

where $g$ in the last type is a subgroup of $RSL(m, C)$ of dimension $2m^{2}-3$

$(=5)$ . In each case, we have $T_{jk}^{i}=0$ and $R_{jkh}^{i}=0$ by virtue of IV of \S 1 or
Corollary 3.1.

If $\dim G=9m^{2}+2m-2$ , we see that $G_{0}(P)$ is one of the types of (4.1), by
the same considerations as in the case $m=3$ . In the second and the fourth
case, we see that $A_{2m}(=A_{4})$ is affine symmetric by Lemma 4.1 and by the
remark to Theorem 4.1 respectively. The almost complex structure $\phi_{j^{i}}$ gives
a complex analytic structure since the Nijenhuis tensor $N_{jk}^{i}$ vanishes6) by
virtue of the same reason that $T_{jk}^{i}$ vanishes. Further, since $\phi_{j^{i}}$ is invariant
under $G,$ $\nabla_{k}\phi_{j^{i}}$ is also invariant under $G$ , hence we have $\nabla_{k}\phi_{j^{i}}=0$ . In the
remaining case of (4.1) we have $T_{jk}^{i}=0,$ $R_{jkh}^{i}=0$ by virtue of IV of \S 1.

(III) $m=1$ . We have $\dim G_{0}(P)=0,1$ , or 2. In the first case, $G$ is simply
transitive and in the last case we see that $T^{i_{jk}}=0,$ $R^{i_{jhh}}=0$ . If $\dim G_{0}(P)=1$ ,

then $G_{0}(P)=H_{2}$ or $R(T_{2})=SO(2)$ . In the first case, we also have $T_{jk}^{i}=0$ ,
$R_{jkh}^{i}=0$ . ffn the second case we have $T_{jk}^{i}=0,$ $V_{l}R_{jk\dagger\iota}^{i}=0,$ $\nabla_{k}R_{ij}=0,$ $\nabla_{k}\phi_{j^{i}}=0$ ,

where $R_{ij}$ is the Ricci tensor. If $R_{ij}\equiv 0$ , then we get $R_{jkh}^{i}=0$ . If $R_{ij}\not\equiv 0$ ,

we can easily see from $\nabla_{k}R_{ij}=0$ and $\nabla_{k}\phi_{j^{i}}=0$ that the restricted homo-
geneous holonomy group is $SO(2)$ . Hence $A_{2}$ is a Riemannian manifold, the
affine connection under consideration giving the Riemannian connection. Fur-
ther since it ls Riemannian symmetric, it is of constant curvature. Q. E. D.
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