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The purpose of this paper is to prove a theorem which is stated in the
introduction as the main theorem. In this paper it is understood that a set
theory means a set theory T in the first order predicate calculus satisfying
the following conditions :

1) < is the only predicate in T. (¢ =05 is an abbreviation of Vx(x € a—x < b)).
2) T is a consistent extension of Zermelo-Fraenkel’s set theory.

A model (A, %> of a set theory is called ‘regular’, if and only if

there exists no (infinite) sequence «ay, ay, @,, -+~ of elements of A such that

a; € %ay, ay € %ay, ay € fay,

hold. Here a sequence is understood in the informal sense; it may be un-
definable in any way.

We presuppose that there exists something absolute, which is a vast
universe consisting of numerous concrete sets, and in which some properties
(in the informal sense) are “ well-defined”. Such a universe C will be called
Cantor’s Absolute. 1t should be understood as a transcendental existence. An
existencial quantifier Jx and universal quantifier VYx mean [iterally ‘ there
exists a set x such that---” resp. “for every set x, it holds that---”. A
closed formula in which  only is used as predicate, is a priori true or false
in Cantor’s Absolute.

Moreover the following propositions are assumed to hold.

(1) Let T, be the class of all true closed formulas in Cantor’s Absolute con-
sisting solely of logical symbols, the predicate = and bound variables. T, is
called Cantor’s set theory. Then T, contains the class of all provable closed
formulas in the set theory of Zermelo-Fraenkel.

2) <C, =) is a regular model of T.

(3) For any well-defined property and any set ¢ in C, there exists a set con-
sisting of all sets which belong to ¢ and satisfy the property. (The word
‘property’ is used in the informal sense.)
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For example, there exists a set in C consisting of all the Gédel numbers
of formulas in Ty ; this set will be denoted by "T¢.

In this paper we shall first prove the following proposition. For every
definable class of true formulas in T, a closed formula, which means “ There
exists a complete model of all formulas of this class”, belong to Tg.

This fomula will be given explicity as (A) in §1, p. 201,

We shall prove the following main theorem.

Main TaeorEM. A contradiction follows from the following two hypotheses
on Cantor’s Absolute.

Hvroruesis 1. A formula V=L of Gidel [1] holds on Cantor’s Absolute,
where V=L is presupposed to be expressed by using only set wvaviables (without
using class vaviables).

The second hypothesis on Cantor’s Absolute expresses that “Cantor’s set
theory ” T, is a maximal set theory in a certain sense, in another word, that
Cantor’s set theory cannot be embedded in another set theory. In order to
state exactly the second hypothesis, we shall first define some concepts.

A set theory T is called ‘definite’, if T satisfies the following conditions.
1) T is complete (For any closed formula A either A or /A belongs to T.).
2) If 3xW(x) is closed and belongs to T, then there exists a closed formula

IxB(x) such that IxB(x), VaVy(Bx) A B(y) —x=y) and IxN(x) A B(x)) belong

to T.

Let %A be a formula and @ be a variable. A* is obtained from A by replac-
ing all the quantifiers Vx, 3y, --- by Va(x = a+ ), Iy(y=Ea A ), --- respectively.

Let T, and T, be two set theories. We say ‘T, can be embedded in T,’
if and only if there exists a closed formula FxA(x) satisfying the following
conditions.

1) 3xAx), VaVy(Ax) A A(y) — x=y) and VaVyVzQAx) Ay € x Az € y—z € x) belong

to T,.

2) For every closed formula B, B< T, if and only if T, = IxAx) A B").

Now we shall state the second hypothesis.

Hyporuesis 2. Cantor’s set theory cannot be embedded in any definite set
theory T which contains V=L and has a regular model.

§ 1. Properties of definite set theory.

We shall use many notations in [1]. We always assume that every
notion from is supposed to be expressed by using only set variables
(without using class variables) even if it is originally defined by using class

variables in [1].
Let T be a set theory and Jx(x) and 3xB(x) be closed formulas. {x}A(x)
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is defined to belong to the same class with {x}®B(x) relative to T, if and only
if Vx(U(x) — B(x)) belongs to T. The class which contains {x}(x) is written
by ({x#}N(x)), and {x}N(x) is said to represent the class.

A class ({x}(x)) is said ‘definite’, if FxW(x) and VaVyAx) A WN(»)—x=19)
belong to T.

A(T) is defined to be the set of all the definite classes of T.

Let ({#}%(x)) and ({x}B(x)) be two elements of A(T). ({x}A(x) €F({x}B(x))
is defined to be T = Jxdy(Ax) A B(y) A x < ).

Proprosition 1. Let T be a definite set theory. Let ai, - ,a, be elements of
A(T) and be represented by {x}W,(x), ---, {x}W,(x) respectively. Then Blay, -, an)
is satisfied in {A(T), €%> if and only if

T = 3x; - T,y (xy) A - AWpx) A By, -5 x0)) -

Proor. We shall prove this by induction on the number of logical
symbols in B(ay, -+, a,).

If Bla,,-,a,) has no logical symbols, then B(a,, -, @,) must be of the
form a; € a,. a;< a; is satisfield in (A(T), €%), if and only if a;=%e;, that
is, T = IxTyQA(x) AN;(») A x < y), whence follows the proposition.

Let ®B(ay, +-,a, be of the form 7/®B,(ay,-+,a,. Then Blay, - ,a,) is
satisfied in (A(T), €%) if and only if

T=73x - 3, Q) A - AWa(x) A DBy, -5 x0)
which is equivalent to
g - FwaWy() A -2 AWnlae) A 7B,(xy, -, 2)) €T

Hence follows the proposition.
Let B(ay,--+,a, be of the form B,(ay,--,a) ABylay, - ,a,). Then
B(ay, -+, ay) is satisfied in (A(T), €*), if and only if

ey -+ T Q) -+ A s AWp(wn) A By, -5 2)) A
A %y - 3, Uy () A - Wo(20) By, -+, x0)) €T,
which is equivalent to
T = 3%, - 3, W () A -+ A W) A By, 005 %) A By, -+, %))

Hence follows the proposition.

Let B(a;,-+,a,) be of the form VaB,(x, a,,-,as, Then Blay, -, an
is satisfied in (A(T), %), if and only if B,(ay ay, -, a, is satisfied in
{A(T), €%) for every element a, of A(T), which is equivalent to the con-
dition that

3xO o axn(sl[o(xo) VANRELIVAN an(xn) AN %1(950, ) xn)) eT
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for every definite {x}%,(x). Since it is easily proved that from

Foog o o, (Ui (o) A oo A W) A V2B (g, -5 ) € T
follows
3xO axn@{o(xo) VANRRLIVAN Sn'n(xn) AN %l(xo, Tty xn)) eT

for every definite {x}%,(x), we have only to prove that from

_/E‘xl Hxn(wl(xl) VANRERIVAN Sxn(—"n) AN vxoSBl(xm ttty xn)) eT
follows
3xo 3xn@‘o(xo) VAN /\SJIn(xTJ A 7%1(9507 Ty xn)) eT

for some definite {x}%,(x). Since T is definite, the existence of such a definite
{x}N,(x) follows from

3xo 3x'n,(sz[l(xl) VANRERIVAN 52In(-xn) A 7%1(370) ttty x‘n)) S T y

and this follows from

73)61 Elxn(all(xl) VANRERIAN Slrn<xn) VAN on%l(xo, Tty xn)) & T .

Therefore the proposition holds.

Prorosition 2. If a define set theory T has a regular model {A, €%),
then {A(T), €¥> is also vegular.

Proor. Suppose that there exists a sequence a,, ay, @y, --- of elements of
A(T) such that

% . * %
ay € 1ay, 3 E 1Ay, B3 S T, *°°

Let a; be represented by {x}W;(x). Since T = JaW;(x) and T 2 VaVy(QL(x) A
N,(y) —x=1y), there exists just one element b, in A such that A, (p,) is satis-
fied in <A, €%>. b, €%b; holds because «;,, =%a; means Jx; 3%, Wslx) A
Wi (Kis1) A X0 € x;). Hence follows a contradiction.

Note. Let B be a closed formula. Then ™8 denotes the Gddel number
of B. In the well-known way, we can define a formula Cd(a) satisfying the
following conditions :

(1) Cd(@) is constructed only by the predicate <, logical symbols, bound
variables and a free variable a.

2) Vx(Cdx)—xesw) e T,

(3) For any given integer ¢, if the closed formula Cd(i) belongs to T, then
there exists a closed formula B such that ;="8".

Moreover, we can define a formula ©(¢, b) with the following properties:

(1) D(a,b) is constructed only by the predicate &, logical symbols, bound
variables and two free variables ¢ and b.

2) Yx(D(x, "B — B = T, for any closed formula B.

B VaVy(D(x, y)— Cd(y)) € Tg.

Let A(e) be a formula with the following properties:



Remarks on Cantor’'s Absolute 201

1) VxQlx)— Cdx) e T,.
(2) If B is a closed formula and ATV e T, then Be T,.

In virtue of it is easily seen that there exists a set ¢, in
C such that (a,, €,,> is isomorphic to (A(T), €¥) and

VyWzlyEa, NzEy—2E ay)

is satisfied in <(C, € ). By [Proposition I, we see
VyVa(y € ay Nz € y—2z € ay) A VyU(y) —D(ay, »))
is satisfied in <(C, € ). Thereof
(A) Jx(VwWz(y Ex Nz Ey—2z € 1) A VyQU») —D(x, »)
is true in C.
Now consider the following hypothesis:
B) FJx(VWz(yeaxAN@zeyVzEy) —z<x) AVyQAUy) — D(x, »)) .
This axiom is stronger than (A). So far, we do not know whether (B) is true
or not, while (A) has an exact proof.
Prorosition 3. If V=L belongs to a complete set theory T, them T is
definite.
Proor. Let 3xB(x)=T. Then
{x}Fa(x=F'a ANBF'a) N\VB(BF'B)—a = f))
is definite (cf. [1, p. 37] for F).
A set theory T is called ‘positive definite’, if and only if T satisfies the
following conditions.

1) T is complete.
2) V=L belongs to T.

3) (A(T), €%) is regular.
Prorosition 4. Under Hypothesis 1, Cantor’s set theory is positive definite.

§ 2. Proof of the main theorem.

In this section we always assume Hypotheses 1 and 2. Let T be a positive
definite set theory and « be an element of A(T). In virtue of regularity of

CA(T), €%, it is easily proved that () (“a is an oridinal number”; cf [1,
p. 2307) is satisfied in (A(T), €x), if and only if « actually is an ordinal

number relative to €%. The ordinal number corresponding to « is expressed
by & and called an ordinal number of ( A(T), €%).

If we presuppose that O(¢) and () are satisfied in (A(T), €%), then
we see easily the following properties.
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1. “a<b is satisfied in (A(T), €%>’ is equivalent to &< b.

2. ‘q@=b is satisfied in (A(T), €%’ is equivalent to &= b.

3. If there exists an ordinal number # < d, then there exists b A(T) such
that () and b < ¢ are satisfied in (A(T), €%> and b= 3.

Let Wy, -+, ,) be a formula consisting of <, =, /7, V, A, &, ", &y
“Then in virtue of the above properties we see that ‘g, -+, a,) is satisfied
in (A(T), %>’ is equivalent to A, -, d, provided that O(a,), -, (@)
are satisfied in (A(T), €%X>. By this and the transfinite induction we can
easily prove that

as=J {ia,ay) 0 <9),a, =K/ a,, a, = Ky a,

are satisfied in (A(T), €%), if and only if @,=7"{id,4,>(G<9),d,= K,/ é,,
a, =K, 4, respectively provided that O(¢,), O(e,) and O(a;) are satisfied in
CA(D), e 1.

The ordinal number, which consists of all the ordinal numbers of
LA(T), €%, is called the type of T and written by typ(T).

Let a= A(T) and @ be represented by {x}U(x) and (@) be satisfied
in (A(T), €3> and b A(T). It is easily seen that b=F'¢ is satisfied in
CA(T), €%> if and only if JIyQUy) Ab=F’y) is satisfied in (A(T), €¥>.
Since {x}3yQUy) Ax=F’y) is definite in T, F’q is naturally defined to be
{x}3yU(v) A x=F’y), which also represents an element of A(T).

Prorosition 5. Let T be a positive definite set theory, a and b be elements
of AT) and O(a) and 0b) be satisfied in (AT, €X>. Then FasF'b is
satisfied in (A(T), €%) if and only if F'a < F'b.

Proor. If @=»0, then the proposition is trivial. Therefore we always
assume @ b. In this proof we use ‘9 is satisfied’ instead of ‘U is satisfied
in CA(D), %>,

We may and shall assume that if ¢ € A(T),d € A(T) and O(c), Od) and

Max {cd} < Max {ab} V Max {cd} = Max {ab} A c < a)
V (Max {cd} = Max {ab} Nc=aNd<b)
are satisfied, then F/¢ < F'd is equivalent to “ F/c € F'd is satisfied ”.

Let ¢, € A(T) and ¢, € A(T) and O(c,), O(c,) and Max{c,c,} =a be satisfied.
Then we have

Fie,=Fa2Vala< a— (Facs F'éi— F'as F'ty)
2Vala<a— (F'as F'ciy— F'ae F'cy)) is satisfiied
sFie, = F'c, is satisfied.

We must treat the following cases.

1) The case when I;e?IB(]o) (cf. [1, pp. 36-37]), which also means ‘be< (/)
is satisfied’.
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FaceFbsda@<irna<bAFa=F'd)
2dal@<éd ANa<bAVBB < d—(F'BeF'a—F'geF'a)
2da@=aNa<bAVBE<a—(F'feF a—F'fcF'a)
is satisfied
=2Fas F'b is satisfied.
In the following we shall omit the later half of the symmetric chain of
equivalences like this.

2) The case when 5 8B/,
F'éd e F'h=VYala < Max {6K/'b} — (F'a € F'a— F'a € F'K,'D)))
V Ya(a < Max {dKZ/lA)} —FaelFi—lFacs F/Kg’?y))) ,
3) The case when 56%(]2)
F'é cF'b=F'dcF' K'b
Adadadadala, <dNa, <dNa;<dNa,<d
AVBB<da—(F'Be Fla,—F'B=F'a,))
AVBB < a—F'BeFa,~F f=Fa\F§=Fa,)
AVBB<a—(F'feF'a—F'B=Fa,VF'f=Fa,))
ANF'a, e F'a,).
4) The case when b < 88(/,)
F'écFbsFécFK'bNTFasF'K'D.
5) The case when b< %(J,)
F'écsFb=2F'de F'K'b Adada,dadaa, <EAa, <dNas<dAa,<d
AVYBB < d—(F'feFla,~F'f=Fa,)
AVBB < d—(F'feF'a,~F'f=Fa,VF'g=Fa))
ANF'a,e F'Ky/bAYBB < d—F'BeFa—~F'f=Fa,VF'R
= F/a4)2) .
6) The case when b € 28(J,)
F'écsF'b=2F'ac F'K/'b
A dadadada,da(a; < Kg’l; N ag < K2’13 ANag< Kg’l;
ANa,<K/'bAa,<EK'bANF'éd=F'a,
AVBB < K)/b— (F'f e Fla,—F'f=F'a))
AVBB < K)/b— (F'ReFla,~F'f=F'a,V F'8=F'a,)
AYBB < Kyb—(F'B e F'ay,—~F'f=F'a,V F'f=F'a,)
AF'a,e F'K/'b) .
7) The case when he LB (/o)
F'éecsFbp=2F'acF'K'b
A JdaTa,daFa,Ia,Fa(a; < K{IB A ay < KZ’E
Ay <Ko Aay < Ky'b A ay< Ky'b A ag < Ky'b
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AVB(AR < K/b—(F'fe Fla,~F'§=F'a,)
AVBB < K/b—(F'BeFa,~F'f=Fa N Ff§=Fa,))
AVR(R < Ky/b—(F'f e Fla,—~F'f=F'a,)
AVAB < Ky'b— (F'B e Fag— F'f=Fa,vVF'f=Fa,))
AYBB < Kyb— (F'BeF'a—F'f=F'a,vF'f=F'a,)
NF'age F'K/D) .

8) The case, when I;ESIB(L-) (i="17,8), can be treated in the same way as in

the last case.

Prorosition 6, Let T, and T, be two positive definite set theories and
typ(T)) <typ(Ty). Then T, can be embedded in T,.

Proor. Since typ(T,) <typ(T,), there exists a, = A(T,) such that O(a,) is
satisfied in (A(T,), €¥,)> and 4, is typ(T,). We assume that @, is represent-
ed by {x}6(x). In virtue of Prop. 5, it is easily seen that (A(T)), et,) is
isomorphic to (A, F>, where A, consists of all the elements b, A(T,)
such that b, &7t,c, and ¢, is represented by {x}3p(G(y) Ax=F'y), which is
written by {#}3(x), and ¥ is the confinement of €%, to 4,. Therefore T,
that is, the class of all the formulas, which are satisfied in (A(T), €%,

is equal to the class of all the formulas B such that T, = Ix(A(x) A B).
We see also that

T, 2 VaVyVzA) AyExNzey—z<Ex).

Hence follows that T; can be embedded in T,.
Prorosition 7. Cantor’s set theory Ty is chavacterized by the condition;
Te is a positive definite set theory and typ(Ty) is not less than the type of
any definite set theory.

For every definite set theory T, A(T) may be considered as the subset of
o and typ(T) is less than w,. Therefore the characterization of T, expressed
in Prop. 7 is definable in T, in the sense of [2], whence follows a contradic-
tion fron Theorem 1, II of [2]

Discussion. Let A(a) be a formula consisting only of logical symbols, the
predicate €, bound variables and ¢. A contradiction follows if we assume
that,

(1) if A(e) then ¢ is the set of all Godel numbers of axioms of a certain
positive definite set theory,

@) A(CTg,

(3) there exists a maximal set theory T, (in the sense of embedding) such
that A("T,7). ‘

This can be seen as follows: Ty can be embedded in T,. That is, there
exists a closed formula 3x(x) such that, for every closed formula 3,
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BeTa2IxWA)ABHeT,.

Since T, can be definable in Ty, by the property that it is the maximum,
Jx(A@x) A B =T, is equivalent to

B3xAx) ABHYNH e Ty for some B,
and this is equivalent to
BBy e T, for some B.

From this we see that T, is definable in T, which is a contradiction.

§ 3. Elementary properties of ‘‘ embedding ”’.

Prorosition 8. Let T be a definite set theory, which has a regular model.
Then T cannot be embedded in T.
Proor. Suppose that T can be embedded in T itself. Then there exists
a closed formula 3x%,(x) satisfying the following condition.
1) T=23xWx), T = VaVyQ(x) A Wy(y)—x=19) and
T VaVyWzQq(x) AyExNzey—z<Ex).
2) For every closed formula B, T =B is equivalent to T 3 Jxy(x) A BY).
;11 (x4 is defined to be
A, Wo(x) A Koy € 23 A Wi(Hi10))
First we have
FoeTo (N, (20) AW (0) N v € 1)
2 JuTo(w) A IxAgx) Ao s x AWW) AvE w)
2 JudoIxN, ) ANy AvEx ANW@) N v S0
2 AxFoUg(x) A v = x A NE(D))
2 IxA(x) A Jol € x A NEW)))
23U, (v) .
Now we shall prove by the induction on {41:
1) %1} Wi (x541) is definite.
2)  FuIo;pi () AU ) Aveu)e T,
%51 Wy (Ki41)
23, (Wo(x) A Fxp1 (X541 € 25 A UFH(X541)))
=21 S FC AN
VauVoQ; () A Wiy (0) —u=1v)
S VuVo@xp(x) A u € x ANF) A TxAg(x) A v x AWQW) —u=0)
2 3xAx) A Vulu € x— Yoo € x— N (u) A NE@) — 1 =0))))
2 VuVo((u) AN,@)—u=0v).
Ao 1(26) A Wio(et) N0 E )
2 JuFoTFxAyx) N w2 AUF@) A IxAx) Av € x AVWEL@) A v E u)
23xNo(x) A Fu(x € x Ao € x A Ng(u) A WE () A v E w))
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2 JudoW, () ANy () ANvEBR).
a; is defined to be ({x};(x)). Clearly «; = A(T) and a;,, € ¥a; in contradic-
tion to the regularity of (A(T), €X¥).
Prorosition 9. Let T,, T, and T, be set theovies. If T, can be embedded
in Ty and Ty can be embedded in T,, then T, can be embedded in T,.
Proor. We may assume
1) {x}U(x) is definite in T, and
VaVyWzx)ANveaNnzey—zex)eT,.
2) {x}B(x) is definite in T, and
VaVyVz(Bx) NyexNnzey—zex) e T,.
3) T;2€6€=2T,23IxAx) A €% and
T,262T,23x(Bx) A CY).
We have
T, 2€=2T,2 IyAy) AGY)
2T; 2 Ix(Bw) A Iv(y € x AW () A (C)F))
2T, 3 3x(Bx) Ay(y € x AW(y) A CY))
2T, 3 Ay@x(Bx) Ay x AW(y) AEY).
B(y) is defined to be Ix(Bx) Ay < x AA(y). Then
IyB(y) € T, 2Ix(BW) Ay x AUAW) T,
=2y eT,.
Vo B(u) A B)—u=12) & T,
2VuVo@Ax(B) Nt = x AN @) AIxB) Avex ANW) —u=v)= T,
23xBx) A Vulu € x— Yo € x— Q¥(u) AW @) —u=0)) c T,
2VuVou) ANy —u=v) e T,.
VWVaVoBW AusyAveu—vey) T,
2VWVuVo@xBw) Avex AW ANueyANveu—vey) €T,
23xB) AVy(yex—YuVvwey A Nveu ANNy)—vey) e T,
2WuVoA(») ANusyAveu—vey) eT,.
Prorosition 10. Let T, and U, be positive definite set theories. If T, is
embedded in T, then typ(T,) <typ(T,).
Proor. This follows from Props. 6, 8 and 9.
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