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Introduction.

Let R be an integrally closed noetherian domain. Artin and van der Waer-
den have defined the group of quasi-equality classes of ideals of R. In
this paper we extend this notion to the case of a maximal order in a separable
algebra over the quotient field K of R.

If A is a maximal order in such an algebra 2, we consider the finitely
generated R-submodules of X which span ¥ over K and which have 4 as a
left and right operator domain. Restricting our attention to those modules
which are reflexive (Section 1) and defining multiplication suitably (Section 3),
there is defined a group G(A) which has the same relation to A4 as has the
group of quasi-equality classes of ideals to R.

The group G(A) is abelian and does not depend on A; if I' is another
maximal order, then G(A) and G(I") are naturally isomorphic. Finally, Theorem
3.4 shows that G(A) is completely determined by the arithmetic of 3 in rela-
tion to the minimal prime ideals of R.

We use certain facts of the general theory of maximal orders over Dedekind
rings ; these may be found for example in Chapter VI of Deuring [2]

Section 1. Lattices.

Throughout this paper, R will denote an integrally closed noetherian domain
with quotient field K and 2 will denote a (finite dimensional) separable algebra
over K. By a laitice in X will be meant a finitely generated R-submodule of
2 which spans Y over K.

If Ais an R-module, we shall denote by A* the dual, HomgA4, R) of
A. There is an obvious natural homomorphism A— A**, We shall say that
A is reflexive if that homomorphism is an isomorphism.

If A is a lattice in ' every element of A* has a unique extension to an
element of Homg(2, K). Since X is a finite dimensional vector space over K

1) This work was done while the author held a fellowship from the National
Science Foundation.
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it is certainly reflexive, so that we may identify A** with a submodule of X.
Under that identification, A** is again a lattice, and AC A**. We may de-
scribe A** explicitly as follows: an element x€ X is in A** if, and only if,
flx)e R for all those fe Homg(X, K) for which f(4)C R.

PROPOSITION 1.1. Let A and B be lattices in X, and let C={x= X |xAC B}.
Then C is also a lattice. If B is reflexive, then C is also veflexive. The same
Statemenis hold for D= {x<c X | AxC B}.

Proor. The assertion that C is a lattice is trivial to verify. To show
that the reflexivity of B implies that of C, we proceed as follows. Let f& B¥
and ¢ A. Define, for x= ¥, g(x)=f(xa). 1If x is in C, then xa= B so that
gx)=f(xa)e R. Thus, g=C* Hence, if y = C**, we have g(y)= R. But this
shows that f(yA)C R, for every f= B*. Thus, yAC B¥* =25, or yeC. Hence
C¥ =(, or C is reflexive.

For later application we describe some of the relations between the forma-
tion of double duals and localization with respect to minimal prime ideals of
R. If p is a minimal prime ideal in R, we denote by R, the ring of quotients
of R with respect to p. If A is a lattice in &, then AR, is a lattice over R,.

PROPOSITION 1.2. If A is a lattice in X and v is a minimal prime ideal of
R, then AR,= A¥**R,.

PROOF. It is clear that A*R, = Hompg(AR;, R;) and therefore that A*R, =
Homg,(A*Ry, Ry) = Homg,(Homg,(ARy, Ry), Ry). Since R, is a discrete valuation
ring, we find Homg(Homg(ARs, R;), R;)) = AR, and the result follows.

PROPOSITION 1.3. If A and B are reflexive lattices such that the equality
ARy = BRy holds for every minimal prime ideal b of R, then A= B.

PrOOF. Set C=A+B and a=ann(C/A). Since A is reflexive, it follows
from Proposition 1.4 of [1] that either a= R (in which case A=C), or else a
is contained in some minimal prime ideal of R. If p is any minimal prime
ideal, the equality AR, = BR, gives AR,=CR, sothat acp. Thus, a=R and
therefore A=C. Since the situation is symmetric in A and B, it follows that
A=B.

Section 2. Orders.

A lattice subring of X is called an order. An order is said to be maximal
if it is not contained in a properly larger order.

The general discussion on orders in the first section of is formulated
for central simple algebras. Actually the proofs apply unchanged to the case
of separable algebras. In particular, this is so for Theorem 1.5 of [1]: an
order A is maximal if, and only if, 4 is reflexive and AR, is a maximal order
over Ry, for every minimal prime ideal p of R.

If A is a lattice, the set O(A) of all x= X such that xAC A is an order,
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called the left ovder of A. The right order O,(A) of A is defined in a similar
fashion. The orders ©,A4) and O,(A) are also referred to as the associated
orders of A.

As an immediate application of Proposition 1.1 we have:

THEOREM 2.1. The associated orders of a reflexive lattice are reflexive.

PRrROOF. The assertion follows immediately from Proposition 1.1 by taking
A= B equal to the given lattice.

COROLLARY 2.2. If A is a reflexive lattice and one of its associated orders
is maximal, then the other one is also.

PROOF. Suppose that £,(A) is maximal. By the proposition above we
already known that £,(A) is reflexive. Hence, it is sufficient to show that
£,(A)R, is a maximal order over Ry, for every minimal prime ideal p of R.
It is clear that O(ARy)=9O(A)R, and O,(AR,) =O(A)R,. The maximality of
£,(A) over R implies the maximality of O,(A)R, over R, which, because R,
is a Dedekind ring, implies the maximality of ,(AR;) over R,. Thus O,(A)R,
is maximal over R, and hence ©,(4) is a maximal order.

If A is a lattice, the inverse A™' of A is defined as the set of all x= 2
for which AxAC A. Equivalently, A™! is the set of all y =X such that yAC
,(A) or the set of all 2= ¥ such that Az O,(A).

If A is a lattice, set 4 =9,(A). Then A is naturally a left A-module.
The inverse A~! may be identified with Hom 4(A4, A4) as follows. If 2= A~ set
fl@)=az for € A. Then f(a) € 4 so that f defines a map from A into 4,
which is clearly A-linear on the left. On the other hand, let f = Hom4(A, A).
Then, f extends uniquely to an element of Homs(Z, 3) (where ¥ is considered
as a left Y-module). Such a homomorphism is given by right multiplication
by some z < 2. Since f(A)C 4, it follows that ze A~L

THEOREM 2.3. Let A be a lattice such that A=,(A) is maximal. Then, A
is reflexive as an R-module if, and only if, A is reflexive as a A-module.

PROOF. Suppose first that A is reflexive as an R-module. Then by Pro-
prosition 1.1, A™! is also a reflexive R-module. Furthermore, by Corollary 2.2,
0,(A) is also maximal. Clearly, O,(4™)=90,(A) and O,(A™)=90,(A4). Hence,
(A ) =Hom,4(A™!, A). If p is any minimal prime ideal of R, then (A™)R,=
(ARy)™!, with a similar statement for (A™!)"'. However, R, is a Dedekind ring,
so that (A )"'R,= AR,. Applying Proposition 1.3 shows that (A~!)"' = A, or
that A is a reflexive A-module.

On the other hand, suppose that A is a reflexive A-module. Namely,
A=1xe 3| A'xC A}. - Since A is reflexive, because it is maximal, it follows
from Proposition 1.1 that A is a reflexive R-module.

A lattice will be called proper if it is reflexive and its associated orders
are maximal.
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THEOREM 2.4. Let A be a proper lattice. Then A7 is also proper, (AA™)¥* =
0,(A) and (ATTA* =0,(A). Finally, (A")1=A

PROOF. The statement that A~'is proper and that (471)"'= A is contained
in Theorem 2.3. To see that (AA~)** =0,(A), let p be a minimal prime ideal
of R. Then, A'R,=(AR,)™, and (AR AR, =O,(ARy)=9O(A)R, because R,
is a Dedekind ring. Using Proposition 1.2 shows that (AA™)**R, =(AA™)Ry=
£(A)R,. Since this is so for every minimal prime ideal of R, it follows from
Proposition 1.3 that (AA~)** =9,(A). In the same way we find (AA~)** = O,(A).

Section 3. The group of a maximal order.

If A and B are lattices, we define the product A-B as (AB)**. Clearly,
A-B is a reflexive lattice. It is also clear that O(A4-B)D9O,(A). Hence if A
is a proper lattice, so that £,(4) is a maximal order, then £,(A-B) must coin-
cide with £9,(A) and therefore A-B is also a proper lattice.

PROPOSITION 3.1. If A, B and C are lattices, then (A°B)C= A(B-C)=
(ABCy**,

PrROOF. Let p be a minimal prime ideal of R. Then, a repeated applica-
tion of Proposition 1.2 shows that (A°B)-CR, =(ABCY**R, = A-(B-C)R,. Since
the three lattices A<(B-C), (4°B)-C and (ABC)¥* are all reflexive, the assertion
follows from Proposition 1.3.

Let A4 be a maximal order, and let G(A4) be the set of all proper lattices
in ¥ having A4 as both right and left associated orders. If A and B are in
G(A), then A-B and A™! are also in G(A). Clearly 4 & G(A).

THEOREM 3.2. G(A) is an abelian group under the composition A,B— A-B.

PrROOF. That G(A) is a group follows from Theorem 2.4 and Proposition
3.1; the neutral element of G(A) is clearly 4. To see that G(A) is abelian,
let A and B be elements of G(A4) and let p be any minimal prime ideal of R.
Then, (A°B)R, = ABR;,=(AR,XBR;). Since R, is a Dedekind ring, we have
(AR BR;)=(BR,XAR),). Thus, (A-B)R,=(B-A)R, and Proposition 1.3 then
shows that A<B= B-A.

THEOREM 3.3. If A and I' are maximal orders in 2, then G(A) and GIT)
arve natuvally isomovphic.

PROOF. Let § be the conductor of I' with respect to 4, i.e., T = {er‘i
xl'cA}. Then § is a proper lattice whose associated left order is 4 and
right order is I'. If B GUI"), then F-B-F! € G(A) and the map B—FB-F*
is an isomorphism of G(I") with G(A).

Let 4 be a third order. Then, defining the isomorphisms by means of the
appropriate conductors leads to the following diagram:

G(IM)—> G(A)

N
G(4)
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The naturality of the isomorphisms between these various groups will be
proved when we show that the diagram is commutative.

Set F={x|x4C 4} and F,={x|x'4}. Then, if A=sGUI) we must
show that F,oFedoF loF 1 =F.oATF,"l. Now, F. loF-F =G, so that be-
cause G(I') is abelian, we have $F, lo@F oToAdoF LoF, oF.=A from which the
assertion follows.

Let A4 be a maximal order in 3 and let A be an element of G(A) which
is contained in A. Set a=ann(4/A). Then the ideal a is contained in only
a finite number of minimal prime ideals of R. If p is a minimal prime ideal
which does not contain a, then AR, =AR,. Thus AR, + AR, for only finitely
many p. Given any C & G(A), C can be expressed in the form A-B™' with
both A and B in G(A) and both contained in 4. Hence, CR;, # AR, for only
a finite set of p.

The map A— AR, defines a homomorphism from G(A4) into G(AR;,). There
is therefore defined a homomorphism from G(A) into the direct product
I;I G(AR;). The preceding remarks show that the image is contained in the

direct sum > G(AR,) of the groups G(AR)).
v
THEOREM 3.4. The homomorphism G(A)— Y G(AR,) is an isomorphism.
Y

PrROOF. Proposition 1.3 shows immediately that the homomorphism is a
monomorphism. We must prove that the mapping is onto.

Let p be some minimal prime ideal, and let M be an element of G(AR,)
which is contained in AR,. Then M contains some power of p. Set A=MnN 4.
Then it is readily verified that A is a lattice and that both of the associated
orders of A coincide with 4. Furthermore, AR,= M. Finally, let q be a
minimal prime ideal of R different from p. Then, the fact that A contains a
power of p shows that AR,=AR,. Now set B= A**. Then, Be< G(A) and
BR,=M while BR,=AR, for all q+#9p. (These last two statements follow
from Proposition 1.2.) Every element of G(4R,) has the form M-N-! with M
and N contained in 4R,. Hence, given any element M < G(AR,), there exists
an A e G(A) such that AR,=M and AR,=A4R,, for all 9. It follows imme-
diately that the map G(A)— Y>,G(4R,) is an epimorphism.

COROLLARY 3.5. If X is a central simple algebra over K and A is a maximal
order in 2, then G(A) is a free abelian group whose generators are in one-to-one
correspondence with the minimal prime ideals of R.

Proor. In this case G(4R,) is an infinite cyclic group, and the assertion
follows from the theorem.

Institute for Advanced Study
Princeton, New Jersey



376 0. GoLDMAN

References

[1] M. Auslander and O. Goldman, Maximal orders, Trans. Amer. Math. Soc., 97
(1960), 1-24.

[2] M. Deuring, Algebren, Springer, Berlin, 1935.

[3] B.L. van der Waerden, Modern Algebra, vol. II, New York, 1950.



	Quasi-equality in maximal ...
	Introduction.
	Section 1. Lattices.
	Section 2. Orders.
	THEOREM 2.4. ...

	Section 3. The group of ...
	References


