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Introduction. The study of harmonic and Killing vector fields and Ricci
curvature in Riemannian manifolds without boundary has been started by
Bochner $[1]^{1)}$ . Lichnerowicz [11], Mogi [12], Tomonaga [16] and Yano [17],

[18] have extended Bochner’s results to harmonic and Killing tensor fields of
order $p(>1)$ . They also have studied similar problems in manifolds with
certain inequalities satisfied by the Riemann-Christoffel, projective, conformal
and concircular curvature tensor fields [2], [3], [4], [12], [16], [18], [22].

On the other hand, harmonic tensor fields in Riemannian manifolds with
boundary have been studied by Conner [6] and by Duff and Spencer [7]. Also
Nakae [13] has treated curvatures and relative Betti numbers. Hsing [10]

and Yano [19], [20], [21] have studied harmonic and Killing tensor fields in
Riemannian manifolds with boundary.

The purpose of the present paper is to study, using integral formulas,
harmonic and Killing tensor fields and also conformal vector fields in Rieman-
nian manifolds with boundary, and extend the results for manifolds without
boundary shown in [22] to the case of manifolds with boundary.

In \S 1, we give general notations for skew-symmetric tensor fields and
introduce a quadratic form $F^{(p)}$ which will play an important role in this
paper. In this section we try to extend the notion of the Ricci curvature,
and obtain a geometrical meaning of the quadratic form $F^{(p)}$ .

In \S 2, we give a definition of the compact Riemannian manifold with
boundary. We introduce the quadratic form $H^{(p)}$ and $\hat{H}^{(p)}$ which will play
important roles togther with $F^{(p)}$ . Stokes’ theorem is proved in this section.

\S 1 and \S 2 are the preparations for \S 3, \S 4 and \S 5.
In \S 3, we obtain a necessary and sufficient condition for a skew-symmetric

tensor field to be a harmonic or Killing tensor field, and for a vector field to
be a conformal vector field.

In \S 4, we study non-existence of harmonic and Killing tensor fields and
also of conformal vector fields under certain conditions for the quadratic forms
$F^{(p)},$ $H^{(p)}$ and $\hat{H}^{(p)}$ .

1) Numbers in brackets refer to the bibliography at the end of the paper.
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Some of the results in \S 3 and \S 4 have been obtained essentially by Yano
[20] and Yano and the present author [23]. But we state the theorems in
slightly different forms.

In \S 5, we study the manifold in which certain inequalities are satisfied by
Riemann-Christoffel projective, conformal or concircular curvature tensor fields.

As to tensor calculus, we refer to Eisenhart [9] or Schouten [15] and in
notations of skew-symmetric tensors we refer to de Rham [14].

The author wishes to express his hearty thanks to Prof. Yano who en-
couraged him to study these problems and gave many valuable suggestions.

\S 1. Skew-symmetric tensor fields.

Let $V_{m}$ be an $m(\geqq 2)$ dimensional orientable Riemannian manifold of class
$C^{\infty}$ with positive definite metric and denote by $g$ the fundamental tensor field
of $V_{m}$ .

We shall fix an orientation of $V_{m}$ and unless otherwise stated, every coor-
dinate system of $V_{m}$ considered is assumed to be positively ordered.

Consider a $p$-tensor (or a tensor of order p) $v$ and a q-tensor $w$ at a point
of $V_{m}$ .

If $p\geqq q$, we denote by $vLw$ and $w\lrcorner v$ the $(p-q)$-tensors at the point with
covariant components in each coordinate system given respectively by

$(vLw)_{\lambda_{1}\cdots\lambda p-q}=\frac{1}{q!}v_{\lambda_{1}\cdots\lambda_{p-q}a_{1}\cdots a_{q}}w^{a_{1}\cdots q}q^{2)}$

and
$(w\lrcorner v)_{\lambda_{1}\cdots\lambda_{p-q}}=\frac{1}{q!}w^{a_{1}\cdots a_{q}}v_{\alpha_{1}\cdots\alpha_{q}\lambda_{1}\cdots\lambda_{p-q}}$ ,

where $v_{\lambda_{1}\cdots\lambda_{p}}$ are the covariant components of $v$ and $w^{\lambda_{1}\cdots\lambda_{q}}$ the contravariant
components of $w$ .

When, in particular, $p=q$, four scalars $vLw,$ $w\lrcorner v,$ $v\lrcorner w$ and $wLv$ can
be defined and are equal to each other. We call this scalar inner product of
$v$ and $w$ , and we denote it by $\langle v, w\rangle$ or $\langle w, v\rangle$ . Since the metric of $V_{m}$ is
positive definite, $\langle v, v\rangle$ is always positive for non zero tensor $v$ . We write
the square root of $\langle v, v\rangle$ as $\Vert v\Vert$ .

If $v,$ $w$ and $u$ are the tensors of order $p,$ $q$ and $p+q$ respectively, we have
the formula
(1.1) $\langle v\lrcorner u, w\rangle=\langle v, uLw\rangle$ .

If $v$ is a skew-symmetric $p$-tensor and $w$ is an arbitrary q-tensor $(q\leqq p)$,
it is easily found that

2) Throughout the paper, the Greek indices take the values 1, 2, $\cdot$ .. , $m$ and the
Latin indices take the values 1, 2, $\cdots$ , $m-1$ .
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$vLw=(-1)^{(p-q)q}w\lrcorner v$ .
If $v$ is skew-symmetric and $w$ is symmetric or $v$ is symmetric and $w$ is

skew-symmetric, we have
$vLw=w\lrcorner v=0$ .

Take a coordinate system $(\xi^{\kappa})$ and denote by $\mathfrak{g}$ the determinant formed by
the covariant components of $g$.

Consider the quantities $e_{\lambda_{1}\cdots\lambda_{m}}$ in the coordinate system $(\xi^{\kappa})$ given by

of $(1, 2, \cdots, m)$
$(\sqrt{\mathfrak{g}}$

, when $(\lambda_{1}$ , $\cdot$ ..
’

$\lambda_{m})$ is an even permutation

of $(1, 2, \cdots, m)$$e_{\lambda_{1}\cdots\lambda_{m}}=\lceil_{0}^{\sqrt{\mathfrak{g}}}$

’ when $(\lambda_{1}$ , $\cdot$ ..
’

$\lambda_{m})$ is an odd permutation

otherwise.

Then $e_{\lambda_{1}\cdots\text{{\it \‘{A}}}_{m}}$ define a skew-symmetric tensor field of order $m$ . We denote this
tensor field by $e$ .

For a skew-symmetric tensor $v,$ $*v$ is defined by

$*v=v\lrcorner e$ .
It is well known that for a skew-symmetric $p$-tensor $v$ , we have

(1.2) $**v=(-1)^{(m-p)p}v$ .
If $v$ and $w$ are skew-symmetric p-tensors, using (1.1) and (1.2) we get

(1.3) $\langle*v, *w\rangle=\langle v, w\rangle$ .
The exterior product of the skew-symmetric tensor $v$ and $w$ is denoted by

$v\wedge w$ and is given by

$(v\Lambda w)_{\lambda_{1}\cdots\lambda_{p}\lambda_{\mathcal{D}+1}\cdots\lambda_{p+q}}=\frac{(p+q)}{p!q!}v_{\zeta\lambda_{1}\cdots\lambda_{p}}w_{\lambda_{p+1}\cdots\lambda_{p+q}J}$ .

From this definition we get

$w\wedge v=(-1)^{pq}v\Lambda w$ .
Moreover, when $q\leqq p$ , we have

$vLw=(-1)^{(m-p+q)(p-q)}*(w\Lambda*v)$ .
Now, we introduce an operator $F$ and a quadratic form $F^{(p)}$ at each point

of $V_{m}$ .
At a point of $V_{m}$ , we take a coordinate system $(\xi^{\kappa})$ and denote by $K_{\nu\mu\lambda\kappa}$

and $K_{\rho\lambda}$ the covariant components of the curvature tensor field and the Ricci
tensor field respectively.

For a skew-symmetric $p$-tensor $v$ at the point, $Fv$ is a skew-symmetric
$p$-tensor at the point and given by
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$(Fv)_{\lambda_{1}\cdots\lambda_{p}}=pK_{a\subset\lambda_{1}}v_{\lambda_{2}\cdots\lambda_{F^{3}}}^{\alpha}+\frac{p-1)}{2}K_{a\beta\subset\lambda_{1}\lambda_{2}}v^{a\beta_{\lambda_{3}\cdots\lambda_{p}3}}p($ .

$F^{(p)}$ is the quadratic form on the vector space consisting of all skew-
symmetric p-tensors at the point and for a skew-symmetric $p$-tensor $v,$ $F^{(p)}(v)$

is defined by
$ F^{(p)}(v)=\langle Fv, v\rangle=\langle v, Fv\rangle$ .

When $v$ is a unit vector, $F^{(1)}(v)$ has the form

$F^{(1)}(v)=K_{\mu\lambda}v^{\prime J}v^{\lambda}$ .
The right hand member of the above identity is the so-called Ricci curvature
with respect to the direction $v$ .

To obtain a similar relation for the quadratic form $F^{(p)}(p>1)$ and the
curvature, we first extend the notion of the Ricci curvature.

Consider a $p$-dimensional sub-space $S$ of the tangent space of $V_{m}$ at the
point and choose an orthonormal base $(u,u(1)(2)$ , (m)u) such that (

$u(1)$
, (p)u) spans

$S$, then we have $p(m-p)$ two-dimensional subspaces $S_{ij}$ spanned by
$(i)u$

and
$(j)u$

$(i=1, \cdots ,p,j=p+1, \cdots , m)$ . Denoting by $K(S_{ij})$ the sectional curvatures with
respect to $S_{ij}$ , that is,

$K(S_{iJ})=-K\nu\alpha\lambda\kappa_{(i)(j)(i)(j)}u^{\nu}u^{\mu}u^{\lambda}u^{\kappa}$ ,

and summing up them, we have a quantity

$R(S)=\lambda\sum_{i=1j=p+1}^{m}K(S_{ij})P_{\urcorner}$

By a simple calculation we can find that $R(S)$ is written in the form

(1.4) $R(S)=\sum_{i=1}^{p}K_{\mu\lambda}u^{\mu}u^{\lambda}+\sum_{i(i)(i)=1}^{p}\sum_{j=1}^{v}K_{\nu\mu\text{{\it \‘{A}}}\kappa}u^{\nu}u_{j)}^{\mu_{(}}u_{i)(}^{\lambda}u_{1)^{\mathcal{K}}}(i)($

This shows that $R(S)$ is independent of the choice of the last $m-p$ vectors
$(p+1)u,$

$\cdots$ , (m)u of the orthonormal base.

The first $p$ vectors $(1)(p)u,$
$\cdots,u$ form an orthonormal base of S. If we can

show that the right hand member of (1.4) does not depend on the choice of
the orthonormal base of $S$, we can conclude that the quantity $R(S)$ defined
above is independent of the choice of the orthonormal base such as $(u, \cdots,u)(1)(m)$

For this purpose we make the exterior product

$u=u\wedge(1)\ldots\wedge u(p)$

and calculate the value of $F^{(p)}(u)$ . We then get

$F^{(p)}(u)=\sum_{i=1}^{p}K_{\mu\lambda}u^{\prime 1}u_{i)}^{\lambda}+\sum_{i(i)(=1}^{p}\sum_{j=1}^{p}K_{\nu}/\lambda\kappa uu^{\mu_{(}}u_{i)(}^{\lambda}u_{j)^{\mathcal{K}}}’(i)^{\nu}(j)$
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and thus from (1.4) we obtain
(1.5) $R(S)=F^{(p)}(u)$ .

If we take another orthonormal base $(w_{1}() , w)(p)$ of $S$ and make

$w=w_{1}\wedge()\ldots\Lambda w(p)$

we have
$w=\in u$ ,

where $\epsilon=+1$ or $-1$ , and consequently

(1.6) $F^{(p)}(w)=F^{(p)}(u)$ .
From (1.5) and (1.6) we can conclude that $R(S)$ is independent of the choice

of the orthonormal base. We call $R(S)$ defined above the extended Ricci $cun\dagger a-$

ture with respect to $S$.
If a skew-symmetric $p$-tensor $v$ has a form

$v=_{(1)}v\Lambda\ldots\wedge v(t)$

where $(1)(p)v,$
$\cdots,v$ are $p$ linearly independent vectors, we call $v$ to be simple. Then,

$v$ determines a p-dimensional subspace spanned by
$(1)v,$

$\cdots$ ,
$(p)v$

of the tangent space.

It does not depend on the decomposition of $v$ . When $v^{\prime}$ is another simple
skew-symmetric p-tensor, $v$ and $v^{\prime}$ determine the same subspace if and only if

$v^{\prime}=a\cdot v$

where $a$ is a non-zero scalar.
If we consider an orthonormal base (

$u(1)$
, (p)u) of the subspace $S$ determined

by $v$ , we have
$v=\pm\Vert v\Vert\cdot u$

where
$u=_{(1)}u\Lambda\ldots\wedge u(p)$

and therefore from (1.5)

$F^{(p)}(v)=\Vert v\Vert^{2}F^{(p)}(u)=\Vert v\Vert^{2}R(S)$ .
Thus we have
THEOREM 1.1. If $v$ is a simpte skew-symmelric p-tensor at a point of $V_{m}$

and $S$ is a $p$ dimensional subspace determined by $v$ of the tangent space of $V_{m}$

at the point, the value $F^{(p)}(v)$ coincides with the Ricci curvature with respect to $S$

up to a factor $i$ . $e$ . we have
$F^{(p)}(v)=\Vert v\Vert^{2}R(S)$ .

If $v$ is simple, $*v$ is also simple and the subspace $S^{\prime}$ determined by $*v$ is
the orthogonal complement of the subspace $S$ determined by $v$ .

From the definition of $R(S)$ it is easily found that
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$R(S)=R(S^{\prime})$ .
Therefore we can get from Theorem 1.1

(1.7) $F^{(m-p)}(*v)=F^{(p)}(v)$

for a simple skew-symmetric tensor $v$ .
But this identity is satisfied by any skew-symmetric tensor, that is,
THEOREM 1.2. For any $ske$zv-symmetric p-tensor $v$ we have

$F^{(m-p)}(*v)=F^{(p)}(\iota))$ .

The proof of Theorem 1.2 can be obtained by the straight-forward calcu-
lation, but we shall give another simple proof later.

In the remainder of this section we introduce the operators applied to
skew-symmetric tensor fields.

Unless otherwise stated, every tensor field is of class $C^{\infty}$ throughout the
paper.

For a $p$-tensor field $v$ , we denote by $\nabla v$ the covariant derivative of $v$ . If

we take a coordinate system $(\xi^{\kappa})$ and denote by $\{_{\mu^{\kappa}\lambda}\}$ the Christoffel symbols,

the covariant components of $\nabla v$ is given by

$(\nabla v)_{\lambda\lambda_{1}\cdots\lambda_{p}}=\nabla_{\lambda}v_{\lambda_{1}\cdots\lambda_{p}}$

$=_{\xi}^{1}-\frac{\partial v_{\lambda}}{\partial}\frac{\cdots\cdots\lambda_{p}}{\lambda}-\left\{\begin{array}{l}\alpha\\\lambda\lambda_{1}\end{array}\right\}v_{\alpha\prime_{2}\cdots\lambda_{p^{-}}}\ldots-\{\lambda\alpha_{p}\lambda\}v_{\lambda_{1}\cdots\lambda_{p-1}\alpha}$ .

Consider a skew-symmetric $p$-tensor field $v$ .
The differential $dv$ of $v$ is given by

$(dv)_{\lambda_{1}\lambda_{2}\cdots\lambda_{p+1}}=(p+1)\nabla_{\subset\lambda_{1}}v_{\lambda_{2}\cdots\lambda_{p+1I}}$

in the coordinate system $(\xi^{\kappa})$ . $dv$ is a skew-symmetric tensor field of order $p+1$ .
The divergence $\delta v$ of $v$ is given by

$\delta v=(-1)^{m(p-1)}*d*v$ .
$\delta v$ is the skew-symmetric tensor field of order $p-1$ . In the coordinate system
the covariant components of $\delta v$ are given by

$(\delta v)_{\lambda_{1}\cdots\lambda_{p-1}}=g^{\rho_{a}}\nabla_{\beta}v_{a\lambda_{1}\cdots\lambda_{p-1}}$ .
Therefore, we have

$\delta v=2g\lrcorner\nabla v$ .
For a skew-symmetric tensor field $v,$ $\nabla v,$ $Dv$ and $\square v$ are given respec-

tively by
$\triangle v=\delta dv+d\delta v$ ,

$Dv=2g\lrcorner\nabla\nabla v$

and
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$\square v=(p+1)Dv-\triangle v$ .
The covariant components of $Dv$ are

$(Dv)_{l_{1}\cdots\lambda_{p}}=g^{\rho_{a}}\nabla_{\beta}\nabla_{a}v_{\lambda_{1}\cdots\lambda_{P}}$ .
$\triangle v$ has the covariant components of the form

$(\triangle v)_{\lambda_{1}\cdots\lambda_{p}}=g^{\beta a}\nabla_{\beta}\nabla_{\alpha}v_{\lambda_{1}\cdots\lambda_{p}}-pK_{\alpha\subset\lambda_{1}}v_{\lambda_{2}\cdots\lambda_{p}J}^{\alpha}$

$-\frac{p(p-1)}{2}K_{\beta\alpha\zeta\lambda_{1}\lambda_{2}}v_{\lambda_{3}\cdots\lambda_{p}1}^{\beta a}$ .

Thus we have
$\triangle v=Dv-Fv$

or
$Fv=Dv-\triangle v$ .

From the definition of $\triangle$ , and $D$ we can easily see that

$\triangle*v=*\triangle v$ and $D*v=*Dv$ .
Therefore we get

$\square *v=*\square v$ and $F*v=*Fv$ .
If $v$ is a skew-symmetric p-tensor at a point, we can extend $v$ to a skew-

symmetric tensor field in a neighborhood of the point and we have at the
point

$F*v=*Fv$ .
Thus we have

$F^{(m-p)}(*v)=\langle F*v, *v\rangle=\langle*Fv, *v\rangle=\langle Fv, v\rangle=F^{(p)}(v)$ .

This gives a proof of Theorem 1.2.

\S 2. Riemannian manifolds with boundary.

A compact Riemannian manifold $M$ with boundary $B$ is a compact subdomain
of $V_{m}$ satisfying the following condition; At each point of the boundary $B$

of $M$ there is a neighborhood $U$ of the point in $V_{m}$ and a coordinate system
$(\xi^{1}, \cdots , \xi^{m})$ (called a boundary coordinate system) of $V_{m}$ such that $U_{\cap}M$ is
represented by an inequality $\xi^{1}\leqq 0$ .

Since we can always choose as a boundary coordinate system a positively
ordered system, we shall assume that every boundary coordinate system con-
sidered is positively ordered.

If $(\xi^{1}, \cdots, \xi^{m})$ is a boundary coordinate system, $B$ is locally represented by
$\xi^{1}=0$ and $(\xi^{2}, \cdots , \xi^{m})$ becomes a coordinate system of $B$. Thus $B$ is an $m-1$

dimensional submanifold of $V_{m}$ . If $(\overline{\xi}^{1}, \cdots , \overline{\xi}^{m})$ is another boundary coordinate
system, it is easily seen that we have on $B$
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$\frac{\partial\overline{\xi}^{1}}{\partial\xi^{1}}>0$ and $\frac{\partial\overline{\xi}^{1}}{\partial\xi^{\lambda}}=0$ for $\lambda=2,$
$\cdots,$ $m$ .

Since the Jacobian of the coordinate transformation of $(\xi^{\kappa})$ and $(\overline{\xi}^{\kappa})$ is
positive, the Jacobian of the coordinate transformation of the coordinate sys-
tems $(\xi^{2}, \cdots , \xi^{m})$ and $(\overline{\xi}^{2}, \cdots , \overline{\xi}^{m})$ of $B$ is also positive. Therefore the coordinate
systems of $B$ obtained from the boundary coordinate systems define an orien-
tation of $B$. In the following we assume that $B$ is oriented by this orien-
tation.

At each point of the boundary $B$, there are two unit vectors normal to $B$.
In each boundary coordinate system the first contravariant component of the
one is positive and that of the other is negative. We denote the former by $N$.

In the sequel we use the following notations.
If $(\xi^{1}, \cdots , \xi^{m})$ is a coordinate system (not necessarily boundary) of $V_{m}$ at

a point of $B$ and $(\eta^{1}, \cdots , \eta^{m-1})$ is a coordinate system of $B$ whose domain is
contained in that of $(\xi^{\kappa}),$ $B$ is locally represented by

$\xi^{\kappa}=\xi^{\kappa}(\eta^{i})$ .
We denote by $B_{i}^{\kappa}$ the derivative of $\xi^{\kappa}$ with respect to $\eta^{i},$ $i$ . $e$ . we put

$B_{i}^{\kappa}=\frac{\partial\xi^{\kappa}}{\partial\eta^{i}}$ ,

and
$B_{i_{1}\cdot i_{p}}^{\kappa_{1}\cdot.\cdot.\cdot\kappa_{p}}=B_{i_{1}}^{\kappa_{1}}\cdots B_{i_{p}}^{\kappa_{p}}$ .

Then the covariant components of the fundamental tensor field $\prime g$ of $B$

are given by
$\prime g_{ji}=g_{f^{\ell\lambda}}B_{ij}^{\mu\lambda}$

and the determinant $/_{\mathfrak{g}}$ formed with $/g_{ji}$ is given by
$/\mathfrak{g}=\mathfrak{g}\det$ $(N^{\lambda}, B_{1}^{\lambda}, \cdots , B_{m-1}^{\lambda})^{2}$ .

In the following a tensor field of $V_{m}$ defined in a neighborhood of $M$ will
be called simply a tensor field on $M$.

The following theorem is well known.
STOKES’ THEOREM. For an arbitrary vector field $w$ on $M$, we have

(2.1) $\int_{M}(\delta w)d\sigma=\int_{B}\langle N, w\rangle d^{\prime}\sigma$

where $ d\sigma$ and $ d^{\prime}\sigma$ are the volume elements of $V_{m}$ and $B$ respectively.
PROOF. First we remark that, in any coordinate system $(\xi^{\kappa})$ of $V_{m},$ $(\delta w)d\sigma$

is written in the form

$(\delta w)d\sigma=(\sum_{\alpha=1}^{m}\frac{\partial\sqrt{\mathfrak{g}}w^{\alpha}}{\partial\xi^{\alpha}})d\xi^{1}\wedge\cdots\Lambda d\xi^{m}$ .

Using the partition of unity, it is easily seen that, for the proof of the
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theorem, it is sufficient to prove it in the following two case: One is the
case in which the carrier of $w$ is contained in the interior of $M$ and in a co-
ordinate neighborhood $U$, and the other is the case in which the carrier of $w$

is contained in a domain $W$ of a boundary coordinate system.
Proof in the first case: We take a coordinate system $(\xi^{\kappa})$ in $U$. We may

assume that the carrier of $w$ is contained in a domain $|\xi^{\lambda}|<a$ .
Then we have

$\int_{M}(\delta w)d\sigma=\sum_{\alpha=1}^{m}\int_{-a}^{a}\ldots\int_{-a}^{a}\partial\partial\underline{\sqrt{}}\frac{\mathfrak{g}w^{\alpha}}{\xi^{\alpha}}d\xi^{1}\cdots d\xi^{m}=0$ .

On the other hand, since $w$ is zero on $B$, the right hand member of (2.1)
is clearly zero.

Proof in the second case: Let $(\xi^{1}, \cdots , \xi^{m})$ be a boundary coordinate system
in $w$ and $(\eta^{1}$ , $\cdot$ .. , $\eta^{m-1})$ be a coordinate system of $B$ defined by $(\xi^{\kappa})$ i. e. $\eta^{i}=$

$\xi^{i+1}$ $(i=1, \cdots , m-1)$ . Then in these coordinate systems $(\xi^{\kappa})$ and $(\eta^{i})$ we have
$\sqrt{\prime \mathfrak{g}}=\sqrt{\mathfrak{g}}N^{1}$ ,

and the covariant components of $N$ are $(N_{1},0, \cdots , 0)$ . $N_{1}$ and $N^{1}$ satisfy

$N_{1}N^{1}=1$ .
We may assume that the carrier of $w$ is contained in a domain $|\xi^{\kappa}|<a$

Then we have

$\int_{M}(\delta w)d\sigma=\int_{-a}^{a}\cdots\int_{-a}^{a}\{\int_{-a}^{0}\frac{\partial\sqrt{\mathfrak{g}}w^{1}}{\partial\xi^{1}}d\xi^{1}\}d\xi^{2}\cdots d\xi^{m}$

$+\int_{-a}^{0}\{\int_{-a}^{a}\cdots\int_{-a}^{a}\sum_{\alpha=2}^{m}\frac{\partial\sqrt{\mathfrak{g}}w^{\alpha}}{\partial\xi^{\alpha}}d\xi^{2}\cdots d\xi^{m}\}d\xi^{1}$

$=\int_{-a}^{a}\cdots\int_{-a}^{\alpha}\sqrt{\mathfrak{g}(0,\eta^{1},,\eta^{m-1})}w^{1}(0, \eta^{1}, \cdots, \eta^{m-1})d\eta^{1}\cdots d\eta^{m-1}$

$=\int_{-a}^{a}\cdots\int_{-a}^{a}w^{1}N_{1}\sqrt{\mathfrak{g}}N^{1}d\eta^{1}\cdots d\eta^{m-1}$

$=\int_{-a}^{a}\cdots\int_{-a}^{a}\langle N, w\rangle\sqrt{\prime \mathfrak{g}}d\eta^{1}\cdots d\eta^{m-1}$

$=\int_{B}\langle N, w\rangle d^{\prime}\sigma$ .

Thus we have proved the theorem. $q.e$ . $d$ .
We denote by $H$ the second fundamental tensor field of $B$ with respect to

the normal $N$. In the local coordinate systems $(\xi^{\kappa})$ and $(\eta^{i})$ the covariant
components of $H$ are given by

$H_{ji}=[\frac{\partial B_{i}^{\kappa}}{\partial\eta^{j}}+\{\mu^{\kappa}\lambda\}B_{ji}^{\nu\lambda}]N_{\kappa}$ .
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The equations of Gauss and of Weingarten can be written respectively
in the form

$\frac{\partial B_{i}^{\kappa}}{\partial\eta^{j}}+\{\}B_{ji}^{l}u_{\lambda\prime}-\{\}B_{a}^{\kappa}=H_{ji}N^{\kappa}$

and

$\frac{\partial N^{\kappa}}{\partial\eta^{j}}+\{_{\mu^{\kappa}\lambda}\}B_{j}^{\mu}N^{\lambda}=-H_{j}^{a}B_{a}^{\kappa}$ .

For any skew-symmetric $p$-tensor $u$ of $B$ at a point, skew-symmetric
p-tensors $Hu$ and $\hat{H}u$ are defined respectively by

$(Hu)_{i_{1}\cdots i_{p}}=pH_{a\subset i_{1}}u_{i_{2}\cdots ip1}^{a}$

and
$(\hat{H}u)_{i_{1}\cdots i_{p}}=(g^{ba}H_{ba})u_{i_{1}\cdots tp}-pH_{aIi_{1}}u_{i_{2}\cdots i_{P}l}^{a}$ .

By a straightforward calculation, we get

(2.2) $H*u=*\hat{H}u$ and $\hat{H}*u=*Hu$ .
The quadratic forms $H^{(p)}$ and $\hat{H}^{(p)}$ on the vector space consisting of all

skew-symmetric p-tensors of $B$ at a point is defined respectively by

$ H^{(p)}(u)=\langle Hu, u\rangle=\langle u, Hu\rangle$

and
$\hat{H}^{(p)}(u)=\langle\hat{H}u, u\rangle=\langle u,\hat{H}u\rangle$ .

From (2.2) we obtain
THEOREM 2.1. For any skew-symmetric p-tensor $u$ of $B$ at a point we have

$\hat{H}^{(m-p-1)}(*u)=H^{(p)}(u)$ and $H^{(m-p-1)}(*u)=\hat{H}^{(p)}(u)$ .
The quadratic form $H^{(1)}$ is the so-called fundamental quadratic form of $B$.
If $M$ satisfies the following condition, we say that $M$ has a convex (or con-

cave) boundary: At each point $x$ of $B$ any geodesic of $V_{m}$ through $x$ and tangent

to $B$ at $x$ does not intersect the interior (exterior) of $M$ near $x$.
THEOREM 2.2. If $M$ has a convex (or concave) boundary $B$, the quadratic

forms $H^{(p)}$ and $\hat{H}^{(p)}$ $(p=0,1, \cdots , m-1)$ is negative (or positive) semi-definite. If
the second fundamental form $H^{(p)}$ of $B$ is negative (or positive) definite, $M$ has
a convex (or concave) boundary $B$.

PROOF. At a point $x$ of $B$, take a boundary coordinate system $(\xi^{1}, \cdots , \xi^{m})$

and an arbitrary coordinate system $(\eta^{1}, \cdots, \eta^{m-1})$ of $B$. Since $B$ is locally
represented by $\xi^{1}=0$ , we have

$B_{j}^{1}=\partial\xi^{1}/\partial\eta^{j}=0$ $(j=1, \cdots, m-1)$ .
Therefore from the equations of Gauss, we get,

(2.3) $H_{ji}N^{1}=\left\{\begin{array}{l}1\\\mu\lambda\end{array}\right\}B_{ji}^{t^{\chi}\lambda}$ .
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Let $u$ be an arbitrary tangent vector to $B$ at $x$, and $(u^{i})$ be its components
in the system $(\eta^{i})$ . The components of $u$ in the coordinate system of $(\xi^{\kappa})$ are

$(B_{j}^{\kappa}u^{j})$ . If $(\xi^{t}(t))$ is a geodesic of $V_{m}$ such that
$(\xi^{\sigma}(0))=x$ ,

and

(2.4) $\frac{d\xi^{\kappa}}{dt}=B_{j}^{\kappa}u^{j}$ , at $t=0$ .

Since $\xi^{\kappa}(t)$ satisfies the equation

$\frac{d^{2}\xi^{\kappa}}{dt^{2}}+\{_{l^{l}}\kappa_{\lambda}\}_{\frac{d}{d}-}^{\xi_{f^{\prime}}^{u}}\underline{d}_{d^{\xi}\overline{t^{\lambda}}}=0$ ,

we have at $t=0$,

$\frac{d^{2}\xi^{t}}{dt^{2}}=-\{\mu^{\kappa}\lambda\}\frac{d\xi^{\mu}}{dt}\frac{d\xi^{\lambda}}{dt}=-\{_{\mu^{\kappa}\lambda}\}B_{ji}^{\alpha\lambda}u^{j}u^{i}$ .

Thus from (2.3) we get

(2.5) $\frac{d^{2}\xi^{1}}{dt^{2}}=-H^{(1)}(u)N^{1}$ , at $t=0$ .

If we suppose that $M$ has a convex (or concave) boundary, then

$\{a^{1}nd\xi^{1}(t)\xi(0)=0\geqq 0$

(or $\leqq 0$) for all $t$ near $0$ .
Therefore $\xi^{1}(t)$ takes a minimal (or maximal) value at $t=0$ , and we have

$\frac{d^{2}\xi^{1}}{dt^{2}}\geqq 0$ (or $\leqq 0$) at $t=0$ .

From (2.5) this means that $H^{(1)}(u)$ is non positive (or negative), for $N^{1}$ is
positsve. This proves the first part of the theorem.

If we suppose that $H^{(1)}$ is negative (or positive) definite, then from (2.4)
and (2.5) we have

$\frac{d\xi^{1}}{dt}=0$ and $\frac{d^{2}\xi^{1}}{dt^{2}}>0$ , (or $<0$) at $t=0$ .
Thus, $\xi^{1}(t)$ takes a minimal (or maximal) value at $t=0$ , and therefore we

have
$\xi^{1}(t)\geqq 0$ (or $\leqq 0$) for all $t$ near $0$ .

This means that $(\xi^{\kappa}(t))$ does not lie in the interior (or exterior) of $M$, and we
have proved the second part of the theorem. $q$ . $e$ . $d$ .

Denote by $f$ the injection of $B$ into $V_{m}$ and $f^{*}$ the dual map of the dif-
ferential map $df$ of $f$.

For an arbitrary skew-symmetric p-tensor $v$ of $V_{m}$ at a point of $B,$ $con$.
sidering $v$ as a covariant tensor, we define a skew-symmetric $p$-tensor $tv$ and
a skew-symmetric $(p-1)$-tensor $nv$ of $B$ by
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(2.6) $tv=f^{*}(v)$ and $nv=f^{*}(N\lrcorner v)=t(N\lrcorner v)$ .
If we consider $tv$ and $nv$ as contravariant tensors, we have

(2.7) $v=df(tv)+N\wedge df(nv)$ .
Thus $v$ is zero if and only if $tv$ and $nv$ is zero. We call $tv$ the tangential part
of $v$ and $nv$ the normal part of $v$ . If $tv$ (or $nv$) is zero, $v$ is said to be normal
(or tangential) to $B$ .

If $w$ is another skew-symmetric p-tensor of $V_{m}$ at a point, we have the
following formula.

$\langle v, w\rangle=\langle tv, tw\rangle+\langle nv, nw\rangle$ .
In the coordinate systems, $tv$ and $nv$ are respectively represented by

(2.8) $\{$ $(tv\lambda_{i}:_{ip-}^{p}=_{1}B_{i_{1}ip}^{\lambda_{1}.\cdot.\cdot\cdot\lambda}v_{\lambda_{1}.\lambda_{p-1}^{p}}(nv)^{1}=N^{\lambda^{p}}B_{i_{1}i}^{\lambda_{1}\cdot..\cdot..\cdot.\lambda_{p-1}}v_{\lambda\lambda_{1}\cdots\lambda_{p-1}}$

.
If $v$ is a skew-symmetric $p$-tensor field on $M,$ $tv$ and $nv$ are skew-symmetric

tensor fields on $B$.
Differentiating (2.8), we find

$’\nabla_{j}(tv)_{i_{1}\cdots i_{p}}=-pH_{j\iota i_{1}}(nv)_{i_{2}\cdots i_{p}3}+B_{ji_{1}\cdot i_{\beta}}^{l\lambda_{1}.\cdot.\cdot\cdot\lambda p}\nabla_{t^{l}}v_{I_{1}\cdots\lambda p}$ ,

$/\nabla_{j}(nv)_{i_{1}\cdots i_{p-1}}=-H_{aj}(tv)_{i\cdot\cdot i_{p-1}}^{a_{1}}+N^{\lambda}B_{ji_{1}\cdot i_{p-1}}^{u\lambda_{1}.\cdot.\cdot\cdot\lambda p-1}\nabla_{\mu}v_{\lambda\lambda_{1}\cdots\lambda p-1}$

where ’ denotes the covariant derivation with respect to the metric of $B$ .
From these equations we can obtain the formulas:

(2.9) $\left\{\begin{array}{l}dtv=tdv\\\delta tv=t\delta v+\hat{H}nv-n(\nabla_{N}v)\end{array}\right.$

and

(2.10) $\left\{\begin{array}{l}dnv=ndv-Htv+t(\nabla_{N}v)\\\delta nv=-n\delta v,\end{array}\right.$

where $\nabla_{N}v=N\lrcorner\nabla v$ .

\S 3. Necessary and sufficient conditions.

In this section we shall consider necessary and sufficient conditions for a
skew-symmetric tensor field to be a harmonic field or a Killing field in $M$ and
also for a vector field to be a conformal vector field in $M$.

If the $diJTerential$ and the divergence of a skew-symmetric tensor field $v$ of
$M$ vanish at each point of $M$, we call $v$ a harmonic field in $M$.

From this definition, it is easy to see that a harmonic field $v$ in $M$ satisfies

(3.1) $\triangle v=0$

in $M$.
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In order to obtain necessary and sufficient conditions for $v$ to be a harmonic
field in $M$, we shall introduce an integral formula.

For an arbitrary skew-symmetric tensor field $v$ of $M$ we have
$\langle\delta dv, v\rangle+\Vert dv\Vert^{2}=\delta(dv\llcorner v)$

and
$\langle d\delta v, v\rangle+\Vert\delta v\Vert^{2}=\delta(vL\delta v)$ .

Adding these equations we get

(3.2) $\langle\triangle v, v\rangle+\Vert dv\Vert^{2}+\Vert\delta v\Vert^{2}=\delta(dvLv+vL\delta v)$ .
Integrating (3.2) on $M$ and applying Stokes’ theorem to the vector field

$dvLv+vL\delta v$, we obtain

(3.3) $\int_{M}[\langle\triangle v, v\rangle+\Vert dv\Vert^{2}+\Vert\delta v\Vert^{2}]d\sigma=\int_{B}\langle N, dvLv+v\llcorner\delta v\rangle d^{\prime}\sigma$ .

Using the formulas (1.1), (2.6) and (2.8) we have
$\langle N, dvLv+vL\delta v\rangle=\langle ndv, tv\rangle+\langle t\delta v, nv\rangle$ .

Therefore we can write (3.4) in the form

(3.4) $\int_{M}[\langle\triangle v, v\rangle+\Vert dv\Vert^{2}+\Vert\delta v\Vert^{2}]d\sigma=\int_{B}[\langle ndv, tv\rangle+\langle t\delta v, nv\rangle]d^{\prime}\sigma$ .

If $v$ satisfies (3.1) in $M$ and moreover, satisfies

(3.5) $ndv=0$

and
(3.6) $t\delta v=0$

on $B$, we can find from the integral formula (3.4) that $v$ is a harmonic field
in $M$.

Conversely, if $v$ is a harmonic field in $M$, it satisfies (3.5) and (3.6) on $B$ .
Thus we have
THEOREM 3.1 In order that a skew-symmetric tensor field $v$ of $M$ is a

harmonic field in $M$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\triangle v=0 in M\\ndv=0, t\delta v=0 on B.\end{array}\right.$

If a skew-symmetric tensor field $v$ of $M$ satisfies (3.1) in $M$ and (3.5) on $B$,
and $v$ is tangential to $B$, we can find from (3.4) that $v$ is a harmonic field in $M$.

Conversely, if $v$ is a harmonic field in $M$ and tangential to $B,$ $v$ satisfies
(3.1) in $M,$ $(3.5)$ on $B_{f}$ and $nv=0$ on $B$ .

Thus we have

3) This follows from Duff’s lemma also (Algebraic geometry and topology, 1957,
p. 133).
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THEOREM 3.2. In order that a skew-symmetric tensor field $v$ of $M$ is a har-
monic field in $M$ tangential to $B$ it is necessary and suJficient that $v$ satisfies

$\left\{\begin{array}{l}\triangle v=0\\ndv=0,\end{array}\right.$

$nv=0$
$inonMB$

.
From the formula (2.10) we have for an arbitrary skew-symmetric tensor

field $v$

(3.7) $ndv=-dnv-Htv+t(\nabla_{N}v)$ .
We can easily find that $v$ satisfies (3.5) and $nv=0$ on $B$ if and only if it

satisfies $Htv=t(\nabla_{N}v)$ and $nv=0$ on $B$ .
Thus we have
COROLLARY. In order that a skew-symmetric tensor field $v$ of $M$ is a har-

monic field in $M$ tangential to $B$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\triangle v=0\\Htv=t(\nabla_{N}v),\end{array}\right.$

$nv=0$
$oninMB$

.
If a skew-symmetric tensor field $v$ of $M$ satisfies (3.1) in $M$ and (3.6) on $B$

and $v$ is normal to $B$, we can find from (3.4) that $v$ is a harmonic field in $M$.
Conversely if $v$ is a harmonic field in $M$ and normal to $B$, it satisfies (3.1)

in $M,$ $(3.6)$ on $B$ and $tv=0$ on $B$ .
Thus we have
THEOREM 3.3. In order that a skew-symmetric tensor field $v$ of $M$ is a har-

monic field in $M$ normal to $B$ it is necessary and $suff\iota cient$ that $v$ satisfies

$\left\{\begin{array}{l}\nabla v=0 in M\\t\delta v=0, tv=0 on B.\end{array}\right.$

From the formula (2.9) for an arbitrary skew-symmetric tensor field $v$ of
$M$, we have
(3.8) $t\delta v=\delta tv-\hat{H}nv+n(\nabla_{N}v)$ .

We can easily find that $v$ satisfies (3.6) and $tv=0$ on $B$ if and only if it
satisfies $\hat{H}nv=n(\nabla_{N}v)$ and $tv=0$ on $B$.

Thus we have
$CoROLLARY$ . In order that a skew-symmetric tensor field $v$ of $M$ is a har-

monic field in $M$ normal to $B$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\nabla v=0\\\hat{H}nv=n(\nabla_{N}v),\end{array}\right.$

$tv=0$
$oninMB$

.
Next we consider Killing fields in $M$.
In the covariant derivative $\nabla v$ of a skew-symmetric tensor field $v$ of $M$ is
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skew-symmetric at each point of $M$, we call $v$ a Killing field in M. $v$ is a Killing
field if and only if it satifies

(3.9) $dv=(p+1)\nabla v$ ( $p$ is the order of $v$).

If $v$ is a Killing field in $M$ it satisfies

(3.10) $\square v=0$

and
(3.11) $\delta v=0$

in $M$.
In order to obtain necessary and sufficient conditions for $v$ to be Killing

field, we shall introduce an integral formula.
For an arbitrary skew-symmetric tensor field $v$ of $M$ we have

$t(3.12)$ $\langle Dv, v\rangle+(p+1)\Vert\nabla v\Vert^{2}=\delta(\nabla vLv)$ .
Forming $(p+1)\times(3.12)-(3.3)$, we have

$\langle\coprod v, v\rangle+\Vert(p+1)\nabla v\Vert^{2}-\Vert dv\Vert^{2}-\Vert\delta v\Vert^{2}$

$=\delta$[ $\{(p+1)\nabla$ v–dv} $Lv-vL\delta v$].

Since
$\langle(p+1)\nabla v, dv\rangle=\Vert dv\Vert^{2}$

we have
\langle 3.13) $\Vert(p+1)\nabla v-dv\Vert^{2}=\Vert(p+1)\nabla v\Vert^{2}-\Vert dv\Vert^{2}$ .

Therefore we get

.(3.14) $\langle\coprod v, v\rangle+\Vert(p+1)\nabla v-dv\Vert^{2}-\Vert\delta v\Vert^{2}$

$=\delta[\{(p+1)\nabla v-dv\}Lv-vL\delta v]$ .
Integrating (3.14) and applying Stokes’ theorem to the right hand member

we obtain an integral formula

i3.15) $\int_{M}[\langle\square v, v\rangle+\Vert(p+1)\nabla v-dv\Vert^{2}-\Vert\delta v\Vert^{2}]d\sigma$

$=\int_{B}\langle N, \{(p+1)\nabla v-dv\}Lv-vL\delta v\rangle d^{\prime}\sigma$ .
Therefore if $v$ satisfies (3.10) and (3.11) in $M$ and (3.9) only on $B$, we find

that $v$ is a Killing field in $M$.
Thus we have
THEOREM 3.4. In order that a skew-symmetric tensor field $v$ of $M$ of order

$p$ is a Killing field in M. it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\square v=0, \delta v=0\\dv=(p+1)\nabla v\end{array}\right.$ $onin$ $MB$

.
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Since $N\lrcorner dv-(p+1)N\lrcorner\nabla v=N\lrcorner dv-(p+1)\nabla_{N}v$ is a skew-symmetric ten-
sor at each point of $B$, we can make the tangential part and the normal part
of the tensor, that is, the tangential part is given by $ndv-(p+1)t(\nabla_{N}v)$ and
the normal part is given by $-(p+1)n(\nabla_{N}v)$ . Therefore $v$ satisfies (3.9) on $B$,
if and only if it satisfies
(3.16) $ndv=(p+1)t(\nabla_{N}v)$

and
(3.17) $n(\nabla_{N}v)=0$

on $B$ .
Since

\langle $N,$ $\{(p+1)\nabla$ v–dv} $Lv-v\llcorner\delta v\rangle$

$=\langle(p+1)t(\nabla_{N}v)-ndv, tv\rangle+\langle(p+1)n(\nabla_{N}v)-t\delta v, nv\rangle$ ,

we can write the integral formula (3.15) in the form

(3.18) $\int_{M}[\langle\coprod v, v\rangle+\Vert(p+1)\nabla v-dv\Vert^{2}-\Vert\delta v\Vert^{2}]d\sigma$

$=\int_{B}[\langle(p+1)t(\nabla_{N}v)-ndv, tv\rangle+\langle(p+1)n(\nabla_{N}v)-t\delta v, nv\rangle]d^{\prime}\sigma$ .

Thus we have
$CoROLLARY$ . In order that a skew-symmetric tensor field $v$ of $M$ of order $p$

is a Killing field in $M$, it is necessary and sufficient thal $v$ satisfies

$\left\{\begin{array}{l}\square v=0, \delta v=0\\ndv=(p+1)t(\nabla_{N}v),\end{array}\right.$

$n(\nabla_{N}v)=0$

$oninMB$

.
Also we have from (3.18)

THEOREM 3.5. In order that a skew-symnetric tensor field $v$ of $M$ of order
$p$ is a Killing field in $M$ tangential to $B$, it is necessary and sufficient that $v$

satisfies

$\left\{\begin{array}{l}\coprod v=0, \delta v=0\\ndv=(p+1)t(\nabla_{N}v),\end{array}\right.$

$nv=0$
$oninMB$

.
From (3.7) we can easily see that $v$ satisfies (3.16) and is tangential to $B$

if and only if it satisfies $pt(\nabla_{N}v)=-Htv$ and $nv=0$ .
Thus we have
COROLLARY. In order that a skew-symmetric tensor field $v$ of $1\triangleright I$ of order $p$

is a Killing field in $M$ tangential to $B$, it is necessary and sufficient that $v$

satisfies

$\left\{\begin{array}{l}\square v=0, \delta v=0\\pt(\nabla_{N}v)=-Htv\end{array}\right.$

$nv=0$
$oninMB$

.
We have easily from (3.18)
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THEOREM 3.6. In order that a skew-symmetric tensor field $v$ of $M$ is a
Killing field in $M$ normal to $B$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\coprod v=0, \delta v=0\\n(\nabla_{N}v)=0, tv=0\end{array}\right.$ $oninMB$

.
It is easy to see from (3.8) that $v$ satisfies (3.11) in $M$ and (3.17) on $B$ and

is normal to $B$ if and only if it satisfies (3.11) in $M$ and $\hat{H}nv=0$ on $B$ and is
normal to $B$.

Thus we have
$CoROLLARY$ . In order that a skew-symmetric tensor field $v$ of $M$ is a Killing

field normal to $B$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\square v=0, \delta v=0\\\hat{H}nv=0, tv=0\end{array}\right.$ $oninMB$

.
In the rest of this section we consider conformal vector fields in $M$.
If a vector field $v$ satisfies at each point of $M$

(3.19) $2\nabla v=dv+\frac{2}{m}\delta v\cdot g$ ,

we call $v$ a conformal vector field in $M^{4)}$

A conformal vector field $v$ in $M$ satisfies

(3.20) $\square v+\frac{m-2}{m}d\delta v=0$ .

On the other hand for an arbitrary vector field $v$ of $M$ we have

(3.21) $\langle\coprod v+\frac{m-2}{m}d\delta v, v\rangle+\Vert 2\nabla v-dv-\frac{2}{m}\delta v\cdot g\Vert^{2}$

$=\delta[\{2\nabla v-dv-\frac{2}{m}\delta v\cdot g\}Lv\}$ .

Therefore we get an integral formula

(3.22) $\int_{M}[\langle\coprod v+\frac{m-2}{m}d\delta v, v\rangle+\Vert 2\nabla v-dv-\frac{2}{m}\delta v\cdot g\Vert^{2}]d\sigma$

$=\int_{B}\langle N, \{2\nabla v-dv-\frac{2}{m}\delta v\cdot g\}\llcorner v\rangle d^{\prime}\sigma$ .

Thus we have
THEOREM 3.7. In order that a vector field $v$ of $M$ is a conformal vector

field in $M$, it is necessary and sufficient that $v$ satisfies

4) It is easily seen that a conformal tensor field of order $>1$ defined in [18] is
necessarily a Killing field.
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$\left\{\begin{array}{l}\coprod v+\frac{m-2}{m}d\delta v=0\\2\nabla v=dv+\frac{2}{m}\delta v\cdot g\end{array}\right.$ $onin$ $MB$

.

If $v$ is a conformal vector field in $M$, contracting (3.19) with $N$ we have

(3.23) $2\nabla_{N}v=N\lrcorner dv+\frac{2}{m}\delta v\cdot N$ .

Thus the tangential part and normal part of $\nabla_{N}v$ are given respectively
by
(3.24) $2t(\nabla_{N}v)=ndv$ ,

(3.25) $ n(\nabla_{N}v)=\frac{1}{m}\delta\iota$ .

Since for an arbitrary vector field $v$ of $M$ we have

$\langle N, \{2\nabla v-dv-\frac{2}{m}\delta v\cdot g\}Lv\rangle$

$=\langle 2t(\nabla_{N}v)-n(dv), tv\rangle+2\{n(\nabla_{N}v)-\frac{2}{m}\delta v\}\cdot nv$

the integral formula (3.22) can be written in the form

(3.26) $\int_{M}[\langle\coprod v+\frac{m-2}{m}d\delta v, v\rangle+\Vert 2\nabla v-dv-\frac{2}{m}\delta v\cdot g\Vert^{2}]d\sigma$

$=\int_{B}[\langle 2t(\nabla_{N}v)-ndv, tv\rangle+2\{n\nabla_{N}v-\frac{1}{m}\delta v\}\cdot nv]d^{r_{O}}$ .
Thus we have
$CoROLLARY$ . In order that a vector field $v$ of $M$ is a conformal vector field

in $M$, it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\coprod v+\frac{m-2}{m}d\delta v=0\\2t(\nabla_{N}v)=ndv, n\nabla_{N}v=\backslash \frac{1}{m}\delta v\end{array}\right.$ $oninMB$

.
Also we have from (3.26)

THEOREM 3.8. In order that a vector field $v$ of $M$ is a conformal vector field
in $M$ tangential to $B$, it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\square v+\frac{m-2}{m}d\delta v=0\\2t(\nabla_{N}v)=ndv, nv=0\end{array}\right.$
$onin$ $MB$

.
From the formula (3.7) we can find that a vector field $v$ satisfies (3.24) on

$B$ and is tangential to $B$ if and only if it satisfies $t(\nabla_{N}v)=-Htv$, and $nv=0$

on $B$.
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Thus we have
COROLLARY. In order that a vector field $v$ of $M$ is a conformal vector field

in $M$ tangential to $B$ , it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\coprod v+\frac{m-2}{m}d\delta v=0\\t(\nabla_{N}v)=-Htv\end{array}\right.$
$onin$ $MB$

.
From (3.26) we have
THEOREM 3.9. In order that a vector field $v$ of $M$ is a conformal vector field

in $M$ normal to $B$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\square v+\frac{m-2}{m}d\delta v=0\\n(\nabla_{N}v)=\frac{1}{m}\delta v, tv=0\end{array}\right.$ $onin$ $MB$

.

From the formula (3.8), it is easily seen that a vector field $v$ of $M$ satisfies
(3.25) and is normal to $B$ if and only if it satisfies $(m-1)n(\nabla_{N}v)=-\hat{H}nv$ , and
$tv=0$ on $B$.

Thus we have
$CoROLLARY$ . In order that a vector field $v$ of $M$ is a conformal vector field

in $M$ normal to $B$ it is necessary and sufficient that $v$ satisfies

$\left\{\begin{array}{l}\square v+\frac{m-2}{m}d\delta v=0\\(m-1)n(\nabla_{N}v)=-\hat{H}nv,\end{array}\right.$

$tv=0$

$i_{O}n_{n}MB$

.

\S 4. Non existence of harmonc and Kililng fields and conformal fields In $M$.
In this section we shall consider the conditions for non existence of har-

monic fields, Killing fields or conformal vector fields.
Let $v$ be an arbitrary skew-symmetric $p$-tensor field in $M$.
Forming $(3.12)-(3.2)$ we have

(4.1) $\langle Dv-\triangle v, v\rangle+(p+1)$ I $\nabla v\Vert^{2}-IIdv\Vert^{2}-\Vert\delta v\Vert^{2}$

$=\delta$( $\nabla vL$ v–dv $\llcorner v-vL\delta v$).

Since
$Dv-\triangle v=Fv$

we can reduce (4.1) to the form

$F^{(p)}(v)+(p+1)$ I $\nabla v\Vert^{2}-\Vert dv$ I 2-1I $\delta v\Vert^{2}=\delta$( $\nabla vL$ v-dv $Lv-vL\delta v$).

Integrating this equation and applying Stokes’ theorem we have
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$\int_{M}[F^{(p)}(v)+(p+1)|\nabla v\Vert^{2}-\Vert dv\Vert^{2}-\Vert\delta v\Vert^{2}]d\sigma$

$=\int_{B}$ \langle $N,$ $\nabla v\llcorner$ v–dv $\llcorner v-vL\delta v\rangle$ $ d^{\prime}\sigma$ .

Since we have

\langle $N,$ $\nabla v\llcorner$ v–dv $Lv-vL\delta v\rangle$

$=\langle t\nabla_{N}v-ndv, tv\rangle+\langle n\nabla_{N}v-t\delta v, nv\rangle$

we get, using the formula (2.9) and (2.10),

\langle $N,$ $\nabla vL$ v–dv $Lv-vL\delta v\rangle$

$=H^{(p)}(tv)+\hat{H}^{(p-1)}(nv)+\langle dnv, tv\rangle-\langle\delta tv, nv\rangle$ .
On the other hand we find by virtue of compactness of $B$ that

$\int_{B}[\langle dnv, tv\rangle-\langle\delta tv, nv\rangle]d^{\prime}\sigma=2\int_{B}\langle dnv, tv\rangle d^{\prime}\sigma$ .

Thus we obtain

(4.2) $\int_{M}[F^{(p)}(v)+(p+1)\Vert\nabla v\Vert^{2}-\Vert dv\Vert^{2}-\Vert\delta v\Vert^{2}]d\sigma$

$=\int_{B}[H^{(p)}(tv)+\hat{H}^{(p-1)}(nv)+2\langle dnv, tv\rangle]d^{\prime}\sigma$ .
If $v$ is a harmonic field in $M$, we have

$\int_{M}[F^{(p)}(v)+(p+1)\Vert\nabla v\Vert^{2}]d^{\prime}\sigma=\int_{B}[H^{(p)}(tv)+\hat{H}^{(p-1)}(nv)+2\langle dnv, tv\rangle]d^{\prime}\sigma$ .

Thus we have
THEOREM 4.1. If a harmonic field $v$ in $M$ of order $p$ tangential (normal) to

$B$ satisfies $F^{(p)}(v)\geqq 0$ in $M$ and $H^{(p)}(tv)\leqq 0(\hat{H}^{(21-1)}(nv)\leqq 0)$ on $B,$ $v$ satisfies
$F^{(p)}(v)=0$ and $\nabla v=0$ in $M$ and $H^{(p)}(tv)=0(\hat{H}^{(p-1\rangle}(nv)=0)$ on $B$ .

Assume that $F^{(p)}$ is positive semi-definite at each point in $M$ and $H^{(p)}(\hat{H}^{(p-1)})$

is negative semi-definite at each point on $B$, and let $v$ be a harmonic field in
$M$ of order $p$ tangential (normal) to $B$. Then $v$ satisfies the conditions in
Theorem 4.1, and therefore $v$ satisfies $F^{(p)}(v)=0$ and $\nabla v=0$ in $M$ and also
$H^{(p)}(tv)=0(\hat{H}^{(p-1)}(nv)=0)$ on $B$ . Here we assume moreover that either $F^{(p)}$ is
positive definite at one point at least in $M$ or $H^{(p)}(\hat{H}^{(p-1)})$ is negative definite
at one point at least on $B$ . Under the former assumption, we have $v=0$ at
the point and thus we can conclude that $v$ vanishes at every point in $M$,
because $v$ satisfies $\nabla v=0$ . Under the later one, we have $tv=0(nv=0)$ at the
point, and thus from the formula (2.7) we have $v=0$ at the point. Therefore
we can also conclude that $v$ vanishes at every point in $M$.

Thus we have
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THEOREM 4.2. There exists no harmonic field in $M$ of order $p$ tangential
(normal) to $B$ other than the zero tensor field, if $F^{(p)}$ is positive semi-definite
everywhere in $M,$ $H^{(p)}(\hat{H}^{(p-1)})$ is negative semi-definite everywhere on $B$, and there
exists at least one point $x$ in $M$ such that $F^{(p)}$ is positive definite at $x$, or such
that $x$ is on $B$ and $H^{(p)}(\hat{H}^{(p-1)})$ is negative definite at $x$.

In particular, we have
COROLLARY 1. There exists no harmonic field in $M$ of order $p$ tangential

(normal) to $B$ other than the zero tensor field, if one of the following conditions
is satisfied in $M$ : (1) $F^{(p)}$ is positive definite everywhere in $M$ and $H^{(p)}(\hat{H}^{(p-1)})$

is negative semi-definite everywhere on B. (2) $F^{(p)}$ is positive semi-definite every-
where in $M$ and $H^{(p)}(\hat{H}^{(p-1)})$ is negative definite everywhere on $B$ .

The condition (1) in the corollary has been obtained by Yano in [20].

From Theorem 1.2 we find that if $F^{(p)}$ is positive semi-definite (or definite)

at a point then $F^{(m-p)}$ is also positive semi-definite (or definite) at the point.
Also, from Theorem 2.1 we find that $H^{(p)}$ is negative semi-definite (or definite)

if and only if $\hat{H}^{(m-p-1)}$ is negative semi-definite (or definite).

Thus we have
COROLLARY 2. Under the assumptions in Theorem 4.2, there exists no har-

monic field in $M$ of order $p$ tangential (normal) to $B$ and no harmonic field in
$M$ of order $m-p$ normal (tangential) to $B$ other than the zero tensor field.

We denote by $R_{p}(M)(R_{p}(M, B))$ the absolute p-th Betti number of $M$ (the

relative p-th Betti number of $M$ modulo $B$).

By Duff and Spencer [7] $R_{p}(M)(R_{p}(M, B))$ is equal to the number of lin-
early independent harmonic fields in $M$ of order $p$ tangential (normal) to $B$.

Then from Corollary 2 of Theorem 4.2. we have
COROLLARY 3. Under the assumption in Theorem 4.2 we have

$R_{p}(M)=R_{m-p}(M, B)=0$ $(R_{m-p}(M)=R_{p}(M, B)=0)$ .
In particular, applying the result in the parentheses of the corollary to

$p=1$ , we have $R_{1}(M, B)=0$ .
On the other hand, because of connectedness of $M$, we find that $R_{0}(M)=1$

and $R_{0}(M, B)=0$ .
Therefore using the homology sequence of the pair $(M, B)$ (see [8]) we find

$R_{0}(B)=R_{0}(M)=1$ . This means that $B$ is connected.
Thus we have
COROLLARY 4. If the Ricci curvature of $V_{m}$ is non-negative at each point of

$M$, the mean curvature of $B$ is non-positive at each point of $B$ , and moreover if
there is one point at least in $M$ such that the Ricci curvature is positive for all
directions at the point or such that the point is on $B$ and the mean curvature is
negative at the point, then the boundary $B$ of $M$ is connected.

Next we consider the Killing fields in $M$.
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In the case of the Killing fields, the non existence conditions for the field
tangential to $B$ and for the field normal to $B$ do not go in parallel, because
from the corollary of Theorem 3.6, a Killing field $v$ normal to $B$ satisfies $\hat{H}nv=0$

and so $\hat{H}^{(p-1)}(nv)=0$ .
First we consider the integral formula (4.2).

From (3.13) we have for an arbitrary skew-symmetric $p$-tensor field $v$ ,

$(p+1)\Vert\nabla v\Vert^{2}-\Vert dv\Vert^{2}=\Vert(p+1)\nabla v-dv\Vert^{2}-p(p+1)\Vert\nabla v\Vert^{2}$ .
Then we can write the integral formula (4.2) in the form

$\int_{M}[F^{(p)}(v)+\Vert(p+1)\nabla v-dv\Vert^{2}-p(p+1)\Vert\nabla v\Vert^{2}-\Vert\delta v\Vert^{2}]d\sigma$

$=\int_{B}[H^{(p)}(tv)+\hat{H}^{(p-1)}(nv)+2\langle dnv, tv\rangle]d^{\gamma}\sigma$ .

When $v$ is in particular a Killing field in $M$, we have

(4.3) $\int_{M}[F^{(p)}(v)-p(p+1)\Vert\nabla v\Vert^{2}]d\sigma$

$=\int_{B}[H^{(p)}(tv)+\hat{H}^{(p-1)}(nv)+2\langle dnv, lv\rangle]d^{\prime}\sigma$ .

Thus we have
THEOREM 4.3. If a Killing field $v$ in $M$ of order $p$ tangential to $B$ satisfies

$F^{(p)}(v)\leqq 0$ in $M$ and $H^{(p)}(tv)\geqq 0$ on $B,$ $v$ satisfies $F^{(p)}(v)=0$ and $\nabla v=0$ in $M$

and $H^{(p)}(tv)=0$ on $B$ .
By a similar argument as in Theorem 4.2, we have
THEOREM 4.4. There exists no Killing field in $M$ of order $p$ tangential to $B$

other than the zero tensor field, if $F^{(p)}$ is negative semi-definite everywhere in
$M,$ $H^{(p)}$ is positive semi-definite everywhere on $B$ and $\iota f$ there exists one point at
least in $M$ such that $F^{(p)}$ is negative definite at the point, or such that the point
is on $B$ and $H^{(p)}$ is positive definite at the point.

In particular
$CoROLLARY$ . There exists no Killing field in $M$ of order $p$ tangential to $B$

other than the zero tensor field, if one of the following conditions is satisfied in
$M$ : (1) $F^{(p)}$ is negative definite everywhere in $\lrcorner\eta\chi$ and $H^{(p)}$ is positive semi-definite
everywhere on B. (2) $F^{(p)}$ is negative semi-definite everywhere in $M$ and $H^{(p)}$ is
positive definile everywhere on $B$ .

The condition (1) in the corollary has been obtained by Yano in [20].

If $v$ is a Killing field in $M$ of order $p$ normal to $B$ , then $v$ satisfies
(4.4) $Hnv=0$

and the integral formula can be reduced to the form

(4.5) $\int_{M}[F^{(P)}(v)-p(p+1)\Vert\nabla v\Vert^{2}]d\sigma=0$ .
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Thus we have
THEOREM 4.5. If a Killing field in $M$ of order $p$ normal to $B$ satisfies

$F^{(p)}(nv)\leqq 0$ , then $v$ satisfies $F^{(p)}(v)=0$ and $\nabla v=0$ in $M$.
If $F^{(p)}$ is negative semi-definite everywhere in $M$ and there is one point

at least in $M$ where $F^{(p)}$ is negative definite, then any Killing field $v$ in $M$ of
order $p$ normal to $B$ satisfies $F^{(p)}(v)=0$ and $\nabla v=0$ in $M$, and from this we
have $v=0$ at the point. Therefore we can conclude that $v$ vanishes every-
where in $M$.

If $F^{(p)}$ is negative semi-definite, the operator $\hat{H}$ is non-degenerate at one
point at least on $B$ as an endomorphism of the vector space of skew-symmetric
$(p-1)$-tensors of $B$ at the point, then, we have $\nabla v=0$ in $M$ and $nv=0$ at
the point and so we have $v=0$ at the point. Therefore we can find that $v$

vanishes everywhere in $M$.
Thus we have
THEOREM 4.6. There exists no Killing field in $M$ of order $p$ normal to $B$

other than the zero tensor field, if one of the following conditions is satisfied in
$M$ : (1) $F^{(p)}$ is negative semi-definite everywhere in $M$ and there is one point at
least in $M$ where $F^{(p)}$ is negative definite. (2) $F^{(p)}$ is negative semi-definite
everywhere in $M$ and there is one point at least on $B$ where the operator $\hat{H}$ is
non-degenerate as an endomorphism of the vector space of all skew-symmetric
$(p-1)$-tensors of $B$ at the point.

In particular
COROLLARY. If $F^{(p)}$ is negative definite everywhere in $M$, there exists no

Killing field in $M$ of order $p$ normal to $B$ other than the zero tensor field.
This corollary has been obtained by Yano and the present author in [23].
Now, in order to obtain the non-existence conditions for conformal vector

field, we take an arbitrary vector field of $M$. Then by an easy calculation
we can write (4.2) in the form

$\int_{M}[F^{(1)}(v)+\Vert 2\nabla v-dv-\frac{2}{m}\delta v\cdot g\Vert^{2}-2\Vert\nabla v\Vert^{2}-\frac{m-2}{m}\Vert\delta v\Vert^{2}]a\sigma$

$=\int_{B}[H^{(1)}(tv)+\hat{H}^{(0)}(nv)+2\langle dnv, tv\rangle]d^{\prime}\sigma$ ,

where $v$ is a conformal vector, we have

(4.6) $\int_{M}[F^{(1)}(v)-2\Vert\nabla v\Vert^{2}-\frac{m-2}{m}\Vert\delta v\Vert^{2}]d\sigma$

$=\int_{B}[H^{(1)}(tv)+\hat{H}^{(0)}(nv)+2\langle dnv, tv\rangle]d^{\prime}\sigma$ .
Thus we have
THEOREM 4.7. If a conformal vector field $v$ in $M$ tangential to $B$ satisfies

$F^{(1)}(v)\leqq 0$ in $M$ and $H^{(1)}(tv)\geqq 0$ on $B,$ $v$ satisfies $F^{(1)}(v)=0$ and $\nabla v=0$ in $M$
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and $H^{(1)}(tv)=0$ on $B$.
THEOREM 4.8. There exists no conformal vector field in $M$ tangential to $B$

other than the zero vector field, if the Ricci curvature of $V_{m}$ is negative semi-
definite everywhere in $M$, the second fundamental form of $B$ is positive semi-
definite everywhere on $B$ and moreover there exists one point at least in $M$ such
that the Ricci curvature is negative definite at the point or such that the point
is on $B$ and there the second fundamental form is positive definite.

In particular,
$CoROLLARY$ . There exists no conformal vector field in $M$ tangential to $B$

other than the zero vector field if one of the following conditions is satisfied in
$M$ : (1) The Ricci curvature is negative definite everywhere in $M$ and the second
fundamental form of $B$ is positive semi-definite everywhere on B. (2) The Ricci
curvature is negative semi-definite everywhere in $M$ and the second fundamental
form of $B$ is positive definite everywhere on $B$ .

The condition (1) in the corollary has been obtained by Yano in [20].

If we denote by $Q$ the mean curvature of $B$, i. e.
$Q=g^{ij}H_{ij}$ ,

then $\hat{H}^{(0)}(nv)$ is written in the form
$\hat{H}^{(0)}(nv)=Q\cdot(nv)^{2}$ .

Remark here that $nv$ is a function on $B$ for $v$ is a vector field.
Then if $v$ is a conformal vector field in $M$ normal to $B$, (4.6) is reduced

to the form

$\int_{M}[F^{(1)}(v)-2\Vert\nabla v\Vert^{2}-\frac{m-2}{m}(\delta v)^{2}]d\sigma$

$=\int Q\cdot(nv)^{2}d^{\prime}\sigma$ .
Thus we have
THEOREM 4.9. When the mean curvature of $B$ is non-negative everywhere

on $B$ , a conformal vector field in $M$ normal to $B$ satisfying $F^{(1)}(v)\leqq 0$ satisfies
$F^{(1)}(v)=0$ and $\nabla v=0$ in $M$ and $Q\cdot(nv)^{2}=0$ on $B$ .

THEOREM 4.10. There exists no conformal vector field in $M$ normal to $B$

other than the zero vector field, if the Ricci curvature is negative semi-definite
everywhere in $M$, the mean curvature of $B$ is non-negative everywhere on $B$, and
moreover there exists one point at least in $M$ such that the Ricci curvature is
negative definite at the point or such that the point is on $B$ and there the mean
curvature does not vanish.

In particular
COROLLARY 1. There exists no conformal vector field on $M$ normal to $B$

other than the zero vector field, if one of the following conditions is satisfied in
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$M$ : (1) The Ricci curvature is negative definite everywhere in $M$ and the mean
curvature is non-negative everywhere on B. (2) The Ricci curvature is negative
semi-definite everywhere in $M$ and the mean curvature is positive everywhere on $B$ .

The condition (1) in the corollary has been obtained by Yano [19].

If the second fundamental form of $B$ is positive semi-definite (or definite),

then the mean curvature is non-negative (or positive).
Thus we have
COROLLARY 2. Under the condition in Theorem 4.5, there exists no conformal

vector field in $M$ either tangential or normal to $B$ other than the zero vector field.

\S 5. Some applications.

We denote by $K$ the curvature tensor field of $M$, by $P$ the projective
curvature tensor fie $1d$ of $M$, by $Z$ the concircular curvature tensor field of $M$

and by $C$ the conformal curvature tensor field of $M$.
If in a local coordinate system $(\xi^{\kappa})$ the covariant components of the curva-

ture tensor field $K$ are denoted by $K_{\nu\mu\lambda\kappa}$ and those of the Ricci tensor field
are denoted $K_{\mu\lambda}$ , the covariant components of $P,$ $Z$ and $C$ are given respec-
tively by

$P_{.\mu\lambda\kappa},=K_{\nu\mu\lambda\kappa}-\frac{1}{m-1}(g_{\nu\kappa}K_{\mu\lambda}-g_{\mu\kappa}K_{\nu\lambda})$

$Z_{\nu\mu\lambda\kappa}=K_{\nu\mu\lambda\kappa}-\frac{R}{m(m-1)}(g_{\nu\kappa}g_{\mu\lambda}-g_{\mu\kappa}g_{\nu\lambda})$

$C_{\nu\mu\lambda\kappa}=K_{\nu\mu\lambda\kappa}-\frac{1}{m-2}(g_{\nu\kappa}K_{\mu\lambda}-g_{\mu\kappa}K_{\triangleright\lambda}+g_{\mu\lambda}K_{\nu\kappa}-g_{\nu\lambda}K_{f\ell\kappa})$

$+\frac{R}{(m-1)(m-2)}(g_{\nu\kappa}g_{\mu\lambda}-g_{\mu\kappa}g_{\nu\lambda})$ ,

where $R$ is the curvature scalar of $M$.
We denoe by $L$ the smallest eigenvalue of the matrix $(K_{\mu\lambda})$ and also by

$L^{\prime}$ the largest eigenvalue.

Now we introduce the quantities $\hat{P},\hat{Z}$ and $\hat{C}$, respectively given by

(5.1) $\hat{P}=S_{w}up\frac{2\langle PLw,w\rangle}{\Vert w\Vert^{2}}$ ,

(5.2) $\hat{Z}=S_{w}up\frac{2\langle ZLw,w\rangle}{\Vert w\Vert^{2}}$ ,

(5.3) $\hat{C}=S_{w}up\frac{2\langle CLw,w\rangle}{\Vert w\Vert^{2}}$ ,

at each point of $M$, where $w$ is a skew-symmetric tensor of order 2.
First we consider the curvature tensor field $K$.
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If $K$ satisfies

(5.4) $0<\frac{1}{2}A\leqq-\frac{2\langle K\llcorner w,w\rangle}{\Vert w||^{2}}\leqq A$ ,

for any skew-symmetric tensor of order 2 and for some positive constant $A$

at each point of $M$, then the quadratic form $F^{(p)}$ is positive definite for
$p=1,2$ , $\cdot$ . , $[m/2]$ . (See [18] or [22].) From Theorem 1.2, we find that $F^{(p)}$ is
positive definite for $p=1,2,$ $\cdots$ , $m-1$ .

Similary, if $K$ satisfies

(5.5) $A\geqq\frac{2\langle KLw,w\rangle}{\Vert w||^{2}}\geqq--A\geqq 021$

for any skew-symmetric tensor of order 2 and for some positive constant $A$

at each point of $M$, then $F^{(p)}$ is negative definite for $p=1,2,$ $\cdots$ , $[m/2]$ (see
[18] or [22]), and thus $F^{(p)}$ is negative definite for $p=1,2,$ $\cdots$ , $m-1$ .

Next we consider $P,$ $Z$ and $C$.
Using $\hat{P},$ $L$ and $L^{\prime}$ we can find that for any skew-symmetric tensor $v$ of

order $p$ , we have (see [18] or [22])

(5.6) $F^{(p)}(v)\geqq p(\frac{m-p}{m-1}L-\frac{p-1}{2}\hat{P})\Vert v\Vert^{2}$

and also

(5.7) $F^{(p)}(v)\leqq p(\frac{p-1}{2}\hat{P}-\frac{m-p}{m-1}L^{\prime})\Vert v\Vert^{2}$ .
Therefore if $L$ and $\hat{P}$ satisfy

(5.8) $\frac{m-p}{m-1}L>\frac{p-1}{2}\hat{P}$ , $p=1,$ $\cdots,$ $m-1$

$F^{(p)}$ is positive definite for $p=1,$ $\cdots$ , $m-1$ and if they satisfy

(5.9) $\frac{m-p}{m-1}L\geqq\frac{p-1}{2}\hat{P}$ , $p=1,$ $\cdots,$ $m-1$

then $F^{(p)}$ is positive semi-definite for $p=1,$ $\cdots$ , $m-1$ . Also if $L^{\prime}$ and $\hat{P}$ satisfy

(5.10) $\frac{m-p}{m-1}L^{\prime}>\frac{p-1}{2}\hat{P}$ , $p=1,$ $\cdots,$ $m-1$

$F^{(p)}$ is negative definite for $p=1,$ $\cdots$ , $m-1$ and if they satisfy

(5.11) $\frac{m-p}{m-1}L^{\prime}\geqq\frac{p-1}{2}\hat{P}$ , $p=1,$ $\cdots,$ $m-1$

$F^{(p)}$ is negative semi-definite for $p=1,$ $\cdots$ , $m-1$ .
Using $L,$ $L^{\prime},$ $R$ and $\hat{Z}$, we have for any skew-symmetric tensor $v$ of order

$p$ (see [18] or [22])

(5.12) $F^{(p)}(v)\geqq p(L-\frac{(p-1)}{m(m-1)}R-\frac{p-1}{2}\hat{Z})\Vert v\Vert^{2}$
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and

(5.13) $F^{(p)}(v)\leqq p(-L^{\prime}-\frac{(p-1)}{m(m-1)}R+\frac{p-1}{2}\hat{Z})||v\Vert^{2}$ .

Thus if $L,$ $R$ and $\hat{Z}$ satisfy

\langle 5.14) $L-\frac{(}{m}\frac{p-1}{m-}()1)^{-R>}p\frac{-1}{2}\hat{Z}$ , $(p=1, \cdots, m-1)$

$F^{(p)}$ is positive definite for $p=1,$ $\cdots$ , $m-1$ and if they satisfy

(5.15) $L-\frac{(p-1)}{m(m-1)}R\geqq\frac{p-1}{2}\hat{Z}$ , $(p=1, \cdots, m-1)$

then $F^{(p)}$ is positive semi-definite for $p=1,$ $\cdots$ , $m-1$ . Also if $L^{\prime},$ $R,\hat{Z}$ satisfy

$(5.16)$ $L^{\prime}+\frac{p-1}{m(m-1)}R>\frac{p-1}{2}\hat{Z}$ , $(p=1, \cdots, m-1)$

then $F^{(p)}$ is negative definite for $p=1,$ $\cdots$ , $m-1$ and if they satisfy

(5.17) $L^{\prime}+\frac{p-1}{m(m-1)}R\geqq\frac{p-1}{2}\hat{Z}$ , $(p=1, \cdots, m-1)$

$F^{(p)}$ is negative semi-definite for $p=1,$ $\cdots$ , $m-1$ .
Using $L,$ $L^{\prime},$ $R$ and $\hat{C}$ we have for any skew-symmetric tensor $v$ of order

$p(\leqq m/2)$ (see [18] or [22])

(5.18) $F^{(p)}(v)\geqq p(\frac{m-}{m-}22\underline{p}L+\frac{p-1}{(m-1)(m-2)}R-\frac{p-1}{2}\hat{C})\Vert v\Vert^{2}$

and

(5.19) $F^{(p)}(v)\leqq p(-\frac{m-2}{m-2}\underline{p}L^{\prime}+\frac{p-1}{(m-1)(m-2)}R+\frac{p-1}{2}\hat{C})\Vert v\Vert^{2}$ .

Thus if $L,$ $R$ and $\hat{C}$ satisfy

(5.20) $\frac{m-2p}{m-2}L+\frac{p-1}{(m-1)(m-2)}R>\frac{p-1}{2}\hat{C}$ $(p=1, \cdots, [m/2])$ ,

$F^{(p)}$ is positive definite for $p=1,$ $\cdots$ , $[m/2]$ and therefore from Theorem 1.2
we find that $F^{(p)}$ is positive definite for $p=1,$ $\cdots$ , $m-1$ , and if they satisfy

(5.21) $\frac{m-}{m-}2L+\frac{p-1}{(m-1)(m-2)}R2\underline{p}\geqq\frac{p-1}{2}\hat{C}$ $(p=1, \cdots , [m/2])$

then $F^{(p)}$ is positive semi-definite for $p=1,2,$ $\cdots$ , $m-1$ . Also if $L^{\prime},$
$R,\hat{C}$ satisfy

\langle 5.22) $\frac{m-}{m-}2L^{\prime}-\frac{p-1}{(m-1)(m-2)}R>\frac{p-1}{2}\hat{C}2\underline{p}$ $(p=1, \cdots, [m/2])$

then $F^{(p)}$ is negative definite for $p=1,$ $\cdots$ , $m-1$ , and if they satisfy

(5.23) $\frac{m-2p}{m-2}L^{\prime}-\frac{p-1}{(m-1)(m-2)}R\geqq\frac{p-1}{2}\hat{C}$ $(p=1, \cdots , [m/2])$
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then $F^{(p)}$ is negative semi-definite for $p=1,$ $\cdots$ , $m-1$ .
Thus we have
THEOREM 5.1. If, in a compact Riemannian manifold $M$ with convex bound-

ary $B$, one of the inequalities (5.8), (5.14) or (5.20) is satisfied, or the curvature
tensor field $K$ satisfies (5.4) for any skew-symmetric tensor of order 2 and for
some postive constant $A$ , then we have $R_{p}(M)=R_{I)}(M, B)=0$ for $p=1,$ $\cdots$ , $m-1$ .

THEOREM 5.2. If, in a compact Riemannian manifold $M$ with convex boundary
$B$, one of the inequalities (5.9), (5.15) or (5.21) is satisfied and there exists one
point at least on $B$ where the second fundamental form of $B$ is negative definite,
then we have $R_{p}(M)=R_{p}(M, B)=0$ .

THEOREM 5.3. If, in a compact Riemannian manifold $M$ with boundary $B$,
one of the inequalities (5.10), (5.16) or (5.22) is satisfied or the curvature tensor
field $K$ satisfies (5.5) for any skew-symmetric tensor of order 2 and for some
positve constant $A$ , then there exists no Killing field in $M$ of order $p(=1,2, \cdots,m-1)$,
normal to $B$ other than the zero tensor field.

THEOREM 5.4. If, in a compact Riemannian manifold $M$ with boundary $B$,

one of the inequalities (5.11), (5.17) or (5.23) is satisfied and there exists one point
at least on $B$ where the operator $\hat{H}$ is non-degenerate, then there exists no Killing

field in $M$ of order $p$ $(=1,2, \cdots , m-1)$ normal to $B$ other than the zero tensor
field.

THEOREM 5.5. If, in a Riemannian manifold $M$ with concave boundary $B$,

one of the inequalities (5.10), (5.16) or (5.22) is satisfied or the curvature tensor
field $K$ satisfies (5.5) for any skew-symmetric tensor of order 2 and for some
positive constant $A$ , there exists neither Killing field in $M$ of order $p(=1, \cdots , m-1)$

tangential to $B$ nor conformal vector field in $M$ tangential or normal to $B$ other
than the zero tensor field.

THEOREM 5.6. If, in a Riemannian manifold $M$ with concave boundary $B$,
one of the inequalities (5.11), (5.17) or (5.23) is satisfied and there exists one point
at least on $B$ where the second fundamental form of $B$ is positive definite, then
there exists neither Killing field in $M$ of order $p$ $(=1,2, \cdots , m-1)$ tangential to $B$

nor conformal vector field in $M$ tangential or normal to $B$ other than the zero
tensor field.
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