Closedness of some subgroups in linear algebraic groups

By T. MIYATA, T. ODA and K. OTSUKA

(Received June 29, 1961) (Revised Feb. 10, 1962)

Let M, N be closed subgroups of a linear algebraic group. It is mentioned in [1], that D. Hertzig proved that the commutator group [M, N] is closed if M, N are normal. (A proof is given in [2] 3-04 Proposition 1. This fact brings about some simplification of Borel's arguments as noted in [1].) We shall give in this paper a necessary and sufficient condition for M, N to the effect that [M, N] be closed, (Theorem 8 below,) from which the result of Hertzig easily follows (cf. [2], 3), and which will have also some interesting consequences. (Corollaries 9, 10, 11, below.)

In this paper we use the following conventions:

The subgroup generated by G_1 , G_2 is denoted by $G_1 \vee G_2$, and the connected component of the identity of an algebraic group G is denoted by G_0 .

The authors owe a great deal to M. Nagata, who gave us many useful suggestions. We offer our cordial thanks to him.

LEMMA 1. Let G be an algebraic group and let S_1, \dots, S_m be its closed irreducible subsets. Let $f_{\lambda}(x_1, \dots, x_m)(\lambda \in \Lambda)$ be words with $x_i \in S_i$, such that for suitable $(a_1^{\lambda}, \dots, a_m^{\lambda}) \in S_1 \times \dots \times S_m$, $f_{\lambda}(a_1^{\lambda}, \dots, a_m^{\lambda}) = 1$ for each $\lambda \in \Lambda$. Then the subgroup H of G generated by $f_{\lambda}(x_1, \dots, x_m)$, where (x_1, \dots, x_m) ranges over $S_1 \times \dots \times S_m$ and λ ranges over Λ , is closed and connected.

PROOF. For each $\lambda \in \Lambda$, let C_{λ} be the set of all $f_{\lambda}(x_1, \cdots, x_m)$ with $x_i \in S_i$. Then the set $C_{\lambda 1} \cdots C_{\lambda t}$ of products $y_1 \cdots y_t$ ($y_i \in C_{\lambda_i}$) is the image of a rational map from $(S_1 \times \cdots \times S_m) \times \cdots \times (S_1 \times \cdots \times S_m)$ (t-ple product) into G, whence $C_{\lambda_1} \cdots C_{\lambda_t}$ is a thick set ('ensemble épais' cf. [1]), i.e. the closure $C(\lambda_1, \cdots, \lambda_t)$ of $C_{\lambda_1} \cdots C_{\lambda_t}$ is irreducible and $C_{\lambda_1} \cdots C_{\lambda_t}$ contains a non-empty open subset of $C(\lambda_1, \cdots, \lambda_t)$. Since $1 \in C_{\lambda}$, we see that $C_{\lambda_1} \cdots C_{\lambda_t} \subseteq C_{\lambda_1} \cdots C_{\lambda_t} C_{\lambda_{t+1}}$, whence $C(\lambda_1, \cdots, \lambda_t) \subseteq C(\lambda_1, \cdots, \lambda_t, \lambda_{t+1})$. By the fact that $C(\lambda_1, \cdots, \lambda_t)$ are irreducible subvarieties of G, we see that there is a $C(\lambda_1, \cdots, \lambda_t)$, say $C(\lambda_1, \cdots, \lambda_u)$, such that every $C(\lambda_1', \cdots, \lambda_s')$ is contained in $C(\lambda_1, \cdots, \lambda_u)$. $C(\lambda_1, \cdots, \lambda_t)$ which has maximum dimension is a required one). Then $C_{\lambda_1} \cdots C_{\lambda_u} \subseteq H \subseteq C(\lambda_1, \cdots, \lambda_u)$. $C(\lambda_1, \cdots, \lambda_u)$ is the closure of H, hence is a group. Since H contains a non-empty open subset of $C(\lambda_1, \cdots, \lambda_u)$ (because $C_{\lambda_1} \cdots C_{\lambda_u}$ does), we see that $H = C(\lambda_1, \cdots, \lambda_u)$. This completes the proof.

PROPOSITION 2. Let M and N be closed subgroups of an algebraic group G,

whose connected components of the identity are M_0 and N_0 respectively. If MN = NM, MN is a closed subgroup of G with connected component of the identity $M_0N_0 = N_0M_0$.

PROOF. We can express M and N as the union of a finite number of cosets of M_0 and N_0 respectively. Then we see by a trivial calculation that the group MN can be expressed as the disjoint union of a finite number of subsets of the type mM_0N_0n . We want to show that M_0N_0 is equal to the subgroup $M_0 \vee N_0$ generated by M_0 and N_0 . As a subgroup of MN, $M_0 \vee N_0$ can be expressed as the disjoint union of a finite number of subsets of the type mM_0N_0n . On the other hand, mM_0 , N_0n are closed and irreducible, and the multiplication in G as a mapping $mM_0 \times N_0n \to mM_0N_0n$ is a rational mapping. So mM_0N_0n is a thick set, whence it follows easily that $M_0 \vee N_0 = M_0N_0$.

REMARK: A. Borel proved in [1] (Proposition 5.5 p. 38) a special case of our Proposition 2 where N is in the normalizer of M. For later use in this paper, this special case will suffice.

LEMMA 3. Let H be a closed connected subgroup of an algebraic group G. Then the smallest normal subgroup H^* of G containing H is closed and connected. PROOF. We know that $H^* = \bigvee_{g \in G} g^{-1}Hg$. By direct application of Lemma 1 to the words $f_g(x) = g^{-1}xg$ on $H(g \in G)$, we get the desired result.

We will see in Corollary 9, which will be proved at the end of this paper, that H need not be connected. (Of course in that case H^* is not necessarily connected.) But we can not prove it directly.

LEMMA 4. Let G be an algebraic group, M a closed connected subgroup of G and N a subset of G. Then the commutator group [M, N] is closed and connected.

PROOF. $f_n(x) = x^{-1}n^{-1}xn$ $(n \in N)$ are words on M, which take the value 1 for x = 1. By direct application of Lemma 1, we easily obtain the result.

LEMMA 5. If an algebraic group G is finitely generated, it is a finite group. PROOF. Let $\{g_i, i=1, 2, \cdots, r\}$ be generators of G, and let k be a field of definition for G. Then $K = k(g_1, \cdots, g_r)$ is again a field of definition for G, while G contains only K-rational points. Hence dim G = 0 and G is a finite group.

When A is an automorphism group of an abstract group G, we denote by G^{-1+A} the set $\{g^{-1}g^a\mid g\in G, \alpha\in A\}$ and by [A,G] the subgroup of G generated by the set.

LEMMA 6. If G^{-1+A} is finite, [A, G] is a finite group.

This lemma is due to R. Baer. For the proof we refer the reader to his paper [3], Satz 3.

LEMMA 7. Let M and N be subgroups of an abstract group G. Then [M, N] is a normal subgroup of $M \vee N$.

PROOF. By the formulas

$$x^{-1}[m, n]x = [mx, n][x, n]^{-1}, y^{-1}[m, n]y = [m, y]^{-1}[m, ny],$$

we get the result immediately.

THEOREM 8. Let M and N be closed subgroups of an algebraic group G. Then [M, N] is a closed subgroup of G, if and only if the subgroup $M \vee N$ of G generated by M and N is closed.

PROOF. Suppose [M, N] is closed. Then by Lemma 7 it is normal in $M \vee N$. Hence M is contained in the normalizer of [M, N] and M[M, N] is closed by Proposition 2. M[M, N] is normal in $M \vee N$, and therefore we see by the same reason that (M[M, N])N is closed. On the other hand, (M[M, N])NN])N is generated by M and N as easily shown. Then we have (M[M, N])N $= M \vee N$, namely $M \vee N$ is closed. Conversely suppose $L = M \vee N$ is closed. By Lemma 4 $[M, N_0]$, $[M_0, N]$ and $[[M, N], N_0]$ are closed, connected and contained in [M, N]. Then $K = [M, N_0] \vee [M_0, N] \vee [[M, N], N_0]$ is closed, connected and contained in [M, N], since we can apply Lemma 1 to the word f = xy, where $x \in [M, N_0]$, $y \in [M_0, N]$. Hence by Lemma 3, the smallest normal subgroup K^* containing K is closed and connected, and it is contained in [M,N], for [M, N] is normal in L. We want to show that K^* has a finite index in [M, N]. As $[M, N]/K^* = [MK^*, NK^*]/K^* = [MK^*/K^*, NK^*/K^*]$, we can reduce our problem to the special case where $K^*=1$. Therefore we assume $K^*=1$ and shall prove that [M,N] is finite. By our assumption M_0 and N_0 are normal in *L*. Let $\hat{L} = L/M_0$, $\hat{M} = M/M_0$, $\hat{N} = NM_0/M_0$, $\hat{N}_0 = N_0M_0/M_0$. Then \hat{L}/\hat{N} is finite, because $\hat{L}/\hat{N} \cong L/M_0N_0$ and L/M_0N_0 is a finitely generated algebraic group, and so finite by Lemma 5 (as to quotient algebraic groups, see [4]). We consider \hat{M} as a transformation group of $\hat{K} = [\hat{M}, \hat{N}]\hat{N}$. We know that \hat{K}/\hat{N}_0 is finite because it is a subgroup of \hat{L}/\hat{N}_0 . Let $\{k_i, i=1,2,\cdots,\alpha\}$ be the representatives of \hat{K} modulo $\hat{N}_{\scriptscriptstyle 0}$. For every $n_{\scriptscriptstyle 0} \in \hat{N}$, $m \in \hat{M}$, we have $[n_0k_i,m]=k_i^{-1}n_0^{-1}m^{-1}n_0k_im=\lceil k_i,m\rceil$, since the elements of \hat{M} and those of \hat{N}_0 commute by our assumption. Since \hat{M} is finite, $\hat{K}^{-1+\hat{M}}$ is finite, and therefore by Lemma 6 $[\hat{M}, \hat{K}] = [\hat{M}, \hat{N}] = [M, N]M_0/M_0$ is a finite group. Since $[M, N]M_0$ has a finite index in [M, N]M, $[M, N]M/M_0$ is also a finite group. To apply Lemma 6 again we consider N as a transformation group of [M, N]M. Let $\{g_i, i=1, 2, \dots, \alpha\}$ be representatives of [M, N]M modulo M_0 , and $\{n_j, j=1, 2, \dots, \alpha\}$ \cdots , β } be representatives of N modulo N_0 . Then for every $m_0 \in M_0$ and $n_0 \in N_0$,

$$[m_0g_i, n_0n_i] = g_i^{-1}m_0^{-1}n_i^{-1}n_0^{-1}m_0g_in_0n_i = [g_i, n_i],$$

since by our assumption the elements of M_0 and those of N commute, and since the elements of [M, N]M and those of N_0 commute. This shows that $\{[M, N]M\}^{-1+N}$ is finite, consisting only of $[g_i, n_j](i=1, 2, \cdots, \alpha, j=1, \cdots, \beta)$.

Hence [N, [M, N]M] is a finite group and therefore [M, N] is finite, which completes the proof.

COROLLARY 9. Let H be a closed subgroup of an algebraic group G. Then the smallest normal subgroup H^* of G containing H is closed.

PROOF. An elementary calculation shows that $H^* = [G, H] \vee H$. Our theorem implies that [G, H] is closed. However we know that [G, H] is also normal in G. This implies that H^* is equal to the product of H and [G, H]. Hence by Proposition 2, H^* is closed.

COROLLARY 10. Let G be an algebraic group and let M and N be its closed subgroups. If MN = NM, hence in particular if N is contained in the normalizer of M, then $\lceil M, N \rceil$ is closed.

The proof is evident by Proposition 2.

COROLLARY 11. Let G be an algebraic group, M its closed subgroup and N its closed connected subgroup. Then $M \vee N$ is a closed subgroup.

PROOF. By Lemma 4 [M, N] is closed. Hence by our theorem $M \vee N$ is closed.

Kyoto University and Kyoto Prefectural University

References

- [1] A. Borel, Groupes Linéaires Algébriques, Ann. of Math., 64 (1956), 20-82.
- [2] C. Chevalley, Classification des Groupes de Lie Algébriques, 1. Lecture note, Paris.
- [3] R. Baer, Endlichkeitskriterien für Kommutatorgruppen, Math. Ann., 124 (1952), 161-177.
- [4] Maxwell Rosenlicht, Some Basic Theorems on Algebraic Groups, Amer., J. Math., 78 (1956), 401-443.